

Network Performance in High Performance Linux
Clusters

Ben Huang, Michael Bauer, Michael Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada N6A 5B7
(huang|bauer|katchab}@csd.uwo.ca

Abstract—Linux-based clusters have become more
prevalent as a foundation for High Performance
Computing (HPC) systems. With a better
understanding of network performance in these
environments, we can optimize configurations and
develop better management and administration
policies to improve operations. To assist in this
process, we developed a network measurement tool to
measure UDP, TCP and MPI communications over
high performance networks, such as Gigabit Ethernet
and Myrinet. In this paper, we report on the use of this
tool to evaluate the network performance of three high
performance interconnects in HPC clusters: Gigabit
Ethernet, Myrinet, and Quadrics’ QsNet and discuss
the implications of those results for configurations in
HPC Linux clusters.

Keywords: Network performance analysis,
benchmarking tools.

1. Introduction
It is now possible to build powerful platforms

for high performance computation from off-the-
shelf computers and network devices. In
particular, the Linux-based commodity cluster
constructed with general purpose computers is an
increasingly popular model and seems to be a
trend for future HPC [14,17]. Commodity cluster
computing can be characterized as being cost
effective, flexible, extensible, and easy to
maintain. However, since these commodity
clusters are built with essentially standalone
computers and network devices, they do not
necessarily guarantee high performance. The
performance power of a standalone computer
usually depends on its operating system, CPU and
memory speed, and a variety of other factors. For
HPC clusters, network communication is another
key factor for cluster performance—a

communication bottleneck in an HPC cluster may
lead to a significant loss of overall performance in
the cluster and the applications making use of it.
Detailed network performance analyses that
identify these bottlenecks and other performance
issues are capable of yielding insight that
developers can use to build better applications and
administrators can use to better configure,
manage, and administer their clusters.

Traditional network measurement tools,
however, do not necessarily work well in
evaluating the performance of HPC environments,
as the network interconnecting a cluster plays a
more critical role in supporting the applications
distributed across the compute nodes in the
environment. Furthermore, some functionality and
parameters required for detailed performance
evaluations cannot be found in currently available
network benchmarking tools. To better understand
network behavior in HPC environments, we
developed a Linux-based network benchmark
toolset, named Hpcbench [5]. Hpcbench is able to
accurately and effectively measure UDP, TCP and
MPI communication throughput and latency in
high performance networks, recording the detailed
communication parameters and kernel statistics
under a variety of parameters.

In this paper, we first provide a survey of
present network benchmarking tools and related
work in Section 2, and justify the need to develop
a new benchmark tool for HPC environments. In
Section 3, we discuss the design and
implementation of Hpcbench. In Section 4, we use
Hpcbench to test and analyze HPC networks
through a collection of experiments. Our
experiments were based on three of the most
commonly used interconnects in HPC systems:

Gigabit Ethernet, Myrinet [1,2] and Quadrics’
QsNet [10]. Finally, in Section 5, we provide
concluding remarks, and discuss future work.

2. Related Work
Measurement of network performance in high

performance computing environments is
recognized as an important element. Typically,
however, the focus is on the performance of a
particular interconnect or protocol [3,15]. For
example, there has been work to measure different
MPI libraries [6,9] or specific interconnects, such
as Quadrics QsNet [10]. These measurements are
always useful, but as computational hardware
changes and libraries improve, it is important to
be able to measure not just the interconnects but
the protocols, particularly to understand their
configurations within a particular environment.
As stated [15] in a study of protocol-dependent
message passing: “It is vital to take the time to
measure and optimize the performance of the OS
and message-passing system when dealing with
gigabit speed hardware.”

To study the high performance networks one
would find in an HPC environment, it is
preferable to use an active measurement model as
it allows direct measurements of network
performance and behaviour without the
inaccuracies or assumptions introduced by other
approaches. While this can cause disruptions to
the HPC environment during experimentation, this
inconvenience is well worth the better quality
results that can be obtained in the process. There
are many existing tools available that involve
active measurements. Some of the most frequently
used tools include Udpmon[4], Netperf[8],
Iperf[6] and NetPIPE[16]. However, all of these
tools were designed as general purpose network
benchmarking tools, and have their own
limitations and restrictions that make them
unsuitable for HPC environments. For example,
Udpmon measures UDP communication using
hardware-dependent assembly language to access
an Intel CPU cycle counter for high-precision
timing, and therefore it can only be used on
IA32/IA64 platforms. Iperf supports multi-
threading and parallel TCP streams, but does not
measure network latency. NetPIPE works well
with connection-oriented protocols, such as TCP

and MPI, but does not support UDP
communication.

