

Network Performance in Distributed HPC Clusters

Ben Huang, Michael Bauer, Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada N6A 5B7

Abstract - Linux-based clusters have become prevalent as a
foundation for High Performance Computing (HPC)
systems. As these clusters become more affordable and
available, and with the emergence of high speed networks, it
is becoming more feasible to create HPC grids consisting of
multiple clusters. One of the attractions of such grids is the
potential to scale applications across the various clusters.
This creates a number of interesting opportunities as well as
introduces a number of challenges. A key question is the
impact of the inter-cluster network on the overall
performance of the computing environment. In this paper,
we report on recent experiments to evaluate such
performance.

Keywords: High performance computing, grids, network
performance analysis, benchmarking tools.

1. INTRODUCTION
Being able to solve larger, more complex problems in a
shorter period of time is a key motivator in building
High Performance Computing (HPC) systems. Today’s
computers are becoming more and more powerful and
high-speed, low-latency networks are becoming
increasingly available and affordable. It is now
possible to build powerful HPC platforms from off-the-
shelf computers and networks. In particular, the Linux-
based commodity cluster constructed by general
purpose computers is an increasingly popular model
and seems to be a trend for future HPC [1].

Commodity cluster computing can be characterized
as cost effective, extensible, and easy to maintain. With
off-the-shelf components and operating systems it
becomes feasible to interconnect such systems over
local and wide area networks, particularly, as the speed
of commodity networks increase. Such distributed
HPC clusters, or HPC grids, offer the potential of large
computational spaces when needed. However, since
these commodity clusters are built with a variety of
computers and network devices, they do not
necessarily guarantee high performance. The
performance of a standalone computer depends on its
operating system, CPU, memory speed, and a variety
of other factors. For HPC clusters, network
communication is another key factor in performance -

communication bottleneck in an HPC cluster may lead
to a significant loss of overall performance in the
cluster. Inter-cluster performance is also critically
dependent on network performance. Detailed network
performance analyses that identify these bottlenecks
are capable of yielding insight that developers can use
to build better applications and administrators can use
to better configure, manage, and administer their
clusters and grids.

In this paper, we report on measurements of network
performance within and between HPC clusters. In
Section 2 we provide a brief overview of previous
work on network measurements and in Section 3 we
provide an introduction to a tool for HPC
environments. In Section 4, we describe our HPC grid
and the clusters used for experimentation and report on
experiments measuring UDP and TCP communication
under a variety of parameters. We conclude with some
directions for future work.

2. RELATED WORK
To measure network performance, such as

throughput and latency, two types of measurements are
commonly used: active and passive. Active
measurement introduces a workload into the network,
usually through the execution of a special application.
Typically, this is done in a client/server model, in
which the client and server exchange probe packets
across the network, with both the client and server
collecting timing measurements[2]. These models
assume that characteristics of each packet traveling a
link are related to the bandwidth and network delay.
This type of measurement is considered non-intrusive,
since it does not significantly increase the network
traffic during the testing. Examples of tools adopting
these techniques include Pathchar [3] and Pathrate [4].

Passive measurement, in contrast, probes existing
network traffic to compute various network metrics.
For example, in TCP the time interval between a SYN
packet and the corresponding SYN/ACK packet can be
used as a measure of the round trip time (RTT)
between the two hosts involved. Passive measurement
does not create any additional network traffic, and
consequently does not require the execution of traffic

generating application processes on hosts in the
network. A simple example of a passive measurement
application is tcpdump[5]. People often use this tool to
capture a selection of packets and analyze the
appropriate header fields to help understand network
usage and behaviour. Other passive measurement tools
include ntop[6] and nettimer[7]. Generally, however,
passive measurement is not used for network
benchmarking as it is not flexible, is difficult to
control, and is not repeatable.

To study networks in HPC environments, it is
preferable to use an active measurement model as it
allows direct measurements of network performance
and behavior. While this can cause disruptions during
experimentation, this inconvenience is well worth the
better quality results that can be obtained. There are
many existing tools available that involve active
measurements, including Udpmon[8], Netperf[9],
Iperf[10] and NetPIPE[11]. All of these tools were
designed as general purpose network tools, and have
limitations and restrictions that make them unsuitable
for HPC environments. For example, none of the above
tools test non-blocking communication and none
specialize in high performance interconnects, nor are
they capable of testing all three of the most common
communication protocols in commodity clusters: UDP,
TCP, and MPI. In theory, it is possible to modify these
tools, but, their implementations are quite complex and
difficult to extend. For example, the Netperf utility is
comprised of more than 40,000 lines of C code.

