H
l & The Journal of
ﬁé@ Systems and

Software

ELSEVIER The Journal of Systems and Software 45 (1999) 81-97

Making distributed applications manageable through
instrumentation '

Michael J. Katchabaw, Stephen L. Howard, Hanan L. Lutfiyya *, Andrew D. Marshall,
Michael A. Bauer

Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Abstract

The goal of a management system in a distributed computing environment is to provide a centralized and coordinated view of an
otherwise distributed and heterogeneous collection of hardware and software resources. The management software will, within a
policy framework, monitor, analyse and control network resources, system resources, and distributed application programs.

In our research, we are primarily concerned with the management of distributed applications. Of particular interest is how
distributed application processes can be made manageable. The work described in the current paper focusses on instrumenting these
processes to allow them to respond to management requests, generate management reports, and maintain information required by
the management system. We present an instrumentation architecture to support this, and discuss a prototype implementation based
on it. This prototype was used to experiment with the management of DCE applications in an OSI-based management environ-
ment. © 1999 Published by Elsevier Science Inc. All rights reserved.

Keywords. Instrumentation; Distributed applications management; OSI management framework; DCE

1. Introduction

A distributed computing system consists of heterogeneous computing devices, communication networks, operating
system services, and applications. As organizations move toward these environments, distributed applications will
become more prevalent and play a critical role in day-to-day operations.

The design, development, and management of distributed applications present many difficult challenges. As dis-
tributed systems grow to hundreds or even thousands of devices and similar or greater numbers of software com-
ponents, it will become increasingly difficult to locate faults, determine bottlenecks, anticipate problems, or even
determine how distributed applications are behaving. Doing so, however, is critical to ensuring their reliability and
performance. It is necessary to provide the means to detect violations of management policies in these applications,
locate their causes, and then perform the actions required to correct the problems and recover from them. To do this,
management of distributed applications is essential.

Application manageability is a research issue of particular interest to us. While some other work has been done in this
area (Eisenhauer et al., 1994; OSF, 1993, 1995), successes to date have been limited to a particular platform or envi-
ronment, involve only measurement (rather than management), or limit their scope to a single management function.

Our approach to distributed applications management requires instrumentation; that is, code inserted into the
application at strategic locations so a managed process can maintain management information, respond to manage-
ment requests and generate event reports. Developers are understandably concerned about the increase in overhead,
decrease in performance, greater development effort, and loss of flexibility associated with instrumentation. The reality
is, however, that to achieve the level of management required in deployed applications, this instrumentation is nec-
essary. Related work demonstrates the need to collect internal application behaviour for such things as performance
(Rolia, 1994), visualization (Taylor et al., 1996), and reliability (Katchabaw et al., 1996¢). We believe the question is

* Corresponding author. Tel.: +1 519 679 2111x6888; fax: +1 519 661 3515; e-mail: hanan@csd.uwo.ca
! This research work is supported by the IBM Centre for Advanced Studies and the Natural Sciences and Engineering Research Council of Canada.

0164-1212/99/$ — see front matter © 1999 Published by Elsevier Science Inc. All rights reserved.
PI:S0164-1212(98)10070-5

82 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

not whether instrumentation is necessary, but rather how applications can best be instrumented to meet the needs for
management while minimizing the concerns of developers.

We recognize the fact that adding another facet to the development process will require extra resources and impose
an extra burden on development teams. One way to address this is to create tools and techniques to facilitate the
development of manageable software. At the same time, we see that human involvement will be unavoidable in the
cases where custom instrumentation is necessary. By developing an instrumentation architecture, we can make efforts
toward automating some parts of the process, and provide guidance to facilitate the development of custom instru-
mentation in a controlled and structured manner.

In this paper, we identify a set of basic objectives and propose an instrumentation architecture and methodology to
satisfy them. We describe the components of this architecture and their interactions and discuss how instrumentation is
carried out in the context of our architecture. We then describe how the instrumentation concepts were used to manage
Distributed Computing Environment (DCE) (OSF, 1992) applications in a prototype environment under the Open
Systems Interconnection (OSI) Management Framework (ISO, 1991a, b).

The rest of the paper is organized as follows. Section 2 outlines some of the major objectives guiding the current
work. Section 3 describes the management environment. Section 4 presents the instrumentation architecture developed
to meet these objectives. Section 5 addresses the instrumentation procedure, focussing on where instrumentation
should be placed, and how this should be done. Section 6 describes a prototype utilizing the instrumentation archi-
tecture and our experience with the prototype. Section 7 presents related work. Section 8 concludes with a summary of
the project status and directions for future work.

2. Objectives

A number of general objectives were established to guide our study of instrumentation and to influence the de-
velopment and refinement of our instrumentation architecture and prototype.

Data acquisition and control: For effective management, we must be able to acquire information on the processes being
managed. This includes both generic and application-specific management information. Traditionally, this information
is obtained using the pu/l/ (polling) model, where explicit requests are issued from the management system to the managed
processes. While this method is suitable for management inquiries, a push (event-driven) model is more effective for the
submission of periodic status reports and for notifying the management system of exceptional conditions.

In addition to acquiring management information from managed processes, the management system must be able to
exert control over these processes to influence their operational behaviour. Consequently, both forms of management
interactions must be supported.

Dynamic management: 1t is important that management be dynamically “tunable” so its behaviour can be adjusted
to meet operational needs. We must be able to adjust the level of data collected (which attributes, how often, and so
on), to define what processing is to be done on collected data, to establish thresholds used to generate alarm reports,
and to disable management altogether.

Flexibility: The instrumentation architecture must not make assumptions about the hardware, operating systems,
middleware, or communication paradigms used in the management environment. Similarly, the architecture should
accommodate a wide range of management functions including performance, accounting, fault tolerance, and security.
Finally, this architecture must also co-exist with current work in this area.

Transparency: The development process for distributed applications is a difficult one; the additional burden of
instrumentation must be minimized. The instrumentation architecture should support the automation of the instru-
mentation process, so it can be done with little developer effort. Providing a standard set of instrumentation would be
helpful. (Naturally, to support flexibility, custom instrumentation should also be supported.) In addition to reducing
developer effort, the notion of run-time transparency must be observed; users of managed applications should not be
aware of substantial performance overhead caused by management.

3. Management environment

In this section, we define the general framework of our distributed applications management system. The framework
is based on the OSI Management framework (Rose, 1990; Tang and Scoggins, 1992). Fig. 1 illustrates the basic
structure and interactions within this framework.

Management systems contain three types of components that work together: managers, which make decisions based
on collected management information guided by management policies; management agents, which collect management
information; and managed objects, which represent actual system or network resources being managed.

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 83

Real Resources

Management
Operations
ey

-

)

Event Repotts

Fig. 1. Management framework.

