
Computing for Genomics

Paint by Numbers and Beyond

Genomics – The study of Genomes

The Genome

•  The	
 DNA	
 in	
 each	
 cell	

•  ∼3	
 billion	
 base	
 pairs	

•  Any	
 two	
 people	
 are	
 99.6%	

to	
 99.9%	
 the	
 same	

h;p://www.healthline.com/health-­‐blogs/tech-­‐medicine/creaAng-­‐dna-­‐art	

h;p://i.livescience.com/images/i/000/017/621/i02/ITC_EukaryoAcCell_Copy.jpg?1309355705	

The Genome
•  Genes (coding DNA)
•  Noncoding
– Regulatory regions
– Structural
– Repeat elements
– Non coding RNA
– Pseudogenes/Relics/Unclassified

Repeat	
 Elements	

Genes	

Introns	

Other	
 Intergenic	

DNA	
 Transposon	

Simple	
 Repeats	

Segmental	
 DuplicaAons	

LINEs	

SINEs	

LTR	
 retrotransposons	

Gregory,	
 T.	
 Ryan.	
 "Synergy	
 between	
 sequence	
 and	
 size	
 in	
 large-­‐scale	
 genomics."	
 Nature	
 Reviews	
 GeneAcs	
 6.9	
 (2005):	
 699-­‐708.	

Human Variation
•  Point mutations
– SNPs

•  Small insertions, deletions and indels
•  Structural Variation
– Copy Number Variation

The Human Reference Genome
•  Around 3Gb
– Haploid (one version of each chromosome)

•  Aims to be point of reference for research
– Publically available
– Consistent coordinates

•  Lots of annotation

– Well documented major and minor releases

Morey,	
 Marcos,	
 et	
 al.	
 "A	
 glimpse	
 into	
 past,	
 present,	
 and	
 future	
 DNA	
 sequencing."	
 Molecular	
 geneAcs	
 and	
 metabolism	
 110.1	
 (2013):	
 3-­‐24.	

Genome Assembly

Lander,	
 Eric	
 S.,	
 et	
 al.	
 "IniAal	
 sequencing	
 and	
 analysis	
 of	
 the	
 human	
 genome."	
 Nature	
 409.6822	
 (2001):	
 860-­‐921.	

Venter,	
 J.	
 Craig,	
 et	
 al.	
 "The	
 sequence	
 of	
 the	
 human	
 genome.”	
 Science	
 291.5507	
 (2001):	
 1304-­‐1351.	

Sequence Alignment
•  Find the best approximate match
–  Global

–  Local

–  Free-end Global

A C A A C G
 | x |
- - A G C -

A C A A C G
 | x |
 A G C

A C A A C G
| x |
A - - G C -

Global Alignment
A	
 C	
 A	
 A	
 C	
 G	

0	
 -­‐2	
 -­‐4	
 -­‐6	
 -­‐8	
 -­‐10	
 -­‐12	

A	
 -­‐2	
 1	
 -­‐1	
 -­‐3	
 -­‐5	
 -­‐7	
 -­‐9	

G	
 -­‐4	
 -­‐3	
 -­‐2	
 -­‐4	
 -­‐6	
 -­‐8	
 -­‐6	

C	
 -­‐6	
 -­‐5	
 -­‐2	
 -­‐4	
 -­‐6	
 -­‐5	
 -­‐7	

match	
 	
 1	

mismatch	
 	
 -­‐3	

gap	
 	
 -­‐2	

D(i-­‐1,	
 j-­‐1)	
 +	
 (match	
 ||	
 mismatch)	

D(i,j)	
 =	
 max	
 	
 	
 D(i-­‐1,	
 j)	
 +	
 gap	

D(i,	
 j-­‐1)	
 +	
 gap	

A C A A C G
| x |
A - - G C -

Backtrack	
 to	
 get	
 alignment:	

