
.

LECTURES

ON

MODERN CONVEX OPTIMIZATION

Arkadi Nemirovski
nemirovs@isye.gatech.edu

http://www.isye.gatech.edu/faculty-staff/profile.php?entry=an63

Department ISYE, Georgia Institute of Technology,

Fall Semester 005

2

Preface

Mathematical Programming deals with optimization programs of the form

minimize f(x)
subject to

gi(x) ≤ 0, i = 1, ..., m,
[x ⊂ Rn]

(P)

and includes the following general areas:

1. Modelling: methodologies for posing various applied problems as optimization programs;

2. Optimization Theory, focusing on existence, uniqueness and on characterization of optimal
solutions to optimization programs;

3. Optimization Methods: development and analysis of computational algorithms for various
classes of optimization programs;

4. Implementation, testing and application of modelling methodologies and computational
algorithms.

Essentially, Mathematical Programming was born in 1948, when George Dantzig has invented
Linear Programming – the class of optimization programs (P) with linear objective f(·) and
constraints gi(·). This breakthrough discovery included

• the methodological idea that a natural desire of a human being to look for the best possible
decisions can be posed in the form of an optimization program (P) and thus subject to
mathematical and computational treatment;

• the theory of LP programs, primarily the LP duality (this is in part due to the great
mathematician John von Neumann);

• the first computational method for LP – the Simplex method, which over the years turned
out to be an extremely powerful computational tool.

As it often happens with first-rate discoveries (and to some extent is characteristic for such
discoveries), today the above ideas and constructions look quite traditional and simple. Well,
the same is with the wheel.

In 50 plus years since its birth, Mathematical Programming was rapidly progressing along
all outlined avenues, “in width” as well as “in depth”. I have no intention (and time) to trace
the history of the subject decade by decade; instead, let me outline the major achievements in
Optimization during the last 20 years or so, those which, I believe, allow to speak about modern
optimization as opposed to the “classical” one as it existed circa 1980. The reader should be
aware that the summary to follow is highly subjective and reflects the personal preferences of
the author. Thus, in my opinion the major achievements in Mathematical Programming during
last 15-20 years can be outlined as follows:

♠ Realizing what are the generic optimization programs one can solve well (“efficiently solv-
able” programs) and when such a possibility is, mildly speaking, problematic (“computationally
intractable” programs). At this point, I do not intend to explain what does it mean exactly
that “a generic optimization program is efficiently solvable”; we will arrive at this issue further
in the course. However, I intend to answer the question (right now, not well posed!) “what are
generic optimization programs we can solve well”:

3

(!) As far as numerical processing of programs (P) is concerned, there exists a
“solvable case” – the one of convex optimization programs, where the objective f
and the constraints gi are convex functions.

Under minimal additional “computability assumptions” (which are satisfied in basi-
cally all applications), a convex optimization program is “computationally tractable”
– the computational effort required to solve the problem to a given accuracy “grows
moderately” with the dimensions of the problem and the required number of accuracy
digits.

In contrast to this, a general-type non-convex problems are too difficult for numerical
solution – the computational effort required to solve such a problem by the best
known so far numerical methods grows prohibitively fast with the dimensions of
the problem and the number of accuracy digits, and there are serious theoretical
reasons to guess that this is an intrinsic feature of non-convex problems rather than
a drawback of the existing optimization techniques.

Just to give an example, consider a pair of optimization problems. The first is

minimize −∑n

i=1
xi

subject to
x2

i − xi = 0, i = 1, ..., n;
xixj = 0 ∀(i, j) ∈ Γ,

(A)

Γ being a given set of pairs (i, j) of indices i, j. This is a fundamental combinatorial problem of computing the
stability number of a graph; the corresponding “covering story” is as follows:

Assume that we are given n letters which can be sent through a telecommunication channel, say,
n = 256 usual bytes. When passing trough the channel, an input letter can be corrupted by errors;
as a result, two distinct input letters can produce the same output and thus not necessarily can be
distinguished at the receiving end. Let Γ be the set of “dangerous pairs of letters” – pairs (i, j) of
distinct letters i, j which can be converted by the channel into the same output. If we are interested
in error-free transmission, we should restrict the set S of letters we actually use to be independent
– such that no pair (i, j) with i, j ∈ S belongs to Γ. And in order to utilize best of all the capacity
of the channel, we are interested to use a maximal – with maximum possible number of letters –
independent sub-alphabet. It turns out that the minus optimal value in (A) is exactly the cardinality
of such a maximal independent sub-alphabet.

Our second problem is

minimize −2
∑k

i=1

∑m

j=1
cijxij + x00

subject to

λmin







x1

∑m

j=1
bpjx1j

. . . · · ·
xk

∑m

j=1
bpjxkj∑m

j=1
bpjx1j · · · ∑m

j=1
bpjxkj x00





 ≥ 0,

p = 1, ..., N,∑k

i=1
xi = 1,

(B)

where λmin(A) denotes the minimum eigenvalue of a symmetric matrix A. This problem is responsible for the
design of a truss (a mechanical construction comprised of linked with each other thin elastic bars, like an electric
mast, a bridge or the Eiffel Tower) capable to withstand best of all to k given loads.

When looking at the analytical forms of (A) and (B), it seems that the first problem is easier than the second:

the constraints in (A) are simple explicit quadratic equations, while the constraints in (B) involve much more

complicated functions of the design variables – the eigenvalues of certain matrices depending on the design vector.

The truth, however, is that the first problem is, in a sense, “as difficult as an optimization problem can be”, and

4

the worst-case computational effort to solve this problem within absolute inaccuracy 0.5 by all known optimization

methods is about 2n operations; for n = 256 (just 256 design variables corresponding to the “alphabet of bytes”),

the quantity 2n ≈ 1077, for all practical purposes, is the same as +∞. In contrast to this, the second problem is

quite “computationally tractable”. E.g., for k = 6 (6 loads of interest) and m = 100 (100 degrees of freedom of

the construction) the problem has about 600 variables (twice the one of the “byte” version of (A)); however, it

can be reliably solved within 6 accuracy digits in a couple of minutes. The dramatic difference in computational

effort required to solve (A) and (B) finally comes from the fact that (A) is a non-convex optimization problem,

while (B) is convex.

Note that realizing what is easy and what is difficult in Optimization is, aside of theoretical
importance, extremely important methodologically. Indeed, mathematical models of real world
situations in any case are incomplete and therefore are flexible to some extent. When you know in
advance what you can process efficiently, you perhaps can use this flexibility to build a tractable
(in our context – a convex) model. The “traditional” Optimization did not pay much attention
to complexity and focused on easy-to-analyze purely asymptotical “rate of convergence” results.
From this viewpoint, the most desirable property of f and gi is smoothness (plus, perhaps,
certain “nondegeneracy” at the optimal solution), and not their convexity; choosing between
the above problems (A) and (B), a “traditional” optimizer would, perhaps, prefer the first of
them. I suspect that a non-negligible part of “applied failures” of Mathematical Programming
came from the traditional (I would say, heavily misleading) “order of preferences” in model-
building. Surprisingly, some advanced users (primarily in Control) have realized the crucial
role of convexity much earlier than some members of the Optimization community. Here is a
real story. About 7 years ago, we were working on certain Convex Optimization method, and
I sent an e-mail to people maintaining CUTE (a benchmark of test problems for constrained
continuous optimization) requesting for the list of convex programs from their collection. The
answer was: “We do not care which of our problems are convex, and this be a lesson for those
developing Convex Optimization techniques.” In their opinion, I am stupid; in my opinion, they
are obsolete. Who is right, this I do not know...

♠ Discovery of interior-point polynomial time methods for “well-structured” generic convex
programs and throughout investigation of these programs.

By itself, the “efficient solvability” of generic convex programs is a theoretical rather than
a practical phenomenon. Indeed, assume that all we know about (P) is that the program is
convex, its objective is called f , the constraints are called gj and that we can compute f and gi,
along with their derivatives, at any given point at the cost of M arithmetic operations. In this
case the computational effort for finding an ε-solution turns out to be at least O(1)nM ln(1

ε).
Note that this is a lower complexity bound, and the best known so far upper bound is much
worse: O(1)n(n3 + M) ln(1

ε). Although the bounds grow “moderately” – polynomially – with
the design dimension n of the program and the required number ln(1

ε) of accuracy digits, from
the practical viewpoint the upper bound becomes prohibitively large already for n like 1000.
This is in striking contrast with Linear Programming, where one can solve routinely problems
with tens and hundreds of thousands of variables and constraints. The reasons for this huge
difference come from the fact that

When solving an LP program, our a priory knowledge is far beyond the fact that the
objective is called f , the constraints are called gi, that they are convex and we can
compute their values at derivatives at any given point. In LP, we know in advance
what is the analytical structure of f and gi, and we heavily exploit this knowledge
when processing the problem. In fact, all successful LP methods never never compute
the values and the derivatives of f and gi – they do something completely different.

5

One of the most important recent developments in Optimization is realizing the simple fact
that a jump from linear f and gi’s to “completely structureless” convex f and gi’s is too long: in-
between these two extremes, there are many interesting and important generic convex programs.
These “in-between” programs, although non-linear, still possess nice analytical structure, and
one can use this structure to develop dedicated optimization methods, the methods which turn
out to be incomparably more efficient than those exploiting solely the convexity of the program.

The aforementioned “dedicated methods” are Interior Point polynomial time algorithms,
and the most important “well-structured” generic convex optimization programs are those of
Linear, Conic Quadratic and Semidefinite Programming; the last two entities merely did not
exist as established research subjects just 15 years ago. In my opinion, the discovery of Interior
Point methods and of non-linear “well-structured” generic convex programs, along with the
subsequent progress in these novel research areas, is one of the most impressive achievements in
Mathematical Programming.

♠ I have outlined the most revolutionary, in my appreciation, changes in the theoretical core
of Mathematical Programming in the last 15-20 years. During this period, we have witnessed
perhaps less dramatic, but still quite important progress in the methodological and application-
related areas as well. The major novelty here is certain shift from the traditional for Operations
Research applications in Industrial Engineering (production planning, etc.) to applications in
“genuine” Engineering. I believe it is completely fair to say that the theory and methods
of Convex Optimization, especially those of Semidefinite Programming, have become a kind
of new paradigm in Control and are becoming more and more frequently used in Mechanical
Engineering, Design of Structures, Medical Imaging, etc.

The aim of the course is to outline some of the novel research areas which have arisen in
Optimization during the past decade or so. I intend to focus solely on Convex Programming,
specifically, on

• Conic Programming, with emphasis on the most important particular cases – those of
Linear, Conic Quadratic and Semidefinite Programming (LP, CQP and SDP, respectively).

Here the focus will be on

– basic Duality Theory for conic programs;

– investigation of “expressive abilities” of CQP and SDP;

– overview of the theory of Interior Point polynomial time methods for LP, CQP and
SDP.

• “Efficient (polynomial time) solvability” of generic convex programs.

• “Low cost” optimization methods for extremely large-scale optimization programs.

Acknowledgements. The first four lectures of the five comprising the core of the course are
based upon the recent book

Ben-Tal, A., Nemirovski, A., Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, Engineering Applications, MPS-SIAM Series on Optimization, SIAM, Philadelphia,
2001.
I am greatly indebted to my colleagues, primarily to Yuri Nesterov, Aharon Ben-Tal, Stephen
Boyd, Claude Lemarechal and Kees Roos, who over the years have influenced significantly my

6

understanding of our subject as expressed in this course. Needless to say, I am the only person
responsible for the drawbacks in what follows.

Arkadi Nemirovski,
Haifa, Israel, May 2002
Atlanta, USA, August 2003
Atlanta, USA, August 2005

Contents

1 From Linear to Conic Programming 13
1.1 Linear programming: basic notions . 13
1.2 Duality in linear programming . 14

1.2.1 Certificates for solvability and insolvability 14
1.2.2 Dual to an LP program: the origin . 18
1.2.3 The LP Duality Theorem . 21

1.3 From Linear to Conic Programming . 23
1.4 Orderings of Rm and cones . 23
1.5 “Conic programming” – what is it? . 26
1.6 Conic Duality . 27

1.6.1 Geometry of the primal and the dual problems 29
1.7 Conic Duality Theorem . 32

1.7.1 Is something wrong with conic duality? 35
1.7.2 Consequences of the Conic Duality Theorem 37

1.8 Exercises . 42
1.8.1 Around General Theorem on Alternative 42
1.8.2 Around cones . 43
1.8.3 Around conic problems . 46
1.8.4 Feasible and level sets of conic problems 46

2 Conic Quadratic Programming 49
2.1 Conic Quadratic problems: preliminaries . 49
2.2 Examples of conic quadratic problems . 51

2.2.1 Contact problems with static friction [11] 51
2.3 What can be expressed via conic quadratic constraints? 53

2.3.1 More examples of CQ-representable functions/sets 68
2.4 More applications: Robust Linear Programming 71

2.4.1 Robust Linear Programming: the paradigm 72
2.4.2 Robust Linear Programming: examples 73
2.4.3 Robust counterpart of uncertain LP with a CQr uncertainty set 83
2.4.4 CQ-representability of the optimal value in a CQ program as a function

of the data . 86
2.4.5 Affinely Adjustable Robust Counterpart 87

2.5 Does Conic Quadratic Programming exist? . 95
2.6 Exercises . 99

2.6.1 Around randomly perturbed linear constraints 99

7

8 CONTENTS

2.6.2 Around Robust Antenna Design . 101

3 Semidefinite Programming 105
3.1 Semidefinite cone and Semidefinite programs . 105

3.1.1 Preliminaries . 105
3.2 What can be expressed via LMI’s? . 108
3.3 Applications of Semidefinite Programming in Engineering 122

3.3.1 Dynamic Stability in Mechanics . 122
3.3.2 Design of chips and Boyd’s time constant 124
3.3.3 Lyapunov stability analysis/synthesis . 126

3.4 Semidefinite relaxations of intractable problems 133
3.4.1 Semidefinite relaxations of combinatorial problems 133
3.4.2 Matrix Cube Theorem and interval stability analysis/synthesis 145
3.4.3 Robust Quadratic Programming . 152

3.5 S-Lemma and Approximate S-Lemma . 155
3.5.1 S-Lemma . 155
3.5.2 Inhomogeneous S-Lemma . 158
3.5.3 Approximate S-Lemma . 159

3.6 Extremal ellipsoids . 162
3.6.1 Ellipsoidal approximations of unions/intersections of ellipsoids 166
3.6.2 Approximating sums of ellipsoids . 168

3.7 Exercises . 178
3.7.1 Around positive semidefiniteness, eigenvalues and º-ordering 178
3.7.2 SD representations of epigraphs of convex polynomials 187
3.7.3 Around the Lovasz capacity number and semidefinite relaxations of com-

binatorial problems . 189
3.7.4 Around Lyapunov Stability Analysis . 194
3.7.5 Around Nesterov’s π

2 Theorem . 195
3.7.6 Around ellipsoidal approximations . 196

4 Polynomial Time Interior Point algorithms for LP, CQP and SDP 201
4.1 Complexity of Convex Programming . 201

4.1.1 Combinatorial Complexity Theory . 201
4.1.2 Complexity in Continuous Optimization 203
4.1.3 Computational tractability of convex optimization problems 204
4.1.4 “What is inside” Theorem 4.1.1: Black-box represented convex programs

and the Ellipsoid method . 206
4.1.5 Difficult continuous optimization problems 215

4.2 Interior Point Polynomial Time Methods for LP, CQP and SDP 215
4.2.1 Motivation . 215
4.2.2 Interior Point methods . 216
4.2.3 But... 219

4.3 Interior point methods for LP, CQP, and SDP: building blocks 220
4.3.1 Canonical cones and canonical barriers . 220
4.3.2 Elementary properties of canonical barriers 222

4.4 Primal-dual pair of problems and primal-dual central path 224
4.4.1 The problem(s) . 224

CONTENTS 9

4.4.2 The central path(s) . 224
4.5 Tracing the central path . 230

4.5.1 The path-following scheme . 230
4.5.2 Speed of path-tracing . 232
4.5.3 The primal and the dual path-following methods 232
4.5.4 The SDP case . 235

4.6 Complexity bounds for LP, CQP, SDP . 248
4.6.1 Complexity of LPb . 248
4.6.2 Complexity of CQPb . 249
4.6.3 Complexity of SDPb . 249

4.7 Concluding remarks . 250
4.8 Exercises: Around the Ellipsoid method . 252

5 Simple methods for extremely large-scale problems 257
5.1 Motivation . 257
5.2 Information-based complexity of Convex Programming 259
5.3 Methods with Euclidean geometry: Subgradient Descent and Bundle-Level . . . 262

5.3.1 The simplest of the cheapest – Subgradient Descent 262
5.3.2 From SD to Bundle-Level: Adding memory 265
5.3.3 Restricted Memory Bundle-Level . 268

5.4 The Bundle-Mirror scheme . 273
5.4.1 Mirror Descent – Building Blocks . 273
5.4.2 Non-Euclidean SD – Mirror Descent . 275
5.4.3 Mirror-Level Algorithm . 281
5.4.4 NERML – Non-Euclidean Restricted Memory Level algorithm 284

5.5 Implementation issues and illustrations . 287
5.5.1 Implementing SD and MD . 287
5.5.2 Illustration: PET Image Reconstruction problem 290

5.6 Appendix: strong convexity of ω(·) for standard setups 296

Bibliography 299

A Prerequisites from Linear Algebra and Analysis 301
A.1 Space Rn: algebraic structure . 301

A.1.1 A point in Rn . 301
A.1.2 Linear operations . 301
A.1.3 Linear subspaces . 302
A.1.4 Linear independence, bases, dimensions 303
A.1.5 Linear mappings and matrices . 304

A.2 Space Rn: Euclidean structure . 306
A.2.1 Euclidean structure . 306
A.2.2 Inner product representation of linear forms on Rn 307
A.2.3 Orthogonal complement . 307
A.2.4 Orthonormal bases . 308

A.3 Affine subspaces in Rn . 310
A.3.1 Affine subspaces and affine hulls . 310
A.3.2 Intersections of affine subspaces, affine combinations and affine hulls . . . 311

10 CONTENTS

A.3.3 Affinely spanning sets, affinely independent sets, affine dimension 312
A.3.4 Dual description of linear subspaces and affine subspaces 314
A.3.5 Structure of the simplest affine subspaces 316

A.4 Space Rn: metric structure and topology . 317
A.4.1 Euclidean norm and distances . 317
A.4.2 Convergence . 318
A.4.3 Closed and open sets . 319
A.4.4 Local compactness of Rn . 320

A.5 Continuous functions on Rn . 320
A.5.1 Continuity of a function . 320
A.5.2 Elementary continuity-preserving operations 321
A.5.3 Basic properties of continuous functions on Rn 321

A.6 Differentiable functions on Rn . 322
A.6.1 The derivative . 322
A.6.2 Derivative and directional derivatives . 324
A.6.3 Representations of the derivative . 325
A.6.4 Existence of the derivative . 326
A.6.5 Calculus of derivatives . 327
A.6.6 Computing the derivative . 327
A.6.7 Higher order derivatives . 329
A.6.8 Calculus of Ck mappings . 331
A.6.9 Examples of higher-order derivatives . 332
A.6.10 Taylor expansion . 333

A.7 Symmetric matrices . 334
A.7.1 Spaces of matrices . 334
A.7.2 Main facts on symmetric matrices . 335
A.7.3 Variational characterization of eigenvalues 336
A.7.4 Positive semidefinite matrices and the semidefinite cone 339

B Convex sets in Rn 343
B.1 Definition and basic properties . 343

B.1.1 A convex set . 343
B.1.2 Examples of convex sets . 343
B.1.3 Inner description of convex sets: Convex combinations and convex hull . . 346
B.1.4 Cones . 347
B.1.5 ”Calculus” of convex sets . 348
B.1.6 Topological properties of convex sets . 348

B.2 Main theorems on convex sets . 352
B.2.1 Caratheodory Theorem . 352
B.2.2 Radon Theorem . 353
B.2.3 Helley Theorem . 354
B.2.4 Homogeneous Farkas Lemma . 355
B.2.5 Separation Theorem . 357
B.2.6 Polar of a convex set and Milutin-Dubovitski Lemma 363
B.2.7 Extreme points and Krein-Milman Theorem 366
B.2.8 Structure of polyhedral sets . 369

CONTENTS 11

C Convex functions 379
C.1 Convex functions: first acquaintance . 379

C.1.1 Definition and Examples . 379
C.1.2 Elementary properties of convex functions 380
C.1.3 What is the value of a convex function outside its domain? 381

C.2 How to detect convexity . 382
C.2.1 Operations preserving convexity of functions 382
C.2.2 Differential criteria of convexity . 384

C.3 Gradient inequality . 387
C.4 Boundedness and Lipschitz continuity of a convex function 388
C.5 Maxima and minima of convex functions . 391
C.6 Subgradients and Legendre transformation . 395

C.6.1 Proper functions and their representation 395
C.6.2 Subgradients . 401
C.6.3 Legendre transformation . 402

D Convex Programming, Lagrange Duality, Saddle Points 407
D.1 Mathematical Programming Program . 407
D.2 Convex Programming program and Lagrange Duality Theorem 408

D.2.1 Convex Theorem on Alternative . 408
D.2.2 Lagrange Function and Lagrange Duality 411
D.2.3 Optimality Conditions in Convex Programming 413

D.3 Saddle Points . 417
D.3.1 Definition and Game Theory interpretation 417
D.3.2 Existence of Saddle Points . 419

12 CONTENTS

Lecture 1

From Linear to Conic Programming

1.1 Linear programming: basic notions

A Linear Programming (LP) program is an optimization program of the form

min
{

cT x

∣∣∣∣ Ax ≥ b

}
, (LP)

where

• x ∈ Rn is the design vector

• c ∈ Rn is a given vector of coefficients of the objective function cT x

• A is a given m × n constraint matrix, and b ∈ Rm is a given right hand side of the
constraints.

(LP) is called
– feasible, if its feasible set

F = {x | Ax− b ≥ 0}
is nonempty; a point x ∈ F is called a feasible solution to (LP);

– bounded below, if it is either infeasible, or its objective cT x is bounded below on F .

For a feasible bounded below problem (LP), the quantity

c∗ ≡ inf
x:Ax−b≥0

cT x

is called the optimal value of the problem. For an infeasible problem, we set c∗ = +∞,
while for feasible unbounded below problem we set c∗ = −∞.

(LP) is called solvable, if it is feasible, bounded below and the optimal value is attained, i.e.,
there exists x ∈ F with cT x = c∗. An x of this type is called an optimal solution to (LP).

A priori it is unclear whether a feasible and bounded below LP program is solvable: why should
the infimum be achieved? It turns out, however, that a feasible and bounded below program
(LP) always is solvable. This nice fact (we shall establish it later) is specific for LP. Indeed, a
very simple nonlinear optimization program

min
{

1
x

∣∣∣∣ x ≥ 1
}

is feasible and bounded below, but it is not solvable.

13

14 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

1.2 Duality in linear programming

The most important and interesting feature of linear programming as a mathematical entity
(i.e., aside of computations and applications) is the wonderful LP duality theory we are about
to consider. We motivate this topic by first addressing the following question:

Given an LP program

c∗ = min
x

{
cT x

∣∣∣∣ Ax− b ≥ 0
}

, (LP)

how to find a systematic way to bound from below its optimal value c∗ ?

Why this is an important question, and how the answer helps to deal with LP, this will be seen
in the sequel. For the time being, let us just believe that the question is worthy of the effort.

A trivial answer to the posed question is: solve (LP) and look what is the optimal value.
There is, however, a smarter and a much more instructive way to answer our question. Just to
get an idea of this way, let us look at the following example:

min





x1 + x2 + ... + x2002

∣∣∣∣
x1 + 2x2 + ... + 2001x2001 + 2002x2002 − 1 ≥ 0,

2002x1 + 2001x2 + ... + 2x2001 + x2002 − 100 ≥ 0,
.....





.

We claim that the optimal value in the problem is ≥ 101
2003 . How could one certify this bound?

This is immediate: add the first two constraints to get the inequality

2003(x1 + x2 + ... + x1998 + x2002)− 101 ≥ 0,

and divide the resulting inequality by 2003. LP duality is nothing but a straightforward gener-
alization of this simple trick.

1.2.1 Certificates for solvability and insolvability

Consider a (finite) system of scalar inequalities with n unknowns. To be as general as possible,
we do not assume for the time being the inequalities to be linear, and we allow for both non-
strict and strict inequalities in the system, as well as for equalities. Since an equality can be
represented by a pair of non-strict inequalities, our system can always be written as

fi(x) Ωi 0, i = 1, ..., m, (S)

where every Ωi is either the relation ” > ” or the relation ” ≥ ”.
The basic question about (S) is

(?) Whether (S) has a solution or not.

Knowing how to answer the question (?), we are able to answer many other questions. E.g., to
verify whether a given real a is a lower bound on the optimal value c∗ of (LP) is the same as to
verify whether the system {

−cT x + a > 0
Ax− b ≥ 0

has no solutions.
The general question above is too difficult, and it makes sense to pass from it to a seemingly

simpler one:

1.2. DUALITY IN LINEAR PROGRAMMING 15

(??) How to certify that (S) has, or does not have, a solution.

Imagine that you are very smart and know the correct answer to (?); how could you convince
somebody that your answer is correct? What could be an “evident for everybody” certificate of
the validity of your answer?

If your claim is that (S) is solvable, a certificate could be just to point out a solution x∗ to
(S). Given this certificate, one can substitute x∗ into the system and check whether x∗ indeed
is a solution.

Assume now that your claim is that (S) has no solutions. What could be a “simple certificate”
of this claim? How one could certify a negative statement? This is a highly nontrivial problem
not just for mathematics; for example, in criminal law: how should someone accused in a murder
prove his innocence? The “real life” answer to the question “how to certify a negative statement”
is discouraging: such a statement normally cannot be certified (this is where the rule “a person
is presumed innocent until proven guilty” comes from). In mathematics, however, the situation
is different: in some cases there exist “simple certificates” of negative statements. E.g., in order
to certify that (S) has no solutions, it suffices to demonstrate that a consequence of (S) is a
contradictory inequality such as

−1 ≥ 0.

For example, assume that λi, i = 1, ...,m, are nonnegative weights. Combining inequalities from
(S) with these weights, we come to the inequality

m∑

i=1

λifi(x) Ω 0 (Cons(λ))

where Ω is either ” > ” (this is the case when the weight of at least one strict inequality from
(S) is positive), or ” ≥ ” (otherwise). Since the resulting inequality, due to its origin, is a
consequence of the system (S), i.e., it is satisfied by every solution to S), it follows that if
(Cons(λ)) has no solutions at all, we can be sure that (S) has no solution. Whenever this is the
case, we may treat the corresponding vector λ as a “simple certificate” of the fact that (S) is
infeasible.