A managed object is an abstraction of one or more real resources. A managed object is defined in terms of the
attributes it possesses, the operations that may be performed on it, the notifications it may issue and its relationships
with other managed objects.

A management agent is responsible for a particular collection of managed objects. The agent and its managed
objects serve to decouple managers from their managed resources. This approach has many advantages. It facilitates
many-to-many relationships between management applications and managed resources. It provides a means to dis-
tribute the management function: localized agents can perform such tasks as data aggregation, filtering, analysis and
logging, ultimately reducing the flow of data to managers.

An agent receives management requests from managers and carries out the operations on the appropriate managed
objects. Conversely, notifications emitted by managed objects are routed to appropriate management applications.
Management agents perform operations requested by managers and notify managers of pre-determined events of
interest to the manager.

Fig. 2 illustrates the basic components of an agent architecture and how they interact with managed processes. The
most relevant components of the architecture are described below.

Agent coordinator: The role of the agent coordinator is to coordinate activities taking place within the agent. This
entails the internal routing of requests and notifications to the appropriate components and the synchronization of
access to the managed objects.

To Manager Application
A

1
|
|

Instrumentation

Protocol-Specific Interface

Communications
Knowledge Source

Agent
Coordinator

Error
Handler

Request
Verifier

User
Defined
Services

Log
Handler

MANAGEMENT AGENT ‘=== ====--=-

Fig. 2. Agent architecture.

84 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

Communications knowledge source: The communications knowledge source provides an interface for management
information and event notifications from the instrumented application. The knowledge source contacts the agent
coordinator to synchronize exclusive access to managed objects and performs operations on managed objects through
the managed object interface. Knowledge sources must be tailored to the communication mechanism used by the
managed applications (for example, a DCE knowledge source is required to interact with DCE applications).

Managed object interface: The managed object interface is used to coordinate requests on managed objects and to
handle emitted notifications.

Managed objects: A distributed application is modeled by a single Application managed object containing (in the
object-oriented sense) one or more process managed objects. Process managed object classes are specialized through
inheritance to reflect their unique characteristics including communication environment (sockets, DCE Remote Pro-
cedure Calls (RPCs), etc.), process role (client, server, or peer), and application type (database, etc.). Each process
managed object has attributes for its name, host, process id, priority, status, resource utilization, communication
statistics, and so on. These attributes depend on the specialization of the process managed object class (for example,
DCE client processes have different performance metrics than DCE server processes). Process managed objects use an
appropriate mechanism to communicate with instrumented application processes in the system (for example, DCE
RPC would be used to communicate with DCE application processes).

Instrumentation is required in application processes to make them manageable. This includes a mechanism which
“listens” for incoming management requests from agents and another to send management information and event
reports to agents. In Section 4.2 we will describe the agent interface that is used by the instrumented application
processes as well as the interface of the instrumented processes to be used by agents.

4. Instrumentation architecture

Having identified the key objectives of instrumentation for managing distributed applications, we refine the man-
agement architecture developed in our previous work (Hong et al., 1995b, c; Katchabaw et al., 1996a) to reflect our
current focus on instrumentation. In Section 4, we describe the key components of the architecture and the interactions
that occur between these components.

4.1. Instrumentation component overview

In Fig. 3, Instrumented Process 1 has been expanded to reveal a set of instrumentation components. This instru-
mentation architecture is the focus of the current research. While it is useful to abstract instrumentation components

_ Distributed Appgibé;iohg:": :
_ Management System

Management
Interactions

Instrumented
|| flochea

Fig. 3. Instrumentation architecture and environment.

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 85

into distinct entities to support greater flexibility and modularity, in practice, we recognize that instrumentation will be
most likely to reside in the address space of the original application process. This is necessary to facilitate efficient
access to management information and efficient control over the managed process. The proposed instrumentation
components are described below.

Instrumented process: The application process, complete with embedded instrumentation, comprises an
instrumented manageable process.

Management coordinator: The management coordinator is an instrumentation component that facilitates commu-
nication between the management system and an instrumented process. Its role includes message routing for requests,
replies, and reports flowing between the management system and instrumentation sensors and actuators. The coor-
dinator is also responsible for creating and destroying sensors and actuators, as well as performing management
initialization and termination activities within the managed process. Management requests to dynamically modify the
behaviour of sensors and actuators are also handled by the coordinator.

Since communication with the management system is contained within the coordinator, the architecture minimizes
the effort to instrument a process for different management systems. For example, we could create a generic class of
management coordinators and derive new subclasses to operate in different management environments (e.g., OSI,
Simple Network Management Protocol (SNMP), Common Object Request Broker Architecture (CORBA)) allowing
other instrumentation components (sensors, actuators and probes) to be reused without modification.

Sensors: Sensors are instrumentation components that encapsulate management information. They collect, main-
tain, and (perhaps) process this information within the managed process. Sensors exhibit monitor-like qualities in that
they provide an interface through which probes, other sensors and the management coordinator can access their state
in a controlled manner. Sensors can be provided for a variety of performance metrics, to measure resource usage, to
collect accounting statistics, to detect faults, to capture security information, and so on. Sensors get their input data
from probes inserted at strategic points in the process code or by reading other sensors. Sensors provide their in-
formation to the management coordinator in the form of periodic reports, alarm reports (when exceptional or critical
circumstances arise), or in response to explicit requests.

Sensors can be created and destroyed at run-time and they support a variety of behaviour control operations. For
example, sensors can be enabled or disabled, reporting intervals can be adjusted, event thresholds can be modified, and
sensor processing algorithms can be changed.

One can think of a sensor as a reusable software component that can be plugged into an application process via one
or more probes for the purpose of capturing management data. It is envisaged that a standard set of sensors would be
available to application developers to meet most instrumentation needs. For other application-specific information,
custom sensors can be built or derived from standard sensors.

Actuators: Actuators encapsulate management functions which exert control over the managed process to change its
behaviour. This includes generic process control such as termination, suspension, and changing process priority, as
well as more sophisticated controls such as modifying incoming request queue lengths, changing relationships with
other processes, and changing access control lists. Like sensors, actuators carry out these control operations through
interactions with probes at key locations in the process or through interactions with other actuators.

Also like sensors, actuators are dynamic and can be created or destroyed at run-time. They perform control op-
erations when requested to do so by the management coordinator, and may return a result to the coordinator, de-
pending on the operation performed. An actuator also supports behaviour control operations; for example, to enable
or disable the actuator.

As for sensors, it is anticipated that application developers will view actuators as reusable parts which can be
plugged into an application process via one or more probes to provide specific control functions. A set of standard
actuators would also be available to developers, with facilities provided for developing or deriving custom actuators
for application-specific tasks.