Although these tools work reasonably well for
the specific tasks for which they were designed,
they are limited in functionality and lack a feature
set capable of supporting many of the interesting
experimental scenarios for HPC environments. As
examples, none of the above tools could test non-
blocking communication, and none specialize in
high performance interconnects, capable of testing
all three of the most common communication
protocols in commodity clusters: UDP, TCP and
MPI. In determining appropriate configurations
for specific cluster environments, the
administrator may need to explore the impact of
various parameters for each of these protocols for
specific environments, such as block size, buffer
size or even specific network card configuration
settings. In theory, it is possible to modify these
tools to support network performance analysis in
HPC environments, since most of the tools are
open source. However, in practice, their
implementations are quite complex and difficult to
extend for the additional required functionality.

3. Overview of Hpcbench
With this in mind, we felt that the best option

was to implement our own network benchmarking
tool, Hpcbench, focusing specifically on HPC
environments. Hpcbench was designed to measure
the high-speed, low-latency communication
networks in Linux-based HPC systems. The
objectives of Hpcbench include high accuracy and
efficiency; support for UDP, TCP and MPI
communications; tunable communication
parameters of interest in an HPC environment;
and detailed recording of test results,
communication settings, and system information.

Hpcbench was written in C and uses BSD
sockets and MPI APIs. It is comprised of three
independent sets of benchmarks measuring UDP,
TCP and MPI communications. As the
benchmarks are based on a common
infrastructure, the implementation and usage of
each benchmark are quite similar, allowing us to
easily compare the results for the different
communication protocols.

Currently, Hpcbench can be freely downloaded
from its website at: http://hpcbench.sf.net. For

further details, the reader should refer to [5].

4. Network Performance Analysis
and Experiences Using Hpcbench

In this section, we report on our experiences in
using Hpcbench in the analysis of the network
performance of three high performance
interconnects: Gigabit Ethernet, Myrinet, and
Quadrics’ QsNet. (Note that the experimental
results presented here are highlights of some of
the more interesting results of our study; for
complete results, the reader is urged to consult [5]
for details.) To avoid unwelcome loads and
interactions that could complicate results, all
experiments were conducted using dedicated and
completely idle machines in our experimental
environment. All MPI communication is based on
MPICH 1.2.5 [7] built with default settings.

4.1 Testbed Introduction
Our testbed includes two Linux-based clusters

named “mako” and “hammerhead” in
SHARCNET [12], a distributed HPC Network in
Ontario, Canada.

The hammerhead cluster consists of 28 Compaq
ES40 Alpha SMP servers. Each server is
configured with 4 x 833MHz Alpha EV6
processors, 4GB RAM, an Alteon AceNIC
Gigabit Ethernet Adaptor (PCI 64bits/33MHz), a
Quadrics QSW Elan3 PCI Network Adaptor, and
Redhat Linux 7.2 as its operating system, with
kernel 2.4.21-3.7qsnet #9 SMP. For its
interconnects, it uses a Nortel Passport 8600
switch (Gigabit Ethernet) and a Quadrics’ QsNet
switch.

The mako cluster consists of eight HP DL360
Intel Xeon SMP servers. Each server is configured
with 4 x 3GHz Intel Xeon Hyperthreading
processors, 2 GB RAM, a Broadcom Tigon 3
Gigabit Ethernet Adaptor (PCI-X
64bits/100MHz), a Myricom PCI-X Network
Adaptor, and Redhat Linux 9.0 as its operating
system, with kernel 2.4.20-8smp #1 SMP. For its
interconnects, it uses an HP ProCurve 2800
(Gigabit Ethernet) switch and a Myrinet switch.
We evaluate UDP, TCP and MPI over Gigabit
Ethernet in this experimentation. TCP/IP
communication was not configured for operation
over the proprietary Myrinet and QsNet networks,

so we only tested their MPI communication based
on the same version of MPICH.

4.2 Communication Throughput on
Gigabit Ethernet

We select two idle nodes in two clusters and
test their UDP, TCP and MPI communication over
Gigabit Ethernet.