3. DESIGN of HPCBENCH
With this in mind, we chose to implement our own

benchmarking tool, Hpcbench, focusing specifically on
HPC environments. Hpcbench was designed to
measure the high-speed, low-latency communication
networks in Linux-based HPC systems. The objectives
of Hpcbench include: 1) High accuracy and efficiency;
2) Support for UDP, TCP and MPI communications; 3)
Tunable communication parameters of interest in an
HPC environment; 4) Detailed recording of test results,
communication settings, and system information.
Hpcbench was written in C and uses BSD socket and
MPI APIs. It has three independent sets of benchmarks
measuring UDP, TCP, and MPI. For UDP and TCP
communication tests, we employ a client/server model
that uses two channels during testing: a control channel
and a test channel. The first is a reliable TCP
connection for critical data communication for
controlling the test run, while the second is used for
carrying test data packets. This two-channel design
makes it easier to control the tests and gather results.
The control channel is used by Hpcbench solely for
control of the tests and only involves data transfer

before each test starts and after each test ends; thus, it
does not introduce additional traffic or overhead during
actual testing..

Another reason for two communication channels in
Hpcbench is for test configuration purposes. Hpcbench
supports many test modes for various protocols, with
numerous tunable parameters for each protocol; all of
this must be configured for each test. For example,
some socket options, such as a socket’s buffer size,
should be set before establishing a connection for test
data packets. With only one communication channel
between the client and server, the server process must
be initialized with a long and cumbersome argument
set according to the client’s test setting. For further
details, the reader is urged to refer to [12].

4. NETWORK PERFORMANCE
In this section, we present results of analyzing UDP
and TCP throughput for inter-cluster and intra-cluster
communication within SHARCNET [13], the Shared
Hierarchical Academic Research Computing Network.
SHARCNET is a multi-institutional HPC network
distributed across 9 universities in Ontario. We look at
network performance involving three clusters in
SHARCNET: greatwhite (Western), deeppurple
(Western), and hammerhead (Guelph). These are
Linux clusters with 39, 12 and 28 Alpha ES40 4-cpu,
833MHz processors, respectively, with 4Gb RAM per
ES40 and Gigabit Ethernet and Quadrics QSW Elan3
[14] interconnects; more details can be found in [12].
 We focus on blocking, unidirectional stream
experiments, because they more directly show the
network behavior with less benchmark overhead. Our
experiments include both intra-cluster and inter-cluster
communications in our test-bed. For inter-cluster tests,
we examined the communication between greatwhite
and deeppurple, which were connected via an optical
fiber (1KM distance) and communication between
greatwhite and hammerhead with a long distance fiber
optic link (150KM). All three clusters use the same
network devices (Alteon AceNIC, HP Passport 8600
switch) and software (Linux 2.4.21).

4.1 UDP Communication
Table 1 summarizes the unidirectional tests using UDP.
We make three observations based on the results. First,
the throughput increased when datagram size was
increased from 1KB to 1460-bytes, but it dropped
when the datagram size was increased from 1460-bytes
to 4KB. When datagram size increased to 40KB and
the socket buffer size was relatively large (1MB and
10MB), network throughput decreased drastically.
Second, throughput increased when socket buffer size
increased, but remained reasonably steady for larger

socket buffer sizes. Finally, throughput varied slightly
for different links, but not significantly.
 To explain the first observation, we look at the packet
size for the different datagrams. The MTU size in our
test-bed was 1500-bytes, implying a maximum 1472-
byte UDP payload for each packet. When datagram
size was increased from 1KB to 1460-bytes, fewer
packets needed to be transmitted to transfer the same
amount of data, and system overhead was reduced,
resulting in a higher throughput. Throughput
decreased, however, when datagram size was increased
from 1460-bytes to 4KB. This likely occurred because
each 4KB datagram had to be fragmented into 3
packets to fit the MTU size before transmission in the
network, resulting in some smaller packets requiring
transmission, and more overhead.