Probes: Probes are instrumentation components embedded in the process to facilitate interactions with sensors and
actuators. Probes allow sensors to collect management information and allow actuators to exert control over process
behaviour. Each probe is specific to a particular sensor or actuator. Sensor probes are macros, function calls, or
method invocations injected, during development, into the instruction stream of the application at strategic locations
called probe points. Actuator probes are operations in the process address space which can be invoked by actuators.
Probes linked to standard sensors and actuators can be placed in middleware services or system libraries to provide
transparency and ease the instrumentation process. Custom sensors and actuators (or standard ones inserted in non-
standard places) can be added by hand or through the use of function or class wrappers (this is discussed in detail in
Section 5).

86 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

4.2. Service interfaces

The service interfaces represent points of interactions between the managed process (through the management
coordinator) and the agent. We will first present the interface of the agent that is used by the managed process. We will
then present the interface of the managed process used by the agent.

4.2.1. Managed process to agent

Acquiring management information is critical to the management of distributed applications. One method of ac-
quiring management information is through the use of event reports. The flow of information is from the processes to
the agents and then on to the managers, if the managers are interested in the information. We must be able to support
two types of flow of information: (i) the periodic sending of management information to the agent, and (ii) the ability
to send information when a significant event occurs. Significant events includes process start-up and termination and
those events that affect the normal operation of a process. We present below a programming interface to support
managed process to agent communication. In all of these operations, the Status attribute is used to indicate the
success of the operation.

Process_sendManagementlInformation: This service is used by managed processes to report management information
to a management agent.

Process_sendManagementInformation/([in] 1long_int ProcessId,
[in] attributelnfo Attributes[],
[out] statusCode Status);

ProcessId identifies the process sending the information.
Attributes is the list of attributes to send.

Process_notifyRegister: This notifies the agent of the existence of a new process, and provides basic information
about it, including its name, identifier, host, presentation address, etc.

Process_notifyRegister([in] string AppId,
[in] string AppName,
[in] string AppVersion,
[in] process Type ProcessType,
[in] string ProcessName,
[in] long_int ProcesslId,
[in] integer ProcessNumParms,
[in] process_Parms ProcessParms[],
[in] string ProcessHost,
[out] statusCode Status);

AppId, AppName, AppVersion represent the application identifier, name and version of the application that the
process belongs to.

ProcessType represents the type of process. For example, a process may act as a client, or a server, or in both roles.

ProcessName, ProcessId represent the process name and identifier.

ProcessNumParms is the number of parameters that the process was passed when it was started.

ProcessParms is the list of parameters that the process was passed when it was started.

ProcessHost is the name of the host that the process was started on.

Process_notify Termination: Notifies the agent of the termination of the process in the context of the normal op-
eration of the application.

Process_notifyTermination([in] long_int ProcessId,
[out] statusCode Status);
Process_notify Unmanage: Notifies the agent of the desire of the process not to be managed.

Process_notifyUnmanage ([in] long_int ProcessId,
[out] statusCode Status);

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 87

Process_sendNotification: When significant events occur that affect the normal operation of the application, alarm
reports can be generated by the managed process to the agent using operations such as the following:

Process_notify CommunicationsFailure: Notifies the agent that a request from one application process to another
failed due to a communication error.

Process_notifyCommunicationsFailure([in] long_int ProcessId,
[in] unsigned long FailureCode,
[in] string ServerType,
[in] string ServerHost,
[in] string ServerProtocol,
[in] string Endpoint,

[out] statusCode Status);

ProcessId is the process identifier.

FailureCode specifies the type of failure observed.

ServerType specifies the type of server process that failed.

ServerHost specifies the host of the server process that failed.

ServerProtocol specifies the protocol being used to communicate with the server.
Endpoint specifies the port number of the server process that failed.

Process_notifyCongestion: Notifies the agent that a server process is experiencing congestion due to over-utilization
and that the expected quality of service has degraded. This is similar to Process_notifyCommunications-
Failure with the addition of attribute CurrentRate that is used to specify the average time for a remote procedure
call.

Process_notifyCongestion([in] long_int ProcessId,
[in] unsigned long FailureCode,
[in] string ServerType,
[in] string ServerHost,
[in] string ServerProtocol,
[in] string Endpoint,
[in] double CurrentRate
[out] statusCode Status);

4.2.2. Agent to managed process

Process_request ManagementInformation: This service is used by the management agent to request information from
managed processes in the system. By specifying the set of attributes to retrieve, the appropriate information is returned
to the agent.

Process_requestManagementInformation([in] attributeld Attributelds|[],
[out] attributelnfo Attributes[],
[out] statusCode Status);

AttributeIds specifies the attributes whose values are to be reported to the agent.

Process_performControlAction: The following operations are used by the management agent to perform a control
action on a managed process that changes the operation of the process relative to its distributed application. These
actions can be used to terminate processes, suspend processes, awaken processes, change the priorities of processes,
and other more application-specific actions. To do this, the agent specifies the action to perform, and input parameters
for the action. In return, the appropriate output parameters for the action are returned.

Process_request Termination: This service instructs the process to terminate as quickly as possible.
Process_requestTermination([out] statusCode Status);

88 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

Process_changePriority: This service instructs the process to change its run-time priority.

Peocess_changePriority([in] long_int NewPriority,
[out] statusCode Status);

Control of the management of processes: To manage a distributed application effectively, we must be able to change
the way management is done at run-time in order to react to operational needs. Operations include the following:

Process_controlManageProcess: Activates management in a process, informing the process which agent will be
managing it.

Process_controlUnmanage Process: Deactivates management in a process that no longer needs to be managed.

Process_controlChange ManagementSettings: Used to tailor the event reports generated by the process. For periodic
reports, this operation can change the interval between reports. For example, consider the following:

Process_changeCongestLimit([in] double NewThreshold,
[out] statusCode Status);

NewThreshold is the new threshold limit for remote procedure call durations.
4.3. Interactions

The interactions between the management system and managed processes include requests from the management
system to the processes and reports flowing in the other direction. Requests can be made to retrieve management
information, exert control over a managed process, or to change the way in which a process is being managed. Reports
are generated at process initialization, at periodic intervals, upon the detection of alarm conditions, and at process
termination. In this section, we describe the roles of the instrumentation components presented in Fig. 3 as they relate
to these interactions.

4.3.1. Management system to instrumentation interactions
Requests from the management system to an instrumented process are received by its management coordinator

which, in turn, routes them to the appropriate instrumentation components as follows:

¢ A request for management information is sent as a read request to the sensor (or sensors) responsible for the infor-
mation requested. The state for the sensors is updated by the sensors’ probes, or through interactions with other
sensors. The sensors then report their state, perhaps after some processing. The results are returned through the
coordinator to the management system.

e A request to execute a control operation is sent as an action request to the actuator (or actuators) responsible for
that operation. The actuators involved use their associated probes to carry out the operation; if necessary, interac-
tions with other actuators may also be used. Results, if any, are returned through the coordinator to the manage-
ment system.

e Requests to control some aspect of management behaviour within the process are interpreted by the coordinator
and transformed into appropriate activities. For example, if the request calls for the collection of additional man-
agement information, new sensors are created or existing ones are enabled. Conversely, a request for less informa-
tion results in existing sensors being destroyed or disabled.