Figure 1 shows the results of UDP
unidirectional throughput versus datagram size,
measured by Hpcbench in an exponential test
mode with default socket buffering. The Intel
cluster achieved 961Mbps peak UDP throughput,
while the Alpha cluster gave 530Mbps peak UPD
throughput. In high throughput situations, the
UDP sender’s CPU load was approximately 10%
in the Intel system compared to 15% for the Alpha
system; the receiver’s CPU load was
approximately 15% in the Intel system and 20%
for the Alpha system.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Datagram Size (Byte)

UDP communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput
Alpha-Sender CPU

 Alpha-Receiver CPU
Intel-Sender CPU

 Intel-Receiver CPU

Figure 1: UDP Throughput on Gigabit Ethernet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+006 1e+007
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Message Size (Byte)

TCP communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput
Alpha-Sender CPU

 Alpha-Receiver CPU
Intel-Sender CPU

Intel-Receiver CPU

Figure 2: TCP Throughput on Gigabit Ethernet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+006 1e+007
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Message Size (Byte)

MPI point-to-point communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput

 Alpha-Sender CPU
 Alpha-Receiver CPU

 Intel-Sender CPU
 Intel-Receiver CPU

Figure 3: MPI Throughput on Gigabit Ethernet

Figure 2 shows the TCP unidirectional
throughput on the Gigabit Ethernet environment
as measured by Hpcbench. When message size is
greater than 2KB, the Intel system delivered a
stable throughput around 940Mbps and the Alpha
system delivered about 520Mbps throughput. At
the same time, the CPU usage varied from 18% to
29% in both systems (the receivers had slightly
higher load than the senders).

Figure 3 shows the MPI point-to-point
communication over Gigabit Ethernet measured
by Hpcbench. The Intel system delivered a peak
938Mbps unidirectional throughput, which
dropped to around 800Mbps when message size
was larger than 64KB. The Alpha system only
provided about 310Mbps peak MPI throughput. It
is likely that the poor performance in this case
came from inefficiencies in the implementation of
TCP-based MPICH for that platform, because
TCP communication in the same system has much
higher throughput.

The above experiments demonstrate that the
Intel Xeon system performed much better than the
Alpha system, with higher throughput and lower
CPU usage. To help understand this difference,
we used Hpcbench to conduct further UDP tests.
UDP was used for further testing rather than TCP
because UDP communication has less protocol
overhead than TCP and other connection-oriented
protocols, and UDP does not utilize transmission
control. Usually, UDP can better reflect maximum
network throughput than TCP.

Using Hpcbench, UDP experiments with larger
socket buffer sizes were conducted. This testing
found that the Alpha cluster could provide a

maximum 650Mpbs UDP unidirectional
throughput with a better selection of buffer size.
From detailed log files generated by Hpcbench,
significant data loss was observed in the sender
during the UDP processing when the socket buffer
was quite large (1MB, for example). At the same
time, however, no data loss was observed in the
network according to the log data collected by
Hpcbench. Consequently, it is reasonable to
believe that the bottleneck in the Alpha cluster
came from the relatively slow sender. For further
details, please refer to [5].

4.3 Communication Throughput Using
Myrinet and QsNet

In the Intel cluster, we conducted experiments
to test MPI point-to-point communication over
Myrinet using Hpcbench. The results are shown
below in Figure 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (Bytes)

MPI point-to-point commuincation over Myrinet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

Figure 4: MPI Communication Throughput on

Myrinet

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (Bytes)

MPI point-to-point commuincation over Quadrics' QsNet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

 Figure 5: MPI Communication Throughput on

QsNet

As shown in Figure 4, unidirectional MPI

throughput over Myrinet could reach 1995Mbps,
while non-blocking (synchronized MPI_Isend and
MPI_Irecv) bidirectional throughput achieved
3885Mbps. In contrast, QsNet in the Alpha
cluster delivered a maximum of 1600Mbps
unidirectional MPI throughput, while the non-
blocking bidirectional throughput dropped to
around 1250Mbps when message exceeded
500KB, as shown in Figure 5. This may have
occurred because the Alpha machines were not
fast enough to handle the heavy system load.

Consulting the data logs recorded by Hpcbench,
we observed that the communication on Myrinet
and QsNet only consumed a single CPU’s clock
cycles in a 4-processor SMP system. In fact,
communicating processes completely occupied
CPU1’s utilization, resulting in a sharp 25%
overall CPU load in both Intel and Alpha clusters.
This could come from the fact that both Myrinet
and QsNet technologies use a zero-copy (OS-
bypassing) technique for message passing
between two nodes. Unlike traditional interrupt-
driven TCP/IP communication, there is no
interrupt interaction between the Linux kernel and
the NIC in Myrinet and QsNet communications.
Instead, the data goes directly from user space
into the NIC without kernel processing.
Consequently, different CPUs in an SMP system
are unable to cooperate to handle one
communication session. During benchmarking,
the sender application attempted to send as much
data as possible to the NIC, and used as many
CPU resources it could get to do so. A similar
situation also occurred on the receiver side.