Let us look what does the outlined approach mean when (S) is comprised of linear inequal-
ities:

(S) : {aT
i x Ωi bi, i = 1, ...,m}

[
Ωi =

{
” > ”
” ≥ ”

]

Here the “combined inequality” is linear as well:

(Cons(λ)) : (
m∑

i=1

λai)T x Ω
m∑

i=1

λbi

(Ω is ” > ” whenever λi > 0 for at least one i with Ωi = ” > ”, and Ω is ” ≥ ” otherwise). Now,
when can a linear inequality

dT x Ω e

be contradictory? Of course, it can happen only when d = 0. Whether in this case the inequality
is contradictory, it depends on what is the relation Ω: if Ω = ” > ”, then the inequality is
contradictory if and only if e ≥ 0, and if Ω = ” ≥ ”, it is contradictory if and only if e > 0. We
have established the following simple result:

16 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Proposition 1.2.1 Consider a system of linear inequalities

(S) :

{
aT

i x > bi, i = 1, ..., ms,
aT

i x ≥ bi, i = ms + 1, ...,m.

with n-dimensional vector of unknowns x. Let us associate with (S) two systems of linear
inequalities and equations with m-dimensional vector of unknowns λ:

TI :





(a) λ ≥ 0;

(b)
m∑

i=1
λiai = 0;

(cI)
m∑

i=1
λibi ≥ 0;

(dI)
ms∑
i=1

λi > 0.

TII :





(a) λ ≥ 0;

(b)
m∑

i=1
λiai = 0;

(cII)
m∑

i=1
λibi > 0.

Assume that at least one of the systems TI, TII is solvable. Then the system (S) is infeasible.

Proposition 1.2.1 says that in some cases it is easy to certify infeasibility of a linear system of
inequalities: a “simple certificate” is a solution to another system of linear inequalities. Note,
however, that the existence of a certificate of this latter type is to the moment only a sufficient,
but not a necessary, condition for the infeasibility of (S). A fundamental result in the theory of
linear inequalities is that the sufficient condition in question is in fact also necessary:

Theorem 1.2.1 [General Theorem on Alternative] In the notation from Proposition 1.2.1, sys-
tem (S) has no solutions if and only if either TI, or TII, or both these systems, are solvable.

There are numerous proofs of the Theorem on Alternative; in my taste, the most instructive one is to
reduce the Theorem to its particular case – the Homogeneous Farkas Lemma:

[Homogeneous Farkas Lemma] A homogeneous nonstrict linear inequality

aT x ≤ 0

is a consequence of a system of homogeneous nonstrict linear inequalities

aT
i x ≤ 0, i = 1, ...,m

if and only if it can be obtained from the system by taking weighted sum with nonnegative
weights:

(a) aT
i x ≤ 0, i = 1, ...,m ⇒ aT x ≤ 0,

m
(b) ∃λi ≥ 0 : a =

∑
i

λiai.
(1.2.1)

The reduction of GTA to HFL is easy. As about the HFL, there are, essentially, two ways to prove the
statement:

• The “quick and dirty” one based on separation arguments (see Section B.2.5 and/or Exercise B.13),
which is as follows:

1.2. DUALITY IN LINEAR PROGRAMMING 17

1. First, we demonstrate that if A is a nonempty closed convex set in Rn and a is a point from
Rn\A, then a can be strongly separated from A by a linear form: there exists x ∈ Rn such
that

xT a < inf
b∈A

xT b. (1.2.2)

To this end, it suffices to verify that
(a) In A, there exists a point closest to a w.r.t. the standard Euclidean norm ‖b‖2 =

√
bT b,

i.e., that the optimization program
min
b∈A

‖a− b‖2
has a solution b∗;
(b) Setting x = b∗ − a, one ensures (1.2.2).
Both (a) and (b) are immediate.

2. Second, we demonstrate that the set

A = {b : ∃λ ≥ 0 : b =
m∑

i=1

λiai}

– the cone spanned by the vectors a1, ..., am – is convex (which is immediate) and closed (the
proof of this crucial fact also is not difficult).

3. Combining the above facts, we immediately see that
— either a ∈ A, i.e., (1.2.1.b) holds,
— or there exists x such that xT a < inf

λ≥0
xT

∑
i

λiai.

The latter inf is finite if and only if xT ai ≥ 0 for all i, and in this case the inf is 0, so that
the “or” statement says exactly that there exists x with aT

i x ≥ 0, aT x < 0, or, which is the
same, that (1.2.1.a) does not hold.
Thus, among the statements (1.2.1.a) and the negation of (1.2.1.b) at least one (and, as it
is immediately seen, at most one as well) always is valid, which is exactly the equivalence
(1.2.1).

• “Advanced” proofs based purely on Linear Algebra facts (see Section B.2.4). The advantage of
these purely Linear Algebra proofs is that they, in contrast to the outlined separation-based proof,
do not use the completeness of Rn as a metric space and thus work when we pass from systems
with real coefficients and unknowns to systems with rational (or algebraic) coefficients. As a result,
an advanced proof allows to establish the Theorem on Alternative for the case when the coefficients
and unknowns in (S), TI , TII are restricted to belong to a given “real field” (e.g., are rational).

We formulate here explicitly two very useful principles following from the Theorem on Al-
ternative:

A. A system of linear inequalities

aT
i x Ωi bi, i = 1, ..., m

has no solutions if and only if one can combine the inequalities of the system in
a linear fashion (i.e., multiplying the inequalities by nonnegative weights, adding
the results and passing, if necessary, from an inequality aT x > b to the inequality
aT x ≥ b) to get a contradictory inequality, namely, either the inequality 0T x ≥ 1, or
the inequality 0T x > 0.

B. A linear inequality
aT

0 x Ω0 b0

18 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

is a consequence of a solvable system of linear inequalities

aT
i x Ωi bi, i = 1, ..., m

if and only if it can be obtained by combining, in a linear fashion, the inequalities of
the system and the trivial inequality 0 > −1.

It should be stressed that the above principles are highly nontrivial and very deep. Consider,
e.g., the following system of 4 linear inequalities with two variables u, v:

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1.

From these inequalities it follows that

u2 + v2 ≤ 2, (!)

which in turn implies, by the Cauchy inequality, the linear inequality u + v ≤ 2:

u + v = 1× u + 1× v ≤
√

12 + 12
√

u2 + v2 ≤ (
√

2)2 = 2. (!!)

The concluding inequality is linear and is a consequence of the original system, but in the
demonstration of this fact both steps (!) and (!!) are “highly nonlinear”. It is absolutely
unclear a priori why the same consequence can, as it is stated by Principle A, be derived
from the system in a linear manner as well [of course it can – it suffices just to add two
inequalities u ≤ 1 and v ≤ 1].

Note that the Theorem on Alternative and its corollaries A and B heavily exploit the fact
that we are speaking about linear inequalities. E.g., consider the following 2 quadratic and
2 linear inequalities with two variables:

(a) u2 ≥ 1;
(b) v2 ≥ 1;
(c) u ≥ 0;
(d) v ≥ 0;

along with the quadratic inequality

(e) uv ≥ 1.

The inequality (e) is clearly a consequence of (a) – (d). However, if we extend the system of
inequalities (a) – (b) by all “trivial” (i.e., identically true) linear and quadratic inequalities
with 2 variables, like 0 > −1, u2 + v2 ≥ 0, u2 + 2uv + v2 ≥ 0, u2 − uv + v2 ≥ 0, etc.,
and ask whether (e) can be derived in a linear fashion from the inequalities of the extended
system, the answer will be negative. Thus, Principle A fails to be true already for quadratic
inequalities (which is a great sorrow – otherwise there were no difficult problems at all!)

We are about to use the Theorem on Alternative to obtain the basic results of the LP duality
theory.

1.2.2 Dual to an LP program: the origin

As already mentioned, the motivation for constructing the problem dual to an LP program

c∗ = min
x

{
cT x

∣∣∣∣ Ax− b ≥ 0
}


A =




aT
1

aT
2

...
aT

m


 ∈ Rm×n


 (LP)

1.2. DUALITY IN LINEAR PROGRAMMING 19

is the desire to generate, in a systematic way, lower bounds on the optimal value c∗ of (LP).
An evident way to bound from below a given function f(x) in the domain given by system of
inequalities

gi(x) ≥ bi, i = 1, ..., m, (1.2.3)

is offered by what is called the Lagrange duality and is as follows:
Lagrange Duality:

• Let us look at all inequalities which can be obtained from (1.2.3) by linear aggre-
gation, i.e., at the inequalities of the form

∑

i

yigi(x) ≥
∑

i

yibi (1.2.4)

with the “aggregation weights” yi ≥ 0. Note that the inequality (1.2.4), due to its
origin, is valid on the entire set X of solutions of (1.2.3).

• Depending on the choice of aggregation weights, it may happen that the left hand
side in (1.2.4) is ≤ f(x) for all x ∈ Rn. Whenever it is the case, the right hand side∑
i

yibi of (1.2.4) is a lower bound on f in X.

Indeed, on X the quantity
∑
i

yibi is a lower bound on yigi(x), and for y in question

the latter function of x is everywhere ≤ f(x).

It follows that

• The optimal value in the problem

max
y





∑

i

yibi :
y ≥ 0, (a)∑

i
yigi(x) ≤ f(x) ∀x ∈ Rn (b)



 (1.2.5)

is a lower bound on the values of f on the set of solutions to the system (1.2.3).

Let us look what happens with the Lagrange duality when f and gi are homogeneous linear
functions: f = cT x, gi(x) = aT

i x. In this case, the requirement (1.2.5.b) merely says that
c =

∑
i

yiai (or, which is the same, AT y = c due to the origin of A). Thus, problem (1.2.5)

becomes the Linear Programming problem

max
y

{
bT y : AT y = c, y ≥ 0

}
, (LP∗)

which is nothing but the LP dual of (LP).
By the construction of the dual problem,

[Weak Duality] The optimal value in (LP∗) is less than or equal to the optimal value
in (LP).

In fact, the “less than or equal to” in the latter statement is “equal”, provided that the optimal
value c∗ in (LP) is a number (i.e., (LP) is feasible and below bounded). To see that this indeed
is the case, note that a real a is a lower bound on c∗ if and only if cT x ≥ a whenever Ax ≥ b,
or, which is the same, if and only if the system of linear inequalities

(Sa) : −cT x > −a,Ax ≥ b

20 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

has no solution. We know by the Theorem on Alternative that the latter fact means that some
other system of linear equalities (more exactly, at least one of a certain pair of systems) does
have a solution. More precisely,

(*) (Sa) has no solutions if and only if at least one of the following two systems with
m + 1 unknowns:

TI :





(a) λ = (λ0, λ1, ..., λm) ≥ 0;

(b) −λ0c +
m∑

i=1
λiai = 0;

(cI) −λ0a +
m∑

i=1
λibi ≥ 0;

(dI) λ0 > 0,

or

TII :





(a) λ = (λ0, λ1, ..., λm) ≥ 0;

(b) −λ0c−
m∑

i=1
λiai = 0;

(cII) −λ0a−
m∑

i=1
λibi > 0

– has a solution.

Now assume that (LP) is feasible. We claim that under this assumption (Sa) has no solutions
if and only if TI has a solution.

The implication ”TI has a solution ⇒ (Sa) has no solution” is readily given by the above
remarks. To verify the inverse implication, assume that (Sa) has no solutions and the system
Ax ≤ b has a solution, and let us prove that then TI has a solution. If TI has no solution, then
by (*) TII has a solution and, moreover, λ0 = 0 for (every) solution to TII (since a solution
to the latter system with λ0 > 0 solves TI as well). But the fact that TII has a solution λ
with λ0 = 0 is independent of the values of a and c; if this fact would take place, it would
mean, by the same Theorem on Alternative, that, e.g., the following instance of (Sa):

0T x ≥ −1, Ax ≥ b

has no solutions. The latter means that the system Ax ≥ b has no solutions – a contradiction
with the assumption that (LP) is feasible.

Now, if TI has a solution, this system has a solution with λ0 = 1 as well (to see this, pass from
a solution λ to the one λ/λ0; this construction is well-defined, since λ0 > 0 for every solution
to TI). Now, an (m + 1)-dimensional vector λ = (1, y) is a solution to TI if and only if the
m-dimensional vector y solves the system of linear inequalities and equations

y ≥ 0;

AT y ≡
m∑

i=1
yiai = c;

bT y ≥ a

(D)

Summarizing our observations, we come to the following result.

Proposition 1.2.2 Assume that system (D) associated with the LP program (LP) has a solution
(y, a). Then a is a lower bound on the optimal value in (LP). Vice versa, if (LP) is feasible and
a is a lower bound on the optimal value of (LP), then a can be extended by a properly chosen
m-dimensional vector y to a solution to (D).

1.2. DUALITY IN LINEAR PROGRAMMING 21

We see that the entity responsible for lower bounds on the optimal value of (LP) is the system
(D): every solution to the latter system induces a bound of this type, and in the case when
(LP) is feasible, all lower bounds can be obtained from solutions to (D). Now note that if
(y, a) is a solution to (D), then the pair (y, bT y) also is a solution to the same system, and the
lower bound bT y on c∗ is not worse than the lower bound a. Thus, as far as lower bounds on
c∗ are concerned, we lose nothing by restricting ourselves to the solutions (y, a) of (D) with
a = bT y; the best lower bound on c∗ given by (D) is therefore the optimal value of the problem

maxy

{
bT y

∣∣∣∣ AT y = c, y ≥ 0
}

, which is nothing but the dual to (LP) problem (LP∗). Note that

(LP∗) is also a Linear Programming program.
All we know about the dual problem to the moment is the following:

Proposition 1.2.3 Whenever y is a feasible solution to (LP∗), the corresponding value of the
dual objective bT y is a lower bound on the optimal value c∗ in (LP). If (LP) is feasible, then for
every a ≤ c∗ there exists a feasible solution y of (LP∗) with bT y ≥ a.

1.2.3 The LP Duality Theorem

Proposition 1.2.3 is in fact equivalent to the following

Theorem 1.2.2 [Duality Theorem in Linear Programming] Consider a linear programming
program

min
x

{
cT x

∣∣∣∣ Ax ≥ b

}
(LP)

along with its dual

max
y

{
bT y

∣∣∣∣ AT y = c, y ≥ 0
}

(LP∗)

Then
1) The duality is symmetric: the problem dual to dual is equivalent to the primal;
2) The value of the dual objective at every dual feasible solution is ≤ the value of the primal

objective at every primal feasible solution
3) The following 5 properties are equivalent to each other:

(i) The primal is feasible and bounded below.

(ii) The dual is feasible and bounded above.

(iii) The primal is solvable.

(iv) The dual is solvable.

(v) Both primal and dual are feasible.

Whenever (i) ≡ (ii) ≡ (iii) ≡ (iv) ≡ (v) is the case, the optimal values of the primal and the dual
problems are equal to each other.

Proof. 1) is quite straightforward: writing the dual problem (LP∗) in our standard form, we
get

min
y




−bT y

∣∣∣∣




Im

AT

−AT


 y −




0
−c
c


 ≥ 0





,

22 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

where Im is the m-dimensional unit matrix. Applying the duality transformation to the latter
problem, we come to the problem

max
ξ,η,ζ





0T ξ + cT η + (−c)T ζ

∣∣∣∣

ξ ≥ 0
η ≥ 0
ζ ≥ 0

ξ −Aη + Aζ = −b





,

which is clearly equivalent to (LP) (set x = η − ζ).
2) is readily given by Proposition 1.2.3.
3):

(i)⇒(iv): If the primal is feasible and bounded below, its optimal value c∗ (which
of course is a lower bound on itself) can, by Proposition 1.2.3, be (non-strictly)
majorized by a quantity bT y∗, where y∗ is a feasible solution to (LP∗). In the
situation in question, of course, bT y∗ = c∗ (by already proved item 2)); on the other
hand, in view of the same Proposition 1.2.3, the optimal value in the dual is ≤ c∗. We
conclude that the optimal value in the dual is attained and is equal to the optimal
value in the primal.

(iv)⇒(ii): evident;

(ii)⇒(iii): This implication, in view of the primal-dual symmetry, follows from the
implication (i)⇒(iv).

(iii)⇒(i): evident.

We have seen that (i)≡(ii)≡(iii)≡(iv) and that the first (and consequently each) of
these 4 equivalent properties implies that the optimal value in the primal problem
is equal to the optimal value in the dual one. All which remains is to prove the
equivalence between (i)–(iv), on one hand, and (v), on the other hand. This is
immediate: (i)–(iv), of course, imply (v); vice versa, in the case of (v) the primal is
not only feasible, but also bounded below (this is an immediate consequence of the
feasibility of the dual problem, see 2)), and (i) follows.

An immediate corollary of the LP Duality Theorem is the following necessary and sufficient
optimality condition in LP:

Theorem 1.2.3 [Necessary and sufficient optimality conditions in linear programming] Con-
sider an LP program (LP) along with its dual (LP∗). A pair (x, y) of primal and dual feasible
solutions is comprised of optimal solutions to the respective problems if and only if

yi[Ax− b]i = 0, i = 1, ..., m, [complementary slackness]

likewise as if and only if
cT x− bT y = 0 [zero duality gap]

Indeed, the “zero duality gap” optimality condition is an immediate consequence of the fact
that the value of primal objective at every primal feasible solution is ≥ the value of the
dual objective at every dual feasible solution, while the optimal values in the primal and the
dual are equal to each other, see Theorem 1.2.2. The equivalence between the “zero duality
gap” and the “complementary slackness” optimality conditions is given by the following

1.3. FROM LINEAR TO CONIC PROGRAMMING 23

computation: whenever x is primal feasible and y is dual feasible, the products yi[Ax− b]i,
i = 1, ...,m, are nonnegative, while the sum of these products is precisely the duality gap:

yT [Ax− b] = (AT y)T x− bT y = cT x− bT y.

Thus, the duality gap can vanish at a primal-dual feasible pair (x, y) if and only if all products
yi[Ax− b]i for this pair are zeros.

1.3 From Linear to Conic Programming

Linear Programming models cover numerous applications. Whenever applicable, LP allows to
obtain useful quantitative and qualitative information on the problem at hand. The specific
analytic structure of LP programs gives rise to a number of general results (e.g., those of the LP
Duality Theory) which provide us in many cases with valuable insight and understanding. At
the same time, this analytic structure underlies some specific computational techniques for LP;
these techniques, which by now are perfectly well developed, allow to solve routinely quite large
(tens/hundreds of thousands of variables and constraints) LP programs. Nevertheless, there
are situations in reality which cannot be covered by LP models. To handle these “essentially
nonlinear” cases, one needs to extend the basic theoretical results and computational techniques
known for LP beyond the bounds of Linear Programming.

For the time being, the widest class of optimization problems to which the basic results of
LP were extended, is the class of convex optimization programs. There are several equivalent
ways to define a general convex optimization problem; the one we are about to use is not the
traditional one, but it is well suited to encompass the range of applications we intend to cover
in our course.

When passing from a generic LP problem

min
x

{
cT x

∣∣∣∣ Ax ≥ b

}
[A : m× n] (LP)

to its nonlinear extensions, we should expect to encounter some nonlinear components in the
problem. The traditional way here is to say: “Well, in (LP) there are a linear objective function
f(x) = cT x and inequality constraints fi(x) ≥ bi with linear functions fi(x) = aT

i x, i = 1, ..., m.
Let us allow some/all of these functions f, f1, ..., fm to be nonlinear.” In contrast to this tra-
ditional way, we intend to keep the objective and the constraints linear, but introduce “nonlin-
earity” in the inequality sign ≥.

1.4 Orderings of Rm and cones

The constraint inequality Ax ≥ b in (LP) is an inequality between vectors; as such, it requires a
definition, and the definition is well-known: given two vectors a, b ∈ Rm, we write a ≥ b, if the
coordinates of a majorate the corresponding coordinates of b:

a ≥ b ⇔ {ai ≥ bi, i = 1, ..., m}. (” ≥ ”)

In the latter relation, we again meet with the inequality sign ≥, but now it stands for the
“arithmetic ≥” – a well-known relation between real numbers. The above “coordinate-wise”
partial ordering of vectors in Rm satisfies a number of basic properties of the standard ordering
of reals; namely, for all vectors a, b, c, d, ... ∈ Rm one has

24 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

1. Reflexivity: a ≥ a;

2. Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;

3. Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;

4. Compatibility with linear operations:

(a) Homogeneity: if a ≥ b and λ is a nonnegative real, then λa ≥ λb

(”One can multiply both sides of an inequality by a nonnegative real”)

(b) Additivity: if both a ≥ b and c ≥ d, then a + c ≥ b + d

(”One can add two inequalities of the same sign”).

It turns out that

• A significant part of the nice features of LP programs comes from the fact that the vector
inequality ≥ in the constraint of (LP) satisfies the properties 1. – 4.;

• The standard inequality ” ≥ ” is neither the only possible, nor the only interesting way to
define the notion of a vector inequality fitting the axioms 1. – 4.

As a result,

A generic optimization problem which looks exactly the same as (LP), up to the
fact that the inequality ≥ in (LP) is now replaced with and ordering which differs
from the component-wise one, inherits a significant part of the properties of LP
problems. Specifying properly the ordering of vectors, one can obtain from (LP)
generic optimization problems covering many important applications which cannot
be treated by the standard LP.

To the moment what is said is just a declaration. Let us look how this declaration comes to
life.

We start with clarifying the “geometry” of a “vector inequality” satisfying the axioms 1. –
4. Thus, we consider vectors from a finite-dimensional Euclidean space E with an inner product
〈·, ·〉 and assume that E is equipped with a partial ordering (called also vector inequality), let it
be denoted by º: in other words, we say what are the pairs of vectors a, b from E linked by the
inequality a º b. We call the ordering “good”, if it obeys the axioms 1. – 4., and are interested
to understand what are these good orderings.

Our first observation is:

A. A good vector inequality º is completely identified by the set K of º-nonnegative
vectors:

K = {a ∈ E | a º 0}.
Namely,

a º b ⇔ a− b º 0 [⇔ a− b ∈ K].

Indeed, let a º b. By 1. we have −b º −b, and by 4.(b) we may add the latter
inequality to the former one to get a−b º 0. Vice versa, if a−b º 0, then, adding
to this inequality the one b º b, we get a º b.

1.4. ORDERINGS OF RM AND CONES 25

The set K in Observation A cannot be arbitrary. It is easy to verify that it must be a pointed
cone, i.e., it must satisfy the following conditions:

1. K is nonempty and closed under addition:

a, a′ ∈ K ⇒ a + a′ ∈ K;

2. K is a conic set:
a ∈ K, λ ≥ 0 ⇒ λa ∈ K.

3. K is pointed:
a ∈ K and − a ∈ K ⇒ a = 0.

Geometrically: K does not contain straight lines passing through the origin.

Exercise 1.1 Prove that the outlined properties of K are necessary and sufficient for the vector
inequality a º b ⇔ a− b ∈ K to be good.

Thus, every pointed cone K in E induces a partial ordering on E which satisfies the axioms
1. – 4. We denote this ordering by ≥K:

a ≥K b ⇔ a− b ≥K 0 ⇔ a− b ∈ K.

What is the cone responsible for the standard coordinate-wise ordering ≥ on E = Rm we have
started with? The answer is clear: this is the cone comprised of vectors with nonnegative entries
– the nonnegative orthant

Rm
+ = {x = (x1, ..., xm)T ∈ Rm : xi ≥ 0, i = 1, ..., m}.

(Thus, in order to express the fact that a vector a is greater than or equal to, in the component-
wise sense, to a vector b, we were supposed to write a ≥Rm

+
b. However, we are not going to be

that formal and shall use the standard shorthand notation a ≥ b.)
The nonnegative orthant Rm

+ is not just a pointed cone; it possesses two useful additional
properties:

I. The cone is closed: if a sequence of vectors ai from the cone has a limit, the latter also
belongs to the cone.

II. The cone possesses a nonempty interior: there exists a vector such that a ball of positive
radius centered at the vector is contained in the cone.

These additional properties are very important. For example, I is responsible for the possi-
bility to pass to the term-wise limit in an inequality:

ai ≥ bi ∀i, ai → a, bi → b as i →∞⇒ a ≥ b.

It makes sense to restrict ourselves with good partial orderings coming from cones K sharing
the properties I, II. Thus,

From now on, speaking about vector inequalities ≥K, we always assume that the
underlying set K is a pointed and closed cone with a nonempty interior.

26 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Note that the closedness of K makes it possible to pass to limits in ≥K-inequalities:

ai ≥K bi, ai → a, bi → b as i →∞⇒ a ≥K b.

The nonemptiness of the interior of K allows to define, along with the “non-strict” inequality
a ≥K b, also the strict inequality according to the rule

a >K b ⇔ a− b ∈ intK,

where intK is the interior of the cone K. E.g., the strict coordinate-wise inequality a >Rm
+

b
(shorthand: a > b) simply says that the coordinates of a are strictly greater, in the usual
arithmetic sense, than the corresponding coordinates of b.

Examples. The partial orderings we are especially interested in are given by the following
cones:

• The nonnegative orthant Rm
+ in Rn;

• The Lorentz (or the second-order, or the less scientific name the ice-cream) cone

Lm =



x = (x1, ..., xm−1, xm)T ∈ Rm : xm ≥

√√√√
m−1∑

i=1

x2
i





• The semidefinite cone Sm
+ . This cone “lives” in the space E = Sm of m ×m symmetric

matrices (equipped with the Frobenius inner product 〈A, B〉 = Tr(AB) =
∑
i,j

AijBij) and

consists of all m×m matrices A which are positive semidefinite, i.e.,

A = AT ; xT Ax ≥ 0 ∀x ∈ Rm.

1.5 “Conic programming” – what is it?

Let K be a cone in E (convex, pointed, closed and with a nonempty interior). Given an
objective c ∈ Rn, a linear mapping x 7→ Ax : Rn → E and a right hand side b ∈ E, consider the
optimization problem

min
x

{
cT x

∣∣∣∣ Ax ≥K b

}
(CP).

We shall refer to (CP) as to a conic problem associated with the cone K. Note that the only
difference between this program and an LP problem is that the latter deals with the particular
choice E = Rm, K = Rm

+ . With the formulation (CP), we get a possibility to cover a much
wider spectrum of applications which cannot be captured by LP; we shall look at numerous
examples in the sequel.

1.6. CONIC DUALITY 27

1.6 Conic Duality

Aside of algorithmic issues, the most important theoretical result in Linear Programming is the
LP Duality Theorem; can this theorem be extended to conic problems? What is the extension?

The source of the LP Duality Theorem was the desire to get in a systematic way a lower
bound on the optimal value c∗ in an LP program

c∗ = min
x

{
cT x

∣∣∣∣ Ax ≥ b

}
. (LP)

The bound was obtained by looking at the inequalities of the type

〈λ,Ax〉 ≡ λT Ax ≥ λT b (Cons(λ))

with weight vectors λ ≥ 0. By its origin, an inequality of this type is a consequence of the system
of constraints Ax ≥ b of (LP), i.e., it is satisfied at every solution to the system. Consequently,
whenever we are lucky to get, as the left hand side of (Cons(λ)), the expression cT x, i.e.,
whenever a nonnegative weight vector λ satisfies the relation

AT λ = c,

the inequality (Cons(λ)) yields a lower bound bT λ on the optimal value in (LP). And the dual
problem

max
{
bT λ | λ ≥ 0, AT λ = c

}

was nothing but the problem of finding the best lower bound one can get in this fashion.
The same scheme can be used to develop the dual to a conic problem

min
{
cT x | Ax ≥K b

}
, K ⊂ E. (CP)

Here the only step which needs clarification is the following one:

(?) What are the “admissible” weight vectors λ, i.e., the vectors such that the scalar
inequality

〈λ,Ax〉 ≥ 〈λ, b〉
is a consequence of the vector inequality Ax ≥K b?

