Issues in Managing Soft QoS Requirements in
Distributed Systems Using a Policy-Based
Framework

Hanan Lutfiyya, Gary Molenkamp, Michael Katchabaw, and Michael Bauer

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada NG6A 5B7
hanan@csd.uwo.ca

Abstract. We address the problem of Quality of Service (QoS) require-
ments for multimedia applications (e.g., distance education, telemedicine,
electronic commerce). These applications need to be able to co-exist with
more traditional applications for transaction and data processing and
have soft real-time requirements. Unlike most other work in QoS man-
agement, we provide a framework that does not require users or applica-
tion developers to have detailed knowledge of the resources needed and
resource scheduling and allocation techniques in use. These underlying
details are effectively hidden. In this paper, we describe our strategy, an
architecture of services to support the strategy and a prototype.
Keywords: QoS Requirements, Policies, Distributed Systems

1 Introduction

There is an increase in distributed applications requiring real-time services. This
includes new multimedia applications such as video-on-demand, distance educ-
tion, telemedicine, teleconferencing and electronic commerce. These applications
will co-exist with more traditional applications for transaction processing, data
processing, and software development.

Users of these applications expect a high level of quality of service (QoS).
By quality of service, we are referring to non-functional requirements such as
performance or availability requirements. An example of a QoS requirement
for a multimedia application that receives a video stream is the following: “The
number of video frames per second displayed to the user must be at least 25 plus
or minus 2 frames”. Most of the QoS requirements for multimedia applications
are considered to be soft in that the applications are still considered functionally
correct even if QoS requirements are not satisfied.

We refer to the allocation and scheduling of resources to meet QoS require-
ments as QoS management. Many QoS management techniques (e.g., [5]) provide
a guarantee that resources will be available when needed by statically allocating
resources based on worst-case needs. This is important in systems where applica-
tions must meet their timing constraints to avoid disastrous consequences, e.g.,

M. Sloman, J. Lobo, and E. Lupu (Eds.): POLICY 2001, LNCS 1995, pp. 185-201] 2001.
© Springer-Verlag Berlin Heidelberg 2001

186 Hanan Lutfiyya et al.

flight control systems, chemical process control systems, and patient-monitoring
systems. However, most multimedia applications have soft real-time require-
ments. Some QoS management techniques support these types of applications
by initially allocating resources based on optimistic estimates of resource needs
and assuming that the resource will be available when needed. The application
is informed if it is not possible to satisfy its resource needs. The application
can then either renegotiate a new resource usage allocation with the operating
system and/or adapt its behaviour.

Much of this work assumes that the user or developer is aware of resource
needs in advance. For example, not only does there need to be a specification
such as “The number of video frames per second displayed to the user must be
at least 25”, but also the number of CPU cycles needed to get the 25 frames
per second. The derivation of this information needs in-depth knowledge of the
hardware architecture, network and system software in the target environment.
This places an additional burden on the developers of these applications and in
most cases is not doable without having access to the environment in which the
application is being deployed.

This paper defines a framework that is policy-driven to address the problem
of QoS management for applications that have soft real-time requirements. This
strategy does not require users or application developers to have detailed knowl-
edge of either the resources needed nor the scheduling and allocation techniques
used.

This paper is organised as follows. In section 2, we describe our strategy and
in section 3 we outline the elements needed to implement the strategy. Section 4
describes how policies are used in the strategy. Sections 5 and 6 present details
on an architecture. Section 7 presents some details of the related work. Sections
8 describes related work. Sections 9 and 10 describe our insights and future work.

2 Strategy

The following example illustrates the relationship between QoS requirements
(or user expectations) and the resources allocated using our strategy. Assume
that we have a QoS requirement that is informally stated as follows: “A given
video application is to deliver video at a frame rate of 25 frames per second,
plus or minus 2 frames”. The process expecting the video is given an initial
resource allocation, say this process is given a particular CPU priority among
running processes. When a frame is received the metric representing the quality
of service is measured (number of frames). If it exceeds the specified expectation,
the resource allocation is reduced, i.e., the process’s priority is reduced. This frees
some of the CPU to be used for other processes. Otherwise, the process’s priority
is increased to gain more use of the CPU. Resource allocations are adjusted until
a suitable one is found that satisfies expectations.

This strategy does not guarantee that a QoS requirement will be satisfied.
It tries to dynamically adjust resources as needed by the application. This may
not always be possible. For example, there may have been other multimedia

Issues in Managing Soft QoS Requirements in Distributed Systems 187

processes with similar QoS requirements on the same host machine and it might
not be possible to set CPU priorities to satisfy the processor needs of all.