We also conducted multi-link communication
experiments over Myrinet using Hpcbench. When
the number of communication links exceeded the
number of CPUs, we found that the Intel Xeon
system had reached a 100% CPU load in both the
sender and the receiver, while the overall
throughput in the network remained nearly the
same. On the other hand, the kernel is involved in
TCP/IP communications. Consequently, multi-
link communication can introduce a high system
load, but will not overwhelm the system for 100%
usage. When the network becomes saturated or
congested, the kernel will block application
transmission to ensure that communication can be
serviced properly.

4.4 Communication Latency on Gigabit
Ethernet, Myrinet and QsNet

High throughput does not necessarily imply low
network latency. The overall performance of some
applications is very sensitive to network latency.
Hpcbench measures network latency in terms of
round trip time (RTT) from the application layer,
using various underlying transports, giving us
UDP RTT, TCP RTT and MPI RTT. The
traditional ping utility instead evaluates the ICMP
RTT with a relatively coarse resolution
(milliseconds), and may not work properly or
accurately enough in a low-latency network.

Figure 6 shows the Intel Xeon cluster’s RTTs
for different protocols on the Gigabit Ethernet
with message (datagram) size less than the
Maximum Transmission Unit (MTU, 1500 Bytes
in our experimental testbed). The results show
that the UDP and TCP’s RTTs were around 56-
60µsec for tiny messages (1~32 Byte), implying
around a 28µsec one way network latency for
these two protocols. MPI RTTs, on the other
hand, started from nearly 72µsec, making it a
higher latency protocol than TCP and UDP in our
experimentation, according to Hpcbench. Figure
7 demonstrates that the network latency in the
Alpha cluster was much higher than that of the
Intel cluster according to experimentation with
Hpcbench. The minimum RTTs in the Alpha
cluster were about 240µsec for UDP and TCP,
and about 350µsec for MPI communication.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Gigabit Ethernet (Intel)

 UDP
 TCP
 MPI

Figure 6: Intel Cluster RTT on Gigabit Ethernet

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Gigabit Ethernet (Alpha)

 UDP
 TCP
 MPI

 Figure 7: Alpha Cluster RTT on Gigabit

Ethernet

From the statistics recorded by Hpcbench, we
observed that the interrupt coalescence technique
[11] was used in the Alpha cluster but not in the
Intel cluster. Interrupt coalescence was used by
Alpha machines’ Gigabit Ethernet network cards
to reduce the system load for network
communication. Unfortunately, this technique can
also introduce significantly larger network
latency. We can also see that all curves in Figure
8 are not linearly smooth, in part due to the effect
of interrupt coalescence.

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Myrinet and QsNet

 Myrinet
 QsNet

Figure 8: MPI RTT on Myrinet and QsNet

Figure 8 shows MPI communication latency in
Myrinet and QsNet. The RTTs with tiny messages
could be as low as 14µsec in both interconnects,
which is significantly lower than Gigabit Ethernet.

In many HPC environments, including the
current configuration of SHARCNET, Myrinet
and QsNet are used only to provide a message
passing environment for parallel computing. From

our findings, these two interconnects are
confirmed ready to support IP. In such an
environment, other communication, such as
shared storage access, could benefit from the
advantage of these high-speed, low-latency
technologies.

5. Conclusions and Future Work
In this paper, we analyzed the network

performance (throughput and latency) of Gigabit
Ethernet, Myrinet and Quadrics’ QsNet using
UDP, TCP, and MPI communication mechanisms
as transports. We looked at a variety of
parameters affecting overall performance,
including packet size, buffering, and blocking
versus non-blocking communication primitives.
These experiments reconfirmed beliefs about
network performance, providing empirical
evidence to support these intuitions:
• Protocol overhead can have a significant impact
on performance in an HPC network. For example,
in Gigabit Ethernet experiments, we saw that UDP
outperformed TCP, which outperformed MPI
(based on TCP in this case). This was the case for
both throughput and latency testing.
• Node configuration can have a significant
impact on performance in an HPC network. Our
experimentation showed that, for Gigabit
Ethernet, our Intel Xeon cluster with faster
processors and system bus outperformed our
Alpha cluster. We also directly observed the
effects of interrupt coalescence in our Alpha
cluster on latency.
• Depending on cluster configuration, it is
possible for the compute nodes themselves to be a
performance bottleneck. Our experimentation
demonstrated, for example, that the processors in
our Alpha systems were unable to keep up with
the load placed on them, limiting effective
throughput.
• Technologies such as Myrinet and QsNet can
outperform Gigabit Ethernet, both in terms of
throughput and latency. If they can be afforded,
they are definitely an asset to HPC cluster
systems.