In the particular case of coordinate-wise partial ordering, i.e., in the case of E = Rm, K = Rm
+ ,

the admissible vectors were those with nonnegative coordinates. These vectors, however, not
necessarily are admissible for an ordering ≥K when K is different from the nonnegative orthant:

Example 1.6.1 Consider the ordering ≥L3 on E = R3 given by the 3-dimensional ice-cream
cone: 


a1

a2

a3


 ≥L3




0
0
0


 ⇔ a3 ≥

√
a2

1 + a2
2.

The inequality 

−1
−1
2


 ≥L3




0
0
0




28 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

is valid; however, aggregating this inequality with the aid of a positive weight vector λ =




1
1

0.1


,

we get the false inequality
−1.8 ≥ 0.

Thus, not every nonnegative weight vector is admissible for the partial ordering ≥L3.

To answer the question (?) is the same as to say what are the weight vectors λ such that

∀a ≥K 0 : 〈λ, a〉 ≥ 0. (1.6.1)

Whenever λ possesses the property (1.6.1), the scalar inequality

〈λ, a〉 ≥ 〈λ, b〉

is a consequence of the vector inequality a ≥K b:

a ≥K b
⇔ a− b ≥K 0 [additivity of ≥K]
⇒ 〈λ, a− b〉 ≥ 0 [by (1.6.1)]
⇔ 〈λ, a〉 ≥ λT b.

Vice versa, if λ is an admissible weight vector for the partial ordering ≥K:

∀(a, b : a ≥K b) : 〈λ, a〉 ≥ 〈λ, b〉

then, of course, λ satisfies (1.6.1).
Thus the weight vectors λ which are admissible for a partial ordering ≥K are exactly the

vectors satisfying (1.6.1), or, which is the same, the vectors from the set

K∗ = {λ ∈ E : 〈λ, a〉 ≥ 0 ∀a ∈ K}.

The set K∗ is comprised of vectors whose inner products with all vectors from K are nonnegative.
K∗ is called the cone dual to K. The name is legitimate due to the following fact (see Section
B.2.6.B):

Theorem 1.6.1 [Properties of the dual cone] Let E be a finite-dimensional Euclidean space
with inner product 〈·, ·〉 and let K ⊂ E be a nonempty set. Then

(i) The set
K∗ = {λ ∈ Em : 〈λ, a〉 ≥ 0 ∀a ∈ K}

is a closed cone.
(ii) If intK 6= ∅, then K∗ is pointed.
(iii) If K is a closed convex pointed cone, then intK∗ 6= ∅.
(iv) If K is a closed cone, then so is K∗, and the cone dual to K∗ is K itself:

(K∗)∗ = K.

An immediate corollary of the Theorem is as follows:

Corollary 1.6.1 A set K ⊂ E is a closed convex pointed cone with a nonempty interior if and
only if the set K∗ is so.

1.6. CONIC DUALITY 29

From the dual cone to the problem dual to (CP). Now we are ready to derive the dual
problem of a conic problem (CP). As in the case of Linear Programming, we start with the
observation that whenever x is a feasible solution to (CP) and λ is an admissible weight vector,
i.e., λ ∈ K∗, then x satisfies the scalar inequality

(A∗λ)T x ≡ 〈λ,Ax〉 ≥ 〈λ, b〉 1)

– this observation is an immediate consequence of the definition of K∗. It follows that whenever
λ∗ is an admissible weight vector satisfying the relation

A∗λ = c,

one has
cT x = (A∗λ)T x = 〈λ,Ax〉 ≥ 〈b, λ〉

for all x feasible for (CP), so that the quantity 〈b, λ〉 is a lower bound on the optimal value of
(CP). The best bound one can get in this fashion is the optimal value in the problem

max {〈b, λ〉 | A∗λ = c, λ ≥K∗ 0} (D)

and this program is called the program dual to (CP).
So far, what we know about the duality we have just introduced is the following

Proposition 1.6.1 [Weak Conic Duality Theorem] The optimal value of (D) is a lower bound
on the optimal value of (CP).

1.6.1 Geometry of the primal and the dual problems

The structure of problem (D) looks quite different from the one of (CP). However, a more
careful analysis demonstrates that the difference in structures comes just from how we represent
the data: geometrically, the problems are completely similar. Indeed, in (D) we are asked to
maximize a linear objective 〈b, λ〉 over the intersection of an affine plane L∗ = {λ | A∗λ = c}
with the cone K∗. And what about (CP)? Let us pass in this problem from the “true design
variables” x to their images y = Ax−b ∈ E. When x runs through Rn, y runs through the affine
plane L = {y = Ax− b | x ∈ Rn}; x ∈ Rn is feasible for (CP) if and only if the corresponding
y = Ax− b belongs to the cone K. Thus, in (CP) we also deal with the intersection of an affine
plane, namely, L, and a cone, namely, K. Now assume that our objective cT x can be expressed
in terms of y = Ax− b:

cT x = 〈d,Ax− b〉+ const.

This assumption is clearly equivalent to the inclusion

c ∈ ImA∗. (1.6.2)

1) For a linear operator x 7→ Ax : Rn → E, A∗ is the conjugate operator given by the identity

〈y, Ax〉 = xT Ay ∀(y ∈ E, x ∈ Rn).

When representing the operators by their matrices in orthogonal bases in the argument and the range spaces,
the matrix representing the conjugate operator is exactly the transpose of the matrix representing the operator
itself.

30 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Indeed, in the latter case we have c = A∗d for some d, whence

cT x = 〈A∗d, x〉 = 〈d,Ax〉 = 〈d,Ax− b〉+ 〈d, b〉 ∀x. (1.6.3)

In the case of (1.6.2) the primal problem (CP) can be posed equivalently as the following problem:

min
y
{〈d, y〉 | y ∈ L, y ≥K 0} ,

where L = ImA− b and d is (any) vector satisfying the relation A∗d = c. Thus,

In the case of (1.6.2) the primal problem, geometrically, is the problem of minimizing
a linear form over the intersection of the affine plane L with the cone K, and the
dual problem, similarly, is to maximize another linear form over the intersection of
the affine plane L∗ with the dual cone K∗.

Now, what happens if the condition (1.6.2) is not satisfied? The answer is very simple: in this
case (CP) makes no sense – it is either unbounded below, or infeasible.

Indeed, assume that (1.6.2) is not satisfied. Then, by Linear Algebra, the vector c is not
orthogonal to the null space of A, so that there exists e such that Ae = 0 and cT e > 0. Now
let x be a feasible solution of (CP); note that all points x − µe, µ ≥ 0, are feasible, and
cT (x − µe) → ∞ as µ → ∞. Thus, when (1.6.2) is not satisfied, problem (CP), whenever
feasible, is unbounded below.

From the above observation we see that if (1.6.2) is not satisfied, then we may reject (CP) from
the very beginning. Thus, from now on we assume that (1.6.2) is satisfied. In fact in what
follows we make a bit stronger assumption:

A. The mapping A is of full column rank, i.e., it has trivial null space.

Assuming that the mapping x 7→ Ax has the trivial null space (“we have eliminated
from the very beginning the redundant degrees of freedom – those not affecting the
value of Ax”), the equation

A∗d = q

is solvable for every right hand side vector q.

In view of A, problem (CP) can be reformulated as a problem (P) of minimizing a linear objective
〈d, y〉 over the intersection of an affine plane L and a cone K. Conversely, a problem (P) of this
latter type can be posed in the form of (CP) – to this end it suffices to represent the plane L as
the image of an affine mapping x 7→ Ax − b (i.e., to parameterize somehow the feasible plane)
and to “translate” the objective 〈d, y〉 to the space of x-variables – to set c = A∗d, which yields

y = Ax− b ⇒ 〈d, y〉 = cT x + const.

Thus, when dealing with a conic problem, we may pass from its “analytic form” (CP) to the
“geometric form” (P) and vice versa.

What are the relations between the “geometric data” of the primal and the dual problems?
We already know that the cone K∗ associated with the dual problem is dual of the cone K
associated with the primal one. What about the feasible planes L and L∗? The answer is

1.6. CONIC DUALITY 31

simple: they are orthogonal to each other! More exactly, the affine plane L is the translation,
by vector −b, of the linear subspace

L = ImA ≡ {y = Ax | x ∈ Rn}.

And L∗ is the translation, by any solution λ0 of the system A∗λ = c, e.g., by the solution d to
the system, of the linear subspace

L∗ = Null(A∗) ≡ {λ | A∗λ = 0}.

A well-known fact of Linear Algebra is that the linear subspaces L and L∗ are orthogonal
complements of each other:

L = {y | 〈y, λ〉 = 0 ∀λ ∈ L∗}; L∗ = {λ | 〈y, λ〉 = 0 ∀y ∈ L}.

Thus, we come to a nice geometrical conclusion:

A conic problem2) (CP) is the problem

min
y
{〈d, y〉 | y ∈ L − b, y ≥K 0} (P)

of minimizing a linear objective 〈d, y〉 over the intersection of a cone K with an affine
plane L = L − b given as a translation, by vector −b, of a linear subspace L.

The dual problem is the problem

max
λ

{
〈b, λ〉 | λ ∈ L⊥ + d, λ ≥K∗ 0

}
. (D)

of maximizing the linear objective 〈b, λ〉 over the intersection of the dual cone K∗
with an affine plane L∗ = L⊥ + d given as a translation, by the vector d, of the
orthogonal complement L⊥ of L.

What we get is an extremely transparent geometric description of the primal-dual pair of conic
problems (P), (D). Note that the duality is completely symmetric: the problem dual to (D) is
(P)! Indeed, we know from Theorem 1.6.1 that (K∗)∗ = K, and of course (L⊥)⊥ = L. Switch
from maximization to minimization corresponds to the fact that the “shifting vector” in (P) is
(−b), while the “shifting vector” in (D) is d. The geometry of the primal-dual pair (P), (D) is

2)recall that we have restricted ourselves to the problems satisfying the assumption A

32 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

illustrated on the below picture:

K L

L*

d

b

K

*

Figure 1.1. Primal-dual pair of conic problems
[bold: primal (vertical segment) and dual (horizontal ray) feasible sets]

Finally, note that in the case when (CP) is an LP program (i.e., in the case when K is the
nonnegative orthant), the “conic dual” problem (D) is exactly the usual LP dual; this fact
immediately follows from the observation that the cone dual to Rm

+ is Rm
+ itself.

We have explored the geometry of a primal-dual pair of conic problems: the “geometric
data” of such a pair are given by a pair of dual to each other cones K, K∗ in E and a pair of
affine planes L = L− b, L∗ = L⊥+d, where L is a linear subspace in E and L⊥ is its orthogonal
complement. The first problem from the pair – let it be called (P) – is to minimize 〈b, y〉 over
y ∈ K∩L, and the second (D) is to maximize 〈d, λ〉 over λ ∈ K∗∩L∗. Note that the “geometric
data” (K,K∗, L, L∗) of the pair do not specify completely the problems of the pair: given L,L∗,
we can uniquely define L, but not the shift vectors (−b) and d: b is known up to shift by a
vector from L, and d is known up to shift by a vector from L⊥. However, this non-uniqueness
is of absolutely no importance: replacing a chosen vector d ∈ L∗ by another vector d′ ∈ L∗, we
pass from (P) to a new problem (P′) which is completely equivalent to (P): indeed, both (P)
and (P′) have the same feasible set, and on the (common) feasible plane L of the problems their
objectives 〈d, y〉 and 〈d′, y〉 differ from each other by a constant:

y ∈ L = L − b, d− d′ ∈ L⊥ ⇒ 〈d− d′, y + b〉 = 0 ⇒ 〈d− d′, y〉 = 〈−(d− d′), b〉 ∀y ∈ L.

Similarly, shifting b along L, we do modify the objective in (D), but in a trivial way – on the
feasible plane L∗ of the problem the new objective differs from the old one by a constant.

1.7 Conic Duality Theorem

The Weak Duality (Proposition 1.6.1) we have established so far for conic problems is much
weaker than the Linear Programming Duality Theorem. Is it possible to get results similar to
those of the LP Duality Theorem in the general conic case as well? The answer is affirmative,
provided that the primal problem (CP) is strictly feasible, i.e., that there exists x such that
Ax− b >K 0, or, geometrically, L ∩ intK 6= ∅.

1.7. CONIC DUALITY THEOREM 33

The advantage of the geometrical definition of strict feasibility is that it is independent of
the particular way in which the feasible plane is defined; hence, with this definition it is clear
what does it mean that the dual problem (D) is strictly feasible.

Our main result is the following

Theorem 1.7.1 [Conic Duality Theorem] Consider a conic problem

c∗ = min
x

{
cT x | Ax ≥K b

}
(CP)

along with its conic dual

b∗ = max {〈b, λ〉 | A∗λ = c, λ ≥K∗ 0} . (D)

1) The duality is symmetric: the dual problem is conic, and the problem dual to dual is the
primal.

2) The value of the dual objective at every dual feasible solution λ is ≤ the value of the primal
objective at every primal feasible solution x, so that the duality gap

cT x− 〈b, λ〉

is nonnegative at every “primal-dual feasible pair” (x, λ).
3.a) If the primal (CP) is bounded below and strictly feasible (i.e. Ax >K b for some x), then

the dual (D) is solvable and the optimal values in the problems are equal to each other: c∗ = b∗.
3.b) If the dual (D) is bounded above and strictly feasible (i.e., exists λ >K∗ 0 such that

A∗λ = c), then the primal (CP) is solvable and c∗ = b∗.
4) Assume that at least one of the problems (CP), (D) is bounded and strictly feasible. Then

a primal-dual feasible pair (x, λ) is a pair of optimal solutions to the respective problems
4.a) if and only if

〈b, λ〉 = cT x [zero duality gap]

and
4.b) if and only if

〈λ,Ax− b〉 = 0 [complementary slackness]

Proof. 1): The result was already obtained when discussing the geometry of the primal and
the dual problems.

2): This is the Weak Conic Duality Theorem.
3): Assume that (CP) is strictly feasible and bounded below, and let c∗ be the optimal value

of the problem. We should prove that the dual is solvable with the same optimal value. Since
we already know that the optimal value of the dual is ≤ c∗ (see 2)), all we need is to point out
a dual feasible solution λ∗ with bT λ∗ ≥ c∗.

Consider the convex set

M = {y = Ax− b | x ∈ Rn, cT x ≤ c∗}.

Let us start with the case of c 6= 0. We claim that in this case
(i) The set M is nonempty;
(ii) the plane M does not intersect the interior K of the cone K: M ∩ intK = ∅.
(i) is evident (why?). To verify (ii), assume, on contrary, that there exists a point x̄, cT x̄ ≤ c∗,

such that ȳ ≡ Ax̄ − b >K 0. Then, of course, Ax − b >K 0 for all x close enough to x̄, i.e., all

34 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

points x in a small enough neighbourhood of x̄ are also feasible for (CP). Since c 6= 0, there are
points x in this neighbourhood with cT x < cT x̄ ≤ c∗, which is impossible, since c∗ is the optimal
value of (CP).

Now let us make use of the following basic fact (see Section B.2.5):

Theorem 1.7.2 [Separation Theorem for Convex Sets] Let S, T be nonempty non-
intersecting convex subsets of a finite-dimensional Euclidean space E with inner prod-
uct 〈·, ·〉. Then S and T can be separated by a linear functional: there exists a nonzero
vector λ ∈ E such that

sup
u∈S

〈λ, u〉 ≤ inf
u∈T

〈λ, u〉.

Applying the Separation Theorem to S = M and T = K, we conclude that there exists λ ∈ E
such that

sup
y∈M

〈λ, y〉 ≤ inf
y∈intK

〈λ, y〉. (1.7.1)

From the inequality it follows that the linear form 〈λ, y〉 of y is bounded below on K = intK.
Since this interior is a conic set:

y ∈ K, µ > 0 ⇒ µy ∈ K

(why?), this boundedness implies that 〈λ, y〉 ≥ 0 for all y ∈ K. Consequently, 〈λ, y〉 ≥ 0 for all
y from the closure of K, i.e., for all y ∈ K. We conclude that λ ≥K∗ 0, so that the inf in (1.7.1)
is nonnegative. On the other hand, the infimum of a linear form over a conic set clearly cannot
be positive; we conclude that the inf in (1.7.1) is 0, so that the inequality reads

sup
u∈M

〈λ, u〉 ≤ 0.

Recalling the definition of M , we get

[A∗λ]T x ≤ 〈λ, b〉 (1.7.2)

for all x from the half-space cT x ≤ c∗. But the linear form [A∗λ]T x can be bounded above on
the half-space if and only if the vector A∗λ is proportional, with a nonnegative coefficient, to
the vector c:

A∗λ = µc

for some µ ≥ 0. We claim that µ > 0. Indeed, assuming µ = 0, we get A∗λ = 0, whence 〈λ, b〉 ≥ 0
in view of (1.7.2). It is time now to recall that (CP) is strictly feasible, i.e., Ax̄ − b >K 0 for
some x̄. Since λ ≥K∗ 0 and λ 6= 0, the product 〈λ,Ax̄ − b〉 should be strictly positive (why?),
while in fact we know that the product is −〈λ, b〉 ≤ 0 (since A∗λ = 0 and, as we have seen,
〈λ, b〉 ≥ 0).

Thus, µ > 0. Setting λ∗ = µ−1λ, we get

λ∗ ≥K∗ 0 [since λ ≥K∗ 0 and µ > 0]
A∗λ∗ = c [since A∗λ = µc]
cT x ≤ 〈λ∗, b〉 ∀x : cT x ≤ c∗ [see (1.7.2)]

.

We see that λ∗ is feasible for (D), the value of the dual objective at λ∗ being at least c∗, as
required.

1.7. CONIC DUALITY THEOREM 35

It remains to consider the case c = 0. Here, of course, c∗ = 0, and the existence of a dual
feasible solution with the value of the objective ≥ c∗ = 0 is evident: the required solution is
λ = 0. 3.a) is proved.

3.b): the result follows from 3.a) in view of the primal-dual symmetry.
4): Let x be primal feasible, and λ be dual feasible. Then

cT x− 〈b, λ〉 = (A∗λ)T x− 〈b, λ〉 = 〈Ax− b, λ〉.

We get a useful identity as follows:

(!) For every primal-dual feasible pair (x, λ) the duality gap cT x− 〈b, λ〉 is equal to
the inner product of the primal slack vector y = Ax− b and the dual vector λ.

Note that (!) in fact does not require “full” primal-dual feasibility: x may be ar-
bitrary (i.e., y should belong to the primal feasible plane ImA − b), and λ should
belong to the dual feasible plane A∗λ = c, but y and λ not necessary should belong
to the respective cones.

In view of (!) the complementary slackness holds if and only if the duality gap is zero; thus, all
we need is to prove 4.a).

The “primal residual” cT x− c∗ and the “dual residual” b∗−〈b, λ〉 are nonnegative, provided
that x is primal feasible, and λ is dual feasible. It follows that the duality gap

cT x− 〈b, λ〉 = [cT x− c∗] + [b∗ − 〈b, λ〉] + [c∗ − b∗]

is nonnegative (recall that c∗ ≥ b∗ by 2)), and it is zero if and only if c∗ = b∗ and both primal
and dual residuals are zero (i.e., x is primal optimal, and λ is dual optimal). All these arguments
hold without any assumptions of strict feasibility. We see that the condition “the duality gap
at a primal-dual feasible pair is zero” is always sufficient for primal-dual optimality of the pair;
and if c∗ = b∗, this sufficient condition is also necessary. Since in the case of 4) we indeed have
c∗ = b∗ (this is stated by 3)), 4.a) follows.

A useful consequence of the Conic Duality Theorem is the following

Corollary 1.7.1 Assume that both (CP) and (D) are strictly feasible. Then both problems are
solvable, the optimal values are equal to each other, and each one of the conditions 4.a), 4.b) is
necessary and sufficient for optimality of a primal-dual feasible pair.

Indeed, by the Weak Conic Duality Theorem, if one of the problems is feasible, the other is
bounded, and it remains to use the items 3) and 4) of the Conic Duality Theorem.

1.7.1 Is something wrong with conic duality?

The statement of the Conic Duality Theorem is weaker than that of the LP Duality theorem:
in the LP case, feasibility (even non-strict) and boundedness of either primal, or dual problem
implies solvability of both the primal and the dual and equality between their optimal values.
In the general conic case something “nontrivial” is stated only in the case of strict feasibility
(and boundedness) of one of the problems. It can be demonstrated by examples that this
phenomenon reflects the nature of things, and is not due to our ability to analyze it. The case
of non-polyhedral cone K is truly more complicated than the one of the nonnegative orthant K;
as a result, a “word-by-word” extension of the LP Duality Theorem to the conic case is false.

36 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Example 1.7.1 Consider the following conic problem with 2 variables x = (x1, x2)T and the
3-dimensional ice-cream cone K:

min





x1 | Ax− b ≡




x1 − x2

1
x1 + x2


 ≥L3 0





.

Recalling the definition of L3, we can write the problem equivalently as

min
{

x1 |
√

(x1 − x2)2 + 1 ≤ x1 + x2

}
,

i.e., as the problem
min {x1 | 4x1x2 ≥ 1, x1 + x2 > 0} .

Geometrically the problem is to minimize x1 over the intersection of the 3D ice-cream cone with
a 2D plane; the inverse image of this intersection in the “design plane” of variables x1, x2 is part
of the 2D nonnegative orthant bounded by the hyperbola x1x2 ≥ 1/4. The problem is clearly
strictly feasible (a strictly feasible solution is, e.g., x = (1, 1)T) and bounded below, with the
optimal value 0. This optimal value, however, is not achieved – the problem is unsolvable!

Example 1.7.2 Consider the following conic problem with two variables x = (x1, x2)T and the
3-dimensional ice-cream cone K:

min





x2 | Ax− b =




x1

x2

x1


 ≥L3 0





.

The problem is equivalent to the problem
{

x2 |
√

x2
1 + x2

2 ≤ x1

}
,

i.e., to the problem
min {x2 | x2 = 0, x1 ≥ 0} .

The problem is clearly solvable, and its optimal set is the ray {x1 ≥ 0, x2 = 0}.
Now let us build the conic dual to our (solvable!) primal. It is immediately seen that the

cone dual to an ice-cream cone is this ice-cream cone itself. Thus, the dual problem is

max
λ

{
0 |

[
λ1 + λ3

λ2

]
=

[
0
1

]
, λ ≥L3 0

}
.

In spite of the fact that primal is solvable, the dual is infeasible: indeed, assuming that λ is dual
feasible, we have λ ≥L3 0, which means that λ3 ≥

√
λ2

1 + λ2
2; since also λ1 + λ3 = 0, we come to

λ2 = 0, which contradicts the equality λ2 = 1.

We see that the weakness of the Conic Duality Theorem as compared to the LP Duality one
reflects pathologies which indeed may happen in the general conic case.

1.7. CONIC DUALITY THEOREM 37

1.7.2 Consequences of the Conic Duality Theorem

Sufficient condition for infeasibility. Recall that a necessary and sufficient condition for
infeasibility of a (finite) system of scalar linear inequalities (i.e., for a vector inequality with
respect to the partial ordering ≥) is the possibility to combine these inequalities in a linear
fashion in such a way that the resulting scalar linear inequality is contradictory. In the case of
cone-generated vector inequalities a slightly weaker result can be obtained:

Proposition 1.7.1 [Conic Theorem on Alternative] Consider a linear vector inequality

Ax− b ≥K 0. (I)

(i) If there exists λ satisfying

λ ≥K∗ 0, A∗λ = 0, 〈λ, b〉 > 0, (II)

then (I) has no solutions.
(ii) If (II) has no solutions, then (I) is “almost solvable” – for every positive ε there exists b′

such that ‖b′ − b‖2 < ε and the perturbed system

Ax− b′ ≥K 0

is solvable.
Moreover,
(iii) (II) is solvable if and only if (I) is not “almost solvable”.

Note the difference between the simple case when ≥K is the usual partial ordering ≥ and the
general case. In the former, one can replace in (ii) “nearly solvable” by “solvable”; however, in
the general conic case “almost” is unavoidable.

Example 1.7.3 Let system (I) be given by

Ax− b ≡




x + 1
x− 1√

2x


 ≥L3 0.

Recalling the definition of the ice-cream cone L3, we can write the inequality equivalently as

√
2x ≥

√
(x + 1)2 + (x− 1)2 ≡

√
2x2 + 2, (i)

which of course is unsolvable. The corresponding system (II) is

λ3 ≥
√

λ2
1 + λ2

2

[
⇔ λ ≥L3∗ 0

]

λ1 + λ2 +
√

2λ3 = 0
[
⇔ AT λ = 0

]

λ2 − λ1 > 0
[
⇔ bT λ > 0

] (ii)

From the second of these relations, λ3 = − 1√
2
(λ1 + λ2), so that from the first inequality we get

0 ≤ (λ1− λ2)2, whence λ1 = λ2. But then the third inequality in (ii) is impossible! We see that
here both (i) and (ii) have no solutions.

38 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

The geometry of the example is as follows. (i) asks to find a point in the intersection of
the 3D ice-cream cone and a line. This line is an asymptote of the cone (it belongs to a 2D
plane which crosses the cone in such way that the boundary of the cross-section is a branch of
a hyperbola, and the line is one of two asymptotes of the hyperbola). Although the intersection
is empty ((i) is unsolvable), small shifts of the line make the intersection nonempty (i.e., (i) is
unsolvable and “almost solvable” at the same time). And it turns out that one cannot certify
the fact that (i) itself is unsolvable by providing a solution to (ii).

Proof of the Proposition. (i) is evident (why?).
Let us prove (ii). To this end it suffices to verify that if (I) is not “almost solvable”, then (II) is

solvable. Let us fix a vector σ >K 0 and look at the conic problem

min
x,t

{t | Ax + tσ − b ≥K 0} (CP)

in variables (x, t). Clearly, the problem is strictly feasible (why?). Now, if (I) is not almost solvable, then,
first, the matrix of the problem [A;σ] satisfies the full column rank condition A (otherwise the image of
the mapping (x, t) 7→ Ax + tσ − b would coincide with the image of the mapping x 7→ Ax − b, which is
not he case – the first of these images does intersect K, while the second does not). Second, the optimal
value in (CP) is strictly positive (otherwise the problem would admit feasible solutions with t close to 0,
and this would mean that (I) is almost solvable). From the Conic Duality Theorem it follows that the
dual problem of (CP)

max
λ
{〈b, λ〉 | A∗λ = 0, 〈σ, λ〉 = 1, λ ≥K∗ 0}

has a feasible solution with positive 〈b, λ〉, i.e., (II) is solvable.
It remains to prove (iii). Assume first that (I) is not almost solvable; then (II) must be solvable by

(ii). Vice versa, assume that (II) is solvable, and let λ be a solution to (II). Then λ solves also all systems
of the type (II) associated with small enough perturbations of b instead of b itself; by (i), it implies that
all inequalities obtained from (I) by small enough perturbation of b are unsolvable.

When is a scalar linear inequality a consequence of a given linear vector inequality?
The question we are interested in is as follows: given a linear vector inequality

Ax ≥K b (V)

and a scalar inequality
cT x ≥ d (S)

we want to check whether (S) is a consequence of (V). If K is the nonnegative orthant, the
answer is given by the Inhomogeneous Farkas Lemma:

Inequality (S) is a consequence of a feasible system of linear inequalities Ax ≥ b if
and only if (S) can be obtained from (V) and the trivial inequality 1 ≥ 0 in a linear
fashion (by taking weighted sum with nonnegative weights).