There may also be additional constraints that dictate how the system should
react in such situations. Such constraints might dictate that each of these pro-
cesses should have equal access to resources and, hence, allow the performance of
each of the processes to degrade. On the otherhand, it may be decided that some
applications have priority over the others i.e., a differentiated resource allocation
is allowed. Such constraints must also be realized within the overall management
of the distributed system.

3 Realizing the Strategy

In order to realize this strategy, we must be able to a) enforce the QoS re-
quirements and b) specify QoS requirements and any additional constraints as
policies.

3.1 Enforcement

The services needed to make a system comply with QoS requirements are referred
to as enforcement services. Enforcement consists of three logical phases: detecting
the violation of a QoS policy, determining the cause of the violation and taking
steps to take to adapt the system to bring it back into a state of compliance.

Violation detection occurs when the application behaviour is observed not
to satisfy the specified QoS requirements. The violation (also called a symptom)
is a manifestation of a fault in the system. The detection of a violation of a
QoS requirement requires that we have the means of mapping the QoS require-
ment into mechanisms that collect data characterising run-time behaviour and
evaluating it relative to the QoS requirements.

Violation location takes symptoms and identifies the cause and location of
the fault in the system. In the earlier example, a violation would occur if the
video application was not receiving frames at a frame rate of between 23 and
27 frames per second. This could be caused by several situations, e.g., the video
application might not be getting enough local processor cycles, the server process
might not be getting enough cycles, a process failed or there is an unexpected
load on a network switch. Locating the cause is an important step in determining
the appropriate resource allocation. For example, if the problem is that there is
an unexpected load on a network switch, then there is no need to adjust resources
on the video application process’s host.

Adaptation refers to the actions taken to repair or otherwise recover from
a fault, so that the system returns to compliance with the QoS requirements.
Examples include providing more processor cycles, restarting a failed process
or rerouting traffic around a congested network switch. The action(s) to be
taken depend not only on the cause of the violation, but also depend on the
constraints imposed on how to achieve the QoS requirement. For example, one
possible corrective action is to adjust the CPU priority of the video application

188 Hanan Lutfiyya et al.

receiving the video stream. However, if there are several multimedia applications
on the same host, then perhaps attaining the desired level of service for all is
not possible and a different action is necessary, e.g. adjust the priority based on
the user of the video application.

These constraints are a second category of requirements (hence referred to
as administrative requirements). However, these are not user QoS requirements
(hence referred to application QoS requirements) expected of an application,
but rather they are administrative or organisational requirements. These re-
quirements will vary between different administrative domains and will vary
over time.

3.2 Requirement Specification and Distribution

Application QoS requirements for a particular application will change. For ex-
ample, the requirements of an application depend on the user who has invoked
the application. Thus different sessions of the same application will have differ-
ent QoS requirements. Administrative requirements will also change since the
constraints on the possible adaptations will also change during the lifetime of
the system.

As described earlier, an application QoS requirement may be violated. It
must be possible to specify an action which in many cases will be to send a
notification to another entity that is doing the diagnostics and determining the
adaptation to be taken.

The implication of these two observations is that it should be possible to
store both application QoS and administrative requirements. The application
QoS requirements should accessible by an application when that application is
started up. It must also be possible to specify the action(s) to be taken if the
application QoS requirement is not satisfied.

This suggests that we allow the requirements to be expressed as policies. A
policy can be defined [20] as a rule that describe the action(s) to occur when
specific conditions occur. A policy for an application QoS requirement has as its
condition the negation of the QoS requirement which means that the specified
action(s) is to take place when it has been detected that the QoS requirement has
been violated. Policies can also be used for administrative requirements (which
we will mostly refer to this as rules).

4 Specifying Application QoS Policies
There already exists formalisms for specifying policies. Our goal is not to invent
a new formalism, but rather use (as much as possible) existing formalisms. We

use a formalism defined in [6].

Erample 1.
An example of an application QoS policy is the following.

Issues in Managing Soft QoS Requirements in Distributed Systems 189

oblig NotifyQoSViolation {

subject (...)/VideoApplication/qosl_coordinator

target fps_sensor,jitter_sensor,buffer_sensor, (...)QoSHostManager

on not (frame_rate = 25(+2)(-2) AND jitter_rate < 1.25)

do fps_sensor->read(out frame_rate);
jitter_sensor->read(out jitter_rate);
buffer_sensor->read(out buffer_size);
(...)/QoSHostManager->notify(frame_rate, jitter_rate, buffer_size);

The subject is the actual application that the policy applies to, since it will
have responsibility for the policy (this will be made clearer in the next section).
Basically, VideoApplication refers to the name of an executable, qosl_coordinator
refers to an instrumentation component that evaluates the conditions stated in
policies at run-time (more on this in the next section) and (...) includes other
identitying information such as hostname, the application that the executable
belongs to, etc; (more on this in a later section).