In addition to verifying such intuitions, our
experimentation also yielded some interesting
results about the specific configurations under

test, and also illustrated the necessity of such
experimentation in order to determine appropriate
configurations to maximize throughput:
• For UDP and TCP communication over Gigabit
Ethernet on both the Alpha and Intel clusters,
message sizes greater than 1Kb achieved greater
throughput but message sizes greater than 1Mb
did not result in improved throughput.
• For MPI communication over Gigabit Ethernet
on the Alpha cluster, the greatest throughput was
achieved when message size was 4Kb or greater.
Again, there was little improvement with message
sizes beyond 4Kb. For the Intel cluster, the best
throughput was achieved with message sizes
between 4Kb and 100Kb. Message sizes beyond
100Kb actually resulted in degraded performance.
• For MPI uni- and bidrectional nonblocking
communication on Myrinet on the Intel cluster,
message sizes greater than 1Mb resulted in the
best throughput. However, throughput for
bidirectional nonblocking communication
decreased for message sizes greater than 10Mb.
• For QsNet on the Alpha cluster, generally,
message sizes of 10Kb resulted in the best
throughput for both blocking and nonblocking
communication. The exception occurs with
bidrectional nonblocking communication where
throughput decreases when message sizes larger
than 10Kb are used. This seems to be a result of
the slower performance of the Alpha processors,
as they seem unable to handle the volume of
packets.

There are a number of interesting directions for
subsequent work. While Hpcbench already
supports a large number of variables and protocol
options for experimentation, there are other
features that should be added, for example support
for other MPI methods of communication besides
point-to-point. Naturally, as the feature set of
Hpcbench increases, more work will be required
in terms of interfacing with the toolset and in
managing the larger sets of possible experiments.

Another interesting topic for future
experimental study is the relationship between
network performance, computational performance
and particular applications. For example, in a
Gigabit Ethernet cluster, different applications
place different demands on the network. Are
there network configurations that are better for

certain types of applications? For certain types of
application mixes, are there preferred
configurations for overall performance.

References
[1] Boden, N., et al, Myrinet: A Gigabit-per-Second

Local Area Network, IEEE Micro, Vol. 15, No. 1,
1995, pp. 26-36.

[2] Chun, B., et al. Virtual Network Transport
Protocols for Myrinet. Technical report. UC
Berkeley, 1998.

[3] Hughes-Jones, R., et al. Performance
Measurements on Gigabit Ethernet NICs and
Server Quality Motherboards. First International
Workshop on Protocols for Fast Long-Distance
Networks, February 2003.

[4] Hughes-Jones, R., Udpmon network measurement
tool, http://www.hep.man.ac.uk/u/rich/net/.

[5] Huang, B. Network Performance Studies in HPC
environments. Master’s Thesis, The University of
Western Ontario, Canada. March 2005.

[6] Iperf Homepage, http://www.iperf.org.
[7] MPICH Implementation and Documentation,

http://www-unix.mcs.anl.gov/mpi/.
[8] Netperf Homepage, http://www.netperf.org.
[9] Nguyen, K. and Le, T. Evaluation and

Comparison Performance of Various MPI
Implementations on an OSCAR Linux Cluster.
Proceedings of the International Conference on
Information Technology: Computers and
Communications, 2003.

[10] Petrini, F., et al. The Quadrics Network (QsNet):
High-Performance Clustering Technology. IEEE
Micro, January-February 2002, pp. 46-57.

[11] Prasad, R., et al. Effects of Interrupt Coalescence
on Network Measurements. Proceedings of Passive
and Active Measurement (PAM) Workshop, April,
2004.

[12] SHARCNET Homepage, http://www.sharcnet.ca.
[13] Sumimoto, S., et al. High Performance

Communication using a Commodity Network for
Cluster Systems. Proceedings of the IEEE, 2000.

[14] The TOP500 Supercomputers list,
http://www.top500.org.

[15] Turner, D., and Chen, X. Protocol-Dependent
Message-Passing Performance on Linux Clusters.
Proceedings of the IEEE International Conference
on Cluster Computing, 2002.

[16] Turner, D., Oline, A., Chen, X., Benjegerdes, T.,
Integrating New Capabilities into NetPIPE.
PVM/MPI 2003: 37-44.

[17] Sterling, T.. Beowulf Cluster Computing with
Linux. The MIT Press, 2002.