Table 1: Intra/Inter-cluster UDP Throughput (Mbps)
UDP throughput (Mbps) (mean of ten replications)

 Socket buffer Datagram
(Bytes)

Link
10KB 100KB 1MB 10MB

gw gw 165.11 485.22 575.30 574.79
gw dp 162.27 471.38 556.33 559.54

1024

gw hh 162.31 459.07 557.15 568.03
gw gw 177.75 557.43 649.83 647.75
gw dp 177.68 541.88 628.19 630.91

1460

gw hh 177.59 539.45 636.77 638.83
gw gw 147.64 549.46 586.02 583.32
gw dp 146.55 540.11 539.13 541.22

4KB

gw hh 147.30 536.34 538.54 537.49
gw gw --- 567.09 1.15 1.13
gw dp --- 564.46 1.16 1.13

40KB

gw hh --- 565.78 1.15 1.14

Further, an entire 4KB datagram would be discarded
if there was a single packet lost.. When datagram size
was increased to 40KB, this made the situation worse,
since one datagram was segmented into at least 28
packets, and the entire 40KB of data would be
considered lost if any of these 28 packets were lost.
When the socket buffer size was of a medium size,
100KB in our experiments, the socket buffer was itself
a bottleneck (the application was blocked from sending
because the socket buffer was frequently full).
Consequently, there was relatively little data loss
during kernel processing, and network throughput was
expectedly high. However, when the socket buffer was
made large enough, 1MB and 10MB in our case, the
socket buffer limitation was eliminated, and UDP data
was periodically dropped when the data transfer from
the application exceeded the kernel’s (or network
interface’s) capabilities. When data loss caused by the

sender itself was considerable, few complete datagrams
could be reassembled at the server. System log files
collected by Hpcbench during these tests verified this.

Without considering the effects of data loss, the
kernel was able to process more packets in one
transmission with larger socket buffers, so the overhead
of the sending process was reduced, and the throughput
could increase. When the maximum sustainable
throughput was reached, larger socket buffers produced
no further gains: throughput increased dramatically
when socket buffer size was increased from 10KB to
100KB, but there was relatively little change when
socket buffer size was increased from 100KB to 1MB,
and from 1MB to 10MB.

Table 1 shows that the maximum UDP throughput
was approximately 630~650 Mbps for both intra-
cluster and inter-cluster communication, which was
achieved with a relatively large socket buffer size
(1MB and 10MB). Similar throughputs observed
during both intra-cluster and inter-cluster UDP
communications demonstrate that the fiber optic
network was able to provide sufficient bandwidth for
Gigabit Ethernet communications over a long distance.

Table 2: Intra/Inter-cluster TCPThroughput (Mbps)

TCP throughput tests (Mbps) (means of ten replications)
 Socket buffer Message

Size
Link

10KB 100KB 1MB 10MB
gw gw 108.34 513.86 568.13 587.71
gw dp 88.79 495.32 565.79 572.33

10K

gw hh 12.30 152.04 527.51 535.40
gw gw 119.85 515.47 574.22 589.43
gw dp 98.41 504.30 570.44 573.27

100K

gw hh 13.82 157.65 541.89 549.20
gw gw 117.27 510.82 573.15 590.54
gw dp 98.22 504.41 567.08 567.18

10MB

gw hh 13.85 155.33 534.67 550.14

4.2 TCP Communication
For TCP throughput tests, we chose 10KB, 100KB,
1MB, and 10MB socket buffer sizes with three
different message sizes: 100KB, 1MB, and 10MB.
Tests were conducted in the same way as the UDP
tests. Table 2 shows the unidirectional test results.

In contrast to UDP, TCP throughput decreased
significantly for cross-cluster communication when the
socket buffer size was small, particularly in the long
distance communication between greatwhite and
hammerhead with a 10KB socket buffer. UDP could
achieve more than 140 Mbps throughput with any
datagram size, while TCP throughput was less than 14
Mbps for all message sizes. This is likely due to TCP’s

transmission rate being controlled by the TCP sliding
window. To guarantee reliable delivery of data, the
TCP active window shrinks during transmission, and
no more data will be sent when the TCP window
closes. The theoretical maximum throughput is
window-size/RTT-time if there is sufficient bandwidth
for the data transfer. In our example, the RTT time
between greatwhite and hammerhead was measured to
be about 2.9ms. As a result, the maximum throughput
for a 10KB socket buffer (with an actual usable buffer
space of only 5KB in Linux) is about 5*1024*8/0.0029
≈ 14.12 Mbps and for a 100KB socket buffer, this
value is about 5*1024*1024*8/0.0029 ≈ 144.63, both
very close to our test results.