In Example[I] frame_rate and jitter_rate are attributes of a video application.
The constraint on the frame_rate attribute is that its value must be 25 give or
take a couple of frames. The constraint on the jitter_rate attribute is that its
value must be less than 1.25.

If the value of the frame_rate attribute is less than 23 or greater than 27 or
the jitter_rate is less than 1.25 then the policy is considered to be violated. The
do component of the policy specifies which actions are to be carried out when the
policy has been violated. (...)/QoSHostManager refers to the process (discussed
in the next section) that receives notification of the violation. The constructs
fps_sensor — read(frame_rate), jitter_sensor — read(jitter_rate), and buffer_sensor
— read(buffer_size) refer to operations on sensors (explained in the next sec-
tion) that monitor the frame rate, jitter rate and communication buffer sizes,
respectively. The (...) notation includes other identifying information such as
hostname, etc; The actions to be taken are to read the frame rate, the jitter rate
and the buffer size and send this information to the (...)/QoSHostManager.

5 Enforcement Architecture

The overall architecture for enforcing QoS requirements, specifying QoS require-
ments using policies and distributing them is described in this section and the
next section. This section describes the specific architectural components to sup-
port services needed for enforcement. The description assumes that a running
application knows its QoS requirements. How it knows its QoS requirements will
be discussed in the next section which focusses on the part of the architecture
that deals with policy management i.e., the specification of QoS requirements
using policies and their distribution.

The approach used in this work requires the insertion of code into applications
at strategic locations to facilitate the collection of quality of service metrics
and exertion of control over the applications. While some measurements can be

190 Hanan Lutfiyya et al.

taken by observing external application behaviour and rudimentary control can
be achieved through operating system interactions, work in this area has found
that these approaches are limiting in both accuracy and the kinds of metrics
and control available. The example policy used throughout this section is the
one stated in Example [T

We also assume that as part of the instrumentation each application will
have a coordinator component. The role of the coordinator is to oversee the
policies associated with the particular instantiation of the application and to
communicate with a QoS Host Manager.

it
ngine
Fact
Repositor

' I
Communic ation | ! Communic ation

QS Host Manager

Fig. 1. Enforcement Architecture

5.1 Instrumented Process

An instrumented process is an application process with embedded instrumenta-
tion code. It is this instrumentation code that enables the management of the
application process. The architecture components that comprise the instrumen-
tation code are discussed in the following subsections.

Sensors. Sensors are used to collect, maintain, and (perhaps) process a wide
variety of metric information within the instrumented processes. Sensors get
their input data from probes inserted at strategic points in the application code

Issues in Managing Soft QoS Requirements in Distributed Systems 191

or by reading other sensors. During run-time, sensors can be enabled or disabled,
reporting intervals can be adjusted and thresholds can be modified.
Actuators. Actuators are used to encapsulate functions that can exert control
over the instrumented process to change its operation or behaviour. In this cur-
rent work, they are not used extensively, but can be used to support quality of
service negotiation, adaptation, and other functions in the future.
Probes. Probes are embedded in process code to facilitate interactions with
sensors and actuators. Probes allow sensors to collect metric information and
allow actuators to exert control over process behaviour. Each probe is specific to
a particular sensor or actuator. Probes are the only instrumentation component
that must be injected into the original process source code—all other components
need only reside in the same address space as the process, and do not require
code modifications.

Sensors and actuators are classes. Probes can either be methods of the sensors
and actuators or be functions that call these methods.

Ezample 2.
As an example, consider a video playback application that has the policy stated
in Example[l This QoS requirement is translated into initial thresholds for sen-
sor s1, capable of measuring the frame rate. The target, upper and lower thresh-
olds are 25, 27 and 23 frames per second, respectively. This QoS requirement also
translates into an initial threshold for another sensor, so, that measures jitter.
Sensor s; includes at least the following two probes which are also methods
of s1: (1) An initialisation probe that takes as a parameter the default threshold
target value. This probe gives a value to the target, upper and lower thresholds.
(2) A probe that does the following when triggered by the process after the
application retrieves a video frame, decodes it and displays it: (i) Determines
the elapsed time since the last frame delivered. (ii) Checks to see if this falls
within a particular range defined by the lower and upper acceptable thresholds.
Unusual spikes are filtered out. (iii) If the constraints on the values of the frame
rate are not satisfied, it will inform the coordinator c. s has similar probes. O

