
Computing for Genomics 

Paint by Numbers and Beyond 



Genomics – The study of Genomes 



The Genome 

•  The	
  DNA	
  in	
  each	
  cell	
  
•  ∼3	
  billion	
  base	
  pairs	
  
•  Any	
  two	
  people	
  are	
  99.6%	
  

to	
  99.9%	
  the	
  same	
  

h;p://www.healthline.com/health-­‐blogs/tech-­‐medicine/creaAng-­‐dna-­‐art	
  
h;p://i.livescience.com/images/i/000/017/621/i02/ITC_EukaryoAcCell_Copy.jpg?1309355705	
  



The Genome 
•  Genes (coding DNA) 
•  Noncoding 
– Regulatory regions 
– Structural 
– Repeat elements 
– Non coding RNA 
– Pseudogenes/Relics/Unclassified 



Repeat	
  Elements	
  

Genes	
  

Introns	
  

Other	
  Intergenic	
  

DNA	
  Transposon	
  

Simple	
  Repeats	
  

Segmental	
  DuplicaAons	
  

LINEs	
  

SINEs	
  

LTR	
  retrotransposons	
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Human Variation 
•  Point mutations 
– SNPs 

•  Small insertions, deletions and indels 
•  Structural Variation  
– Copy Number Variation 



The Human Reference Genome 
•  Around 3Gb 
– Haploid ( one version of each chromosome ) 

•  Aims to be point of reference for research 
– Publically available 
– Consistent coordinates 

•  Lots of annotation 

– Well documented major and minor releases 
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Genome Assembly 
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Sequence Alignment 
•  Find the best approximate match 
–  Global 

 
 
–  Local 
 
 
–  Free-end Global  

A  C  A  A  C  G  
      |  x  |         
-  -  A  G  C  - 

A  C  A  A  C  G  
      |  x  |   
      A  G  C   

A  C  A  A  C  G  
|        x  |         
A  -  -  G  C  - 



Global Alignment 
A	
   C	
   A	
   A	
   C	
   G	
  

0	
   -­‐2	
   -­‐4	
   -­‐6	
   -­‐8	
   -­‐10	
   -­‐12	
  

A	
   -­‐2	
   1	
   -­‐1	
   -­‐3	
   -­‐5	
   -­‐7	
   -­‐9	
  

G	
   -­‐4	
   -­‐3	
   -­‐2	
   -­‐4	
   -­‐6	
   -­‐8	
   -­‐6	
  

C	
   -­‐6	
   -­‐5	
   -­‐2	
   -­‐4	
   -­‐6	
   -­‐5	
   -­‐7	
  

match	
   	
  1	
  

mismatch	
   	
  -­‐3	
  

gap	
   	
  -­‐2	
  

D(i-­‐1,	
  j-­‐1)	
  +	
  (match	
  ||	
  mismatch)	
  

D(i,j)	
  =	
  max	
  	
  	
   D(i-­‐1,	
  j)	
  +	
  gap	
  

D(i,	
  j-­‐1)	
  +	
  gap	
  

A  C  A  A  C  G  
|        x  |         
A  -  -  G  C  - 

Backtrack	
  to	
  get	
  alignment:	
  



Local Alignment 
A	
   C	
   A	
   A	
   C	
   G	
  

0	
   0	
   0	
   0	
   0	
   0	
   0	
  

A	
   0	
   3	
   0	
   3	
   3	
   1	
   0	
  

G	
   0	
   0	
   1	
   0	
   1	
   1	
   4	
  

C	
   0	
   0	
   3	
   0	
   0	
   4	
   0	
  

match	
   	
  3	
  

mismatch	
   -­‐2	
  

gap	
   -­‐3	
  

0	
  

M(i,j)	
  =	
  max	
  	
  	
  
M(i-­‐1,	
  j-­‐1)	
  +	
  (match	
  ||	
  mismatch)	
  

M(i-­‐1,	
  j)	
  +	
  gap	
  

M(i,	
  j-­‐1)	
  +	
  gap	
  

Backtrack	
  to	
  get	
  alignment:	
   A  C  A  A  C  G  
      |  x  |   
      A  G  C   



Local Alignment 
•  Longest common subsequence 
•  Will find the best aligning substring in both 
–  i.e. may not align the whole read 