We also observe that message size had little impact
on measured throughput since TCP is a byte-stream
protocol. The achievable maximum TCP throughput in
our tests was about 590 Mbps on the cluster
greatwhite, 570 Mbps between greatwhite and
deeppurple, and 550 Mbps between greatwhite and
hammerhead.

5. CONCLUSION
Given the emergence of high performance

commodity clusters and the ability to connect them via
high bandwidth networks, such as in SHARCNET’s
case, the potential of large scale applications operating
over HPC grids becomes a real possibility. For
consortia of institutions, this becomes a very viable
approach to large scale HPC. This approach is,
however, not without challenges. In particular, as with
any cluster, network performance and tuning is crucial.
In this paper, we looked at UDP and TCP
communications within and between clusters. We
introduced and illustrated the use of a Linux-based
network measurement toolset designed for high
performance networks, to do these measurements.
Some conclusions from this work include:
• With appropriate settings and configuration, we can
achieve about as high a throughput whether inside or
between clusters for UDP and TCP communications.
• The maximum UDP throughput was approximately
630~650 Mbps (1 Gb connection) for both intra-cluster
and inter-cluster communication. This occurred with
1460-byte datagrams and a relatively large socket
buffer size (1MB and 10MB). Larger datagrams,
especially at 40KB, were extremely ineffective.
• Hpcbench proved to be a useful tool in evaluating
UDP, TCP, and MPI communication throughput and
latency with a variety of configurable parameters.

There are many interesting directions for our work to
take. While Hpcbench already supports a large number

of variables and protocol options, there is always more
that can be added, for example support for other MPI
methods of communication besides point-to-point.

Currently, tracing MAC layer statistics and other
low-level network information is only possible with
Gigabit Ethernet and other TCP/IP-based networks, but
for proprietary technologies, such as Myrinet and
QsNet, it is possible to trace this information with
vendor-dependent APIs. Extensions to the tool to
include this support would also be useful.

A topic for future experimental study is the
relationship between network performance and
computational performance, e.g. different network
interface cards can lead to different network throughput
and latency [12]. How does the computational capacity
of a HPC cluster change with different network
behavior introduced by different configurations or
underlying technologies? Such experimentation is
important for developing guidelines for building
commodity clusters and grids in the future.

REFERENCES
[1] The TOP500 Supercomputers list,

http://www.top500.org.
[2] Kevin Lai, Mary Baker. Measuring Link Bandwidths

Using a Deterministic Model of Packet Delay.
Proceedings of ACM SIGCOMM 2000, August 2000.

[3] A. B. Downey. Using pathchar to Estimate Link
Characteristics. In Proc. of ACM SIGCOMM, 1999.

[4] C. Dovrolis, P. Ramanathan, and D. Moore, What Do
Packet Dispersion Techniques Measure? IEEE
INFOCOM, April 2001.

[5] Tcpdump utility and packet capture library,
http://www.tcpdump.org.

[6] L. Deri and S.Suin, Effective Traffic Measurement using
ntop, IEEE Communications Magazine, May 2000.

[7] K. Lai and M. Baker. Nettimer: A tool for measuring
bottleneck link bandwidth. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, San Francisco, California, March 2001.

[8] Udpmon network measurement tool, R. Hughes-Jones,
http://www.hep.man.ac.uk/u/rich/net/.

[9] Netperf Homepage, http://www.netperf.org.
[10] Iperf Homepage, http://www.iperf.org.
[11] Dave Turner, Adam Oline, Xuehua Chen, Troy

Benjegerdes, Integrating New Capabilities into
NetPIPE. PVM/MPI 2003: 37-44.

[12] Ben Huang, Master’s thesis, Network Performance
Studies in HPC environments. Department of
Computer Science, The University of Western Ontario,
Canada. (http://hpcbench.sourceforge.net)

[13] SHARCNET Homepage, http://www.sharcnet.ca.
[14] Fabrizio Petrini et al. The Quadrics Network (QsNet):

High-Performance Clustering Technology. IEEE
Micro, January-February 2002, pp. 46-57.