How does a sensor relate to policies that express application QoS require-
ments? A sensor collects values for an attribute of the process. This attribute
is part of a policy (or policies) being applied to the application. Application
policies specify constraints on process attributes. We assume that a sensor is re-
sponsible for monitoring a specific attribute. If the sensor finds that a constraint
involving that attribute is violated, it reports this to the coordinator as an alarm
report. For Example [[] it is assumed that two sensors are needed: one for the
frame rate and one for the jitter. We also note that a sensor may provide values
to be used in more than one policy. This means that there is a many to many
relationship between policies and sensors. An application may also have more
than one policy and it is possible that these policies share attributes. We note
that not all sensors measure attributes that are directly used in the specification
of a policy (see Example [H]).

192 Hanan Lutfiyya et al.

5.2 Coordinator

The coordinator is responsible for tracking adherence to the policies associated
with the application process and maintains a list of policy objects. A coordinator
receives the following information for each policy: (i) The policy identifier. (ii) A
condition list in which a condition is represented by an attribute identifier, the
identifier of a sensor that monitors that attribute, a comparison operator and
value that the attribute is to be compared to using the comparison operator.
(iii) An action list in which each element of the list is a pair which represents
a target object and an action to be taken on that target object. A policy, then,
is represented as a conjunction or disjunction of constraints on attributes.

The coordinator takes each policy from the set of policies received and creates
a policy object. For each policy, the coordinator extracts the condition list, the
action list and the boolean operator. For each condition in the condition list,
a variable is generated to represent the condition that must hold between an
attribute identifier and the value. This is added to a boolean expression based
on the boolean operator to be used.

Ezample 3.
The policy in Example [l has a condition list consisting of the following compo-

nent parts: frame_rate > 23, frame_rate < 27 and jitter_rate < 1.25. Boolean
variables x1, x2 and x3 are generated for each one. The boolean expression is x1
AND To AND 3. O

For the sake of simplicity, we assume that each sensor is associated with one
attribute and thus only needs one init method which can be given a value and
a comparison operator. The init method can take a threshold value (represented
as a character string) and convert it to the appropriate type. We also assume
that each sensor has a read method that returns the value of the attribute in
character form. The sensor is able to do the appropriate conversion. For each
comparison retrieved from the comparison list, an internal identifier generated
for that comparison which was passed to the sensor using init.

The algorithm for what the coordinator does when it receives an alarm from
a sensor is described as follows. If the coordinator receives an alarm report
from a sensor, it determines those policy objects that represent policies that
use the attribute associated with the sensor. For each such policy object, the
coordinator maps the alarm report (based on the internal identifier generated
for the comparison) to a variable that is used in the boolean expression. This
variable is set to false and the boolean expression is evaluated. If it is false,
then a report is sent to the QoS Host Manager. All knowledge of the QoS Host
Manager is confined to the coordinator, effectively hiding it from the remaining
instrumentation components.

Ezample 4.

This example describes a coordinator that has the policy of Example [If an
alarm report is received from s; then the coordinator checks the list of policy
objects and evaluates the boolean expression associated with the policy specified

Issues in Managing Soft QoS Requirements in Distributed Systems 193

in Example [If the expression evaluates to false then the QoS Host Manager
is notified. This expression evaluates to false if either s; and sy have sent alarm
reports. If the evaluation is false, the coordinator reads the frame rate, jitter
rate and buffer size, puts them into a message report and sends this off to the
QoS Host Manager. O

Example [5] makes use of an additional sensor that is used to provide further
monitored information that can be used by the QoS Host Manager. This sensor
monitors the length of the communication buffer. The purpose of this will be
illustrated later.

Ezample 5.
A socket provides for interprocess communication. In UNIX, a socket is a file

descriptor. The kernel allocates an entry in a private table in the process area,
called the user file descriptor table and notes the index of this entry. The index
is the file descriptor that is returned to the process. The entry allocated is a
pointer to the first inode. The operations read() and write() are done through
the memory associated with the inodes of the process (which we will refer to as
buffer). We can create a sensor sz that has a probe that given a file descriptor
for a socket returns the length of the buffer. This length can be compared to a
specified threshold. If the length is smaller then this threshold then this is taken
to be an indication that the problem may not be local to the process. O

5.3 Quality of Service Host Manager and Domain Manager

The QoS Host Manager receives notifications from a process (through the pro-
cess’s coordinator) when a policy has been violated. The QoS Host Manager has
a set of rules that are used to determine the corrective action(s). This involves
determining the cause of the policy violation and then determining a corrective
action(s). The process of determining the rules to be applied is called inferenc-
ing. Inferencing is used to formulate other facts or a hypothesis. Inferencing is
performed by the Inference Engine component of the QoS Host Manager. The
inferencer chooses which rules can be applied based on the fact repository. The
inferencing that can take place can either be as complex as backward chaining
(working backwards from a goal to start), forward chaining (vice-versa) or as
relatively simple as a lookup. In this work we used forward chaining.