Local Alignment
A	
 C	
 A	
 A	
 C	
 G	

0	
 0	
 0	
 0	
 0	
 0	
 0	

A	
 0	
 3	
 0	
 3	
 3	
 1	
 0	

G	
 0	
 0	
 1	
 0	
 1	
 1	
 4	

C	
 0	
 0	
 3	
 0	
 0	
 4	
 0	

match	
 	
 3	

mismatch	
 -­‐2	

gap	
 -­‐3	

0	

M(i,j)	
 =	
 max	
 	
 	

M(i-­‐1,	
 j-­‐1)	
 +	
 (match	
 ||	
 mismatch)	

M(i-­‐1,	
 j)	
 +	
 gap	

M(i,	
 j-­‐1)	
 +	
 gap	

Backtrack	
 to	
 get	
 alignment:	
 A C A A C G
 | x |
 A G C

Local Alignment
•  Longest common subsequence
•  Will find the best aligning substring in both
–  i.e. may not align the whole read

AGATGTGCTGCCGCC
 |||x|||
 TTTGTACTGAAA

Free-end Global Alignment
A	
 C	
 A	
 A	
 C	
 G	

0	
 0	
 0	
 0	
 0	
 0	
 0	

A	
 0	
 1	
 -­‐1	
 1	
 1	
 -­‐3	
 -­‐3	

G	
 0	
 -­‐2	
 -­‐2	
 -­‐1	
 -­‐1	
 -­‐2	
 -­‐2	

C	
 0	
 -­‐2	
 -­‐1	
 -­‐3	
 -­‐2	
 0	
 -­‐2	

match	
 	
 1	

mismatch	
 	
 -­‐3	

gap	
 	
 -­‐2	

D(i-­‐1,	
 j-­‐1)	
 +	
 (match	
 ||	
 mismatch)	

D(i,j)	
 =	
 max	
 	
 	
 D(i-­‐1,	
 j)	
 +	
 gap	

D(i,	
 j-­‐1)	
 +	
 gap	

A C A A C G
 | x |
- - A G C -

Backtrack	
 to	
 get	
 alignment:	

Free-End Alignment
•  Aligns whole of both reads
– Containment
– Longest prefix/suffix overlap

TTCAGATGTGCTG
------|||x|||------
 TGTACTGACGTAG

Dynamic Programming
•  O(nm) for time* and space complexity **

Genome Assembly

Lander,	
 Eric	
 S.,	
 et	
 al.	
 "IniAal	
 sequencing	
 and	
 analysis	
 of	
 the	
 human	
 genome."	
 Nature	
 409.6822	
 (2001):	
 860-­‐921.	

Venter,	
 J.	
 Craig,	
 et	
 al.	
 "The	
 sequence	
 of	
 the	
 human	
 genome.”	
 Science	
 291.5507	
 (2001):	
 1304-­‐1351.	

The Human Reference Genome
•  Based on limited subjects
– Does not capture variation

•  is one “Golden path”

•  Subsequences reported are not unique
–  It has all repeats found in these subjects that

could be resolved

Next Generation Sequencing
•  Traditional sequencing doesn’t scale up

•  Next Generation Sequencers
– high throughput (4h-3days)
– high coverage (20x-50x)
– short reads (25-200bp)

NGS Uses Resequencing
•  NGS produces huge amounts of data
– 120Gb - 1Tb compressed

•  Dynamic Programming is impractical

•  Rather than assemble:
– map to the reference quickly

è Read mapping algorithms

–  verify local alignment (and call variants)
è Dynamic programming
è Local de-novo assembly

Exact Matching
•  Instead of looking for “good” matches, only

look for all exact matches

Still not enough for genome scale
– Exact string matching algorithms time

complexity
•  Worst: O(nm)
•  Best: Ω(n/m)

Fast Approximate Matching
•  Expect very few differences between the

sample’s reads and the reference genome
– Sequencing errors
– Natural variation

•  Expect even fewer differences between
sample’s reads
– Sequencing error
– May be variation within a sample (tissue)
– May be variation between repeated regions