4.3.2. Instrumentation to management system interactions
Reports from process instrumentation to the management system go through the management coordinator. There

are a variety of circumstances in which such reports are sent from the coordinator to the management system.

e When an instrumented process is initialized, the process creates a management coordinator within itself. This co-
ordinator then creates and enables a default set of sensors and actuators. To register with the management system
(notifying the system of the existence of the instrumented process and of an interface through which the process can
be managed), the coordinator issues read requests to the appropriate sensors to gather the information. The sensors
return this state information, which was originally collected by their probes.

e Every sensor reports its state to the management coordinator at the end of each defined collection interval.

e Based on input gathered by its probes, a sensor may generate an alarm to indicate an unusual condition. The sensor
reports the appropriate information to the management coordinator.

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 89

e When a managed process is about to terminate, the management coordinator is notified. Before termination occurs,
the coordinator collects information from the appropriate sensors and sends it to the management system to notify
it of the termination. The coordinator then destroys all sensors and actuators before terminating itself. The process
then terminates normally.

5. The instrumentation process

So far in this paper we have described what is needed for instrumentation. Before turning to the question “how can a
process be instrumented for management”? we must first answer the question “where must instrumentation be placed
in the instrumented process”?

5.1. Placing instrumentation

For effective management of a distributed application process, instrumentation probes must be inserted at strategic
locations (probe points) in the process source code. Other instrumentation components (the management coordinator,
sensors, and actuators) are located in the same address space as the process, but do not need to be placed within the
original code of the process. Instead, they can simply be linked into the process at compile time through an instru-
mentation library.

Probes must be placed where significant state transitions occur, where management information is accessible, and
where control can exerted over the managed process. These candidate locations include:

Entry points: Every process entry point must be instrumented with probes to allow instrumentation to initialize and
to allow process registration to occur. These include process start-up (for example, in the main function) and after a
process forks or a new thread is created.

Exit points: To notify the management system of the termination of a process or thread, probes must be inserted at
exit points. These probes can be used to provide the reason for termination as well as the process state just prior to
termination. The probe points of concern include the point at which an exit function is called, the main function return,
and within signal handlers.

Inter-process communication: Whenever one process communicates with another process in a distributed applica-
tion, this is considered to be a significant event. At these points, performance metrics can be computed, faults can be
detected, accounting can be performed, security policies can be validated, and application configuration may be
changed. In addition, aspects of the communication itself (which is usually a significant factor in the performance of a
distributed application) can be monitored and controlled. As a result, the start and completion of all inter-process
communication operations are usually important probe points.

Operating system or middleware service invocation: Processes making use of operating system or middleware services
require instrumentation probes to monitor and control this activity. This includes operations associated with memory
allocation and deallocation, time services, file services, naming services, binding services, and so on. Once again,
metrics can be computed, accounting can be performed, and violations can be reported. Consequently, probes de-
limiting calls to these services are also very useful.

Exception and signal handlers: To deal with exceptions or signals that are raised during the execution of a process,
special handlers are often used. Since these exceptions or signals could be significant events to the process, these
handlers should be instrumented with probes.

Custom points: When custom-developed sensors or actuators are used, the locations for the insertion of their probes
will depend largely on the application. Similarly, a developer could choose to use a standard sensor or actuator in a
non-standard location.

The above list of probe points is not exhaustive, but gives a strong sense of the level of instrumentation required for
manageability. By instrumenting a process in such a way, management data can be collected and control can be exerted
to support a range of management functions.

5.2. Performing instrumentation

In the previous section, we described the process of instrumentation and identified the strategic points in source code
where probes should be placed. In this section, we examine several instrumentation techniques and the relative merits
of each. Fig. 4 illustrates the alternative approaches we consider.

90 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

Hand Coded
Instrumentation

Function or Class Wrapper
Instrumentation

IDL
Instrumentation

Increased Flexibili

Increased Automation

System Library or Compiler
Instrumentation

Fig. 4. Instrumentation techniques.

5.2.1. Hand-coded instrumentation

Most application process instrumentation is carried out by hand during application development. The developer has
considerable latitude in choosing what instrumentation to add and where to add it. In our work, we try to make use of
standard components and apply them in a prescribed manner to achieve a degree of consistency across applications
and minimize the risk of error. Instrumenting by hand facilitates the development and use of custom sensors and
actuators to meet application-specific needs which could not be met by more generic components.

This flexibility of hand-coded instrumentation comes at a cost. A substantial amount of time, effort, and resources
can be expended instrumenting an application in this way. It can be both difficult and risky, because the potential for
human error is high and the cost of error may be great.

Tools to automate the insertion of probes would greatly enhance this procedure. Some efforts have been made
toward this goal (Hong et al., 1995a).

5.2.2. Function or class wrapper instrumentation

One possible method of automating the instrumentation process is to provide application developers with manage-
ment “wrappers’” for functions, data structures, or objects. Instead of accessing the function, structure, or object directly,
the developer would use management wrappers which would already contain standard probes. For instance, a man-
agement wrapper mf around a function f might be implemented as p1 fp2, where p1 and p2 are standard probes. To make
use of the function £, mf’is called instead (although its name is probably still the same), with the same result produced. The
inserted probes could do things like time the execution of £, add to a counter of the number of times f'is used, check the
return value of f for possible failures, and so on. The same concept applies to wrapping data structures and objects.

Wrappers can help automate basic instrumentation and reduce somewhat the effort and risk of human error. It
makes most sense under this scenario for wrapped functions, data structures, and objects to be packaged into libraries
for use by developers. Flexibility is reduced somewhat, since all uses of a particular function, data structure or object
will employ the same set of probes. Consistency across all applications using the pre-wrapped elements is increased.

5.2.3. IDL instrumentation

Many distributed application computing environments use a formal Interface Definition Language (IDL) through
which attributes and procedure or object method signatures are specified. The interface definitions are compiled (using
an IDL compiler) to produce stub code which hides most of the details of the underlying inter-process communication.

Since inter-process communication was identified as a key area for instrumentation probes, there is a potential for
automating this aspect of instrumentation within the IDL compiler. IDL compilers could be modified to insert probes
automatically when generating communications stub code. This approach would further reduce the effort and risk of
programmer error problems associated with probe insertion, but at a cost of some flexibility and customizability. Since
stub code is normally produced in the source language of the application, the developer does have opportunity to
access and modify generated stubs, buying back some of the lost flexibility. However, editing stub code is usually
considered a dangerous and messy practice.