Consider the policy in Example [l One rule for the QoS Host Manager is
informally stated as follows: if the communication buffer size is above some
threshold (implying that the process is not able to process frames fast enough),
then the CPU manager component is invoked to adjust the CPU priority of the
violated process. Additional rules are used to determine how much to increase
CPU priority based on how close the policy is to being satisfied.

Another rule for the QoS Host Manager is informally stated as follows: if
the communication buffer size is below some threshold then send a notification
to the QoS Domain Manager, which can then locate the source of the problem,
perhaps by interacting with the QoS Host Managers. The implication of a small

194 Hanan Lutfiyya et al.

buffer size is that the video client is able to process the received frames fast
enough and that the problem is either a network problem or a server problem.
The QoS Domain Manager also has a rule set which is used to drive the location
process and guide the formulation of corrective actions. One such rule for the
QoS Domain Manager is informally stated as follows: Upon receiving an alarm
report from the client-side QoS Host Manager, ask the corresponding server-
side QoS Host Manager for CPU load and memory usage. Another QoS Domain
Manager rule states that if the CPU load exceeds some predefined threshold or
the memory usage exceeds some threshold then an the alarm report is sent to
the server-side QoS Host Manager.

This is a relatively simple set of ruled]. A more complex set of rules would
include rules that reflect administrative requirements.

6 Policy Specification and Distribution

Earlier we identified that we need to be able to accommodate changes in require-
ments; this included both policies and rules. This means that we need to support
the addition and deletion of policies/rules and the distribution of polices/rules
to the relevant management components. In this work, this means that policies
about an application should be able to change each time the application runs
and that the rules in the QoS Host Manager should also be able to change. These
changes should not require recompilation (unless, of course, there is a change in
the actual attributes needed). In this section, we describe the applications and
services needed to support policy distribution. This is illustrated in Figure 6.
The components (e.g., Policy Agent, Policy Repository, applications) in Figure
6 fit in the “Quality of Resource Management System” depicted in Figure 2. Our
current implementation focusses on policies.

6.1 Information Model

We begin with a partial description of the information model used to represent
the data needed to support policy distribution. We have identified the following
different types of data needed. The data and the relationships between the data
are described in this section.

An ezxecutable is instantiated on a host as a process. More information about
the attributes of an executable class can be found in [14].

Sensors represent code that is instrumented into a program. A sensor collects
values for an attribute of the process and is part of an executable. In the model,
sensors are associated with the executable of the process. A sensor may be used
for more than one executable and an executable may have more than one sensor
(hence the many to many relationship). A sensor class includes a sensor identifier
and a list of attribute identifiers.

An application ([14]) defines the application to be managed. An application
is composed of at least one executable.

! Due to space considerations, we have not included the complete set of rules.

Issues in Managing Soft QoS Requirements in Distributed Systems 195

Application
Policy Agent
Application

Policy
Repository

Fig. 2. Policy Distribution Architecture

A policy states that the application QoS requirement of an executable of an
application and the actions to be taken if that QoS requirement is violated. We
note that in one session an executable may have a different policy then one used
in a second session simply because the application that is using that executable
is different. Policies also differ depending on the user of the application. A policy
is composed of policy conditions and policy actions. A policy condition can be
reused in other policies as can a policy action. Hence, the reason for their sep-
arate class representation. One attribute of a policy represents how the policy
conditions are to be evaluated e.g., conjunctively or disjunctively. Policies can
also be subclassed e.g., QoS policies.

6.2 Description of Components

We will now describe the components needed for policy distribution.
Repository Service. The Repository Service allows for the storage and re-
trieval of the data specified in the previous section.

Management Applications. Authorized administrators must have a way to
add and remove policies, define domains, browse policy information, etc; A pol-
icy administration application provides a user interface to facilitate this type of
activity. Another management application can be used for checking information
integrity e.g., an application can ensure that an application has sensors that col-
lect the attributes specified in the policies (note that in Figure 6 the management
application is just referred to as an application).