Read Mapping Algorithms
Two main approaches
– Filter
–  Index

Filtering

•  Reduce the number of possible
approximate matches

•  In practice, want really good alignments
èExpect sections of the alignment to be exact
èExpect no more than k errors (mismatches)

Pigeonhole Lemma

•  Assume no more than k errors tolerated
•  Divide query into k+1 pieces

–  Search for each of these in the genome

•  If the query is in the genome, one will match exactly
–  Report that as a candidate region

Full	
 read	
 (query)	

q-­‐grams	
 (also	
 called	
 k-­‐mers	
 or	
 seeds)	
 	

Red	
 shows	
 mismatch	
 to	
 reference	
 (not	
 pictured)	

q-gram Lemma

•  Assume no more than k errors tolerated
•  Create all possible overlapping q-grams from the read

–  search for all of these

q-gram Lemma

•  Number of q-grams for read of
length n?

•  k errors affect how many q-grams
at most in worst case?

•  Assume no more than k errors tolerated
•  Create all possible overlapping q-grams from the read

–  search for all of these

q-gram Lemma

•  Number of q-grams for read of
length n?

•  k errors affect how many q-grams
at most in worst case?

•  Assume no more than k errors tolerated
•  Create all possible overlapping q-grams from the read

–  search for all of these
•  If the query is in the genome, at least n-(k+1)q +1 of the q-grams match

exactly
–  count the number of q-grams that matched, and if it passes this threshold,

report a candidate region

Finding Candidate Regions

Pigeonhole	

q-­‐gram	

Reference	
 Genome	

Indexing
•  Store the genome/reads in a

data structure that facilitates
fast exact or near-exact
alignment

•  Must be reasonable for memory
limits of the machine

Indexing Data Structures

Ben	
 Langmead	
 teaching	
 materials:	
 h;p://www.langmead-­‐lab.org/teaching-­‐materials/	

FM Index
•  Uses Burrows-Wheeler transform
– Plus extra tables to speed things up

Burrows-Wheeler transform

– Because they are rotations
•  the character in the last column is what precedes the

character in the first column in the original string

– Because the suffixes are sorted
•  the first row, last character is the end of the original string

Burrows-Wheeler transform

– Because the suffixes are sorted (cont’d)
•  the rank of the character in the last column is the same as

the first

Burrows-Wheeler transform

•  We can find the position in the first column (F) based only
on information from the last column (L)

LF(‘c’, 6) = Occ(‘c’) + Count(‘c’, 6)
 = 4 + 1

Occurrence:

 Number of letters before any ‘c’ in F?
 4 ($ and 3 a’s)

Count:

 How many ‘c’s have we seen in L?
 1 (c0)

Burrows-Wheeler transform

•  Walk left algorithm
– We can use the BWT and the LF function to

reconstruct the original text

FM Index for Exact Matching

Ferragina,	
 Paolo	
 and	
 Manzini,	
 Giovanni.	
 "OpportunisAc	
 data	
 structures	
 with	
 applicaAons."	
 	

FoundaAons	
 of	
 Computer	
 Science,	
 2000.	
 Proceedings.	
 41st	
 Annual	
 Symposium	
 on.	
 IEEE	
 (2000)	

FM Index for Exact Matching

q = “aac”
top = 0
bot = len(bwt)
for qc in reverse(q):

 top = LF(top, qc)
 bot = LF(bot,

qc)

Ferragina,	
 Paolo	
 and	
 Manzini,	
 Giovanni.	
 "OpportunisAc	
 data	
 structures	
 with	
 applicaAons."	
 	

FoundaAons	
 of	
 Computer	
 Science,	
 2000.	
 Proceedings.	
 41st	
 Annual	
 Symposium	
 on.	
 IEEE	
 (2000)	

FM Index for Exact Matching

Track a top and bottom index
–  These bound the remaining possible matches at

each step
–  If they are ever the same, there are no matches

Here, LF is called on the query characters
–  “Where are the first & last qc you saw in F?”