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 91

5.2.4. System library or compiler instrumentation

A fourth approach hides most of the instrumentation procedure from the application developer. By providing
instrumented system libraries or a compiler that injects instrumentation at compile-time, most of the instrumentation
task is handled automatically. This approach requires minimal developer overhead and introduces the least risk of
programmer-induced error. Instrumenting system libraries has the additional benefit of inserting probes for exception
and signal handling routines, exit and entry points, as well as for operating system and middleware services. This could
not otherwise be done by the developer alone.

Instrumenting processes in this way covers most recommended non-custom probe points. Of course, application-
specific instrumentation requires knowledge of the application’s semantics and thus is still a developer task.

Perhaps the best example of work on this type of internal instrumentation can be found in (OSF, 1993, 1995);
however, this work is aimed mainly at performance measurement rather than general management.

The optimal approach to instrumentation may well be a blend of all four of these techniques, as it seems that no
single method meets all requirements. Clearly, there is a need for automation to reduce the effort and inherent risk of
instrumentation by hand. At the same time, the flexibility to allow developers to pursue the unique management needs
of their applications is critical. By providing compilers and instrumented libraries to automate the task for standard
instrumentation, and then additional tools to assist in developing custom instrumentation, we might get the best of
both worlds.

6. Prototype implementation

In this section we describe a prototype management system we have developed based on the generic architecture
presented in the previous section.

6.1. Management environment

The prototype builds upon University College London’s OSI Management Information Service (OSIMIS) (Pavlou
et al., 1993, 1991) which provides an object-oriented infrastructure for developing management applications and OSI
agents. OSIMIS includes a compiler (Cowan, 1993) to parse managed object class definitions (specified in the
Guidelines for the Definition of Managed Objects (GDMO) (ISO, 1991c¢)) and generate the agent code required to
access those managed objects. Through extensions to OSIMIS, our management system is capable of managing DCE
distributed applications for a variety of management tasks.

6.2. Instrumentation implementation

Instrumentation is provided to application developers through a C++ class library. The library contains a variety of
standard sensors, actuators, and management coordinators. The library can also be specialized to develop new classes
of instrumentation components to meet the unique needs of specific applications. Figs. 5-7 show class hierarchies for
management coordinators, sensors, and actuators, respectively, implemented to date. Others are currently under de-
velopment.

6.2.1. Management coordinator

Interactions between the management system and the managed processes can be carried out using different com-
munication protocols that include standard DCE RPCs and sockets.

Different management systems can be supported by replacing the management coordinator. For example, if the
management coordinator uses DCE for communication between the instrumented processes and management agents
and then changes to sockets then we would only have to replace the management coordinator; the sensors and ac-
tuators do not change. Coordinator routines have also been developed to initialize the instrumentation, to route in-
ternal messages, and to manage sensors and actuators. A scheduler routine in the coordinator handles time-based
events; this has been implemented as a separate execution thread.

6.2.2. Sensors and actuators
In the current prototype, the instrumentation library includes the following categories of sensors and actuators.
Registration sensors allow processes and applications to be registered with the management system so that the
system is aware of their existence. Registration also permits management interfaces to be specified to the management
system to enable the system to communicate with registered processes and applications.

92 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

coordinator

A

DCE RPC socket POET

Fig. 5. Management coordinator class hierarchy (POET, Partial Order Event Tracer, is a tool for collecting and visualizing event traces from the
execution of distributed applications, Taylor, 1993).

sensor

e

S R /\
o | I
initialization | | interfaces J termination I DCE RPC ‘ ‘ ”'::f” ' } file VO ’ ! socket VO l ‘ "isage. f comm. ‘
N 1]
DCE socket client server peer |
i interfaces ; |
Fig. 6. Sensor class hierarchy.
actuators
terminati nsion wake-u priority
ermination suspensiol p changing

Fig. 7. Actuator class hierarchy.

Fault detection sensors allow processes to report faults detected during their operation. These include remote
procedure call timeouts, server congestion, middleware service failures, failed file or network operations, and other
abnormal and undesirable conditions.

Resource utilization sensors collect information that characterizes the impact a process is having on system
hardware resources, including memory, CPU, disk, and network usage measures.

RPC statistics sensors compute RPC statistics (e.g., average service time) at the end of each reporting interval, then
report them to the management coordinator.

Process control actuators control process termination, process suspension, process priority modification and change
the length of the interval between RPC statistics event reports.

6.2.3. Probes
The following probes were inserted into the source code of distributed applications by hand.
1. Process_instrumentationlnit. For a process to be manageable, it is necessary that the process entry point have this
instrumentation probe. It does the following:
Retrieve the binding handle of the agent. The binding handle contains the information needed by a process to estab-
lish communication with the appropriate agent. Since we are using DCE we retrieve the binding handle of the

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 93

agent using the Cell Directory Service (CDS). The CDS is a service that allows processes (including agents) to reg-
ister their interfaces.
Registration. The agent is notified of the existence of a new process and is provided with information about it.
Creates the Management Coordinator and Sensors. A management thread is created that becomes the management
coordinator and the sensors.

2. Process_rpcRequestBegin and Process_rpcRequest End: These are inserted before and after each remote procedure

call. They update the resource utilization, RPC statistics and fault detection sensors.
3. Process_instrumentationShutdown. This probe notifies an agent of the termination of a process.
Hence, for any manageable process, the code for the process will exhibit a form similar to this:

#include ¢ ‘app_instrumentation.h’’
Process_instrumentationInit();

Process_rpcRequestBegin()
application remote procedure call();
Process_rpcRequestEnd()

Process_instrumentationShutdown();
All the developer sees are these probes. The management coordinator, the sensors and the actuators are hidden from
the developer. The developer must remember to include app_instrumentation. h and to link in the instrumen-
tation library.

6.3. Managers

To validate our instrumentation architecture we implemented, as part of the prototype system, several managers.

Event visualization: POET, Partial Order Event Tracer (Taylor, 1993), is a tool for collecting and visualizing event
traces from the execution of distributed applications. While POET is especially useful in debugging, the event traces
generated using our instrumentation also assist in visualizing and understanding the interactions that occur in complex
distributed applications.

Performance management: (Rolia et al., 1995; Rolia and Sevcik, 1995; Sun et al., 1997; Sun, 1997; Woodside et al.,
1995) Delays caused by poor performance at the application level or network level can seriously affect the usability and
effectiveness of a distributed application, or an entire distributed environment. Both application developers and
managers of a distributed system must therefore take steps to ensure that their systems are performing within ac-
ceptable bounds.

To that end, we have developed two performance-related managers. One manger is a tool that provides a visual
picture of remote procedure call performance based on the data collected by the RPC statistics sensor. The other builds
predictive performance models for distributed application systems to be used by distributed application developers and
performance management staff to make quantitative comparisons between software design and system configuration
alternatives.