In the general conic case we can get a slightly weaker result:

Proposition 1.7.2 (i) If (S) can be obtained from (V) and from the trivial inequality 1 ≥ 0 by
admissible aggregation, i.e., there exist weight vector λ ≥K∗ 0 such that

A∗λ = c, 〈λ, b〉 ≥ d,

then (S) is a consequence of (V).
(ii) If (S) is a consequence of a strictly feasible linear vector inequality (V), then (S) can be

obtained from (V) by an admissible aggregation.

1.7. CONIC DUALITY THEOREM 39

The difference between the case of the partial ordering ≥ and a general partial ordering ≥K is
in the word “strictly” in (ii).
Proof of the proposition. (i) is evident (why?). To prove (ii), assume that (V) is strictly feasible and
(S) is a consequence of (V) and consider the conic problem

min
x,t

{
t | Ā

(
x
t

)
− b̄ ≡

[
Ax− b

d− cT x + t

]
≥K̄ 0

}
,

K̄ = {(x, t) | x ∈ K, t ≥ 0}
The problem is clearly strictly feasible (choose x to be a strictly feasible solution to (V) and then choose
t to be large enough). The fact that (S) is a consequence of (V) says exactly that the optimal value in
the problem is nonnegative. By the Conic Duality Theorem, the dual problem

max
λ,µ

{
〈b, λ〉 − dµ | A∗λ− c = 0, µ = 1,

(
λ
µ

)
≥K̄∗ 0

}

has a feasible solution with the value of the objective ≥ 0. Since, as it is easily seen, K̄∗ = {(λ, µ) | λ ∈
K∗, µ ≥ 0}, the indicated solution satisfies the requirements

λ ≥K∗ 0, A∗λ = c, 〈b, λ〉 ≥ d,

i.e., (S) can be obtained from (V) by an admissible aggregation.

“Robust solvability status”. Examples 1.7.2 – 1.7.3 make it clear that in the general conic
case we may meet “pathologies” which do not occur in LP. E.g., a feasible and bounded problem
may be unsolvable, the dual to a solvable conic problem may be infeasible, etc. Where the
pathologies come from? Looking at our “pathological examples”, we arrive at the following
guess: the source of the pathologies is that in these examples, the “solvability status” of the
primal problem is non-robust – it can be changed by small perturbations of the data. This issue
of robustness is very important in modelling, and it deserves a careful investigation.

Data of a conic problem. When asked “What are the data of an LP program min{cT x |
Ax − b ≥ 0}”, everybody will give the same answer: “the objective c, the constraint matrix A
and the right hand side vector b”. Similarly, for a conic problem

min
{
cT x | Ax− b ≥K 0

}
, (CP)

its data, by definition, is the triple (c, A, b), while the sizes of the problem – the dimension n
of x and the dimension m of K, same as the underlying cone K itself, are considered as the
structure of (CP).

Robustness. A question of primary importance is whether the properties of the program (CP)
(feasibility, solvability, etc.) are stable with respect to perturbations of the data. The reasons
which make this question important are as follows:

• In actual applications, especially those arising in Engineering, the data are normally inex-
act: their true values, even when they “exist in the nature”, are not known exactly when
the problem is processed. Consequently, the results of the processing say something defi-
nite about the “true” problem only if these results are robust with respect to small data
perturbations i.e., the properties of (CP) we have discovered are shared not only by the
particular (“nominal”) problem we were processing, but also by all problems with nearby
data.

40 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

• Even when the exact data are available, we should take into account that processing them
computationally we unavoidably add “noise” like rounding errors (you simply cannot load
something like 1/7 to the standard computer). As a result, a real-life computational routine
can recognize only those properties of the input problem which are stable with respect to
small perturbations of the data.

Due to the above reasons, we should study not only whether a given problem (CP) is feasi-
ble/bounded/solvable, etc., but also whether these properties are robust – remain unchanged
under small data perturbations. As it turns out, the Conic Duality Theorem allows to recognize
“robust feasibility/boundedness/solvability...”.

Let us start with introducing the relevant concepts. We say that (CP) is

• robust feasible, if all “sufficiently close” problems (i.e., those of the same structure
(n,m,K) and with data close enough to those of (CP)) are feasible;

• robust infeasible, if all sufficiently close problems are infeasible;

• robust bounded below, if all sufficiently close problems are bounded below (i.e., their
objectives are bounded below on their feasible sets);

• robust unbounded, if all sufficiently close problems are not bounded;

• robust solvable, if all sufficiently close problems are solvable.

Note that a problem which is not robust feasible, not necessarily is robust infeasible, since among
close problems there may be both feasible and infeasible (look at Example 1.7.2 – slightly shifting
and rotating the plane ImA − b, we may get whatever we want – a feasible bounded problem,
a feasible unbounded problem, an infeasible problem...). This is why we need two kinds of
definitions: one of “robust presence of a property” and one more of “robust absence of the same
property”.

Now let us look what are necessary and sufficient conditions for the most important robust
forms of the “solvability status”.

Proposition 1.7.3 [Robust feasibility] (CP) is robust feasible if and only if it is strictly feasible,
in which case the dual problem (D) is robust bounded above.

Proof. The statement is nearly tautological. Let us fix δ >K 0. If (CP) is robust feasible, then for small
enough t > 0 the perturbed problem min{cT x | Ax− b− tδ ≥K 0} should be feasible; a feasible solution
to the perturbed problem clearly is a strictly feasible solution to (CP). The inverse implication is evident
(a strictly feasible solution to (CP) remains feasible for all problems with close enough data). It remains
to note that if all problems sufficiently close to (CP) are feasible, then their duals, by the Weak Conic
Duality Theorem, are bounded above, so that (D) is robust above bounded.

Proposition 1.7.4 [Robust infeasibility] (CP) is robust infeasible if and only if the system

〈b, λ〉 = 1, A∗λ = 0, λ ≥K∗ 0

is robust feasible, or, which is the same (by Proposition 1.7.3), if and only if the system

〈b, λ〉 = 1, A∗λ = 0, λ >K∗ 0 (1.7.3)

has a solution.

1.7. CONIC DUALITY THEOREM 41

Proof. First assume that (1.7.3) is solvable, and let us prove that all problems sufficiently close to (CP)
are infeasible. Let us fix a solution λ̄ to (1.7.3). Since A is of full column rank, simple Linear Algebra
says that the systems [A′]∗λ = 0 are solvable for all matrices A′ from a small enough neighbourhood U
of A; moreover, the corresponding solution λ(A′) can be chosen to satisfy λ(A) = λ̄ and to be continuous
in A′ ∈ U . Since λ(A′) is continuous and λ(A) >K∗ 0, we have λ(A′) is >K∗ 0 in a neighbourhood of A;
shrinking U appropriately, we may assume that λ(A′) >K∗ 0 for all A′ ∈ U . Now, bT λ̄ = 1; by continuity
reasons, there exists a neighbourhood V of b and a neighbourhood U ′ of A such that b′ ∈ V and all
A′ ∈ U ′ one has 〈b′, λ(A′)〉 > 0.

Thus, we have seen that there exist a neighbourhood U ′ of A and a neighbourhood V of b, along with
a function λ(A′), A′ ∈ U ′, such that

〈b′λ(A′)〉 > 0, [A′]∗λ(A′) = 0, λ(A′) ≥K∗ 0

for all b′ ∈ V and A′ ∈ U . By Proposition 1.7.1.(i) it means that all the problems

min
{
[c′]T x | A′x− b′ ≥K 0

}

with b′ ∈ V and A′ ∈ U ′ are infeasible, so that (CP) is robust infeasible.

Now let us assume that (CP) is robust infeasible, and let us prove that then (1.7.3) is solvable. Indeed,
by the definition of robust infeasibility, there exist neighbourhoods U of A and V of b such that all vector
inequalities

A′x− b′ ≥K 0

with A′ ∈ U and b′ ∈ V are unsolvable. It follows that whenever A′ ∈ U and b′ ∈ V , the vector inequality

A′x− b′ ≥K 0

is not almost solvable (see Proposition 1.7.1). We conclude from Proposition 1.7.1.(ii) that for every
A′ ∈ U and b′ ∈ V there exists λ = λ(A′, b′) such that

〈b′, λ(A′, b′)〉 > 0, [A′]∗λ(A′, b′) = 0, λ(A′, b′) ≥K∗ 0.

Now let us choose λ0 >K∗ 0. For all small enough positive ε we have Aε = A + εb[A∗λ0]T ∈ U . Let us
choose an ε with the latter property to be so small that ε〈b, λ0〉 > −1 and set A′ = Aε, b′ = b. According
to the previous observation, there exists λ = λ(A′, b) such that

〈b, λ〉 > 0, [A′]∗λ ≡ A∗[λ + ε〈b, λ〉λ0] = 0, λ ≥K∗ 0.

Setting λ̄ = λ + ε〈b, λ〉λ0, we get λ̄ >K∗ 0 (since λ ≥K∗ 0, λ0 >K∗ 0 and 〈b, λ〉 > 0), while A∗λ̄ = 0 and
〈b, λ̄〉 = 〈b, λ〉(1+ ε〈b, λ0〉) > 0. Multiplying λ̄ by appropriate positive factor, we get a solution to (1.7.3).

Now we are able to formulate our main result on “robust solvability”.

Proposition 1.7.5 For a conic problem (CP) the following conditions are equivalent to each
other

(i) (CP) is robust feasible and robust bounded (below);
(ii) (CP) is robust solvable;
(iii) (D) is robust solvable;
(iv) (D) is robust feasible and robust bounded (above);
(v) Both (CP) and (D) are strictly feasible.
In particular, under every one of these equivalent assumptions, both (CP) and (D) are solv-

able with equal optimal values.

42 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Proof. (i) ⇒ (v): If (CP) is robust feasible, it also is strictly feasible (Proposition 1.7.3). If, in addition,
(CP) is robust bounded below, then (D) is robust solvable (by the Conic Duality Theorem); in particular,
(D) is robust feasible and therefore strictly feasible (again Proposition 1.7.3).

(v) ⇒ (ii): The implication is given by the Conic Duality Theorem.
(ii) ⇒ (i): trivial.
We have proved that (i)≡(ii)≡(v). Due to the primal-dual symmetry, we also have proved that

(iii)≡(iv)≡(v).

1.8 Exercises

1.8.1 Around General Theorem on Alternative

Exercise 1.2 Derive General Theorem on Alternative from Homogeneous Farkas Lemma
Hint: Verify that the system

(S) :
{

aT
i x > bi, i = 1, ..., ms,

aT
i x ≥ bi, i = ms + 1, ...,m.

in variables x has no solution if and only if the homogeneous inequality

ε ≤ 0

in variables x, ε, t is a consequence of the system of homogeneous inequalities




aT
i x− bit− ε ≥ 0, i = 1, ...,ms,

aT
i x− bit ≥ 0, i = ms + 1, ...,m,

t ≥ ε,

in these variables.

There exist several particular cases of GTA (which in fact are equivalent to GTA); the goal of
the next exercise is to prove the corresponding statements.

Exercise 1.3 Derive the following statements from the General Theorem on Alternative:

1. [Gordan’s Theorem on Alternative] One of the inequality systems

(I) Ax < 0, x ∈ Rn,

(II) AT y = 0, 0 6= y ≥ 0, y ∈ Rm,

(A being an m× n matrix, x are variables in (I), y are variables in (II)) has a solution if
and only if the other one has no solutions.

2. [Inhomogeneous Farkas Lemma] A linear inequality in variables x

aT x ≤ p (1.8.1)

is a consequence of a solvable system of linear inequalities

Nx ≤ q (1.8.2)

if and only if it is a ”linear consequence” of the system and the trivial inequality

0T x ≤ 1,

1.8. EXERCISES 43

i.e., if it can be obtained by taking weighted sum, with nonnegative coefficients, of the
inequalities from the system and this trivial inequality.

Algebraically: (1.8.1) is a consequence of solvable system (1.8.2) if and only if

a = NT ν

for some nonnegative vector ν such that

νT q ≤ p.

3. [Motzkin’s Theorem on Alternative] The system

Sx < 0, Nx ≤ 0

in variables x has no solutions if and only if the system

ST σ + NT ν = 0, σ ≥ 0, ν ≥ 0, σ 6= 0

in variables σ, ν has a solution.

Exercise 1.4 Consider the linear inequality

x + y ≤ 2

and the system of linear inequalities
{

x ≤ 1
−x ≤ −100

Our inequality clearly is a consequence of the system – it is satisfied at every solution to it (simply
because there are no solutions to the system at all). According to the Inhomogeneous Farkas
Lemma, the inequality should be a linear consequence of the system and the trivial inequality
0 ≤ 1, i.e., there should exist nonnegative ν1, ν2 such that

(
1
1

)
= ν1

(
1
0

)
+ ν2

(−1
0

)
, ν1 − 1000ν2 ≤ 2,

which clearly is not the case. What is the reason for the observed “contradiction”?

1.8.2 Around cones

Attention! In what follows, if otherwise is not explicitly stated, “cone” is a shorthand for
“closed pointed cone with a nonempty interior”, K denotes a cone, and K∗ is the cone dual to
K.

Exercise 1.5 Let K be a cone, and let x̄ >K 0. Prove that x >K 0 if and only if there exists
positive real t such that x ≥K tx̄.

Exercise 1.6 1) Prove that if 0 6= x ≥K 0 and λ >K∗ 0, then λT x > 0.
2) Assume that λ ≥K∗ 0. Prove that λ >K∗ 0 if and only if λT x > 0 whenever 0 6= x ≥K 0.
3) Prove that λ >K∗ 0 if and only if the set

{x ≥K 0 | λT x ≤ 1}
is compact.

44 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Calculus of cones

Exercise 1.7 Prove the following statements:
1) [stability with respect to direct multiplication] Let Ki ⊂ Rni be cones, i = 1, ..., k. Prove

that the direct product of the cones:

K = K1 × ...×Kk = {(x1, ..., xk) | xi ∈ Ki, i = 1, ..., k}
is a cone in Rn1+...+nk = Rn1 × ...×Rnk .

Prove that the cone dual to K is the direct product of the cones dual to Ki, i = 1, .., k.
2) [stability with respect to taking inverse image] Let K be a cone in Rn and u 7→ Au be

a linear mapping from certain Rk to Rn with trivial null space (Null(A) = {0}) and such that
ImA ∩ intK 6= ∅. Prove that the inverse image of K under the mapping:

A−1(K) = {u | Au ∈ K}
is a cone in Rk.

Prove that the cone dual to A−1(K) is ATK∗, i.e.

(A−1(K))∗ = {AT λ | λ ∈ K∗}.
3) [stability with respect to taking linear image] Let K be a cone in Rn and y = Ax be a linear

mapping from Rn onto RN (i.e., the image of A is the entire RN). Assume Null(A)∩K = {0}.
Prove that then the set

AK = {Ax | x ∈ K}
is a cone in RN .

Prove that the cone dual to AK is

(AK)∗ = {λ ∈ RN | AT λ ∈ K∗}.
Demonstrate by example that if in the above statement the assumption Null(A) ∩K = {0} is
weakened to Null(A) ∩ intK = ∅, then the set A(K) may happen to be non-closed.

Hint. Look what happens when the 3D ice-cream cone is projected onto its tangent plane.

Primal-dual pairs of cones and orthogonal pairs of subspaces

Exercise 1.8 Let A be a m× n matrix of full column rank and K be a cone in Rm.
1) Prove that at least one of the following facts always takes place:

(i) There exists a nonzero x ∈ Im A which is ≥K 0;
(ii) There exists a nonzero λ ∈ Null(AT) which is ≥K∗ 0.

Geometrically: given a primal-dual pair of cones K, K∗ and a pair L,L⊥ of linear subspaces
which are orthogonal complements of each other, we either can find a nontrivial ray in the
intersection L ∩K, or in the intersection L⊥ ∩K∗, or both.

2) Prove that there exists λ ∈ Null(AT) which is >K∗ 0 (this is the strict version of (ii)) if
and only if (i) is false. Prove that, similarly, there exists x ∈ ImA which is >K 0 (this is the
strict version of (i)) if and only if (ii) is false.

Geometrically: if K,K∗ is a primal-dual pair of cones and L, L⊥ are linear subspaces which
are orthogonal complements of each other, then the intersection L ∩ K is trivial (i.e., is the
singleton {0}) if and only if the intersection L⊥ ∩ intK∗ is nonempty.

1.8. EXERCISES 45

Several interesting cones

Given a cone K along with its dual K∗, let us call a complementary pair every pair x ∈ K,
λ ∈ K∗ such that

λT x = 0.

Recall that in “good cases” (e.g., under the premise of item 4 of the Conic Duality Theorem) a
pair of feasible solutions (x, λ) of a primal-dual pair of conic problems

min
{
cT x | Ax− b ≥K 0

}

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}

is primal-dual optimal if and only if the “primal slack” y = Ax− b and λ are complementary.

Exercise 1.9 [Nonnegative orthant] Prove that the n-dimensional nonnegative orthant Rn
+ is

a cone and that it is self-dual:
(Rn

+)∗ = Rn
+.

What are complementary pairs?

Exercise 1.10 [Ice-cream cone] Let Ln be the n-dimensional ice-cream cone:

Ln = {x ∈ Rn | xn ≥
√

x2
1 + ... + x2

n−1}.

1) Prove that Ln is a cone.
2) Prove that the ice-cream cone is self-dual:

(Ln)∗ = Ln.

3) Characterize the complementary pairs.

Exercise 1.11 [Positive semidefinite cone] Let Sn
+ be the cone of n × n positive semidefinite

matrices in the space Sn of symmetric n × n matrices. Assume that Sn is equipped with the
Frobenius inner product

〈X,Y 〉 = Tr(XY) =
n∑

i,j=1

XijYij .

1) Prove that Sn
+ indeed is a cone.

2) Prove that the semidefinite cone is self-dual:

(Sn
+)∗ = Sn

+,

i.e., that the Frobenius inner products of a symmetric matrix Λ with all positive semidefinite ma-
trices X of the same size are nonnegative if and only if the matrix Λ itself is positive semidefinite.

3) Prove the following characterization of the complementary pairs:

Two matrices X ∈ Sn
+, Λ ∈ (Sn

+)∗ ≡ Sn
+ are complementary (i.e., 〈Λ, X〉 = 0) if and

only if their matrix product is zero: ΛX = XΛ = 0. In particular, matrices from a
complementary pair commute and therefore share a common orthonormal eigenbasis.

46 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

1.8.3 Around conic problems

Several primal-dual pairs

Exercise 1.12 [The min-max Steiner problem] Consider the problem as follows:

Given N points b1, ..., bN in Rn, find a point x ∈ Rn which minimizes the maximum
(Euclidean) distance from itself to the points b1, ..., bN , i.e., solve the problem

min
x

max
i=1,...,N

‖x− bi‖2.

Imagine, e.g., that n = 2, b1, ..., bN are locations of villages and you are interested to locate
a fire station for which the worst-case distance to a possible fire is as small as possible.

1) Pose the problem as a conic quadratic one – a conic problem associated with a direct product
of ice-cream cones.

2) Build the dual problem.
3) What is the geometric interpretation of the dual? Are the primal and the dual strictly

feasible? Solvable? With equal optimal values? What is the meaning of the complementary
slackness?

Exercise 1.13 [The weighted Steiner problem] Consider the problem as follows:

Given N points b1, ..., bN in Rn along with positive weights ωi, i = 1, ..., N , find a
point x ∈ Rn which minimizes the weighted sum of its (Euclidean) distances to the
points b1, ..., bN , i.e., solve the problem

min
x

N∑

i=1

ωi‖x− bi‖2.

Imagine, e.g., that n = 2, b1, ..., bN are locations of N villages and you are interested to place
a telephone station for which the total cost of cables linking the station and the villages is
as small as possible. The weights can be interpreted as the per mile cost of the cables (they
may vary from village to village due to differences in populations and, consequently, in the
required capacities of the cables).

1) Pose the problem as a conic quadratic one.
2) Build the dual problem.
3) What is the geometric interpretation of the dual? Are the primal and the dual strictly

feasible? Solvable? With equal optimal values? What is the meaning of the complementary
slackness?

1.8.4 Feasible and level sets of conic problems

Attention! Remember that by our Assumption A matrix A below is of full column rank!
Consider a feasible conic problem

min
{
cT x | Ax− b ≥K 0

}
. (CP)

In many cases it is important to know whether the problem has
1) bounded feasible set {x | Ax− b ≥K 0}
2) bounded level sets

{x | Ax− b ≥K 0, cT x ≤ a}
for all real a.

1.8. EXERCISES 47

Exercise 1.14 Let (CP) be feasible. Then the following four properties are equivalent:
(i) the feasible set of the problem is bounded;
(ii) the set of primal slacks Y = {y | y ≥K 0, y = Ax− b} is bounded.
(iii) ImA ∩K = {0};
(iv) the system of vector (in)equalities

AT λ = 0, λ >K∗ 0

is solvable.
Corollary. The property of (CP) to have a bounded feasible set is independent of the particular

value of b, provided that with this b (CP) is feasible!

Exercise 1.15 Let problem (CP) be feasible. Prove that the following two conditions are equiv-
alent:

(i) (CP) has bounded level sets;
(ii) The dual problem

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}

is strictly feasible.
Corollary. The property of (CP) to have bounded level sets is independent of the particular

value of b, provided that with this b (CP) is feasible!

48 LECTURE 1. FROM LINEAR TO CONIC PROGRAMMING

Lecture 2

Conic Quadratic Programming

Several “generic” families of conic problems are of special interest, both from the viewpoint
of theory and applications. The cones underlying these problems are simple enough, so that
one can describe explicitly the dual cone; as a result, the general duality machinery we have
developed becomes “algorithmic”, as in the Linear Programming case. Moreover, in many cases
this “algorithmic duality machinery” allows to understand more deeply the original model,
to convert it into equivalent forms better suited for numerical processing, etc. The relative
simplicity of the underlying cones also enables one to develop efficient computational methods
for the corresponding conic problems. The most famous example of a “nice” generic conic
problem is, doubtless, Linear Programming; however, it is not the only problem of this sort. Two
other nice generic conic problems of extreme importance are Conic Quadratic and Semidefinite
programs. We are about to consider the first of these two problems.

2.1 Conic Quadratic problems: preliminaries

Recall the definition of the m-dimensional ice-cream (≡second-order≡Lorentz) cone Lm:

Lm = {x = (x1, ..., xm) ∈ Rm : xm ≥
√

x2
1 + ... + x2

m−1}, m ≥ 2.

A conic quadratic problem is a conic problem

min
x

{
cT x : Ax− b ≥K 0

}
(CP)

for which the cone K is a direct product of several ice-cream cones:

K = Lm1 × Lm2 × ...× Lmk

=





y =




y[1]
y[2]
...

y[k]


 : y[i] ∈ Lmi , i = 1, ..., k





.
(2.1.1)

In other words, a conic quadratic problem is an optimization problem with linear objective and
finitely many “ice-cream constraints”

Aix− bi ≥Lmi 0, i = 1, ..., k,

49

50 LECTURE 2. CONIC QUADRATIC PROGRAMMING

where

[A; b] =




[A1; b1]
[A2; b2]

...

[Ak; bk]




is the partition of the data matrix [A; b] corresponding to the partition of y in (2.1.1). Thus, a
conic quadratic program can be written as

min
x

{
cT x : Aix− bi ≥Lmi 0, i = 1, ..., k

}
. (2.1.2)

Recalling the definition of the relation ≥Lm and partitioning the data matrix [Ai, bi] as

[Ai; bi] =

[
Di di

pT
i qi

]

where Di is of the size (mi − 1)× dimx, we can write down the problem as

min
x

{
cT x : ‖Dix− di‖2 ≤ pT

i x− qi, i = 1, ..., k
}

; (QP)

this is the “most explicit” form is the one we prefer to use. In this form, Di are matrices of the
same row dimension as x, di are vectors of the same dimensions as the column dimensions of
the matrices Di, pi are vectors of the same dimension as x and qi are reals.

It is immediately seen that (2.1.1) is indeed a cone, in fact a self-dual one: K∗ = K.
Consequently, the problem dual to (CP) is

max
λ

{
bT λ : AT λ = c, λ ≥K 0

}
.

Denoting λ =




λ1

λ2

...
λk


 with mi-dimensional blocks λi (cf. (2.1.1)), we can write the dual problem

as

max
λ1,...,λm

{
k∑

i=1

bT
i λi :

k∑

i=1

AT
i λi = c, λi ≥Lmi 0, i = 1, ..., k

}
.

Recalling the meaning of ≥Lmi 0 and representing λi =
(

µi

νi

)
with scalar component νi, we

finally come to the following form of the problem dual to (QP):

max
µi,νi

{
k∑

i=1

[µT
i di + νiqi] :

k∑

i=1

[DT
i µi + νipi] = c, ‖µi‖2 ≤ νi, i = 1, ..., k

}
. (QD)

The design variables in (QD) are vectors µi of the same dimensions as the vectors di and reals
νi, i = 1, ..., k.

Since from now on we will treat (QP) and (QD) as the standard forms of a conic quadratic
problem and its dual, we now interpret for these two problems our basic assumption A from
Lecture 2 and notions like feasibility, strict feasibility, boundedness, etc. Assumption A now
reads (why?):

2.2. EXAMPLES OF CONIC QUADRATIC PROBLEMS 51

There is no nonzero x which is orthogonal to all rows of all matrices Di and to all
vectors pi, i = 1, ..., k

and we always make this assumption by default. Now, among notions like feasibility, solvability,
etc., the only notion which does need an interpretation is strict feasibility, which now reads as
follows (why?):

Strict feasibility of (QP) means that there exist x̄ such that ‖Dix̄− di‖2 < pT
i x̄− qi

for all i.

Strict feasibility of (QD) means that there exists a feasible solution {µ̄i, ν̄i}k
i=1 to the

problem such that ‖µ̄i‖2 < ν̄i for all i = 1, ..., k.

2.2 Examples of conic quadratic problems

2.2.1 Contact problems with static friction [11]

Consider a rigid body in R3 and a robot with N fingers. When can the robot hold the body? To
pose the question mathematically, let us look what happens at the point pi of the body which
is in contact with i-th finger of the robot:

O

Fi

p

v

i
i

i

f

Geometry of i-th contact
[pi is the contact point; f i is the contact force; vi is the inward normal to the surface]

Let vi be the unit inward normal to the surface of the body at the point pi where i-th finger
touches the body, f i be the contact force exerted by i-th finger, and F i be the friction force
caused by the contact. Physics (Coulomb’s law) says that the latter force is tangential to the
surface of the body:

(F i)T vi = 0 (2.2.1)

and its magnitude cannot exceed µ times the magnitude of the normal component of the contact
force, where µ is the friction coefficient:

‖F i‖2 ≤ µ(f i)T vi. (2.2.2)

Assume that the body is subject to additional external forces (e.g., gravity); as far as their
mechanical consequences are concerned, all these forces can be represented by a single force –
their sum – F ext along with the torque T ext – the sum of vector products of the external forces
and the points where they are applied.

52 LECTURE 2. CONIC QUADRATIC PROGRAMMING

In order for the body to be in static equilibrium, the total force acting at the body and the
total torque should be zero:

N∑
i=1

(f i + F i) + F ext = 0
N∑

i=1
pi × (f i + F i) + T ext = 0,

(2.2.3)

where p× q stands for the vector product of two 3D vectors p and q 1).
The question “whether the robot is capable to hold the body” can be interpreted as follows.