Policy Agent. This agent provides an interface that includes a method that is
used by a process to register with an agent. When a process starts up, it registers
with the policy agent. The process passes information about the process that
is relevant in determining the policies that are applicable to that process. This
includes a process identifier, an application identifier, an executable identifier

196 Hanan Lutfiyya et al.

and a role identifier. The Policy Agent uses this information and maps it to the
appropriate policies. This is sent to the coordinator component that creates a
list of policy objects.

7 Prototype

To explore and evaluate the architecture, we developed a prototype system based
on the architecture presented in this paper. This prototype has been implemented
for Solaris 2.8.

All of the sensors described in Section 5 were implemented. Instrumented
processes communicate with the QoS Host Manager using message queues and
socket calls at the initialisation of the processes. The QoS Host Manager has
a simple set of rules that were described in Section 5. The QoS Host Manager
adjusts allocations dynamically through a collection of resource managers that
each manage a single system resource. To date, we have resource managers capa-
ble of adjusting CPU allocations (through manipulating time-sharing priorities,
or by allocating units of real-time CPU cycles) as well as memory (through ad-
justing the number of resident pages each process has in physical memory). The
inference engine, rule set and fact repository are implemented using CLIPs [I§].

We have one management process in the Quality of Resource Management
System that receives reports from QoS Host Managers. It has rules that can dis-
tinguish between a server machine problem and a network problem (this usually
requires a query of other QoS Host Managers through a QoS Domain Manager)
and can tell a QoS Host Manager on a server machine to increase the CPU pri-
ority of the server process (assuming the problem in that the server process is
not getting enough CPU cycles).

Each of the classes defined in the information model were mapped to LDAP
classes.

We have implemented a simple application that provides an interface that
asks the user to input policy information based on the notation presented ear-
lier. The possible values are retrieved from the repository server. Very simple
information integrity checking is done which basically is making sure that that
policy is being applied to an executable that has the sensors that can monitor
the attributes specified in the policy. Another check is to make sure that the
actions are either method invocations on sensors or a notification to the QoS
Host Manager and that the notification is based on data returned by sensors
(must be non-empty). This gets translated into an LDIF file which can be easily
uploaded into LDAP.

FigureBlcompares the mean video playback throughput, in frames per second,
for the MPEG video player [I7] under normal Solaris scheduling and with our
QoS Host Manager (with a CPU Resource Manager) in place. This assumes
that the other processes are not multimedia applications. From this figure, we
can see that video throughput dropped dramatically under an increasing CPU
load when normal Solaris scheduling was used. With our resource manager in
place, however, throughput remained reasonably consistent around 28 frames

Issues in Managing Soft QoS Requirements in Distributed Systems 197

—_———_——— - — g —— =

With Resource Manager

Videa Playback Throughput (FPS)

Normal Scheduler

Fig. 3. Video Playback Throughput Comparison

per second — well within the acceptable limits set by the quality of service policy
for the video player.

From measurements taken during experimentation, the overhead from our
approach is minimal. An instrumented process on our UltraSparc system requires
approximately 400 microseconds more time to initialise itself and report to QoS
Host Manager. If the level of quality of service delivered meets expectations,
one pass through the instrumentation code requires only 11 microseconds, on
average. More detailed discussion can be found in [8] M5].

8 Related Work

There are three areas of related work: QoS management, policies and fault iso-
lation.

8.1 Dynamic QoS Management

The work closes to ours is found in [1}[4] is very similar philosophically to our no-
tion of QoS management without knowledge of detailed resource requirements.
However, they have yet to address the issues related to developing an archi-
tecture that can deal with resource adjustments and fault location. There are
also differences in the way CPU adjustments are done. Some work (e.g., [3])
allows for the adaptation of the application’s operations (as opposed to resource
adjustments) to accommodate violations of QoS requirements.

198 Hanan Lutfiyya et al.

8.2 Policies

We divide our discussion into the following: Policy specification, architectures
and vendor support.
Policy Specification.

IETF is currently developing a set of standards (current drafts found in
[16] 19l [21]) that includes an information model to be used for specifying poli-
cies, a standard that extends the previous standard for specifying policies for
specifying QoS policies and a standard for mapping the information model to
LDAP schemas. Informally, speaking an IETF policy basically consists of a set of
conditions and a set of actions. The standards focus on low-level details related
to policy encoding, storage and retrieval. Our policy definition with its notion of
reusable policy conditions and actions is very similar to that defined in the IETF
standards. Our use of “userole” is similar to the intent of “role combination”.
One of our conclusions is that it is possible to use the draft standards for defining
application QoS policies even though most of the work has been motivated by
security or management of network bandwidth policies.

