next up previous
Next: A breif history Up: Computer Algebra Previous: Computer Algebra

Objectives

Computer algebra is the set of the techniques for performing algebraic calculations on computers. This includes developing

By algebraic calculations we mean symbolic or exact computations.

Actually, these high-school problems are not that easy: Several kinds of difficulties appear there: Computer algebra aims at remedying these difficulties, as much as possible.

Let us illustrate the question of exactness with an example. Consider the following system of 3 non-linear equations in 3 variable:

$\displaystyle \left\{\vphantom{ \begin{array}{rcl} x^2 + y + z & = & 1 \\  x + y^2 + z & = & 1 \\  x + y + z^2 & = & 1 \\  \end{array} }\right.$$\displaystyle \begin{array}{rcl} x^2 + y + z & = & 1 \\  x + y^2 + z & = & 1 \\  x + y + z^2 & = & 1 \\  \end{array}$    

The output with phc the symb.-num. software of J. Verschelde (Univ. Chicago):
solution 1 :    start residual :  3.968E-12   #iterations : 1   success
 x :  9.99999695984909E-01   4.13938269379988E-07
 y :  3.04015091103714E-07  -4.13938269379988E-07
 z :  3.04015090976779E-07  -4.13938269379988E-07
== err :  2.154E-06 = rco :  1.197E-07 = res :  9.920E-13 = complex regular ==
solution 2 :    start residual :  1.388E-16   #iterations : 1   success
 x :  4.14213562373095E-01   2.35098870164458E-38
 y :  4.14213562373095E-01  -1.67507944992176E-37
 z :  4.14213562373095E-01   1.29304378590452E-37
== err :  7.517E-16 = rco :  6.017E-02 = res :  5.551E-17 = real regular ==
solution 3 :    start residual :  2.400E-12   #iterations : 1   success
 x :  1.80048038888678E-08   4.29782537417684E-07
 y :  9.99999981995196E-01  -4.29782537417684E-07
 z :  1.80048038262633E-08   4.29782537417684E-07
== err :  1.344E-06 = rco :  7.463E-08 = res :  5.995E-13 = complex regular ==
solution 4 :    start residual :  9.614E-13   #iterations : 1   success
 x :  1.00000024904061E+00  -3.93267692590196E-08
 y : -2.49040612161639E-07   3.93267692590197E-08
 z : -2.49040612108234E-07   3.93267692590197E-08
== err :  8.657E-07 = rco :  4.806E-08 = res :  2.400E-13 = complex regular ==
solution 5 :    start residual :  2.745E-12   #iterations : 1   success
 x :  3.58839953269127E-07   1.89357516639334E-07
 y :  3.58839953269127E-07   1.89357516639334E-07
 z :  9.99999641160047E-01  -1.89357516639334E-07
== err :  1.645E-06 = rco :  7.071E-08 = res :  6.863E-13 = complex regular ==
solution 6 :    start residual :  1.744E-34   #iterations : 1   success
 x : -2.41421356237309E+00   0.00000000000000E+00
 y : -2.41421356237309E+00   0.00000000000000E+00
 z : -2.41421356237309E+00  -1.00577224408752E-106
== err :  3.611E-35 = rco :  4.142E-01 = res :  6.868E-106 = real regular ==
solution 7 :    start residual :  1.112E-12   #iterations : 1   success
 x : -2.64786238552867E-07  -4.67724648385200E-08
 y : -2.64786238552867E-07  -4.67724648385200E-08
 z :  1.00000026478624E+00   4.67724648385200E-08
== err :  9.341E-07 = rco :  4.530E-08 = res :  2.779E-13 = complex regular ==
solution 8 :    start residual :  2.045E-12   #iterations : 1   success
 x :  1.42636460554469E-07  -3.16738323586431E-07
 y :  9.99999857363539E-01   3.16738323586431E-07
 z :  1.42636460467758E-07  -3.16738323586431E-07
== err :  1.378E-06 = rco :  7.656E-08 = res :  5.117E-13 = complex regular ==
===========================================================================
A list of 8 solutions has been refined :
Number of regular solutions   : 8.
Number of singular solutions  : 0.
Number of real solutions      : 2.
Number of complex solutions   : 6.
Number of clustered solutions : 0.
Number of failures            : 0.
===========================================================================
The solution provided by triade my symbolic solver in ALDOR is
{z^2 +2*z -1,
y -z,
x -z}

{z,
y -1,
x}

{z,
y,
x -1}

{z -1,
y,
x}

Dimensions: [0,0,0,0]
Degrees: [2,1,1,1]
How to choose between symbolic and numeric methods?
$ \bullet$ mathend000#
If the input is an approximate system, then only numeric (or symbolic-numeric) methods make sense.
$ \bullet$ mathend000#
If the input is an exact system but the user only cares about approximate solutions, then symbolic-numeric methods are more appropriate.
$ \bullet$ mathend000#
If both the input and the desired answer are exact, then only symbolic methods make sense. Examples:


next up previous
Next: A breif history Up: Computer Algebra Previous: Computer Algebra
Marc Moreno Maza
2007-01-10