Assume that f i, F ext, T ext are given. If the friction forces F i can adjust themselves to satisfy
the friction constraints (2.2.1) – (2.2.2) and the equilibrium equations (2.2.3), i.e., if the system
of constraints (2.2.1), (2.2.2), (2.2.3) with respect to unknowns F i is solvable, then, and only
then, the robot holds the body (“the body is in a stable grasp”).

Thus, the question of stable grasp is the question of solvability of the system (S) of constraints
(2.2.1), (2.2.2) and (2.2.3), which is a system of conic quadratic and linear constraints in the
variables f i, F ext, T ext, {F i}. It follows that typical grasp-related optimization problems can
be posed as CQPs. Here is an example:

The robot should hold a cylinder by four fingers, all acting in the vertical direction.
The external forces and torques acting at the cylinder are the gravity Fg and an
externally applied torque T along the cylinder axis, as shown in the picture:

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

T

F

ff

f f

f

f

T

F
g

g

2

3 4

1

3

1

Perspective, front and side views

The magnitudes νi of the forces fi may vary in a given segment [0, Fmax].

What can be the largest magnitude τ of the external torque T such that a stable
grasp is still possible?

Denoting by ui the directions of the fingers, by vi the directions of the inward normals to
cylinder’s surface at the contact points, and by u the direction of the axis of the cylinder, we

1)Here is the definition: if p =

(
p1

p2

p3

)
, q =

(
q1

q2

q3

)
are two 3D vectors, then

[p, q] =




Det

(
p2 p3

q2 q3

)

Det

(
p3 p1

q3 q1

)

Det

(
p1 p2

q1 q2

)




The vector [p, q] is orthogonal to both p and q, and ‖[p, q]‖2 = ‖p‖2‖q‖2 sin(p̂q).

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 53

can pose the problem as the optimization program

max τ
s.t.

4∑
i=1

(νiu
i + F i) + Fg = 0 [total force equals 0]

4∑
i=1

pi × (νiu
i + F i) + τu = 0 [total torque equals 0]

(vi)T F i = 0, i = 1, ..., 4 [F i are tangential to the surface]
‖F i‖2 ≤ [µ[ui]T vi]νi, i = 1, ..., 4 [Coulomb’s constraints]
0 ≤ νi ≤ Fmax, i = 1, ..., 4 [bounds on νi]

in the design variables τ, νi, Fi, i = 1, ..., 4. This is a conic quadratic program, although not
in the standard form (QP). To convert the problem to this standard form, it suffices, e.g., to
replace all linear equalities by pairs of linear inequalities and further represent linear inequalities
αT x ≤ β as conic quadratic constraints

Ax− b ≡
[

0
β − αT x

]
≥L2 0.

2.3 What can be expressed via conic quadratic constraints?

Optimization problems arising in applications are not normally in their “catalogue” forms, and
thus an important skill required from those interested in applications of Optimization is the
ability to recognize the fundamental structure underneath the original formulation. The latter
is frequently in the form

min
x
{f(x) : x ∈ X}, (2.3.1)

where f is a “loss function”, and the set X of admissible design vectors is typically given as

X =
m⋂

i=1

Xi; (2.3.2)

every Xi is the set of vectors admissible for a particular design restriction which in many cases
is given by

Xi = {x ∈ Rn : gi(x) ≤ 0}, (2.3.3)

where gi(x) is i-th constraint function2).
It is well-known that the objective f in always can be assumed linear, otherwise we could

move the original objective to the list of constraints, passing to the equivalent problem

min
t,x

{
t : (t, x) ∈ X̂ ≡ {(x, t) : x ∈ X, t ≥ f(f)}

}
.

Thus, we may assume that the original problem is of the form

min
x

{
cT x : x ∈ X =

m⋂

i=1

Xi

}
. (P)

2)Speaking about a “real-valued function on Rn”, we assume that the function is allowed to take real values
and the value +∞ and is defined on the entire space. The set of those x where the function is finite is called the
domain of the function, denoted by Dom f .

54 LECTURE 2. CONIC QUADRATIC PROGRAMMING

In order to recognize that X is in one of our “catalogue” forms, one needs a kind of dictionary,
where different forms of the same structure are listed. We shall build such a dictionary for
the conic quadratic programs. Thus, our goal is to understand when a given set X can be
represented by conic quadratic inequalities (c.q.i.’s), i.e., one or several constraints of the type
‖Dx− d‖2 ≤ pT x− q. The word “represented” needs clarification, and here it is:

We say that a set X ⊂ Rn can be represented via conic quadratic inequalities (for
short: is CQr – Conic Quadratic representable), if there exists a system S of finitely

many vector inequalities of the form Aj

(
x
u

)
− bj ≥Lmj 0 in variables x ∈ Rn and

additional variables u such that X is the projection of the solution set of S onto the
x-space, i.e., x ∈ X if and only if one can extend x to a solution (x, u) of the system
S:

x ∈ X ⇔ ∃u : Aj

(
x
u

)
− bj ≥Lmj 0, j = 1, ..., N.

Every such system S is called a conic quadratic representation (for short: a CQR)
of the set X 3)

The idea behind this definition is clarified by the following observation:

Consider an optimization problem

min
x

{
cT x : x ∈ X

}

and assume that X is CQr. Then the problem is equivalent to a conic quadratic
program. The latter program can be written down explicitly, provided that we are
given a CQR of X.

Indeed, let S be a CQR of X, and u be the corresponding vector of additional variables. The
problem

min
x,u

{
cT x : (x, u) satisfy S

}

with design variables x, u is equivalent to the original problem (P), on one hand, and is a
conic quadratic program, on the other hand.

Let us call a problem of the form (P) with CQ-representable X a good problem.

How to recognize good problems, i.e., how to recognize CQ-representable sets? Well, how
we recognize continuity of a given function, like f(x, y) = exp{sin(x+exp{y})} ? Normally it is
not done by a straightforward verification of the definition of continuity, but by using two kinds
of tools:

A. We know a number of simple functions – a constant, f(x) = x, f(x) = sin(x), f(x) =
exp{x}, etc. – which indeed are continuous: “once for the entire life” we have verified it
directly, by demonstrating that the functions fit the definition of continuity;

B. We know a number of basic continuity-preserving operations, like taking products, sums,
superpositions, etc.

3)Note that here we do not impose on the representing system of conic quadratic inequalities S the requirement
to satisfy assumption A; e.g., the entire space is CQr – it is a solution set of the “system” |0T x| ≤ 1 comprised
of a single conic quadratic inequality.

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 55

When we see that a function is obtained from “simple” functions – those of type A – by operations
of type B (as it is the case in the above example), we immediately infer that the function is
continuous.

This approach which is common in Mathematics is the one we are about to follow. In fact,
we need to answer two kinds of questions:

(?) What are CQ-representable sets

(??) What are CQ-representable functions g(x), i.e., functions which possess CQ-representable
epigraphs

Epi{g} = {(x, t) ∈ Rn ×R : g(x) ≤ t}.

Our interest in the second question is motivated by the following

Observation: If a function g is CQ-representable, then so are all it level sets {x :
g(x) ≤ a}, and every CQ-representation of (the epigraph of) g explicitly induces
CQ-representations of the level sets.

Indeed, assume that we have a CQ-representation of the epigraph of g:

g(x) ≤ t ⇔ ∃u : ‖αj(x, t, u)‖2 ≤ βj(x, t, u), j = 1, ..., N,

where αj and βj are, respectively, vector-valued and scalar affine functions of their arguments.
In order to get from this representation a CQ-representation of a level set {x : g(x) ≤ a}, it
suffices to fix in the conic quadratic inequalities ‖αj(x, t, u)‖2 ≤ βj(x, t, u) the variable t at
the value a.

We list below our “raw materials” – simple functions and sets admitting CQR’s.

Elementary CQ-representable functions/sets

1. A constant function g(x) ≡ a.
Indeed, the epigraph of the function {(x, t) | a ≤ t} is given by a linear inequality, and a linear inequality
0 ≤ pT z − q is at the same time conic quadratic inequality ‖0‖2 ≤ pT z − q.

2. An affine function g(x) = aT x + b.
Indeed, the epigraph of an affine function is given by a linear inequality.

3. The Euclidean norm g(x) = ‖x‖2.
Indeed, the epigraph of g is given by the conic quadratic inequality ‖x‖2 ≤ t in variables x, t.

4. The squared Euclidean norm g(x) = xT x.

Indeed, t = (t+1)2

4 − (t−1)2

4 , so that

xT x ≤ t ⇔ xT x +
(t− 1)2

4
≤ (t + 1)2

4
⇔

∣∣∣∣
∣∣∣∣
(

x
t−1
2

)∣∣∣∣
∣∣∣∣
2

≤ t + 1
2

(check the second ⇔!), and the last relation is a conic quadratic inequality.

56 LECTURE 2. CONIC QUADRATIC PROGRAMMING

5. The fractional-quadratic function g(x, s) =





xT x
s , s > 0

0, s = 0, x = 0
+∞, otherwise

(x vector, s scalar).

Indeed, with the convention that (xT x)/0 is 0 or +∞, depending on whether x = 0 or not, and taking
into account that ts = (t+s)2

4 − (t−s)2

4 , we have:

{xT x
s ≤ t, s ≥ 0} ⇔ {xT x ≤ ts, t ≥ 0, s ≥ 0} ⇔ {xT x + (t−s)2

4 ≤ (t+s)2

4 , t ≥ 0, s ≥ 0}
⇔

∣∣∣∣
∣∣∣∣
(

x
t−s
2

)∣∣∣∣
∣∣∣∣
2

≤ t+s
2

(check the third ⇔!), and the last relation is a conic quadratic inequality.

The level sets of the CQr functions 1 – 5 provide us with a spectrum of “elementary” CQr
sets. We add to this spectrum one more set:

6. (A branch of) Hyperbola {(t, s) ∈ R2 : ts ≥ 1, t > 0}.
Indeed,

{ts ≥ 1, t > 0} ⇔ { (t+s)2

4 ≥ 1 + (t−s)2

4 & t > 0} ⇔ {
∣∣∣∣
∣∣∣∣
(

t−s
2
1

)∣∣∣∣
∣∣∣∣
2

2

≤ (t+s)2

4 }

⇔ {
∣∣∣∣
∣∣∣∣
(

t−s
2
1

)∣∣∣∣
∣∣∣∣
2

≤ t+s
2 }

(check the last ⇔!), and the latter relation is a conic quadratic inequality.
Next we study simple operations preserving CQ-representability of functions/sets.

Operations preserving CQ-representability of sets

A. Intersection: If sets Xi ⊂ Rn, i = 1, ..., N , are CQr, so is their intersection X =
N⋂

i=1
Xi.

Indeed, let Si be CQ-representation of Xi, and ui be the corresponding vector of additional variables.
Then the system S of constraints of the variables (x, u1, ..., uN):

{(x, ui) satisfies Si}, i = 1, ..., N

is a system of conic quadratic inequalities, and this system clearly is a CQ-representation of X.

Corollary 2.3.1 A polyhedral set – a set in Rn given by finitely many linear inequalities aT
i x ≤

bi, i = 1, ...,m – is CQr.

Indeed, a polyhedral set is the intersection of finitely many level sets of affine functions, and all these
functions (and thus – their level sets) are CQr.

Corollary 2.3.2 If every one of the sets Xi in problem (P) is CQr, then the problem is good
– it can be rewritten in the form of a conic quadratic problem, and such a transformation is
readily given by CQR’s of the sets Xi, i = 1, ..., m.

Corollary 2.3.3 Adding to a good problem finitely many CQr constraints x ∈ Xi, (e.g., finitely
many scalar linear inequalities), we again get a good problem.

B. Direct product: If sets Xi ⊂ Rni , i = 1, ..., k, are CQr, then so is their direct product
X1 × ...×Xk.
Indeed, if Si = {‖αi

j(xi, ui)‖2 ≤ βi
j(xi, ui}Nj

j=1, i = 1, ..., k, are CQR’s of the sets Xi, then the union over
i of this system of inequalities, regarded as a system with design variables x = (x1, ..., xk) and additional
variables u = (u1, ..., uk) is a CQR for the direct product of X1, ..., Xk.

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 57

C. Affine image (“Projection”): If a set X ⊂ Rn is CQr and x 7→ y = `(x) = Ax + b is an
affine mapping of Rn to Rk, then the image `(X) of the set X under the mapping is CQr.
Indeed, passing to an appropriate bases in Rn and Rk, we may assume that the null space of A is
comprised of the last n − p vectors of the basis of Rn, and that the image of A is spanned by the first
p vectors of the basis in Rk. In other words, we may assume that a vector x ∈ Rn can be partitioned

as x =
(

x′

x′′

)
(x′ is p-, and x′′ is (n − p)-dimensional), and that a vector y ∈ Rk can be partitioned

as y =
(

y′

y′′

)
(y′ is p-, and y′′ is (k − p)-dimensional) in such a way that A

(
x′

x′′

)
=

(
Qx′

0

)
with a

nonsingular p× p matrix Q. Thus,
{(

y′

y′′

)
= A

(
x′

x′′

)
+ b

}
⇔

{
x =

(
Q−1(y′ − b′)

w

)
for some w & y′′ = b′′

}
.

Now let S = {‖αj(x, u)‖2 ≤ βj(x, u)}N
j=1 be CQ-representation of X, where u is the corresponding vector

of additional variables and αj , βj are affine in (x, u). Then the system of c.q.i.’s in the design variables

y =
(

y′

y′′

)
∈ Rk and additional variables w ∈ Rn−p, u:

S+ = {‖αj(
(

Q−1(y′ − b′)
w

)
, u)‖2 ≤ βj(

(
Q−1(y′ − b′)

w

)
, u)}N

j=1 & {‖y′′ − b′′‖2 ≤ 0}

is a CQR of `(X). Indeed, y =
(

y′

y′′

)
∈ `(X) if and only if y′′ = b′′ and there exists w ∈ Rn−p such that

the point x =
(

Q−1(y′ − b′)
w

)
belongs to X, and the latter happens if and only if there exist u such that

the point (x, u) = (
(

Q−1(y′ − b′)
w

)
, u) solves S.

Corollary 2.3.4 A nonempty set X is CQr if and only if its characteristic function

χ(x) =
{

0, x ∈ X
+∞, otherwise

is CQr.

Indeed, Epi{χ} is the direct product of X and the nonnegative ray; therefore if X is CQr, so is χ(·) (see
B. and Corollary 2.3.1). Vice versa, if χ is CQr, then X is CQr by C., since X is the projection of the
Epi{χ} on the space of x-variables.

D. Inverse affine image: Let X ⊂ Rn be a CQr set, and let `(y) = Ay + b be an affine mapping
from Rk to Rn. Then the inverse image `−1(X) = {y ∈ Rk : Ay + b ∈ X} of X under the
mapping is also CQr.
Indeed, let S = {‖αj(x, u)‖2 ≤ βj(x, u)}N

i=1 be a CQR for X. Then the system of c.q.i.’s

S = {‖αj(Ay + b, u)‖2 ≤ βj(Ay + b, u)}N
i=1

with variables y, u clearly is a CQR for `−1(X).

Corollary 2.3.5 Consider a good problem (P) and assume that we restrict its design variables
to be given affine functions of a new design vector y. Then the induced problem with the design
vector y is also good.

In particular, adding to a good problem arbitrarily many linear equality constraints, we end
up with a good problem (Indeed, we may use the linear equations to express affinely the original
design variables via part of them, let this part be y; the problem with added linear constraints
can now be posed as a problem with design vector y).

58 LECTURE 2. CONIC QUADRATIC PROGRAMMING

It should be stressed that the above statements are not just existence theorems – they are
“algorithmic”: given CQR’s of the “operands” (say, m sets X1, ..., Xm), we may build completely

mechanically a CQR for the “result of the operation” (e.g., for the intersection
m⋂

i=1
Xi).

Operations preserving CQ-representability of functions

Recall that a function g(x) is called CQ-representable, if its epigraph Epi{g} = {(x, t) : g(x) ≤ t}
is a CQ-representable set; a CQR of the epigraph of g is called conic quadratic representation of
g. Recall also that a level set of a CQr function is CQ-representable. Here are transformations
preserving CQ-representability of functions:

E. Taking maximum: If functions gi(x), i = 1, ..., m, are CQr, then so is their maximum
g(x) = max

i=1,...,m
gi(x).

Indeed, Epi{g} =
⋂
i

Epi{gi}, and the intersection of finitely many CQr sets again is CQr.

F. Summation with nonnegative weights: If functions gi(x), x ∈ Rn, are CQr, i = 1, ..., m, and

αi are nonnegative weights, then the function g(x) =
m∑

i=1
αigi(x) is also CQr.

Indeed, consider the set

Π = {(x1, t1; x2, t2; ...;xm, tm; t) : xi ∈ Rn, ti ∈ R, t ∈ R, gi(xi) ≤ ti, i = 1, ..., m;
m∑

i=1

αiti ≤ t}.

The set is CQr. Indeed, the set is the direct product of the epigraphs of gi intersected with the half-space

given by the linear inequality
m∑

i=1

αiti ≤ t. Now, a direct product of CQr sets is also CQr, a half-space is

CQr (it is a level set of an affine function, and such a function is CQr), and the intersection of CQr sets
is also CQr. Since Π is CQr, so is its projection on subspace of variables x1, x2, ..., xm, t, i.e., the set

{(x1, ..., xm, t) : ∃t1, ..., tm : gi(xi) ≤ ti, i = 1, ...,m,

m∑

i=1

αiti ≤ t} = {(x1, ..., xm, t) :
m∑

i=1

αigi(x) ≤ t}.

Since the latter set is CQr, so is its inverse image under the mapping

(x, t) 7→ (x, x, ...x, t),

and this inverse image is exactly the epigraph of g.

G. Direct summation: If functions gi(xi), xi ∈ Rni , i = 1, ..., m, are CQr, so is their direct
sum

g(x1, ..., xm) = g1(x1) + ... + gm(xm).

Indeed, the functions ĝi(x1, ..., xm) = gi(xi) are clearly CQr – their epigraphs are inverse images of the
epigraphs of gi under the affine mappings (x1, ..., xm, t) 7→ (xi, t). It remains to note that g =

∑
i

ĝi.

H. Affine substitution of argument: If a function g(x), x ∈ Rn, is CQr and y 7→ Ay + b is an
affine mapping from Rk to Rn, then the superposition g→(y) = g(Ay + b) is CQr.
Indeed, the epigraph of g→ is the inverse image of the epigraph of g under the affine mapping (y, t) 7→
(Ay + b, t).

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 59

I. Partial minimization: Let g(x) be CQr. Assume that x is partitioned into two sub-vectors:
x = (v, w), and let ĝ be obtained from g by partial minimization in w:

ĝ(v) = inf
w

g(v, w),

and assume that for every v the minimum in w is achieved. Then ĝ is CQr.
Indeed, under the assumption that the minimum in w always is achieved, Epi{ĝ} is the image of the
epigraph of Epi{g} under the projection (v, w, t) 7→ (v, t).

More operations preserving CQ-representability

Let us list a number of more “advanced” operations with sets/functions preserving CQ-representability.

J. Arithmetic summation of sets. Let Xi, i = 1, ..., k, be nonempty convex sets in Rn, and let X1 +
X2 + ... + Xk be the arithmetic sum of these sets:

X1 + ... + Xk = {x = x1 + ... + xk : xi ∈ Xi, i = 1, ..., k}.

We claim that

If all Xi are CQr, so is their sum.

Indeed, the direct product

X = X1 ×X2 × ...×Xk ⊂ Rnk

is CQr by B.; it remains to note that X1+...+Xk is the image of X under the linear mapping

(x1, ..., xk) 7→ x1 + ... + xk : Rnk → Rn,

and by C. the image of a CQr set under an affine mapping is also CQr (see C.)

J.1. inf-convolution. The operation with functions related to the arithmetic summation of sets is the
inf-convolution defined as follows. Let fi : Rn → R∪{∞}, i = 1, ..., n, be functions. Their inf-convolution
is the function

f(x) = inf{f1(x1) + ... + fk(xk) : x1 + ... + xk = x}. (∗)
We claim that

If all fi are CQr, their inf-convolution is > −∞ everywhere and for every x for which the
inf in the right hand side of (*) is finite, this infimum is achieved, then f is CQr.

Indeed, under the assumption in question the epigraph Epi{f} = Epi{f1}+ ... + Epi{fk}.

K. Taking conic hull of a convex set. Let X ∈ Rn be a nonempty convex set. Its conic hull is the set

X+ = {(x, t) ∈ Rn ×R : t > 0, t−1x ∈ X}.

Geometrically: we add to the coordinates of vectors from Rn a new coordinate equal to 1:

(x1, ..., xn)T 7→ (x1, ..., xn, 1)T ,

thus getting an affine embedding of Rn in Rn+1. We take the image of X under this mapping – “lift”
X by one along the (n + 1)st axis – and then form the set X+ by taking all (open) rays emanating from
the origin and crossing the “lifted” X.

60 LECTURE 2. CONIC QUADRATIC PROGRAMMING

The conic hull is not closed (e.g., it does not contain the origin, which clearly is in its closure). The
closed convex hull of X is the closure of its conic hull:

X̂+ = cl X+ =
{

(x, t) ∈ Rn ×R : ∃{(xi, ti)}∞i=1 : ti > 0, t−1
i xi ∈ X, t = lim

i
ti, x = lim

i
xi

}
.

Note that if X is a closed convex set, then the conic hull X+ of X is nothing but the intersection of the
closed convex hull X̂+ and the open half-space {t > 0} (check!); thus, the closed conic hull of a closed
convex set X is larger than the conic hull by some part of the hyperplane {τ = 0}. When X is closed
and bounded, then the difference between the hulls is pretty small: X̂+ = X+ ∪ {0} (check!). Note also
that if X is a closed convex set, you can obtain it from its (closed) convex hull by taking intersection
with the hyperplane {t = 1}:

x ∈ X ⇔ (x, 1) ∈ X̂+ ⇔ (x, 1) ∈ X+.

Proposition 2.3.1 (i) If a set X is CQr:

X = {x : ∃u : Ax + Bu + b ≥K 0} , (2.3.4)

where K is a direct product of the ice-cream cones, then the conic hull X+ is CQr as well:

X+ = {(x, t) : ∃(u, s) : Ax + Bu + tb ≥K 0,




2
s− t
s + t


 ≥L3 0}. (2.3.5)

(ii) If the set X given by (2.3.4) is closed, then the CQr set

X̃+ = {(x, t) : ∃u : Ax + Bu + tb ≥K 0}
⋂
{(x, t) : t ≥ 0} (2.3.6)

is “between” the conic hull X+ and the closed conic hull X̂+ of X:

X+ ⊂ X̃+ ⊂ X̂+.

(iii) If the CQR (2.3.4) is such that Bu ∈ K implies that Bu = 0, then X̃+ = X̂+, so that X̂+ is
CQr.

(i): We have
X+ ≡ {(x, t) : t > 0, x/t ∈ X}

= {(x, t) : ∃u : A(x/t) + Bu + b ≥K 0, t > 0}
= {(x, t) : ∃v : Ax + Bv + tb ≥K 0, t > 0}
= {(x, t) : ∃v, s : Ax + Bv + tb ≥K 0, t, s ≥ 0, ts ≥ 1},

and we arrive at (2.3.5).
(ii): We should prove that the set X̃+ (which by construction is CQr) is between X+ and X̂+. The

inclusion X+ ⊂ X̃+ is readily given by (2.3.5). Next, let us prove that X̃+ ⊂ X̂+. Let us choose a point
x̄ ∈ X, so that for a properly chosen ū it holds

Ax̄ + Bū + b ≥K 0,

i.e., (x̄, 1) ∈ X̃+. Since X̃+ is convex (this is true for every CQr set), we conclude that whenever (x, t)
belongs to X̃+, so does every pair (xε = x + εx̄, tε = t + ε) with ε > 0:

∃u = uε : Axε + Buε + tεb ≥K 0.

It follows that t−1
ε xε ∈ X, whence (xε, tε) ∈ X+ ⊂ X̂+. As ε → +0, we have (xε, tε) → (x, t), and since

X̂+ is closed, we get (x, t) ∈ X̂+. Thus, X̃+ ⊂ X̂+.
(ii): Assume that Bu ∈ K only if Bu = 0, and let us show that X̃+ = X̂+. We just have to prove

that X̃+ is closed, which indeed is the case due to the following

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 61

Lemma 2.3.1 Let Y be a CQr set with CQR

Y = {y : ∃v : Py + Qv + r ≥K 0}

such that Qv ∈ K only when Qv = 0. Then
(i) There exists a constant C < ∞ such that

Py + Qv + r ∈ K ⇒ ‖Qv‖2 ≤ C(1 + ‖Py + r‖2); (2.3.7)

(ii) Y is closed.

Proof of Lemma. (i): Assume, on the contrary to what should be proved, that there exists a sequence
{yi, vi} such that

Pyi + Qvi + r ∈ K, ‖Qvi‖2 ≥ αi(1 + ‖Pyi + r‖2), i →∞ as i →∞. (2.3.8)

By Linear Algebra, for every b such that the linear system Qv = b is solvable, it admits a solution v such
that ‖v‖2 ≤ C1‖b‖2 with C1 < ∞ depending on Q only; therefore we can assume, in addition to (2.3.8),
that

‖vi‖2 ≤ C1‖Qvi‖2 (2.3.9)

for all i. Now, from (2.3.8) it clearly follows that

‖Qvi‖2 →∞ as i →∞; (2.3.10)

setting

v̂i =
1

‖Qvi‖2 vi,

we have
(a) ‖Qv̂i‖2 = 1 ∀i,
(b) ‖v̂i‖ ≤ C1 ∀i, [by (2.3.9)]
(c) Qv̂i + ‖Qvi‖−1

2 (Pyi + r) ∈ K ∀i,
(d) ‖Qvi‖−1

2 ‖Pyi + r‖2 ≤ α−1
i → 0 as i →∞ [by (2.3.8)]

Taking into account (b) and passing to a subsequence, we can assume that v̂i → v̂ as i → ∞; by (c, d)
Qv̂ ∈ K, while by (a) ‖Qv̂‖2 = 1, i.e., Qv̂ 6= 0, which is the desired contradiction.

(ii) To prove that Y is closed, assume that yi ∈ Y and yi → y as i → ∞, and let us verify that
y ∈ Y . Indeed, since yi ∈ Y , there exist vi such that Pyi + Qvi + r ∈ K. Same as above, we can assume
that (2.3.9) holds. Since yi → y, the sequence {Qvi} is bounded by (2.3.7), so that the sequence {vi}
is bounded by (2.3.9). Passing to a subsequence, we can assume that vi → v as i → ∞; passing to the
limit, as i →∞, in the inclusion Pyi + Qvi + r ∈ K, we get Py + Qv + r ∈ K, i.e., y ∈ Y .

K.1. “Projective transformation” of a CQr function. The operation with functions related to tak-
ing conic hull of a convex set is the “projective transformation” which converts a function f(x) : Rn →
R ∪ {∞} 4) into the function

f+(x, s) = sf(x/s) : {s > 0} ×Rn → R ∪ {∞}.