However, there are some problems with current policy specifications. For
example, an alarm report from an instrumented process triggers one or more
rules. The alarm report is an event that starts a collection of actions. Not all of
these actions are necessarily taking place at one QoS Host Manager. Currently,
none of the draft standard definitions nor higher level specifications of policies
like [6] make it easy to represent this. We are intrigued by the suggestions made
in [13] and we will be examining this work in more detail.

Architecture. The IETF has also defined a general architecture (a good de-
scription can be found in [20]) for a policy management system. The general
architecture is very high-level and there is nothing to suggest that our more
specific architecture does not fall within the proposed general architecture.
Vendors. Many network vendors such as 3Com, Cisco Systems, Lucent and
Nortel are offering “primitive” versions of policy-based network management
systems for control of their network devices.

8.3 Fault Isolation and Diagnosis

A literature survey (which includes [7, 2] 12| [1T}, 9] 10]) has shown that appro-
priate techniques exist for specific areas of fault management especially at the
network layer. We use a combination of the approaches presented in the related
work, but we focus on the application layer. In addition, most of the existing
work focusses on availability issues and does not specifically deal with quality of
service.

9 Discussion

Work to date has provided a number of insights several into QoS management.
that we will discuss in this section.

Issues in Managing Soft QoS Requirements in Distributed Systems 199

Changing QoS Requirements. The separation of specifying QoS require-
ments using policy formalisms from applications allows for the following: (i) The
use of the “UserRole” allows for different users to have different QoS require-
ments for the same application.(ii) Although not described, the sensors provide
an interface that allows for a threshold to be changed. Thus, we are able to
change QoS requirements while an application is executing.

Ease of Application Development. We have instrumented several third party
applications (e.g., DOOM, Apache Web Server). The only knowledge needed was
the name of the probes and knowing which libraries to link in. It was not neces-
sary for the instrumentor to have any knowledge of what sort of QoS management
was taking place.

In the applications that we have instrumented, the instrumentation took little
time. However, we could see that as applications grow larger it will be more diffi-
cult for the developer to determine the probe points, especially if this is decided
after the application has been written. This suggests that the instrumentation
be partially automated.

Ease of Developing Policies and Rules. Policies expressing application QoS
requirements seem relatively easy to specify. However, the administrative policies
(or rules) are much more difficult. The learning curve for developing these types
of policies is high. We found that learning how to put together a set of rules is
difficult and time-consuming. These rules heavily interact with each other. This
makes it difficult to debug a set of rules. This is similar to existing problems
in developing rule sets for expert systems. We will be examining techniques for
simplifying this development and evaluation. As discussed in the Related Work
section, we also had a difficult time with the specification of rules. This is a
subject for future work.

Dynamic Rule Distribution. The ability to change rules in a QoS Host Man-
ager is very important, especially when taking into account the difficulty in
debugging the set of rules. We believe that in a real-world environment that will
be impossible to always know all the dependencies or correct resource alloca-
tions. Thus, it is very important to be able to dynamically add or delete rules
and have this distributed to different management components at run-time.

Interconnecting QoS Domain Managers. A QoS Domain Manager is pri-
marily responsible for locating sources of problems involving applications dis-
tributed across multiple hosts, as well as determining actions required for solving
the problem. Each QoS Domain Manager is assigned to a collection of hosts (its
domain); it interacts with QoS Host Managers on these hosts to enforce policies
as necessary. At times, problems may span multiple domains, which introduces
several interesting issues, as the relationship between these management entities
is not clear. Should it be hierarchical or the will optimal relationship between
the managers be more arbitrary, depending on organisational requirements and
the relationship between different organisations.

200 Hanan Lutfiyya et al.

10 Conclusions and Future Work

Our initial work has shown the feasibility of pursuing a policy-oriented approach
to QoS management. Our work shows that (i) QoS management does not have
to put an additional burden on application developers by forcing them to specify
resource allocations in advance. (ii) Applications may be started with different
QoS expectations.

We have identified a number of issues to examine in the previous section.
Other future work includes the following: (i) Further developing fault diagnosis
techniques and the configuration services needed to support these techniques
(ii) We will work on supporting additional resources distributed across multiple
hosts. (iii) We need to extend our work to handle overload conditions when there
simply are not enough resources to meet demand. We will be looking at different
application domain areas. (iv) The work we have done to date is reactive—when
quality of service violations occur, we correct them. Another approach that we
are investigating is proactive quality of service, where potential problems are
detected and handled before they actually occur.