AGATGTGCTGCCGCC 
   |||x|||   
 TTTGTACTGAAA 



Free-end Global Alignment 
A	
   C	
   A	
   A	
   C	
   G	
  

0	
   0	
   0	
   0	
   0	
   0	
   0	
  

A	
   0	
   1	
   -­‐1	
   1	
   1	
   -­‐3	
   -­‐3	
  

G	
   0	
   -­‐2	
   -­‐2	
   -­‐1	
   -­‐1	
   -­‐2	
   -­‐2	
  

C	
   0	
   -­‐2	
   -­‐1	
   -­‐3	
   -­‐2	
   0	
   -­‐2	
  

match	
   	
  1	
  

mismatch	
   	
  -­‐3	
  

gap	
   	
  -­‐2	
  

D(i-­‐1,	
  j-­‐1)	
  +	
  (match	
  ||	
  mismatch)	
  

D(i,j)	
  =	
  max	
  	
  	
   D(i-­‐1,	
  j)	
  +	
  gap	
  

D(i,	
  j-­‐1)	
  +	
  gap	
  

A  C  A  A  C  G  
      |  x  |         
-  -  A  G  C  - 

Backtrack	
  to	
  get	
  alignment:	
  



Free-End Alignment 
•  Aligns whole of both reads 
– Containment 
– Longest prefix/suffix overlap 

TTCAGATGTGCTG 
------|||x|||------   
      TGTACTGACGTAG 



Dynamic Programming 
•  O(nm)  for time* and space complexity ** 



Genome Assembly 
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The Human Reference Genome 
•  Based on limited subjects 
– Does not capture variation  

•   is one “Golden path” 

•  Subsequences reported are not unique 
–  It has all repeats found in these subjects that 

could be resolved 
 
 



Next Generation Sequencing 
•  Traditional sequencing doesn’t scale up 

•  Next Generation Sequencers 
– high throughput (4h-3days) 
– high coverage  (20x-50x) 
– short reads   (25-200bp) 





NGS Uses Resequencing 
•  NGS produces huge amounts of data 
– 120Gb - 1Tb compressed 

•  Dynamic Programming is impractical 
 
•  Rather than assemble: 
– map to the reference quickly 

è Read mapping algorithms 
 

–  verify local alignment (and call variants) 
è Dynamic programming 
è Local de-novo assembly 



Exact Matching 
•  Instead of looking for “good” matches, only 

look for all exact matches 

Still not enough for genome scale 
– Exact string matching algorithms time 

complexity 
•  Worst:        O(nm)  
•  Best:           Ω(n/m)  



Fast Approximate Matching 
•  Expect very few differences between the 

sample’s reads and the reference genome 
– Sequencing errors 
– Natural variation 

•  Expect even fewer differences between 
sample’s reads  
– Sequencing error 
– May be variation within a sample (tissue) 
– May be variation between repeated regions 



Read Mapping Algorithms 
Two main approaches  
– Filter 
–  Index 

 



Filtering 

•  Reduce the number of possible 
approximate matches 

•  In practice, want really good alignments 
èExpect sections of the alignment to be exact 
èExpect no more than k errors (mismatches) 



Pigeonhole Lemma 

•  Assume no more than k errors tolerated 
•  Divide query into k+1 pieces 

–  Search for each of these in the genome 

•  If the query is in the genome, one will match exactly  
–  Report that as a candidate region 

Full	
  read	
  (query)	
  

q-­‐grams	
  (also	
  called	
  k-­‐mers	
  or	
  seeds)	
  	
  

Red	
  shows	
  mismatch	
  to	
  reference	
  (not	
  pictured)	
  



q-gram Lemma 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 



q-gram Lemma 

•  Number of q-grams for read of 
length n? 

•  k errors affect how many q-grams 
at most in worst case? 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 



q-gram Lemma 

•  Number of q-grams for read of 
length n? 