The epigraph of f+ is the conic hull of the epigraph of f with the origin excluded:

{(x, s, t) : s > 0, t ≥ f+(x, s)} =
{
(x, s, t) : s > 0, s−1t ≥ f(s−1x)

}
=

{
(x, s, t) : s > 0, s−1(x, t) ∈ Epi{f}} .

The closure cl Epi{f+} is the epigraph of certain function, let it be denoted f̂+(x, s); this function is
called the projective transformation of f . E.g., the fractional-quadratic function from Example 5 is

4) Recall that “a function” for us means a proper function – one which takes a finite value at least at one point

62 LECTURE 2. CONIC QUADRATIC PROGRAMMING

the projective transformation of the function f(x) = xT x. Note that the function f̂+(x, s) does not
necessarily coincide with f+(x, s) even in the open half-space s > 0; this is the case if and only if the
epigraph of f is closed (or, which is the same, f is lower semicontinuous: whenever xi → x and f(xi) → a,
we have f(x) ≤ a). We are about to demonstrate that the projective transformation “nearly” preserves
CQ-representability:

Proposition 2.3.2 Let f : Rn → R ∪ {∞} be a lower semicontinuous function which is CQr:

Epi{f} ≡ {(x, t) : t ≥ f(x)} = {(t, x) : ∃u : Ax + tp + Bu + b ≥K 0} , (2.3.11)

where K is a direct product of ice-cream cones. Assume that the CQR is such that Bu ≥K 0 implies that
Bu = 0. Then the projective transformation f̂+ of f is CQr, namely,

Epi{f̂+} = {(x, t, s) : s ≥ 0,∃u : Ax + tp + Bu + sb ≥K 0} .

Indeed, let us set
G = {(x, t, s) : ∃u : s ≥ 0, Ax + tp + Bu + sb ≥K 0} .

As we remember from the previous combination rule, G is exactly the closed conic hull of the epigraph
of f , i.e., G = Epi{f̂+}.

L. The polar of a convex set. Let X ⊂ Rn be a convex set containing the origin. The polar of X is the
set

X∗ =
{
y ∈ Rn : yT x ≤ 1 ∀x ∈ X

}
.

In particular,

• the polar of the singleton {0} is the entire space;

• the polar of the entire space is the singleton {0};
• the polar of a linear subspace is its orthogonal complement (why?);

• the polar of a closed convex pointed cone K with a nonempty interior is −K∗, minus the dual cone
(why?).

Polarity is “symmetric”: if X is a closed convex set containing the origin, then so is X∗, and twice taken
polar is the original set: (X∗)∗ = X.

We are about to prove that the polarity X 7→ X∗ “nearly” preserves CQ-representability:

Proposition 2.3.3 Let X ⊂ Rn, 0 ∈ X, be a CQr set:

X = {x : ∃u : Ax + Bu + b ≥K 0} , (2.3.12)

where K is a direct product of ice-cream cones.
Assume that there exists x̄, ū such that

Ax̄ + Bū + b >K 0.

Then the polar of X is the CQr set

X∗ =
{
y : ∃ξ : AT ξ + y = 0, BT ξ = 0, bT ξ ≤ 1, ξ ≥K 0

}
(2.3.13)

Indeed, consider the following conic quadratic problem:

min
x,u

{−yT x : Ax + Bu + b ≥K 0
}

. (Py)

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 63

A vector y belongs to X∗ if and only if (Py) is bounded below and its optimal value is at least −1. Since
(Py) is strictly feasible, from the Conic Duality Theorem it follows that these properties of (Py) hold if
and only if the dual problem

−bT ξ → max : AT ξ = −y, BT ξ = 0, ξ ≥K 0

(recall that K is self-dual) has a feasible solution with the value of the dual objective at least -1. Thus,

X∗ =
{
y : ∃ξ : AT ξ + y = 0, BT ξ = 0, bT ξ ≤ 1, ξ ≥K 0

}
,

as claimed in (2.3.13). It remains to note that X∗ is obtained from the CQr set K by operations preserving
CQ-representability: intersection with the CQr set {ξ : BT ξ = 0, bT ξ ≤ 1} and subsequent affine mapping
ξ 7→ −AT ξ.

L.1. The Legendre transformation of a CQr function. The operation with functions related to tak-
ing polar of a convex set is the Legendre (or conjugate) transformation. The Legendre transformation
(≡ the conjugate) of a function f(x) : Rn → R ∪ {∞} is the function

f∗(y) = sup
x

[
yT x− f(x)

]
.

In particular,

• the conjugate of a constant f(x) ≡ c is the function

f∗(y) =
{−c, y = 0

+∞, y 6= 0 ;

• the conjugate of an affine function f(x) ≡ aT x + b is the function

f∗(y) =
{−b, y = a

+∞, y 6= a
;

• the conjugate of a convex quadratic form f(x) ≡ 1
2xT DT Dx + bT x + c with rectangular D such

that Null(DT) = {0} is the function

f∗(y) =
{

1
2 (y − b)T DT (DDT)−2D(y − b)− c, y − b ∈ ImDT

+∞, otherwise
;

It is worth mentioning that the Legendre transformation is symmetric: if f is a proper convex lower
semicontinuous function (i.e., ∅ 6= Epi{f} is convex and closed), then so is f∗, and taken twice, the
Legendre transformation recovers the original function: (f∗)∗ = f .

We are about to prove that the Legendre transformation “nearly” preserves CQ-representability:

Proposition 2.3.4 Let f : Rn → R ∪ {∞} be CQr:

{(x, t) : t ≥ f(x)} = {(t, x) : ∃u : Ax + tp + Bu + b ≥K 0} ,

where K is a direct product of ice-cream cones. Assume that there exist x̄, t̄, ū such that

Ax̄ + t̄p + Bū + b >K 0.

Then the Legendre transformation of f is CQr:

Epi{f∗} =
{
(y, s) : ∃ξ : AT ξ = −y,BT ξ = 0, pT ξ = 1, s ≥ bT ξ, ξ ≥K 0

}
. (2.3.14)

64 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Indeed, we have

Epi{f∗} =
{
(y, s) : yT x− f(x) ≤ s ∀x}

=
{
(y, s) : yT x− t ≤ s ∀(x, t) ∈ Epi{f}} . (2.3.15)

Consider the conic quadratic program

min
x,t,u

{−yT x + t : Ax + tp + Bu + b ≥ K0

}
. (Py)

By (2.3.15), a pair (y, s) belongs to Epi{f∗} if and only if (Py) is bounded below with optimal value
≥ −s. Since (Py) is strictly feasible, this is the case if and only if the dual problem

max
ξ

{−bT ξ : AT ξ = −y, BT ξ = 0, pT ξ = 1, ξ ≥K 0
}

has a feasible solution with the value of the dual objective ≥ −s. Thus,

Epi{f∗} =
{
(y, s) : ∃ξ : AT ξ = −y, BT ξ = 0, pT ξ = 1, s ≥ bT ξ, ξ ≥K 0

}

as claimed in (2.3.14). It remains to note that the right hand side set in (2.3.14) is CQr (as a set
obtained from the CQr set K×Rs by operations preserving CQ-representability – intersection with the
set {ξ : BT ξ = 0, pT ξ = 1, bT ξ ≤ s} and subsequent affine mapping ξ 7→ −AT ξ).

Corollary 2.3.6 The support function

SuppX(x) = sup
y∈X

xT y

of a nonempty CQr set X is CQr.

Indeed, SuppX(·) is the conjugate of the characteristic function of X, and it remains to refer to Corollary
2.3.4.

M. Taking convex hull of several sets. The convex hull of a set Y ⊂ Rn is the smallest convex set which
contains Y :

Conv(Y) =

{
x =

kx∑

i=1

αixi : xi ∈ Y, αi ≥ 0,
∑

i

αi = 1

}

The closed convex hull Conv(Y) = cl Conv(Y) of Y is the smallest closed convex set containing Y .
Following Yu. Nesterov, let us prove that taking convex hull “nearly” preserves CQ-representability:

Proposition 2.3.5 Let X1, ..., Xk ⊂ Rn be closed convex CQr sets:

Xi = {x : Aix + Biui + bi ≥Ki 0, i = 1, ..., k}, (2.3.16)

where Ki is a direct product of ice-cream cones.
Then the CQr set

Y =
{
x : ∃ξ1, ..., ξk, t1, ..., tk, η1, ..., ηk :



A1ξ
1 + B1η

1 + t1b1

A2ξ
2 + B2η

2 + t2b2

...
Akξk + Bkηk + tkbk


 ≥K 0,

t1, ..., tk ≥ 0,
ξ1 + ... + ξk = x
t1 + ... + tk = 1

}
,

K = K1 × ...×Kk

(2.3.17)

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 65

is between the convex hull and the closed convex hull of the set X1 ∪ ... ∪Xk:

Conv(
k⋃

i=1

Xi) ⊂ Y ⊂ Conv(
k⋃

i=1

Xi).

If, in addition to CQ-representability,
(i) all Xi are bounded,

or
(ii) Xi = Zi + W , where Zi are closed and bounded sets and W is a convex closed set,

then

Conv(
k⋃

i=1

Xi) = Y = Conv(
k⋃

i=1

Xi)

is CQr.

First, the set Y clearly contains Conv(
k⋃

i=1

Xi). Indeed, since the sets Xi are convex, the convex hull of

their union is {
x =

k∑

i=1

tix
i : xi ∈ Xi, ti ≥ 0,

k∑

i=1

ti = 1

}

(why?); for a point

x =
k∑

i=1

tix
i

[
xi ∈ Xi, ti ≥ 0,

k∑

i=1

ti = 1

]
,

there exist ui, i = 1, ..., k, such that

Aix
i + Biu

i + bi ≥Ki 0.

We get
x = (t1x1) + ... + (tkxk)

= ξ1 + ... + ξk,
[ξi = tix

i];
t1, ..., tk ≥ 0;

t1 + ... + tk = 1;
Aiξ

i + Biη
i + tibi ≥Ki 0, i = 1, ..., k,

[ηi = tiu
i],

(2.3.18)

so that x ∈ Y (see the definition of Y).

To complete the proof that Y is between the convex hull and the closed convex hull of
k⋃

i=1

Xi, it

remains to verify that if x ∈ Y then x is contained in the closed convex hull of
k⋃

i=1

Xi. Let us somehow

choose x̄i ∈ Xi; for properly chosen ūi we have

Aix̄
i + Biū

i + bi ≥Ki 0, i = 1, ..., k. (2.3.19)

Since x ∈ Y , there exist ti, ξ
i, ηi satisfying the relations

x = ξ1 + ... + ξk,
t1, ..., tk ≥ 0,

t1 + ... + tk = 1,
Aiξ

i + Biη
i + tibi ≥Ki 0, i = 1, ..., k.

(2.3.20)

66 LECTURE 2. CONIC QUADRATIC PROGRAMMING

In view of the latter relations and (2.3.19), we have for 0 < ε < 1:

Ai[(1− ε)ξi + εk−1x̄i] + Bi[(1− ε)ηi + εk−1ūi] + [(1− ε)ti + εk−1]bi ≥Ki 0;

setting
ti,ε = (1− ε)ti + εk−1;
xi

ε = t−1
i,ε

[
(1− ε)ξi + εk−1x̄i

]
;

ui
ε = t−1

i,ε

[
(1− ε)ηi + εk−1ūi

]
,

we get
Aix

i
ε + Biu

i
ε + bi ≥Ki

0 ⇒
xi

ε ∈ Xi,
t1,ε, ..., tk,ε ≥ 0,

t1,ε + ... + tk,ε = 1
⇒
xε ≡

k∑
i=1

ti,εx
i
ε

∈ Conv(
k⋃

i=1

Xi).

On the other hand, we have by construction

xε =
k∑

i=1

[
(1− ε)ξi + εk−1x̄i

] → x =
k∑

i=1

ξi as ε → +0,

so that x belongs to the closed convex hull of
k⋃

i=1

Xi, as claimed.

It remains to verify that in the cases of (i), (ii) the convex hull of
k⋃

i=1

Xi is the same as the closed

convex hull of this union. (i) is a particular case of (ii) corresponding to W = {0}, so that it suffices to
prove (ii). Assume that

xt =
k∑

i=1

µti[zti + pti] → x as i →∞
[
zti ∈ Zi, pti ∈ W,µti ≥ 0,

∑
i

µti = 1
]

and let us prove that x belongs to the convex hull of the union of Xi. Indeed, since Zi are closed and
bounded, passing to a subsequence, we may assume that

zti → zi ∈ Zi and µti → µi as t →∞.

It follows that the vectors

pt =
m∑

i=1

µtipti = xt −
k∑

i=1

µtizti

converge as t →∞ to some vector p, and since W is closed and convex, p ∈ W . We now have

x = lim
i→∞

[
k∑

i=1

µtizti + pt

]
=

k∑

i=1

µizi + p =
k∑

i=1

µi[zi + p],

so that x belongs to the convex hull of the union of Xi (as a convex combination of points zi + p ∈ Xi).

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 67

P. The recessive cone of a CQr set. Let X be a closed convex set. The recessive cone Rec(X) of X is
the set

Rec(X) = {h : x + th ∈ X ∀(x ∈ X, t ≥ 0)}.
It can be easily verified that Rec(X) is a closed cone, and that

Rec(X) = {h : x̄ + th ∈ X ∀t ≥ 0} ∀x̄ ∈ X,

i.e., that Rec(X) is the set of all directions h such that the ray emanating from a point of X and directed
by h is contained in X.

Proposition 2.3.6 Let X be a nonempty CQr set with CQR

X = {x ∈ Rn : ∃u : Ax + Bu + b ≥K 0},
where K is a direct product of ice-cream cones, and let the CQR be such that Bu ∈ K only if Bu = 0.
Then X is closed, and the recessive cone of X is CQr:

Rec(X) = {h : ∃v : Ah + Bv ≥K 0}. (2.3.21)

Proof. The fact that X is closed is given by Lemma 2.3.1. In order to prove (2.3.21), let us temporary
denote by R the set in the left hand side of this relation; we should prove that R = Rec(X). The inclusion
R ⊂ Rec(X) is evident. To prove the inverse inclusion, let x̄ ∈ X and h ∈ Rec(X), so that for every
i = 1, 2, ... there exists ui such that

A(x̄ + ih) + Bui + b ∈ K. (2.3.22)

By Lemma 2.3.1,
‖Bui‖2 ≤ C(1 + ‖A(x̄ + ih) + b‖2) (2.3.23)

for certain C < ∞ and all i. Besides this, we can assume w.l.o.g. that

‖ui‖2 ≤ C1‖Bui‖2 (2.3.24)

(cf. the proof of Lemma 2.3.1). By (2.3.23) – (2.3.24), the sequence {vi = i−1ui} is bounded; passing to
a subsequence, we can assume that vi → v as i →∞. By (2.3.22, we have for all i

i−1A(x̄ + ih) + Bvi + i−1b ∈ K,

whence, passing to limit as i →∞, Ah + Bv ∈ K. Thus, h ∈ R.

O. Theorem on superposition. Let f` : Rm → R ∪ {+∞}, ` = 1, ...,m be CQr functions:

t ≥ f`(x) ⇔ ∃u` : A`(x, t, u`) ºK`
0,

where K` is a direct product of ice-cream cones, and let

f : Rm → R ∪ {+∞}
be CQr:

t ≥ f(y) ⇔ ∃v : A(y, t, v) ºK 0,

where K is a direct product of ice-cream cones.
Assume that f is monotone with respect to the usual partial ordering of Rm:

y′ ≥ y′′ ⇒ f(y′) ≥ f(y′′),

and that the superposition

g(x) =
{

f(f1(x), ..., fm(x)) f`(x) < ∞, ` = 1, ..., m
+∞ otherwise

is a proper function (i.e., it is finite at least at one point).

68 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Theorem 2.3.1 Under the above setting, the superposition g is CQr with CQR

t ≥ g(x) ⇔ ∃t1, ..., tm, u1, ..., um, v :
{

A`(x, t`, u
`) ºK`

0, ` = 1, ...,m
A(t1, ..., tm, t, v) ºK 0 (2.3.25)

Proof of this simple statement is left to the reader.

Remark 2.3.1 If part of the “inner” functions, say, f1, ..., fk, are affine, it suffices to require the mono-
tonicity of the “outer” function f with respect to the variables yk+1, ..., ym only. A CQR for the super-
position in this case becomes

t ≥ g(x) ⇔ ∃tk+1, ..., tm, uk+1, ..., um, v :
{

A`(x, t`, u
`) ºK`

0, ` = k + 1, ..., m
A(f1(x), f2(x), ..., fk(x), tk+1, tk+2, ..., tm, t, v) ºK 0

(2.3.26)

2.3.1 More examples of CQ-representable functions/sets

We are sufficiently equipped to build the dictionary of CQ-representable functions/sets. Having
built already the “elementary” part of the dictionary, we can add now a more “advanced” part.

7. Convex quadratic form g(x) = xT Qx + qT x + r (Q is a positive semidefinite symmetric
matrix) is CQr.
Indeed, Q is positive semidefinite symmetric and therefore can be decomposed as Q = DT D, so that
g(x) = ‖Dx‖22 + qT x + r. We see that g is obtained from our “raw materials” – the squared Euclidean
norm and an affine function – by affine substitution of argument and addition.

Here is an explicit CQR of g:

{(x, t) : xT DT Dx + qT x + r ≤ t} = {(x, t) :
∣∣∣∣
∣∣∣∣

Dx
t+qT x+r

2

∣∣∣∣
∣∣∣∣
2

≤ t− qT x− r

2
} (2.3.27)

8. The cone K = {(x, σ1, σ2) ∈ Rn ×R×R : σ1, σ2 ≥ 0, σ1σ2 ≥ xT x} is CQr.
Indeed, the set is just the epigraph of the fractional-quadratic function xT x/s, see Example 5; we simply
write σ1 instead of s and σ2 instead of t.

Here is an explicit CQR for the set:

K = {(x, σ1, σ2) :
∣∣∣∣
∣∣∣∣
(

x
σ1−σ2

2

)∣∣∣∣
∣∣∣∣
2

≤ σ1 + σ2

2
} (2.3.28)

Surprisingly, our set is just the ice-cream cone, more precisely, its inverse image under the one-to-one
linear mapping 


x
σ1

σ2


 7→




x
σ1−σ2

2
σ1+σ2

2


 .

9. The “half-cone” K2
+ = {(x1, x2, t) ∈ R3 : x1, x2 ≥ 0, 0 ≤ t ≤ √

x1x2} is CQr.
Indeed, our set is the intersection of the cone {t2 ≤ x1x2, x1, x2 ≥ 0} from the previous example and the
half-space t ≥ 0.

Here is the explicit CQR of K+:

K+ = {(x1, x2, t) : t ≥ 0,

∣∣∣∣
∣∣∣∣
(

t
x1−x2

2

)∣∣∣∣
∣∣∣∣
2

≤ x1 + x2

2
}. (2.3.29)

2.3. WHAT CAN BE EXPRESSED VIA CONIC QUADRATIC CONSTRAINTS? 69

10. The hypograph of the geometric mean – the set K2 = {(x1, x2, t) ∈ R3 : x1, x2 ≥ 0, t ≤ √
x1x2} –

is CQr.
Note the difference with the previous example – here t is not required to be nonnegative!

Here is the explicit CQR for K2 (cf. Example 9):

K2 =
{

(x1, x2, t) : ∃τ : t ≤ τ ; τ ≥ 0,

∣∣∣∣
∣∣∣∣
(

τ
x1−x2

2

)∣∣∣∣
∣∣∣∣
2

≤ x1 + x2

2

}
.

11. The hypograph of the geometric mean of 2l variables – the set K2l

= {(x1, ..., x2l , t) ∈ R2l+1 :
xi ≥ 0, i = 1, ..., 2l, t ≤ (x1x2...x2l)1/2l} – is CQr. To see it and to get its CQR, it suffices to iterate the
construction of Example 10. Indeed, let us add to our initial variables a number of additional x-variables:

– let us call our 2l original x-variables the variables of level 0 and write x0,i instead of xi. Let us add
one new variable of level 1 per every two variables of level 0. Thus, we add 2l−1 variables x1,i of level 1.

– similarly, let us add one new variable of level 2 per every two variables of level 1, thus adding 2l−2

variables x2,i; then we add one new variable of level 3 per every two variables of level 2, and so on, until
level l with a single variable xl,1 is built.

Now let us look at the following system S of constraints:

layer 1: x1,i ≤ √
x0,2i−1x0,2i, x1,i, x0,2i−1, x0,2i ≥ 0, i = 1, ..., 2l−1

layer 2: x2,i ≤ √
x1,2i−1x1,2i, x2,i, x1,2i−1, x1,2i ≥ 0, i = 1, ..., 2l−2

.................
layer l: xl,1 ≤ √

xl−1,1xl−1,2, xl,1, xl−1,1, xl−1,2 ≥ 0
(∗) t ≤ xl,1

The inequalities of the first layer say that the variables of the zero and the first level should be nonnegative
and every one of the variables of the first level should be ≤ the geometric mean of the corresponding pair
of our original x-variables. The inequalities of the second layer add the requirement that the variables
of the second level should be nonnegative, and every one of them should be ≤ the geometric mean of
the corresponding pair of the first level variables, etc. It is clear that if all these inequalities and (*)
are satisfied, then t is ≤ the geometric mean of x1, ..., x2l . Vice versa, given nonnegative x1, ..., x2l and
a real t which is ≤ the geometric mean of x1, ..., x2l , we always can extend these data to a solution of
S. In other words, K2l

is the projection of the solution set of S onto the plane of our original variables
x1, ..., x2l , t. It remains to note that the set of solutions of S is CQr (as the intersection of CQr sets
{(v, p, q, r) ∈ RN ×R3

+ : r ≤ √
qp}, see Example 9), so that its projection is also CQr. To get a CQR of

K2l

, it suffices to replace the inequalities in S with their conic quadratic equivalents, explicitly given in
Example 9.

12. The convex increasing power function x
p/q
+ of rational degree p/q ≥ 1 is CQr.

Indeed, given positive integers p, q, p > q, let us choose the smallest integer l such that p ≤ 2l, and
consider the CQr set

K2l

= {(y1, ..., y2l , s) ∈ R2l+1
+ : s ≤ (y1y2...y2l)1/2l}. (2.3.30)

Setting r = 2l − p, consider the following affine parameterization of the variables from R2l+1 by two
variables ξ, t:

– s and r first variables yi are all equal to ξ (note that we still have 2l− r = p ≥ q “unused” variables
yi);

– q next variables yi are all equal to t;
– the remaining yi’s, if any, are all equal to 1.
The inverse image of K2l

under this mapping is CQr and it is the set

K = {(ξ, t) ∈ R2
+ : ξ1−r/2l ≤ tq/2l} = {(ξ, t) ∈ R2

+ : t ≥ ξp/q}.

70 LECTURE 2. CONIC QUADRATIC PROGRAMMING

It remains to note that the epigraph of x
p/q
+ can be obtained from the CQr set K by operations preserving

the CQr property. Specifically, the set L = {(x, ξ, t) ∈ R3 : ξ ≥ 0, ξ ≥ x, t ≥ ξp/q} is the intersection
of K × R and the half-space {(x, ξ, t) : ξ ≥ x} and thus is CQr along with K, and Epi{xp/q

+ } is the
projection of the CQr set L on the plane of x, t-variables.

13. The decreasing power function g(x) =
{

x−p/q, x > 0
+∞, x ≤ 0

(p, q are positive integers) is CQr.

Same as in Example 12, we choose the smallest integer l such that 2l ≥ p + q, consider the CQr set
(2.3.30) and parameterize affinely the variables yi, s by two variables (x, t) as follows:

– s and the first (2l − p− q) yi’s are all equal to one;
– p of the remaining yi’s are all equal to x, and the q last of yi’s are all equal to t.
It is immediately seen that the inverse image of K2l

under the indicated affine mapping is the epigraph
of g.

14. The even power function g(x) = x2p on the axis (p positive integer) is CQr.
Indeed, we already know that the sets P = {(x, ξ, t) ∈ R3 : x2 ≤ ξ} and K ′ = {(x, ξ, t) ∈ R3 : 0 ≤ ξ, ξp ≤
t} are CQr (both sets are direct products of R and the sets with already known to us CQR’s). It remains
to note that the epigraph of g is the projection of P ∩Q onto the (x, t)-plane.

Example 14 along with our combination rules allows to build a CQR for a polynomial p(x) of the
form

p(x) =
L∑

l=1

plx
2l, x ∈ R,

with nonnegative coefficients.

15. The concave monomial xπ1
1 ...xπn

n . Let π1 = p1

p , ..., πn = pn

p be positive rational numbers
with π1 + ... + πn ≤ 1. The function

f(x) = −xπ1
1 ...xπn

n : Rn
+ → R

is CQr.
The construction is similar to the one of Example 12. Let l be such that 2l ≥ p. We recall that the set

Y = {(y1, ..., y2l , s) : y1, ..., y2l , s) : y1, ..., y2l ≥ 0, 0 ≤ s ≤ (y1..., y2l)1/2l}

is CQr, and therefore so is its inverse image under the affine mapping

(x1, ..., xn, s) 7→ (x1, ..., x1︸ ︷︷ ︸
p1

, x2, ..., x2︸ ︷︷ ︸
p2

, ..., xn, ..., xn︸ ︷︷ ︸
pn

, s, ..., s︸ ︷︷ ︸
2l−p

, 1, ..., 1︸ ︷︷ ︸
p−p1−...−pn

, s),

i.e., the set
Z = {(x1, ..., xn, s) : x1, ..., xn ≥ 0, 0 ≤ s ≤ (xp1

1 ...xpn
n s2l−p)1/2l}

= {(x1, ..., xn, s) : x1, ..., xn ≥ 0, 0 ≤ s ≤ x
p1/p
1 ...x

pn/p
n }.

Since the set Z is CQr, so is the set

Z ′ = {(x1, ..., xn, t, s) : x1, ..., xn ≥ 0, s ≥ 0, 0 ≤ s− t ≤ xπ1
1 ...xπn

n },

which is the intersection of the half-space {s ≥ 0} and the inverse image of Z under the affine mapping
(x1, ..., xn, t, s) 7→ (x1, ..., xn, s− t). It remains to note that the epigraph of f is the projection of Z ′ onto
the plane of the variables x1, ..., xn, t.

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 71

16. The convex monomial x−π1
1 ...x−πn

n . Let π1, ..., πn be positive rational numbers. The func-
tion

f(x) = x−π1
1 ...x−πn

n : {x ∈ Rn : x > 0} → R

is CQr.
The verification is completely similar to the one in Example 15.

17. The p-norm ‖x‖p =
(

n∑
i=1

|xi|p
)1/p

: Rn → R (p ≥ 1 is a rational number). We claim that

the function ‖x‖p is CQr.

It is immediately seen that

‖x‖p ≤ t ⇔ t ≥ 0 & ∃v1, ..., vn ≥ 0 : |xi| ≤ t(p−1)/pv
1/p
i , i = 1, ..., n,

n∑

i=1

vi ≤ t. (2.3.31)

Indeed, if the indicated vi exist, then
n∑

i=1

|xi|p ≤ tp−1
n∑

i=1

vi ≤ tp, i.e., ‖x‖p ≤ t. Vice versa,

assume that ‖x‖p ≤ t. If t = 0, then x = 0, and the right hand side relations in (2.3.31)
are satisfied for vi = 0, i = 1, ..., n. If t > 0, we can satisfy these relations by setting
vi = |xi|pt1−p.