The end TOP index is our match!

q = “aac”
top = 0
bot = len(bwt)
for qc in reverse(q):

 top = LF(top, qc)
 bot = LF(bot, qc)

Ferragina,	
 Paolo	
 and	
 Manzini,	
 Giovanni.	
 "OpportunisAc	
 data	
 structures	
 with	
 applicaAons."	
 	

FoundaAons	
 of	
 Computer	
 Science,	
 2000.	
 Proceedings.	
 41st	
 Annual	
 Symposium	
 on.	
 IEEE	
 (2000)	

FM Index for Exact Matching

Track a top and bottom index
–  These bound the remaining possible matches at

each step
–  If they are ever the same, there are no matches

Here, LF is called on the query characters
–  “Where are the first & last qc you saw in F?”

The end TOP index is our match!

q = “aac”
top = 0
bot = len(bwt)
for qc in reverse(q):

 top = LF(top, qc)
 bot = LF(bot, qc)

FM Index
•  How do we find this in the genome?

•  Isn’t the count operation O(n)?

FM Index

•  How do we find this in the
genome?

1)  Can use our walk left
algorithm to reconstruct

FM Index

•  How do we find this in the
genome?

1)  Can use our walk left
algorithm to reconstruct

2)  Could store the entire suffix
array

FM Index

•  How do we find this in the
genome?

1)  Can use our walk left
algorithm to reconstruct

2)  Could store the entire suffix
array

3)  Only store certain rows of (2),
use (1) until we get to one.

FM Index
•  Isn’t the count operation O(n)?

FM Index
•  Isn’t the count operation O(n)?
– We again store cumulative counts for certain

rows, for each of $ACTG

•  Also, the reference is usually put in
backward (or both forward and backward)

Beyond?
•  Read-mapping is limited by
–  the reference genome assembly
– exact matching

•  So, why not assemble each time?

De Novo Assembly
•  Overlap-Layout-Consensus
•  De Bruijn Graphs

Overlap-Layout-Consensus
•  Overlap
– Compute overlap score of all reads

•  Layout
– Create a graph where nodes are a read, edges

are overlaps between reads
– Find their “layout” by finding a Hamiltonian path

through the graph
•  Consensus
– Find the consensus sequence by reading nodes

along the path

De Bruijn Graphs
•  Break reads into k-mers
•  Each node in the graph is a k-mer
•  Connect an edge to the next k-mer found in

the read
•  Find a Eulerian path

De Novo Assembly
•  Confounded by repeats
–  repeats are collapsed in these representations
– may have many ways in and out of these graph

regions.

Further beyond
•  Newer sequencing techniques
– Nanopore sequencing
– Single cell sequencing

•  Downstream analysis issues
– How do we compare genomes?
– How do we store them?

•  Improve the reference model

Further beyond

•  Downstream
analysis issues
– How do we compare

genomes?
– How do we store

them?

•  Improve the
reference model

h;ps://en.wikipedia.org/wiki/1000_Genomes_Project#/media/
File:GeneAc_VariaAon.jpg	

Thank you!

References and resources
•  Algorithms

–  Reinert, Knut, et al. "Alignment of Next-Generation Sequencing Reads." Annual review of
genomics and human genetics 0 (2015).

–  Li, Heng, and Nils Homer. "A survey of sequence alignment algorithms for next-generation
sequencing." Briefings in bioinformatics 11.5 (2010): 473-483.

•  Sequencing
–  Morey, Marcos, et al. "A glimpse into past, present, and future DNA sequencing." Molecular

genetics and metabolism 110.1 (2013): 3-24.

•  Ben Langmead’s Teaching Resources:
–  http://www.langmead-lab.org/teaching-materials/

Supervisor: Mark Daley
DaleyLab.org

Structural Variant Discovery