Acknowledgements

This work is supported by the National Sciences and Engineering Research
Council (NSERC) of Canada, the IBM Centre of Advanced Studies in Toronto,
Canada, Communications and Information Technology Ontario (CITO) and
Canadian Institute of Telecommunications Research (CITR).

References

[1] G. Beaton. A Feedback-Based Quality of Service Management Scheme. In HIP-
PARCH Workshop, Uppsala, June 1997.

[2] A. Bouloutas, S. Calo, A. Finkel, and I. Katzela. Distributed Fault Identification
in Telecommunication Networks. Journal of Network and Systems Management,
November 1995.

[3] S. Brandt, G. Nutt, T. Berk, and M. Humphrey. Soft Real-time Application
Execution with Dynamic Quality of Service Assurance. In Proceedings of the 6th
IEEE/IFIP International Workshop on Quality of Service (IWQoS ’98), pages
154-163, 1998.

[4] H. Cho and A. Seneviratne. Dynamic QoS Control without the Knowledge of
Resource Requirements. Submitted to IEEE Transactions on Computing, 1999.

[5] H.Chu and K. Nahrstedt. A Soft Real Time Scheduling Server in UNIX Operating
System. FEuropean Workshop on Interactive Distributed MultimediaSystems and
Telecommunication Services, Darmstadt, Germany, September 1997.

[6] N. Damianou, N. Dalay, E. Lupu, and M. Sloman. Ponder: A language for spec-
ifying security and management policies for distributed systems: The language
specification (version 2.1). Technical Report Imperial College Research Report
DOC 2000/01, Imperial College of Science, Technology and Medicine, London,
England, April 2000.

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

21]

Issues in Managing Soft QoS Requirements in Distributed Systems 201

K. Houck, S. Calo, and A. Finkel. Towards a practical alarm correlation system.
In Proceedings 4th IFIP/IEEE International Symposium on Integrated Nework
Management, pages 519-530, 1995.

M. Katchabaw, H. Lutfiyya, and M. Bauer. Driving resource management with
application-level quality of service specifications. Journal of Decision Support
Systems, 28:71-87, 2000.

S. Katker. A modelling framework for integrated distributed systems fault man-
agement. In Proceedings IFIP/IEEE International Conference on Distributed
Platforms, pages 186-198, 1996.

S. Katker and H Geihs. A Generic Model for Fault Isolation in Integrated Man-
agement Systems. Journal of Network and Systems Management, 1997.

S. Katker and M. Paterok. Fault isolation and event correlation for integrated fault
management. In Proceedings of the 5th International Sypmposium on Integrated
Network Management, 1997.

S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to
event correlation. In Proceedings of the 4th International Sypmposium on Inte-
grated Network Management, 1995.

M. Kohli and J. Lobo. Policy based management of telecommunications systems.
1st Policy Workshop, HP Labs, Bristol, November 1999.

H. Lutfiyya, A. Marshall, M. Bauer, W. Powley, and P. Martin. Configuration
maintenance for distributed application management. Journal of Network and
Systems Management, 8(2):219-244, 2000.

G. Molenkamp, M. Katchabaw, H. Lutfiyya, and M. Bauer. Managing soft qos
requirements in distributed systems. Accepted to Appear Multimedia Systems
Workshop (ICPP), August, 2000.

B. Moore, J. Strassmer, and E. Elleson. Policy core information model — version
1 specification. Technical report, IETF, May 2000.

K. Patel, B. Smith, and L. Rowe. Performance of a Software MPEG Video De-
coder. Proceedings of the 1993 ACM Multimedia Conference, Anaheim, California,
August 1993.

G. Riley. Clips: A tool for building expert systems. Technical report,
http://www.ghg.net/clips/CLIPS.html, 1999.

Y. Snir, Y. Ramberg, J. Strassner, and R. Cohen. Policy framework qos informa-
tion model. Technical report, IETF, April 2000.

Startdust.com. Introduction to qos policies. Technical report, Stardust.com, Inc.,
July 1999.

J. Strassner, E. Ellesson, B. Moore, and Ryan Moats. Policy framework ldap core
schema. Technical report, IETF, November 1999.

	Introduction
	Strategy
	Realizing the Strategy
	Enforcement
	Requirement Specification and Distribution

	Specifying Application QoS Policies
	Enforcement Architecture
	Instrumented Process
	Coordinator
	Quality of Service Host Manager and Domain Manager

	Policy Specification and Distribution
	Information Model
	Description of Components

	Prototype
	Related Work
	Dynamic QoS Management
	Policies
	Fault Isolation and Diagnosis

	Discussion
	Conclusions and Future Work