(2.3.31) says that the epigraph of ‖x‖p is the projection onto the (x, t)-plane of the set of
solutions to the system of inequalities

t ≥ 0
vi ≥ 0, i = 1, ..., n

xi ≤ t(p−1)/pv
1/p
i , i = 1, ..., n

−xi ≤ t(p−1)/pv
1/p
i , i = 1, ..., n

v1 + ... + vn ≤ t

Each of these inequalities defines a CQr set (in particular, for the nonlinear inequalities this
is due to Example 15). Thus, the solution set of the system is CQr (as an intersection of
finitely many CQr sets), whence its projection on the (x, t)-plane – i.e., the epigraph of ‖x‖p

– is CQr.

17b. The function ‖x+‖p =
(

n∑
i=1

maxp[xi, 0]
)1/p

: Rn → R (p ≥ 1 a rational number) is

CQr.

Indeed,
t ≥ ‖x+‖p ⇔ ∃y1, ..., yn : 0 ≤ yi, xi ≤ yi, i = 1, ..., n, ‖y‖p ≤ t.

Thus, the epigraph of ‖x+‖p is a projection of the CQr set (see Example 17) given by the
system of inequalities in the right hand side.

From the above examples it is seen that the “expressive abilities” of c.q.i.’s are indeed strong:
they allow to handle a wide variety of very different functions and sets.

2.4 More applications: Robust Linear Programming

Equipped with abilities to treat a wide variety of CQr functions and sets, we can consider now
an important generic application of Conic Quadratic Programming, specifically, in the Robust
Linear Programming.

72 LECTURE 2. CONIC QUADRATIC PROGRAMMING

2.4.1 Robust Linear Programming: the paradigm

Consider an LP program
min

x

{
cT x : Ax− b ≥ 0

}
. (LP)

In real world applications, the data c, A, b of (LP) is not always known exactly; what is typically
known is a domain U in the space of data – an “uncertainty set” – which for sure contains the
“actual” (unknown) data. There are cases in reality where, in spite of this data uncertainty,
our decision x must satisfy the “actual” constraints, whether we know them or not. Assume,
e.g., that (LP) is a model of a technological process in Chemical Industry, so that entries of
x represent the amounts of different kinds of materials participating in the process. Typically
the process includes a number of decomposition-recombination stages. A model of this problem
must take care of natural balance restrictions: the amount of every material to be used at a
particular stage cannot exceed the amount of the same material yielded by the preceding stages.
In a meaningful production plan, these balance inequalities must be satisfied even though they
involve coefficients affected by unavoidable uncertainty of the exact contents of the raw materials,
of time-varying parameters of the technological devices, etc.

If indeed all we know about the data is that they belong to a given set U , but we still have
to satisfy the actual constraints, the only way to meet the requirements is to restrict ourselves
to robust feasible candidate solutions – those satisfying all possible realizations of the uncertain
constraints, i.e., vectors x such that

Ax− b ≥ 0 ∀[A; b] such that ∃c : (c, A, b) ∈ U . (2.4.1)

In order to choose among these robust feasible solutions the best possible, we should decide how
to “aggregate” the various realizations of the objective into a single “quality characteristic”. To
be methodologically consistent, we use the same worst-case-oriented approach and take as an
objective function f(x) the maximum, over all possible realizations of the objective cT x:

f(x) = sup{cT x | c : ∃[A; b] : (c, A, b) ∈ U}.

With this methodology, we can associate with our uncertain LP program (i.e., with the family

LP(U) =
{

min
x:Ax≥b

cT x|(c, A, b) ∈ U
}

of all usual (“certain”) LP programs with the data belonging to U) its robust counterpart. In
the latter problem we are seeking for a robust feasible solution with the smallest possible value
of the “guaranteed objective” f(x). In other words, the robust counterpart of LP(U) is the
optimization problem

min
t,x

{
t : cT x ≤ t, Ax− b ≥ 0 ∀(c, A, b) ∈ U

}
. (R)

Note that (R) is a usual – “certain” – optimization problem, but typically it is not an LP
program: the structure of (R) depends on the geometry of the uncertainty set U and can be
very complicated.

As we shall see in a while, in many cases it is reasonable to specify the uncertainty set
U as an ellipsoid – the image of the unit Euclidean ball under an affine mapping – or, more
generally, as a CQr set. As we shall see in a while, in this case the robust counterpart of an
uncertain LP problem is (equivalent to) an explicit conic quadratic program. Thus, Robust

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 73

Linear Programming with CQr uncertainty sets can be viewed as a “generic source” of conic
quadratic problems.

Let us look at the robust counterpart of an uncertain LP program
{
min

x

{
cT x : aT

i x− bi ≥ 0, i = 1, ..., m
}
|(c, A, b) ∈ U

}

in the case of a “simple” ellipsoidal uncertainty – one where the data (ai, bi) of i-th inequality
constraint

aT
i x− bi ≥ 0,

and the objective c are allowed to run independently of each other through respective ellipsoids
Ei, E. Thus, we assume that the uncertainty set is

U =
{

(a1, b1; ...; am, bm; c) : ∃({ui, u
T
i ui ≤ 1}m

i=0) : c = c∗ + P0u0,

(
ai

bi

)
=

(
a∗i
b∗i

)
+ Piu

i, i = 1, ..., m

}
,

where c∗, a∗i , b
∗
i are the “nominal data” and Piui, i = 0, 1, ..., m, represent the data perturbations;

the restrictions uT
i ui ≤ 1 enforce these perturbations to vary in ellipsoids.

In order to realize that the robust counterpart of our uncertain LP problem is a conic
quadratic program, note that x is robust feasible if and only if for every i = 1, ...,m we have

0 ≤ min
ui:uT

i ui≤1

[
aT

i [u]x− bi[u] :
(

ai[u]
bi[u]

)
=

(
a∗i
b∗i

)
+ Piui

]

= (a∗i x)T x− b∗i + min
ui:uT

i ui≤1
uT

i P T
i

(
x
−1

)

= (a∗i)
T x− b∗i −

∣∣∣∣
∣∣∣∣P T

i

(
x
−1

)∣∣∣∣
∣∣∣∣
2

Thus, x is robust feasible if and only if it satisfies the system of c.q.i.’s
∣∣∣∣
∣∣∣∣P T

i

(
x
−1

)∣∣∣∣
∣∣∣∣
2

≤ [a∗i]
T x− b∗i , i = 1, ..., m.

Similarly, a pair (x, t) satisfies all realizations of the inequality cT x ≤ t “allowed” by our ellip-
soidal uncertainty set U if and only if

cT
∗ x + ‖P T

0 x‖2 ≤ t.

Thus, the robust counterpart (R) becomes the conic quadratic program

min
x,t

{
t : ‖P T

0 x‖2 ≤ −cT
∗ x + t;

∣∣∣∣
∣∣∣∣P T

i

(
x
−1

)∣∣∣∣
∣∣∣∣
2

≤ [a∗i]
T x− b∗i , i = 1, ..., m

}
(RLP)

2.4.2 Robust Linear Programming: examples

Example 1: Robust synthesis of antenna array. Consider a monochromatic transmitting
antenna placed at the origin. Physics says that

1. The directional distribution of energy sent by the antenna can be described in terms of
antenna’s diagram which is a complex-valued function D(δ) of a 3D direction δ. The
directional distribution of energy sent by the antenna is proportional to |D(δ)|2.

74 LECTURE 2. CONIC QUADRATIC PROGRAMMING

2. When the antenna is comprised of several antenna elements with diagrams D1(δ),..., Dk(δ),
the diagram of the antenna is just the sum of the diagrams of the elements.

In a typical Antenna Design problem, we are given several antenna elements with diagrams
D1(δ),...,Dk(δ) and are allowed to multiply these diagrams by complex weights xi (which in
reality corresponds to modifying the output powers and shifting the phases of the elements). As
a result, we can obtain, as a diagram of the array, any function of the form

D(δ) =
k∑

i=1

xiDi(δ),

and our goal is to find the weights xi which result in a diagram as close as possible, in a prescribed
sense, to a given “target diagram” D∗(δ).

Consider an example of a planar antenna comprised of a central circle and 9 concentric
rings of the same area as the circle (Fig. 2.1.(a)) in the XY -plane (“Earth’s surface”). Let the
wavelength be λ = 50cm, and the outer radius of the outer ring be 1 m (twice the wavelength).

One can easily see that the diagram of a ring {a ≤ r ≤ b} in the plane XY (r is the distance
from a point to the origin) as a function of a 3-dimensional direction δ depends on the altitude
(the angle θ between the direction and the plane) only. The resulting function of θ turns out to
be real-valued, and its analytic expression is

Da,b(θ) =
1
2

b∫

a




2π∫

0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ


 dr.

Fig. 2.1.(b) represents the diagrams of our 10 rings for λ = 50cm.
Assume that our goal is to design an array with a real-valued diagram which should be axial

symmetric with respect to the Z-axis and should be “concentrated” in the cone π/2 ≥ θ ≥
π/2 − π/12. In other words, our target diagram is a real-valued function D∗(θ) of the altitude
θ with D∗(θ) = 0 for 0 ≤ θ ≤ π/2 − π/12 and D∗(θ) somehow approaching 1 as θ approaches
π/2. The target diagram D∗(θ) used in this example is given in Fig. 2.1.(c) (the dashed curve).

Finally, let us measure the discrepancy between a synthesized diagram and the target one
by the Tschebyshev distance, taken along the equidistant 120-point grid of altitudes, i.e., by the
quantity

τ = max
`=1,...,120

∣∣∣∣∣∣∣∣
D∗(θ`)−

10∑

j=1

xj Drj−1,rj (θ`)︸ ︷︷ ︸
Dj(θ`)

∣∣∣∣∣∣∣∣
, θ` =

`π

240
.

Our design problem is simplified considerably by the fact that the diagrams of our “building
blocks” and the target diagram are real-valued; thus, we need no complex numbers, and the
problem we should finally solve is

min
τ∈R,x∈R10



τ : −τ ≤ D∗(θ`)−

10∑

j=1

xjDj(θ`) ≤ τ, ` = 1, ..., 120



 . (Nom)

This is a simple LP program; its optimal solution x∗ results in the diagram depicted at Fig.
2.1.(c). The uniform distance between the actual and the target diagrams is ≈ 0.0621 (recall
that the target diagram varies from 0 to 1).

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 75

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b) (c)
Figure 2.1. Synthesis of antennae array

(a): 10 array elements of equal areas in the XY -plane
the outer radius of the largest ring is 1m, the wavelength is 50cm

(b): “building blocks” – the diagrams of the rings as functions of the altitude angle θ
(c): the target diagram (dashed) and the synthesied diagram (solid)

Now recall that our design variables are characteristics of certain physical devices. In reality,
of course, we cannot tune the devices to have precisely the optimal characteristics x∗j ; the best
we may hope for is that the actual characteristics xfct

j will coincide with the desired values x∗j
within a small margin, say, 0.1% (this is a fairly high accuracy for a physical device):

xfct
j = pjx

∗
j , 0.999 ≤ pj ≤ 1.001.

It is natural to assume that the factors pj are random with the mean value equal to 1; it is
perhaps not a great sin to assume that these factors are independent of each other.

Since the actual weights differ from their desired values x∗j , the actual (random) diagram of
our array of antennae will differ from the “nominal” one we see on Fig.2.1.(c). How large could
be the difference? Look at the picture:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−8

−6

−4

−2

0

2

4

6

8

“Dream and reality”: the nominal (left, solid) and an actual (right, solid) diagrams
[dashed: the target diagram]

The diagram shown to the right is not even the worst case: we just have taken as pj a sample
of 10 independent numbers distributed uniformly in [0.999, 1.001] and have plotted the diagram
corresponding to xj = pjx

∗
j . Pay attention not only to the shape (completely opposite to what

we need), but also to the scale: the target diagram varies from 0 to 1, and the nominal diagram
(the one corresponding to the exact optimal xj) differs from the target by no more than by
0.0621 (this is the optimal value in the “nominal” problem (Nom)). The actual diagram varies
from ≈ −8 to ≈ 8, and its uniform distance from the target is 7.79 (125 times the nominal
optimal value!). We see that our nominal optimal design is completely meaningless: it looks as
if we were trying to get the worse possible result, not the best possible one...

76 LECTURE 2. CONIC QUADRATIC PROGRAMMING

How could we get something better? Let us try to apply the Robust Counterpart approach.
To this end we take into account from the very beginning that if we want the amplification
coefficients to be certain xj , then the actual amplification coefficients will be xfct

j = pjxj , 0.999 ≤
pj ≤ 1.001, and the actual discrepancies will be

δ`(x) = D∗(θ`)−
10∑

j=1

pjxjDj(θ`).

Thus, we in fact are solving an uncertain LP problem where the uncertainty affects the coeffi-
cients of the constraint matrix (those corresponding to the variables xj): these coefficients may
vary within 0.1% margin of their nominal values.

In order to apply to our uncertain LP program the Robust Counterpart approach, we should
specify the uncertainty set U . The most straightforward way is to say that our uncertainty is “an
interval” one – every uncertain coefficient in a given inequality constraint may (independently
of all other coefficients) vary through its own uncertainty segment “nominal value ±0.1%”. This
approach, however, is too conservative: we have completely ignored the fact that our pj ’s are of
stochastic nature and are independent of each other, so that it is highly improbable that all of
them will simultaneously fluctuate in “dangerous” directions. In order to utilize the statistical
independence of perturbations, let us look what happens with a particular inequality

−τ ≤ δ`(x) ≡ D∗(θ`)−
10∑

j=1

pjxjDj(θ`) ≤ τ (2.4.2)

when pj ’s are random. For a fixed x, the quantity δ`(x) is a random variable with the mean

δ∗` (x) = D∗(θ`)−
10∑

j=1

xjDj(θ`)

and the standard deviation

σ`(x) =
√

E{(δ`(x)− δ∗` (x))2} =

√
10∑

j=1
x2

jD
2
j (θ`)E{(pj − 1)2} ≤ κν`(x),

ν`(x) =

√
10∑

j=1
x2

jD
2
j (θ`), κ = 0.001.

Thus, “a typical value” of δ`(x) differs from δ∗` (x) by a quantity of order of σ`(x). Now let
us act as an engineer which believes that a random variable differs from its mean by at most
three times its standard deviation; since we are not obliged to be that concrete, let us choose
a “safety parameter” ω and ignore all events which result in |δ`(x) − δ∗` (x)| > ων`(x) 5). As
for the remaining events – those with |δ`(x) − δ∗` (x)| ≤ ων`(x) – we take upon ourselves full
responsibility. With this approach, a “reliable deterministic version” of the uncertain constraint
(2.4.2) becomes the pair of inequalities

−τ ≤ δ∗` (x)− ων`(x),
δ∗` (x) + ων`(x) ≤ τ ;

5∗) It would be better to use here σ` instead of ν`; however, we did not assume that we know the distribution
of pj , this is why we replace unknown σ` with its known upper bound ν`

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 77

Replacing all uncertain inequalities in (Nom) with their “reliable deterministic versions” and
recalling the definition of δ∗` (x) and ν`(x), we end up with the optimization problem

minimize τ
s.t.

‖Q`x‖2 ≤ [D∗(θ`)−
10∑

j=1
xjDj(θ`)] + τ, ` = 1, ..., 120

‖Q`x‖2 ≤ −[D∗(θ`)−
10∑

j=1
xjDj(θ`)] + τ, ` = 1, ..., 120

[Q` = ωκDiag(D1(θ`), D2(θ`), ..., D10(θ`))]

(Rob)

It is immediately seen that (Rob) is nothing but the robust counterpart of (Nom) corresponding
to a simple ellipsoidal uncertainty, namely, the one as follows:

The only data of a constraint

10∑

j=1

A`jxj ≤ p`τ + q`

(all constraints in (Nom) are of this form) affected by the uncertainty are the coeffi-
cients A`j of the left hand side, and the difference dA[`] between the vector of these
coefficients and the nominal value (D1(θ`), ..., D10(θ`))T of the vector of coefficients
belongs to the ellipsoid

{dA[`] = ωκQ`u : u ∈ R10, uT u ≤ 1}.

Thus, the above “engineering reasoning” leading to (Rob) was nothing but a reasonable way to
specify the uncertainty ellipsoids!

The bottom line of our “engineering reasoning” deserves to be formulated as a sep-
arate statement and to be equipped with a “reliability bound”:

Proposition 2.4.1 Consider a randomly perturbed linear constraint

a0(x) + ε1a1(x) + ... + εnan(x) ≥ 0, (2.4.3)

where aj(x) are deterministic affine functions of the design vector x, and εj are inde-
pendent random perturbations with zero means and such that |εj | ≤ σj. Assume that
x satisfies the “reliable” version of (2.4.3), specifically, the deterministic constraint

a0(x)− κ
√

σ2
1a

2
1(x) + ... + σ2

na2
n(x) ≥ 0 (2.4.4)

(κ > 0). Then x satisfies a realization of (2.4.3) with probability at least 1 −
exp{−κ2/4}. If all εi are symmetrically distributed, this bound can be improved
to 1− exp{−κ2/2}.

Proof. All we need is to verify the following Bernstein’s bound on probabilities of
large deviations:

78 LECTURE 2. CONIC QUADRATIC PROGRAMMING

If ai are deterministic reals and εi are independent random variables with
zero means and such that |εi| ≤ σi for given deterministic σi, then for
every κ ≥ 0 one has

p(κ) ≡ Prob





∑

i

εiai > κ

√∑

i

a2
i σ

2
i



 ≤ exp{−κ2/4}.

When εi are symmetrically distributed, the right hand side can be replaced
with exp{−κ2/2}.

Verification is easy: for γ > 0 we have

exp{γκσ}p(κ) ≤ E
{

exp{γ ∑
i

ciεi}
}

=
∏
i
E {exp{γciεi}}

=
∏
i
E

{
1 + γciεi +

∑
k≥2

γkck
i ξk

k!

}
=

∏
i
E

{
1 + γciεi +

∑
k≥2

γkck
i ξk

k!

}

≤ ∏
i

[
1 +

∑
k≥2

γk|ciσi|k
k!

]

≤ ∏
i

exp{γ2c2
i σ

2
i }

[since exp{t} − t ≤ exp{t2} for t ≥ 0]
= exp{γ2σ2}.

(2.4.5)
Thus,

p(κ) ≤ min
γ>0

exp{γ2σ2 − γκσ} = exp

{
−κ2

4

}
.

In the case of symmetrically distributed εi, the factors in the right hand side of the

second inequality in (2.4.5) can be replaced with
∞∑

`=0

(γσiai)
2`

(2`)! , and these factors are ≤
exp{−γ2σ2

i a
2
i /2}. As a result, the concluding bound in (2.4.5) becomes exp{γ2σ2/2},

which results in p(κ) ≤ exp{−κ2/2}.
Now let us look what are the diagrams yielded by the Robust Counterpart approach – i.e.,

those given by the robust optimal solution. These diagrams are also random (neither the nominal
nor the robust solution cannot be implemented exactly!). However, it turns out that they are
incomparably closer to the target (and to each other) than the diagrams associated with the
optimal solution to the “nominal” problem. Look at a typical “robust” diagram:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A “Robust” diagram. Uniform distance from the target is 0.0822.
[the safety parameter for the uncertainty ellipsoids is ω = 1]

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 79

With the safety parameter ω = 1, the robust optimal value is 0.0817; although it is by 30%
larger than the nominal optimal value 0.0635, the robust optimal value has a definite advantage
that it indeed says something reliable about the quality of actual diagrams we can obtain when
implementing the robust optimal solution: in a sample of 40 realizations of the diagrams cor-
responding to the robust optimal solution, the uniform distances from the target were varying
from 0.0814 to 0.0830.

We have built the robust optimal solution under the assumption that the “implementation
errors” do not exceed 0.1%. What happens if in reality the errors are larger – say, 1%? It turns
out that nothing dramatic happens: now in a sample of 40 diagrams given by the “old” robust
optimal solution (affected by 10 times larger “implementation errors”) the uniform distances
from the target were varying from 0.0834 to 0.116. Imagine what will happen with the nominal
solution under the same circumstances...

The last issue to be addressed here is: why is the nominal solution so unstable? And why
with the robust counterpart approach we were able to get a solution which is incomparably
better, as far as “actual implementation” is concerned? The answer becomes clear when looking
at the nominal and the robust optimal weights:

j 1 2 3 4 5 6 7 8 9 10

xnom
j 1624.4 -14701 55383 -107247 95468 19221 -138622 144870 -69303 13311

xrob
j -0.3010 4.9638 -3.4252 -5.1488 6.8653 5.5140 5.3119 -7.4584 -8.9140 13.237

It turns out that the nominal problem is “ill-posed” – although its optimal solution is far away
from the origin, there is a “massive” set of “nearly optimal” solutions, and among the latter
ones we can choose solutions of quite moderate magnitude. Indeed, here are the optimal values
obtained when we add to the constraints of (Nom) the box constraints |xj | ≤ L, j = 1, ..., 10:

L 1 10 102 103 104 105 106 107

Opt Val 0.09449 0.07994 0.07358 0.06955 0.06588 0.06272 0.06215 0.06215

Since the “implementation inaccuracies” for a solution are the larger the larger the solution is,
there is no surprise that our “huge” nominal solution results in a very unstable actual design.
In contrast to this, the Robust Counterpart penalizes the (properly measured) magnitude of x
(look at the terms ‖Q`x‖2 in the constraints of (Rob)) and therefore yields a much more stable
design. Note that this situation is typical for many applications: the nominal solution is on
the boundary of the nominal feasible domain, and there are “nearly optimal” solutions to the
nominal problem which are in the “deep interior” of this domain. When solving the nominal
problem, we do not take any care of a reasonable tradeoff between the “depth of feasibility”
and the optimality: any improvement in the objective is sufficient to make the solution just
marginally feasible for the nominal problem. And a solution which is only marginally feasible
in the nominal problem can easily become “very infeasible” when the data are perturbed. This
would not be the case for a “deeply interior” solution. With the Robust Counterpart approach,
we do use certain tradeoff between the “depth of feasibility” and the optimality – we are trying
to find something like the “deepest feasible nearly optimal solution”; as a result, we normally
gain a lot in stability; and if, as in our example, there are “deeply interior nearly optimal”
solutions, we do not loose that much in optimality.

Example 2: NETLIB Case Study. NETLIB is a collection of about 100 not very large LPs,
mostly of real-world origin, used as the standard benchmark for LP solvers. In the study to

80 LECTURE 2. CONIC QUADRATIC PROGRAMMING

be described, we used this collection in order to understand how “stable” are the feasibility
properties of the standard – “nominal” – optimal solutions with respect to small uncertainty in
the data. To motivate the methodology of this “Case Study”, here is the constraint # 372 of
the problem PILOT4 from NETLIB:

aT x ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of the problem, as reported by CPLEX
(one of the best commercial LP solvers), are as follows:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

The indicated optimal solution makes (C) an equality within machine precision.
Observe that most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257.

We have all reasons to believe that coefficients of this type characterize certain technological
devices/processes, and as such they could hardly be known to high accuracy. It is quite natural
to assume that the “ugly coefficients” are in fact uncertain – they coincide with the “true” values
of the corresponding data within accuracy of 3-4 digits, not more. The only exception is the
coefficient 1 of x880 – it perhaps reflects the structure of the problem and is therefore exact –
“certain”.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approximations of unknown
entries of the “true” vector of coefficients ã, we looked what would be the effect of this uncertainty
on the validity of the “true” constraint ãT x ≥ b at x∗. Here is what we have found:

• The minimum (over all vectors of coefficients ã compatible with our “0.1%-uncertainty
hypothesis”) value of ãT x∗ − b, is < −104.9; in other words, the violation of the constraint can
be as large as 450% of the right hand side!

• Treating the above worst-case violation as “too pessimistic” (why should the true values of
all uncertain coefficients differ from the values indicated in (C) in the “most dangerous” way?),
consider a more realistic measure of violation. Specifically, assume that the true values of the
uncertain coefficients in (C) are obtained from the “nominal values” (those shown in (C)) by
random perturbations aj 7→ ãj = (1 + ξj)aj with independent and, say, uniformly distributed
on [−0.001, 0.001] “relative perturbations” ξj . What will be a “typical” relative violation

V =
max[b− ãT x∗, 0]

b
× 100%

of the “true” (now random) constraint ãT x ≥ b at x∗? The answer is nearly as bad as for the
worst scenario:

Prob{V > 0} Prob{V > 150%} Mean(V)
0.50 0.18 125%

Table 2.1. Relative violation of constraint # 372 in PILOT4
(1,000-element sample of 0.1% perturbations of the uncertain data)

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 81

We see that quite small (just 0.1%) perturbations of “obviously uncertain” data coefficients can
make the “nominal” optimal solution x∗ heavily infeasible and thus – practically meaningless.

Inspired by this preliminary experiment, we have carried out the “diagnosis” and the “treat-
ment” phases as follows.

“Diagnosis”. Given a “perturbation level” ε (for which we have used the values 1%, 0.1%,
0.01%), for every one of the NETLIB problems, we have measured its “stability index” at this
perturbation level, specifically, as follows.

1. We computed the optimal solution x∗ of the program by CPLEX.

2. For every one of the inequality constraints

aT x ≤ b

of the program,

• We looked at the right hand side coefficients aj and split them into “certain” – those
which can be represented, within machine accuracy, as rational fractions p/q with
|q| ≤ 100, and “uncertain” – all the rest. Let J be the set of all uncertain coefficients
of the constraint under consideration.

• We defined the reliability index of the constraint as the quantity

aT x∗ + ε
√ ∑

j∈J
a2

j (x
∗
j)2 − b

max[1, |b|] × 100% (I)

Note that the quantity ε
√ ∑

j∈J
a2

j (x
∗
j)2, as we remember from the Antenna story, is

of order of typical difference between aT x∗ and ãT x∗, where ã is obtained from a
by random perturbation aj 7→ ãj = pjaj of uncertain coefficients, with independent
random pj uniformly distributed in the segment [−ε, ε]. In other words, the reliability
index is of order of typical violation (measured in percents of the right hand side)
of the constraint, as evaluated at x∗, under independent random perturbations of
uncertain coefficients, ε being the relative magnitude of the perturbations.

3. We treat the nominal solution as unreliable, and the problem - as bad, the level of per-
turbations being ε, if the worst, over the inequality constraints, reliability index of the
constraint is worse than 5%.

The results of the Diagnosis phase of our Case Study were as follows. From the total of 90
NETLIB problems we have processed,

• in 27 problems the nominal solution turned out to be unreliable at the largest (ε = 1%)
level of uncertainty;

• 19 of these 27 problems are already bad at the 0.01%-level of uncertainty, and in 13 of
these 19 problems, 0.01% perturbations of the uncertain data can make the nominal solution
more than 50%-infeasible for some of the constraints.
The details are given in Table 2.2.