Automating fault location: (Turner, 1995) One important aspect of distributed applications management is fault
management — detecting that the behaviour of an application has deviated from the specification of its desired be-
haviour. This deviation is referred to as a failure, and is manifested through observed symptroms. At the source of a
failure is a fault (or possibly several faults). Symptoms alone do not provide enough information to allow the fault to
be corrected: many faults may give rise to the same symptom.

We have developed a manager, the Fault Management Tool (Turner, 1995), that automates the process of fault
location in distributed application. Application processes are instrumented with fault detection sensors (examples of
which were given in Section 6.2.2). Thresholds and other settings on these sensors are used to reflect the specification of
the application’s desired behaviour so that when the application deviates from this behaviour, a sensor is triggered and
generates a symptom report. The Fault Management Tool receives these symptoms from application processes, filters
and correlates the symptoms, and uses a variety of techniques to locate the faults responsible for the deviant appli-
cation behaviour.

Configuration maintenance: (Lutfiyya et al., 1997) Most manager applications, such as those described above, re-
quire access to information on computing devices, networks, system resources and services, and user applications in the
environment they are managing. As a result, a configuration maintenance service is required to support management.

To this end, we have developed a Configuration Maintenance Service (Lutfiyya et al., 1997) that enables man-
agement applications and other management services to retrieve and update configuration information stored in a

94 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

Management Information Repository (MIR). Registration sensors, such as those discussed in Section 6.2.2, are used
by distributed applications to register, update, and remove their configuration information with the Configuration
Maintenance Service. In addition, tools are also provided to exert rudimentary control over registered applications
using actuators also discussed in Section 6.2.2.

6.4. Evaluation

Having designed and developed prototypes of our generic architecture in Section 4, it is important to evaluate this
work in light of our objectives given in Section 2.

Data acquisition and control: To meet this objective, we must support generic and application-specific management,
both pull and push models of acquiring management information, and both the collection of data and the exertion of
control over application processes.

To date we have implemented several sensors and actuators, as discussed in Section 6.2.2, to facilitate data ac-
quisition and process control. We have also provided a library of instrumentation components to support generic
management of applications, and derived components specific to the needs of certain applications (DCE distributed
applications). Furthermore, most of the data acquisition done by our instrumentation is according to the push model
for efficiency reasons, but the pull model is also supported to permit poll-driven management.

As a result, we have met this objective with our generic architecture, and we have successfully validated it through
our prototypes.

Dynamic management: To meet this objective, we must allow our management to be dynamically tunable to adjust
how management is being done. This includes enabling and disabling management, as well as control over what is
being done.

All sensors and actuators that have been developed can be enabled and disabled easily, allowing the amount of data
acquisition and control to adapt to reflect the needs of management. Implemented sensors also allow reporting in-
tervals and thresholding to be changed. While sensors that support a variety of data processing options have yet to be
implemented, this is supported by our generic architecture.

As a result, we have met this objective with our generic architecture, and we have successfully validated it through
our prototype implementation.

Flexibility: To meet this objective we must not make assumptions about the platforms we are dealing with. At the
same time, we must be open in supporting a wide range of management functions, as well as current work and
standards in this area.

The architecture that we have developed is platform-neutral. Our management work has currently been imple-
mented on a variety of hardware architectures including IBM RS/6000, Sun UltraSparc, and Sun SPARCstation, and
operating systems including AIX, Solaris, and SunOS. We also support several communication infrastructures, in-
cluding TCP/IP sockets and DCE RPC. Work is currently under way to support even more environments.

Our work also supports a variety of management functions, with sensors and actuators to facilitate fault man-
agement, performance management, configuration management, and accounting for system resources. Our generic
architecture does not limit us to only these areas — we are currently developing security sensors, reconfiguration
sensors, quality of service sensors, and components to support other management functions. Our architecture is open
and can be easily integrated with other management solutions. Our prototype systems have been integrated easily with
other management solutions we have developed, OSI-compliant management solutions, as well as the work of other
universities under the MANagement of Distributed Applications and Systems (MANDAS) project (Bauer et al., 1997).
This integration was simplified as we only needed to specialize coordinators to communicate with the various man-
agement systems, while other instrumentation components remained unchanged.

As a result, we have met this objective with our generic architecture, and we have successfully validated it through
our prototypes.

Transparency: To meet this objective, we must make instrumentation easy on both application developers and on
the instrumented application processes. Creating manageable applications with instrumentation should not be a
burden, nor should the instrumented application processes be a burden on scarce system resources due to excessive
management overhead.

Our generic instrumentation architecture supports the use of automation in instrumenting applications through a
variety of techniques outlined in Section 5. While the majority of our instrumentation is currently done by hand or
through function or class wrappers, we are currently developing a variety of tools to facilitate the instrumentation process.

To assess the overhead of our management instrumentation, we have developed a Distributed Applications
Management Testbed (Katchabaw et al., 1996b). This testbed facilitates experiments measuring the costs of man-
agement. From our initial experiments, documented in (Katchabaw et al., 1996b), we found that the use of our

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 95

management instrumentation on average caused less than a 5% drop in application responsiveness. On the other hand,
in the same study, we found that application resource consumption could increase from between 7% to 43%, depending
on the resource. Through further experimentation, however, we were able to determine a variety of techniques to
reduce the costs of management, such as using a push model for data acquisition and batching management requests
when the pull model must be used.

This objective is supported well by our generic architecture, and we are making progress towards meeting it in our
prototypes.

In summary, we have been able meet almost all of our objectives through both our generic architecture and our
prototypes, and we are close to meeting the remaining objective. Our work makes several valuable contributions not
present in related work in this area, as discussed in the next section.

7. Related work

Many parallel programming tools use instrumented software to capture data about the run-time operation of
parallel programs. Some of these tools are described below.

e Portable Instrumented Communication Library (PICL) (Geist et al., 1991; Heath and Etheridge, 1991) instrumen-
tation supports program performance analysis and animation. In order to instrument an application program,
PICL library functions are inserted in the program by the user before compilation. During program execution, calls
to these functions generate instrumentation data in a particular event record format and log the data in a local buf-
fer of each node. The user specifies the size of the buffer. These buffers are typically flushed at the end of program
execution and merged into a single trace file at the host system.

o AIMS (Automated Instrumentation and Monitoring System) (Yan, 1994) is a toolkit consisting of an instrumenta-
tion library and a set of off-line performance analysis and visualization tools. Its instrumentation support is almost
identical to that of PICL.

e Pablo (Reed et al., 1992) is an integrated tool environment that offers three types of performance data capturing
functions: (1) event tracing; (2) event counting; and (3) code profiling. If a local buffer is full, all buffers can be
flushed synchronously to a file or to an Internet domain socket. Unlike PICL and AIMS instrumentation, Pablo’s
instrumentation supports adaptive levels of tracing to dynamically alter the volume, frequency and types of event
data recorded.