•  k errors affect how many q-grams 
at most in worst case? 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 
•  If the query is in the genome, at least n-(k+1)q +1 of the q-grams match 

exactly 
–  count the number of q-grams that matched, and if it passes this threshold, 

report a candidate region 



Finding Candidate Regions 

Pigeonhole	
  

q-­‐gram	
  

Reference	
  Genome	
  



Indexing 
•  Store the genome/reads in a 

data structure that facilitates 
fast exact or near-exact 
alignment 

•  Must be reasonable for memory 
limits of the machine 



Indexing Data Structures 

Ben	
  Langmead	
  teaching	
  materials:	
  h;p://www.langmead-­‐lab.org/teaching-­‐materials/	
  



FM Index 
•  Uses Burrows-Wheeler transform 
– Plus extra tables to speed things up 



Burrows-Wheeler transform 

– Because they are rotations 
•  the character in the last column is what precedes the 

character in the first column in the original string 

– Because the suffixes are sorted 
•  the first row, last character is the end of the original string 



Burrows-Wheeler transform 

– Because the suffixes are sorted (cont’d) 
•  the rank of the character in the last column is the same as 

the first 



Burrows-Wheeler transform 

•  We can find the position in the first column (F) based only 
on information from the last column (L) 

LF(‘c’, 6) = Occ(‘c’) + Count(‘c’, 6) 
                = 4 + 1  
 
Occurrence:   

 Number of letters before any ‘c’ in F?      
 4  ($ and 3 a’s) 

 
Count: 

 How many ‘c’s have we seen in L? 
 1  (c0) 



Burrows-Wheeler transform 

•  Walk left algorithm 
– We can use the BWT and the LF function to 

reconstruct the original text 



FM Index for Exact Matching 
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FM Index for Exact Matching 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, 

qc) 

Ferragina,	
  Paolo	
  and	
  Manzini,	
  Giovanni.	
  "OpportunisAc	
  data	
  structures	
  with	
  applicaAons."	
  	
  
FoundaAons	
  of	
  Computer	
  Science,	
  2000.	
  Proceedings.	
  41st	
  Annual	
  Symposium	
  on.	
  IEEE	
  (2000)	
  



FM Index for Exact Matching 

Track a top and bottom index 
–  These bound the remaining possible matches at 

each step 
–  If they are ever the same, there are no matches 

Here,  LF is called on the query characters  
–  “Where are the first & last qc you saw in F?” 

The end TOP index is our match! 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, qc) 
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FM Index for Exact Matching 

Track a top and bottom index 
–  These bound the remaining possible matches at 

each step 
–  If they are ever the same, there are no matches 

Here,  LF is called on the query characters  
–  “Where are the first & last qc you saw in F?” 

The end TOP index is our match! 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, qc) 



FM Index 
•  How do we find this in the genome? 

•  Isn’t the count operation O(n)?   



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 

2)  Could store the entire suffix 
array  



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 

2)  Could store the entire suffix 
array  

3)  Only store certain rows of (2), 
use (1) until we get to one. 



FM Index 
•  Isn’t the count operation O(n)? 



FM Index 
•  Isn’t the count operation O(n)? 
– We again store cumulative counts for certain 

rows, for each of $ACTG 

•  Also, the reference is usually put in 
backward (or both forward and backward) 



Beyond? 
•  Read-mapping is limited by  
–  the reference genome assembly 
– exact matching 

•  So, why not assemble each time? 



De Novo Assembly 
•  Overlap-Layout-Consensus 
•  De Bruijn Graphs 



Overlap-Layout-Consensus 
•  Overlap 
– Compute overlap score of all reads 

•  Layout 
– Create a graph where nodes are a read, edges 

are overlaps between reads 
– Find their “layout” by finding a Hamiltonian path 

through the graph 
•  Consensus 
– Find the consensus sequence by reading nodes 

along the path 





De Bruijn Graphs 
•  Break reads into k-mers 
•  Each node in the graph is a k-mer 
•  Connect an edge to the next k-mer found in 

the read 
•  Find a Eulerian path 



De Novo Assembly 
•  Confounded by repeats 
–  repeats are collapsed in these representations 
– may have many ways in and out of these graph 

regions. 
 



Further beyond 
•  Newer sequencing techniques 
– Nanopore sequencing 
– Single cell sequencing 

•  Downstream analysis issues 
– How do we compare genomes? 
– How do we store them? 

•  Improve the reference model  



Further beyond 

•  Downstream 
analysis issues 
– How do we compare 

genomes? 
– How do we store 

them? 

•  Improve the 
reference model  

h;ps://en.wikipedia.org/wiki/1000_Genomes_Project#/media/
File:GeneAc_VariaAon.jpg	
  



 

Thank you! 
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Structural Variant Discovery 