e Paradyn (Miller et al., 1994) is an on-line performance evaluation environment that is based on dynamically updat-
ing the cumulative-time statistics of various performance variables. The instrumentation provides the data needed
for the performance evaluation. The instrumentation is equipped with the capability to estimate its cost to the ap-
plication program. This cost model is continuously updated in response to actual measurements as an instrumented
program starts executing and the model attempts to regulate the amount of instrumentation overhead to the appli-
cation program.

e Falcon (Gu et al., 1994) is an application-specific, on-line monitoring and steering system for parallel programs.
Instrumentation supports dynamic control of monitoring overhead to reduce the latency between the time an event
is generated and the time it is acted upon for the purpose of steering. Various modules and functions of the instru-
mentation are specified by a low-level sensor specification language and a higher level view specification language.

e ParAide (Ries et al., 1993) is the integrated performance monitoring environment for the Intel Paragon. Commands
are sent to the distributed monitoring system, called Tools Application Monitor (TAM). TAM consists of a net-
work of TAM processes arranged as a broadcast spanning tree with one TAM process at each node. This config-
uration allows broadcasting monitoring requests to all nodes. Instrumentation library calls generate data that are
sent to the event trace servers, which perform post-processing tasks and write the data to a file or send them directly
to an analysis tool.

e Scalable Parallel Instrumentation (SPI) (Bhatt et al., 1995) is a real-time instrumentation system for heterogeneous
computer systems. SPI supports an application-specific instrumentation development environment, which is based
on an event-action model and an event specification language.

e VIZIR (Hao et al., 1995) is another integrated tool environment used for debugging and visualizing of a worksta-
tion cluster. This environment utilizes commercially available debuggers and visualization tools. This environment
is an example in which instrumentation support has been used to integrate heterogeneous tools.

Unfortunately, much of this work suffers from common limitations. Several of the tools listed above are limited to a
particular platform or environment, and not easily ported for use elsewhere. The majority of the tools involve only
measurement and data acquisition, and do not support the control aspect of management we discussed earlier. Many
of the tools cannot accommodate the spectrum of management functions previously listed in this paper.

96 M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97

In addition to related work in parallel environments, other work in this area is more specific to distributed ap-
plications. This includes the following tools:

e Meta Toolkit (Marzullo et al., 1991) — This toolkit is a system for managing distributed applications developed
using the Isis distributed programming toolkit (Birman and Cooper, 1990).

e Huang and Kintala Tools (Huang and Kintala, 1993) — This set of tools provides services for detecting whether a
process is alive or dead; specifying and check-pointing critical data; recovering check-pointed data; logging events;
locating and reconnecting to a server; and replicating user-specified files on a backup host.

e MAL (Trommler et al., 1995) — This work focusses on instrumentation of distributed applications for management.
The Meta Toolkit is meant to be used within a specialized environment that is provided by Isis. Our work is more

general in that we do not make any particular assumptions about the underlying environment. The services provided

by the Huang and Kintala tools can be implemented by an agent, or by sensors and actuators. MAL is similar to our
work except that we further developed an architecture for instrumentation that includes both sensors and actuators.

8. Concluding remarks

The work we describe here is part of an ongoing structured attack on the distributed applications management
problem.

The research detailed in this paper focusses on the instrumentation required to make distributed applications
manageable. From core objectives, we have developed an architecture. We have discussed several approaches to in-
strumentation based on this, and have concluded that, while automation and tools are required to facilitate the process,
hand-coded instrumentation is still needed for custom management. Through an instrumentation prototype, we have
shown that our architecture is sufficiently rich to support a wide range of management functions and environments.

We are investigating ways of bringing design for manageability into the software development process. We see the
following areas as potentially fruitful.

e Further evaluating the instrumentation interfaces, sensors and actuators by supporting more management applica-
tions.

Developing software engineering tools to enable building instrumented applications.

Modifying compilers to automatically instrument application code during code generation.

Instrumenting system libraries to provide management for any application.

Developing an information model and repository services for management components to support searching,
browsing, and other queries.

We plan to extend the class library to include more management coordinators, sensors, and actuators and to
conduct further performance analyses to determine the exact costs of our instrumentation, and to determine how to
minimize them.

References

Bauer, M.A., Bunt, R.B., Rayess, A.E., Finnigan, P.J., Kunz, T., Lutfiyya, H.L., Marshall, A.D., Martin, P., Oster, G.M., Powley, W., Rolia, J.,
Taylor, D., Woodside, M., 1997. Services supporting management of distributed applications and systems. IBM Systems Journal 36, 508-526.

Bhatt, D., Rakesh, J., Steeves, T., Bhatt, R., Wills, D. 1995. SPI: An Instrumentation Development Environment for Parallel/Distributed Systems.
In: Proceedings of Int. Parallel Processing Symposium.

Birman, K., Cooper, R., 1990. The Isis Project: Real Experience with a Fault Tolerant Programming System, Technical Report TR90-1183,
Department of Computer Science. Cornell University, Ithaca, NY.

Cowan, J., 1993. OSIMIS GDMO Compiler User Manual (Department of Computer Science. University College, London, UK.

Eisenhauer, G., Gu, W., Kindler, T., Schwan, K., Silva, D., Vetter, J., 1994. Opportunities and Tools for Highly Interactive Distributed and Parallel
Computing, Technical Report GIT-CC-94-58, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-0280.

Geist, G., Heath, M., Peyton, B., Worley, P., 1991. A User’s Guide to PICL, Technical Report ORNL/TM-11616, Oak Ridge National Liboratory.

Gu, W., Eisenhauer, G., Kramer, E., Schwan, K., Stasko, J., Vetter, J., 1994. Falcon: On-line Monitoring and Steering of Large-Scale Parallel
Programs, Technical Report GIT-CC-94-21, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-0280.

Hao, M., Karp, A., Waheed, A., Jazayeri, M., 1995. VIZIR: An integrated environment for distributed program visualization. In: Proceedings of
International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’95) Tool Fair.

Heath, M., Etheridge, J., 1991. Visualizing the performance of parallel programs. IEEE Software 8, 29-39.

Hong, J.W., Gee, G.W., Bauer, M.A., 1995a. Towards automating instrumentation of systems and applications for management. In: Proceedings of
the 1995 IEEE Global Telecommunications Conference.

Hong, J.W., Katchabaw, M.J., Bauer, M.A., Lutfiyya, H., 1995b. Distributed Applications Management Using the OSI Management Framework,
Technical Report #448, Dept. of Computer Science, University of Western Ontario, London, Canada.

Hong, J.W., Katchabaw, M.J., Bauer, M.A., Lutfiyya, H., 1995¢c. Modeling and management of distributed applications and services using the OSI
management framework. In: Proceedings of the International Conference on Computer Communication.

M.J. Katchabaw et al. | The Journal of Systems and Software 45 (1999) 81-97 97

Huang, Y., Kintala, C.,1993. Software Implemented Fault Tolerance: Technologies and Experience. In: Proceedings of the 23rd International
Symposium on Fault Tolerant Computing, pp. 2-9.

ISO, 1991a. Information Processing Systems — Open Systems Interconnection — Basic Reference Model — Part 4: Management Framework,
International Organization for Standardization, International Standard 7498-4.

ISO, 1991b. Information Processing Systems — Open Systems Interconnection — Systems Management Overview, International Organization for
Standardization, International Standard 10040.

ISO, 1991c. Information Technology — Open Systems Interconnection — Management Information Services — Structure of Management Information
Part 4: Guidelines for the Definition of Managed Objects, International Organization for Standardization, International Standard 10165-4.

Katchabaw, M.J., Howard, S.L., Lutfiyya, H.L., Bauer, M.A., 1996a. Efficient management data acquisition and run-time control of DCE
applications using the OSI management framework. In: Proceedings of the Second International IEEE Workshop on Systems Management.

Katchabaw, M.J., Howard, S.L., Marshall, A.D., 1996b. Bauer, M.A., Evaluating the costs of management: A distributed applications management
testbed, in: Proceedings of the 1996 CAS Conference, Toronto, Canada, pp. 29-41.

Katchabaw, M.J., Lutfiyya, H.L., Marshall, A.D., Bauer, M.A., 1996¢. Policy-driven fault management in distributed systems. In: Proceedings of the
International Symposium on Software Reliability Engineering, White Plains, New York.

Lutfiyya, H.L., Marshall, A.D., Bauer, M.A., Martin, P., Powley, W., 1997. Configuration maintenance for distributed applications management. In:
Proceedings of the 1997 CAS Conference, Toronto, Canada, pp. 43-57.

Marzullo, K., Cooper, R., Wood, M.D., Birman, K.P., 1991. Tools for distributed application management. IEEE Computer 25, 42-51.

Miller, B., Cargille, J., Irvin, R., Kunchithapadam, K., Callaghan, M., Hollingsworth, J., Karavanic, K., Newhall, T., 1994. The Paradyn Parallel
Performance Measurement Tools, Technical report, University of Wisconsin.

OSF, 1992. Introduction to OSF DCE, Ist ed. Open Software Foundation.

OSF, 1993. OSF Request For Comments 32.0 — Requirements for Performance Instrumentation of DCE RPC and CDS Services, Open Software
Foundation.

OSF, 1995. OSF Request For Comments 33.0 — Standardized Performance Instrumentation and Interface Specification for Monitoring DCE-Based
Applications, Open Software Foundation.

Pavlou, G., Bhatti, S.N., Knight, G., 1993. The OSI Management Information Service User’s Manual, Version 1.0. University College London, UK.

Pavlou, G., Knight, G., Walton, S., 1991. Experience of implementing OSI management facilities. In: Proceedings of the Second International
Symposium on Intergrated Network Management, Washington, DC.

Reed, D., Aydt, A., Madhyastha, T., Noe, R., Shields, K., Schwartz, B., 1992. The Pablo Performance Analysis Environment, Technical report,
University of Illinois.

Ries, B., Anderson, R., Breazeal, D., Callaghan, K., Richards, E., Smith, W., 1993. The Paragon performance monitoring environment. In:
Proceedings of Supercomputing’93, Portland, Oregon, pp. 15-19.

Rolia, J., Vetland, V., Hills, G., 1995. Ensuring Responsiveness and Scalability for Distributed Applications. In: Proceedings of CASCON 95,
Toronto, Canada, pp. 28-41.

Rolia, J.A., 1994. Distributed Application Performance, Metrics and Management, Elsevier, Amsterdam.

Rolia, J.A., Sevcik, K.C., 1995. The methods of layers. IEEE Transactions on Software Engineering 21, 689-700.

Rose, M., 1990. The Open Book: A Practical Perspective on OSI, Prentice Hall, Englewood Cliffs, NJ.

Sun, Y., 1997. Measuring and Modelling RPC Performance in OSF DCE, Master’s thesis, Department of Computer Science, University of
Saskatchewan, Saskatoon, Canada.

Sun, Y., Bunt, R., Oster, G., 1997. Measuring RPC trafficin an OS/2 DCE environment. In: Proceedings of the Fifth International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS ’97), Haifa, Israel, pp. 51-54.

Tang, A., Scoggins, S., 1992. Open Networking with OSI, Prentice Hall, Englewood Cliffs, NJ.

Taylor, D.J., 1993. The Use of Process Clustering in Distributed-System Event Displays. In: Proceedings of CASCON ’93, vol. 1. Software
Engineering, Toronto, Canada, pp. 505-512.

Taylor, D.J., Kunz, T., Black, J.P., 1996. A Tool for Debugging OSF DCE Applications. In: Proceedings of the 12th Annual International Computer
Software and Applications Conference, Seoul, Korea, pp. 440-446.

Trommler, P., Schade, A., Kaiserswerth, M., 1995. Object Instrumentation for Distributed Applications Management, Technical Report RZ 2730
(88162), IBM Research Division.

Turner, C., 1995. Fault Location in Distributed Systems, Master’s thesis. The University of Western Ontario.

Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S., 1995. The stochastic rendez-vous network model for performance of synchronous client-
server-like distributed software. IEEE Transactions on Computers 44, 20-34.

Yan, Y., 1994. Performance Tuning with AIMS — An Automated Instrumentation and Monitoring System for Multicomputers, Proceedings of the
Twenty-Seventh Hawaii International Conference on System Sciences.

Michael J. Katchabaw is a Ph.D. student in the Department of Computer Science at the University of Western Ontario. His research interests include
distributed computing, network management, and distributed multimedia.

Stephen L. Howard is a Ph.D. student in the Department of Computer Science at the University of Western Ontario. His research interests include
distributed computing, operating systems, and object-oriented management models.

Hanan L. Lutfiyya received her Ph.D. from the University of Missouri at Rolla in 1992. She is currently an Assistant Professor at the University of
Western Ontario, London, Canada. Her research interests include management of distributed systems, fault tolerance and software architecture.

Andrew D. Marshall is a Research Associate with the MANDAS Project at the University of Western Ontario. He is also a doctoral candidate in
Computer Science at UWO. His research interests include management of distributed applications and systems, software engineering for distributed
systems and software reengineering.

Michael A. Bauer is Senior Director, Information Technology Services, at the University of Western Ontario. He is also a Professor in, and former
Chair of, the Department of Computer Science. His research interests include distributed computing, applications of high-speed networks and
software engineering.