82 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Problem Sizea) ε = 0.01% ε = 0.1% ε = 1%

Nbadb) Indexc) Nbad Index Nbad Index

80BAU3B 2263× 9799 37 84 177 842 364 8,420

25FV47 822× 1571 14 16 28 162 35 1,620

ADLITTLE 57× 97 2 6 7 58

AFIRO 28× 32 1 5 2 50

BNL2 2325× 3489 24 34

BRANDY 221× 249 1 5

CAPRI 272× 353 10 39 14 390

CYCLE 1904× 2857 2 110 5 1,100 6 11,000

D2Q06C 2172× 5167 107 1,150 134 11,500 168 115,000

E226 224× 282 2 15

FFFFF800 525× 854 6 8

FINNIS 498× 614 12 10 63 104 97 1,040

GREENBEA 2393× 5405 13 116 30 1,160 37 11,600

KB2 44× 41 5 27 6 268 10 2,680

MAROS 847× 1443 3 6 38 57 73 566

NESM 751× 2923 37 20

PEROLD 626× 1376 6 34 26 339 58 3,390

PILOT 1442× 3652 16 50 185 498 379 4,980

PILOT4 411× 1000 42 210,000 63 2,100,000 75 21,000,000

PILOT87 2031× 4883 86 130 433 1,300 990 13,000

PILOTJA 941× 1988 4 46 20 463 59 4,630

PILOTNOV 976× 2172 4 69 13 694 47 6,940

PILOTWE 723× 2789 61 12,200 69 122,000 69 1,220,000

SCFXM1 331× 457 1 95 3 946 11 9,460

SCFXM2 661× 914 2 95 6 946 21 9,460

SCFXM3 991× 1371 3 95 9 946 32 9,460

SHARE1B 118× 225 1 257 1 2,570 1 25,700

Table 2.2. Bad NETLIB problems.
a) # of linear constraints (excluding the box ones) plus 1 and # of variables
b) # of constraints with index > 5%
c) The worst, over the constraints, reliability index, in %

Our diagnosis leads to the following conclusion:

♦ In real-world applications of Linear Programming one cannot ignore the possibility
that a small uncertainty in the data (intrinsic for most real-world LP programs)
can make the usual optimal solution of the problem completely meaningless from a
practical viewpoint.

Consequently,

♦ In applications of LP, there exists a real need of a technique capable of detecting
cases when data uncertainty can heavily affect the quality of the nominal solution,
and in these cases to generate a “reliable” solution, one which is immune against
uncertainty.

“Treatment”. At the treatment phase of our Case Study, we used the Robust Counterpart
methodology, as outlined in Example 1, to pass from “unreliable” nominal solutions of bad
NETLIB problems to “uncertainty-immunized” robust solutions. The primary goals here were to
understand whether “treatment” is at all possible (the Robust Counterpart may happen to be
infeasible) and how “costly” it is – by which margin the robust solution is worse, in terms of

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 83

the objective, than the nominal solution. The answers to both these questions turned out to be
quite encouraging:

• Reliable solutions do exist, except for the four cases corresponding to the highest (ε = 1%)
uncertainty level (see the right column in Table 2.3).

• The price of immunization in terms of the objective value is surprisingly low: when ε ≤
0.1%, it never exceeds 1% and it is less than 0.1% in 13 of 23 cases. Thus, passing to the
robust solutions, we gain a lot in the ability of the solution to withstand data uncertainty,
while losing nearly nothing in optimality.

The details are given in Table 2.3.

Objective at robust solution

Problem
Nominal
optimal
value

ε = 0.01% ε = 0.1% ε = 1%

80BAU3B 987224.2 987311.8 (+ 0.01%) 989084.7 (+ 0.19%) 1009229 (+ 2.23%)

25FV47 5501.846 5501.862 (+ 0.00%) 5502.191 (+ 0.01%) 5505.653 (+ 0.07%)

ADLITTLE 225495.0 225594.2 (+ 0.04%) 228061.3 (+ 1.14%)

AFIRO -464.7531 -464.7500 (+ 0.00%) -464.2613 (+ 0.11%)

BNL2 1811.237 1811.237 (+ 0.00%) 1811.338 (+ 0.01%)

BRANDY 1518.511 1518.581 (+ 0.00%)

CAPRI 1912.621 1912.738 (+ 0.01%) 1913.958 (+ 0.07%)

CYCLE 1913.958 1913.958 (+ 0.00%) 1913.958 (+ 0.00%) 1913.958 (+ 0.00%)

D2Q06C 122784.2 122793.1 (+ 0.01%) 122893.8 (+ 0.09%) Infeasible

E226 -18.75193 -18.75173 (+ 0.00%)

FFFFF800 555679.6 555715.2 (+ 0.01%)

FINNIS 172791.1 172808.8 (+ 0.01%) 173269.4 (+ 0.28%) 178448.7 (+ 3.27%)

GREENBEA -72555250 -72526140 (+ 0.04%) -72192920 (+ 0.50%) -68869430 (+ 5.08%)

KB2 -1749.900 -1749.877 (+ 0.00%) -1749.638 (+ 0.01%) -1746.613 (+ 0.19%)

MAROS -58063.74 -58063.45 (+ 0.00%) -58011.14 (+ 0.09%) -57312.23 (+ 1.29%)

NESM 14076040 14172030 (+ 0.68%)

PEROLD -9380.755 -9380.755 (+ 0.00%) -9362.653 (+ 0.19%) Infeasible

PILOT -557.4875 -557.4538 (+ 0.01%) -555.3021 (+ 0.39%) Infeasible

PILOT4 -64195.51 -64149.13 (+ 0.07%) -63584.16 (+ 0.95%) -58113.67 (+ 9.47%)

PILOT87 301.7109 301.7188 (+ 0.00%) 302.2191 (+ 0.17%) Infeasible

PILOTJA -6113.136 -6113.059 (+ 0.00%) -6104.153 (+ 0.15%) -5943.937 (+ 2.77%)

PILOTNOV -4497.276 -4496.421 (+ 0.02%) -4488.072 (+ 0.20%) -4405.665 (+ 2.04%)

PILOTWE -2720108 -2719502 (+ 0.02%) -2713356 (+ 0.25%) -2651786 (+ 2.51%)

SCFXM1 18416.76 18417.09 (+ 0.00%) 18420.66 (+ 0.02%) 18470.51 (+ 0.29%)

SCFXM2 36660.26 36660.82 (+ 0.00%) 36666.86 (+ 0.02%) 36764.43 (+ 0.28%)

SCFXM3 54901.25 54902.03 (+ 0.00%) 54910.49 (+ 0.02%) 55055.51 (+ 0.28%)

SHARE1B -76589.32 -76589.32 (+ 0.00%) -76589.32 (+ 0.00%) -76589.29 (+ 0.00%)

Table 2.3. Objective values for nominal and robust solutions to bad NETLIB problems

2.4.3 Robust counterpart of uncertain LP with a CQr uncertainty set

We have seen that the robust counterpart of uncertain LP with simple “constraint-wise” el-
lipsoidal uncertainty is a conic quadratic problem. This fact is a special case of the following

84 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Proposition 2.4.2 Consider an uncertain LP

LP(U) =
{

min
x:Ax≥b

cT x : (c, A, b) ∈ U
}

and assume that the uncertainty set U is CQr:

U =
{
ζ = (c, A, B) ∈ Rn ×Rm×n ×Rm|∃u : A(ζ, u) ≡ Pζ + Qu + r ≥K 0

}
,

where A(ζ, u) is an affine mapping and K is a direct product of ice-cream cones. Assume,
further, that the above CQR of U is strictly feasible:

∃(ζ̄, ū) : A(ζ̄, ū) >K 0.

Then the robust counterpart of LP(U) is equivalent to an explicit conic quadratic problem.

Proof. Introducing an additional variable t and denoting by z = (t, x) the extended vector of
design variables, we can write down the instances of our uncertain LP in the form

min
z

{
dT z : αT

i (ζ)z − βi(ζ) ≥ 0, i = 1, ..., m + 1
}

(LP[ζ])

with an appropriate vector d; here the functions

αi(ζ) = Aiζ + ai, βi(ζ) = bT
i ζ + ci

are affine in the data vector ζ. The robust counterpart of our uncertain LP is the optimization
program

min
z

{
dT z → min : αT

i (ζ)z − βi(ζ) ≥ 0 ∀ζ ∈ U ∀i = 1, ...,m + 1
}

. (RCini)

Let us fix i and ask ourselves what does it mean that a vector z satisfies the infinite system of
linear inequalities

αT
i (ζ)z − βi(ζ) ≥ 0 ∀ζ ∈ U . (Ci)

Clearly, a given vector z possesses this property if and only if the optimal value in the optimiza-
tion program

min
τ,ζ

{
τ : τ ≥ αT

i (ζ)z − βi(ζ), ζ ∈ U
}

is nonnegative. Recalling the definition of U , we see that the latter problem is equivalent to the
conic quadratic program

min
τ,ζ





τ : τ ≥ αT
i (ζ)z − βi(ζ) ≡ [Aiζ + ai︸ ︷︷ ︸

αi(ζ)

]T z − [bT
i ζ + ci︸ ︷︷ ︸
βi(ζ)

], A(ζ, u) ≡ Pζ + Qu + r ≥K 0





(CQi[z])
in variables τ, ζ, u. Thus, z satisfies (Ci) if and only if the optimal value in (CQi[z]) is nonneg-
ative.

Since by assumption the system of conic quadratic inequalities A(ζ, u) ≥K 0 is strictly
feasible, the conic quadratic program (CQi[z]) is strictly feasible. By the Conic Duality Theorem,
if (a) the optimal value in (CQi[z]) is nonnegative, then (b) the dual to (CQi[z]) problem admits
a feasible solution with a nonnegative value of the dual objective. By Weak Duality, (b) implies

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 85

(a). Thus, the fact that the optimal value in (CQi[z]) is nonnegative is equivalent to the fact
that the dual problem admits a feasible solution with a nonnegative value of the dual objective:

z satisfies (Ci)
m

Opt(CQi[z]) ≥ 0
m




∃λ ∈ R, ξ ∈ RN (N is the dimension of K):
λ[aT

i z − ci]− ξT r ≥ 0,
λ = 1,

−λAT
i z + bi + P T ξ = 0,

QT ξ = 0,
λ ≥ 0,
ξ ≥K 0.

m



∃ξ ∈ RN :
aT

i z − ci − ξT r ≥ 0
−AT

i z + bi + P T ξ = 0,
QT ξ = 0,
ξ ≥K 0.

We see that the set of vectors z satisfying (Ci) is CQr:

z satisfies (Ci)
m




∃ξ ∈ RN :
aT

i z − ci − ξT r ≥ 0,
−AT

i z + bi + P T ξ = 0,
QT ξ = 0,
ξ ≥K 0.

Consequently, the set of robust feasible z – those satisfying (Ci) for all i = 1, ...,m + 1 – is CQr
(as the intersection of finitely many CQr sets), whence the robust counterpart of our uncertain
LP, being the problem of minimizing a linear objective over a CQr set, is equivalent to a conic
quadratic problem. Here is this problem:

minimize dT z



aT
i z − ci − ξT

i r ≥ 0,
−AT

i z + bi + P T ξi = 0,
QT ξi = 0,
ξi ≥K 0

, i = 1, ...,m + 1

with design variables z, ξ1, ..., ξm+1. Here Ai, ai, ci, bi come from the affine functions αi(ζ) =
Aiζ + ai and βi(ζ) = bT

i ζ + ci, while P, Q, r come from the description of U :

U = {ζ : ∃u : Pζ + Qu + r ≥K 0}.

86 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Remark 2.4.1 Looking at the proof of Proposition 2.4.2, we see that the assumption that
the uncertainty set U is CQr plays no crucial role. What indeed is important is that U is the
projection on the ζ-space of the solution set of a strictly feasible conic inequality associated with
certain cone K. Whenever this is the case, the above construction demonstrates that the robust
counterpart of LP(U) is a conic problem associated with the cone which is a direct product of
several cones dual to K. E.g., when the uncertainty set is polyhedral (i.e., it is given by finitely
many scalar linear inequalities: K = Rm

+), the robust counterpart of LP(U) is an explicit LP
program (and in this case we can eliminate the assumption that the conic inequality defining
U is strictly feasible (why?)). Consider, e.g., an uncertain LP with interval uncertainty in the
data:





min
x

{
cT x : Ax ≥ b

}
:
|cj − c∗j | ≤ εj , j = 1, ..., n

Aij ∈ [A∗ij − εij , A
∗
ij + εij], i = 1, ...,m, j = 1, ..., n

|bi − b∗i | ≤ δi, i = 1, ..., m





.

The (LP equivalent of the) Robust Counterpart of the program is

min
x,y





∑

j

[c∗jxj + εjyj] :

∑
j

A∗ijxj −
∑
j

εijyj ≥ b∗i + δi, i = 1, ...,m

−yj ≤ xj ≤ yj , j = 1, ..., n





(why ?)

2.4.4 CQ-representability of the optimal value in a CQ program as a function
of the data

Let us ask ourselves the following question: consider a conic quadratic program

min
x

{
cT x : Ax− b ≥K 0

}
, (2.4.6)

where K is a direct product of ice-cream cones and A is a matrix with trivial null space. The
optimal value of the problem clearly is a function of the data (c, A, b) of the problem. What can
be said about CQ-representability of this function? In general, not much: the function is not
even convex. There are, however, two modifications of our question which admit good answers.
Namely, under mild regularity assumptions

(a) With c, A fixed, the optimal value is a CQ-representable function of the right hand side
vector b;

(b) with A, b fixed, the minus optimal value is a CQ-representable function of c.
Here are the exact forms of our claims:

Proposition 2.4.3 Let c, A be fixed, and let B be a CQr set in Rdim b such that for every b ∈ B
problem (2.4.6) is strictly feasible. Then the optimal value of the problem is a CQr function on
B.

The statement is quite evident: if b is such that (2.4.6) is strictly feasible, then the optimal value
Opt(b) in the problem is either −∞, or is achieved (by Conic Duality Theorem). In both cases,

Opt(b) ≤ t ⇔ ∃x :

{
cT x ≤ t,

Ax− b ≥K 0
,

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 87

which is, essentially, a CQR for certain function which coincides with Opt(b) on the set B of
values of b; in this CQR, b, t are the “variables of interest”, and x plays the role of the additional
variable. The CQR of the function Opt(b) with the domain B is readily given, via calculus of
CQR’s, by the representation

{b ∈ B&Opt(b) ≤ t} ⇔ ∃x :





cT x ≤ t,
Ax− b ≥K 0,

b ∈ B

(recall that B was assumed to be CQr).
The claim (b) is essentially a corollary of (a) – via duality, the optimal value in (2.4.6) is, up

to pathological cases, the same as the optimal value in the dual problem, in which c becomes
the right hand side vector. Here is the exact formulation:

Proposition 2.4.4 Let A, b be such that (2.4.6) is strictly feasible. Then the minus optimal
value −Opt(c) of the problem is a CQr function of c.

Proof. For every c and t, the relation −Opt(c) ≤ t says exactly that (2.4.6) is below bounded
with the optimal value ≥ −t. By the Conic Duality Theorem (note that (2.4.6) is strictly
feasible!) this is the case if and only if the dual problem admits a feasible solution with the
value of the dual objective ≥ −t, so that

Opt(c) ≤ t ⇔ ∃y :





bT y ≥ t,
AT y = c,
y ≥K 0.

The resulting description of the epigraph of the function −Opt(c) is a CQR for this function,
with c, t playing the role of the “variables of interest” and y being the additional variable.
A careful reader could have realized that Proposition 2.4.2 is nothing but a straightforward
application of Proposition 2.4.4.

Remark 2.4.2 Same as in the case of Proposition 2.4.2, in Propositions 2.4.3, 2.4.4 the assump-
tion that uncertainty set U is CQr plays no crucial role. Thus, Propositions 2.4.3, 2.4.4 remain
valid for an arbitrary conic program, up to the fact that in this general case we should speak about
the representability of the epigraphs of Opt(b) and −Opt(c) via conic inequalities associated with
direct products of cones K, and their duals, rather than about CQ-representability. In particular,
Propositions 2.4.2, 2.4.3, 2.4.4 remain valid in the case of Semidefinite representability to be
discussed in Lecture 3.

2.4.5 Affinely Adjustable Robust Counterpart

The rationale behind our Robust Optimization paradigm is based on the following tacit assumptions:

1. All constraints are “a must”, so that a meaningful solution should satisfy all realizations of the
constraints from the uncertainty set.

2. All decisions are made in advance and thus cannot tune themselves to the “true” values of the
data. Thus, candidate solutions must be fixed vectors, and not functions of the true data.

Here we preserve the first of these two assumptions and try to relax the second of them. The motivation
is twofold:

88 LECTURE 2. CONIC QUADRATIC PROGRAMMING

• There are situations in dynamical decision-making when the decisions should be made at subsequent
time instants, and decision made at instant t in principle can depend on the part of uncertain data
which becomes known at this instant.

• There are situations in LP when some of the decision variables do not correspond to actual decisions;
they are artificial “analysis variables” added to the problem in order to convert it to a desired form,
say, a Linear Programming one. The analysis variables clearly may adjust themselves to the true
values of the data.
To give an example, consider the problem where we look for the best, in the discrete L1-norm,
approximation of a given sequence b by a linear combination of given sequences aj , j = 1, ..., n, so
that the problem with no data uncertainty is

min
x,t

{
t :

T∑
t=1

|bt −
∑
j

atjxj | ≤ t

}
(P)

m
min
t,x,y

{
t :

T∑
t=1

yt ≤ t,−yt ≤ bt −
∑
j

atjxj ≤ yt, 1 ≤ t ≤ T

}
(LP)

Note that (LP) is an equivalent LP reformulation of (P), and y are typical analysis variables;
whether x’s do or do not represent “actual decisions”, y’s definitely do not represent them. Now
assume that the data become uncertain. Perhaps we have reasons to require from (t, x)s to be
independent of actual data and to satisfy the constraint in (P) for all realizations of the data. This
requirement means that the variables t, x in (LP) must be data-independent, but we have absolutely
no reason to insist on data-independence of y’s: (t, x) is robust feasible for (P) if and only if (t, x),
for all realizations of the data from the uncertainty set, can be extended, by a properly chosen and
perhaps depending on the data vector y, to a feasible solution of (the corresponding realization of)
(LP). In other words, equivalence between (P) and (LP) is restricted to the case of certain data
only; when the data become uncertain, the robust counterpart of (LP) is more conservative than
the one of (P).

In order to take into account a possibility for (part of) the variables to adjust themselves to the true
values of (part of) the data, we could act as follows.

Adjustable and non-adjustable decision variables. Consider an uncertain LP program.
Without loss of generality, we may assume that the data are affinely parameterized by properly cho-
sen “perturbation vector” ζ running through a given perturbation set Z; thus, our uncertain LP can be
represented as the family of LP instances

LP =
{

min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≥ 0

}
: ζ ∈ Z

}

Now assume that decision variable xj is allowed to depend on part of the true data. Since the true data are
affine functions of ζ, this is the same as to assume that xj can depend on “a part” Pjζ of the perturbation
vector, where Pj is a given matrix. The case of Pj = 0 correspond to “here and now” decisions xj –
those which should be done in advance; we shall call these decision variables non-adjustable. The case
of nonzero Pj (“adjustable decision variable”) corresponds to allowing certain dependence of xj on the
data, and the case when Pj has trivial kernel means that xj is allowed to depend on the entire true data.

Adjustable Robust Counterpart of LP. With our assumptions, a natural modification of the
Robust Optimization methodology results in the following adjustable Robust Counterpart of LP:

min
t,{φj(·)}n

j=1





t :

n∑
j=1

cj [ζ]φj(Pjζ) ≤ t ∀ζ ∈ Z
n∑

j=1

φj(Pjζ)Aj [ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z





(ARC)

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 89

Here cj [ζ] is j-th entry of the objective vector, and Aj [ζ] is j-th column of the constraint matrix.
It should be stressed that the variables in (ARC) corresponding to adjustable decision variables in

the original problem are not reals; they are “decision rules” – real-valued functions of the corresponding
portion Pjζ of the data. This fact makes (ARC) infinite-dimensional optimization problem and thus
problem which is extremely difficult for numerical processing. Indeed, in general it is unclear how to
represent in a tractable way a general-type function of three (not speaking of three hundred) variables;
and how could we hope to find, in an efficient manner, optimal decision rules when we even do not know
how to write them down? Thus, in general (ARC) has no actual meaning – basically all we can do with
the problem is to write it down on paper and then look at it...

Affinely Adjustable Robust Counterpart of LP. A natural way to overcome the outlined
difficulty is to restrict the decision rules to be “easily representable”, specifically, to be affine functions
of the allowed portions of data:

φj(Pjζ) = µj + νT
j Pjζ.

With this approach, our new decision variables become reals µj and vectors νj , and (ARC) becomes the
following problem (called Affinely Adjustable Robust Counterpart of LP):

min
t,{µj ,νj}n

j=1



t :

∑
j

cj [z][µj + νT
j Pjζ] ≤ t ∀ζ ∈ Z

∑
j

[µj + νT
j Pj]Aj [ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z



 (AARC)

Note that the AARC is “in-between” the usual non-adjustable RC (no dependence of variables on the
true data at all) and the ARC (arbitrary dependencies of the decision variables on the allowed portions
of the true data). Note also that the only reason to restrict ourselves with affine decision rules is the
desire to end up with a “tractable” robust counterpart, and even this natural goal for the time being is
not achieved. Indeed, the constraints in (AARC) are affine in our new decision variables t, µj , νj , which
is a good news. At the same time, they are semi-infinite, same as in the case of the non-adjustable
Robust Counterpart, but, in contrast to this latter case, in general are quadratic in perturbations rather
than to be linear in them. This indeed makes a difference: as we know from Proposition 2.4.2, the
usual – non-adjustable – RC of an uncertain LP with CQr uncertainty set is equivalent to an explicit
Conic Quadratic problem and as such is computationally tractable (in fact, the latter remain true for the
case of non-adjustable RC of uncertain LP with arbitrary “computationally tractable” uncertainty set).
In contrast to this, AARC can become intractable for uncertainty sets as simple as boxes. There are,
however, good news on AARCs:

• First, there exist a generic “good case” where the AARC is tractable. This is the “fixed recourse”
case, where the coefficients of adjustable variables xj – those with Pj 6= 0 – are certain (not
affected by uncertainty). In this case, the left hand sides of the constraints in (AARC) are affine in
ζ, and thus AARC, same as the usual non-adjustable RC, is computationally tractable whenever
the perturbation set Z is so; in particular, Proposition 2.4.2 remains valid for both RC and AARC.

• Second, we shall see in Lecture 3 that even when AARC is intractable, it still admits tight, in
certain precise sense, tractable approximations.

Example: Uncertain Inventory Management Problem

The model. Consider a single product inventory system comprised of a warehouse and I factories.
The planning horizon is T periods. At a period t:

• dt is the demand for the product. All the demand must be satisfied;

• v(t) is the amount of the product in the warehouse at the beginning of the period (v(1) is given);

• pi(t) is the i-th order of the period – the amount of the product to be produced during the period by
factory i and used to satisfy the demand of the period (and, perhaps, to replenish the warehouse);

90 LECTURE 2. CONIC QUADRATIC PROGRAMMING

• Pi(t) is the maximal production capacity of factory i;

• ci(t) is the cost of producing a unit of the product at a factory i.

Other parameters of the problem are:

• Vmin - the minimal allowed level of inventory at the warehouse;

• Vmax - the maximal storage capacity of the warehouse;

• Qi - the maximal cumulative production capacity of i’th factory throughout the planning horizon.

The goal is to minimize the total production cost over all factories and the entire planning period. When
all the data are certain, the problem can be modelled by the following linear program:

min
pi(t),v(t),F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T
T∑

t=1
pi(t) ≤ Q(i), i = 1, . . . , I

v(t + 1) = v(t) +
I∑

i=1

pi(t)− dt, t = 1, . . . , T

Vmin ≤ v(t) ≤ Vmax, t = 2, . . . , T + 1.

(2.4.7)

Eliminating v-variables, we get an inequality constrained problem:

min
pi(t),F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T
T∑

t=1
pi(t) ≤ Q(i), i = 1, . . . , I

Vmin ≤ v(1) +
t∑

s=1

I∑
i=1

pi(s)−
t∑

s=1
ds ≤ Vmax, t = 1, . . . , T.

(2.4.8)

Assume that the decision on supplies pi(t) is made at the beginning of period t, and that we are allowed
to make these decisions on the basis of demands dr observed at periods r ∈ It, where It is a given subset
of {1, ..., t}. Further, assume that we should specify our supply policies before the planning period starts
(“at period 0”), and that when specifying these policies, we do not know exactly the future demands; all
we know is that

dt ∈ [d∗t − θd∗t , d
∗
t + θd∗t], t = 1, . . . , T, (2.4.9)

with given positive θ and positive nominal demand d∗t . We have now an uncertain LP, where the uncertain
data are the actual demands dt, the decision variables are the supplies pi(t), and these decision variables
are allowed to depend on the data {dτ : τ ∈ It} which become known when pi(t) should be specified.
Note that our uncertain LP is a “fixed recourse” one – the uncertainty affects solely the right hand side.
Thus, the AARC of the problem is computationally tractable, which is good. Let us build the AARC.
Restricting our decision-making policy with affine decision rules

pi(t) = π0
i,t +

∑

r∈It

πr
i,tdr, (2.4.10)

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 91

where the coefficients πr
i,t are our new non-adjustable design variables, we get from (2.4.8) the following

uncertain Linear Programming problem in variables πs
i,t, F :

min
π,F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)

(
π0

i,t +
∑

r∈It

πr
i,tdr

)
≤ F

0 ≤ π0
i,t +

∑
r∈It

πr
i,tdr ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T

T∑
t=1

(
π0

i,t +
∑

r∈It

πr
i,tdr

)
≤ Q(i), i = 1, . . . , I

Vmin ≤ v(1) +
t∑

s=1

(
I∑

i=1

π0
i,s +

∑
r∈Is

πr
i,sdr

)
−

t∑
s=1

ds ≤ Vmax,

t = 1, . . . , T
∀{dt ∈ [d∗t − θd∗t , d

∗
t + θd∗t], t = 1, . . . , T},

(2.4.11)

or, which is the same,

min
π,F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)π0
i,t +

T∑
r=1

(
I∑

i=1

∑
t:r∈It

ci(t)πr
i,t

)
dr − F ≤ 0

π0
i,t +

t∑
r∈It

πr
i,tdr ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T

π0
i,t +

∑
r∈It

πr
i,tdr ≥ 0, i = 1, . . . , I, t = 1, . . . , T

T∑
t=1

π0
i,t +

T∑
r=1

(
∑

t:r∈It

πr
i,t

)
dr ≤ Qi, i = 1, . . . , I

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

(
I∑

i=1

∑
s≤t,r∈Is

πr
i,s − 1

)
dr ≤ Vmax − v(1)

t = 1, . . . , T

−
t∑

s=1

I∑
i=1

π0
i,s −

t∑
r=1

(
I∑

i=1

∑
s≤t,r∈Is

πr
i,s − 1

)
dr ≤ v(1)− Vmin

t = 1, . . . , T
∀{dt ∈ [d∗t − θd∗t , d

∗
t + θd∗t], t = 1, . . . , T}.

(2.4.12)

Now, using the following equivalences

T∑
t=1

dtxt ≤ y, ∀dt ∈ [d∗t (1− θ), d∗t (1 + θ)]

m∑
t:xt<0

d∗t (1− θ)xt +
∑

t:xt>0
d∗t (1 + θ)xt ≤ y

m
T∑

t=1
d∗t xt + θ

T∑
t=1

d∗t |xt| ≤ y,

and defining additional variables

αr ≡
∑

t:r∈It

ci(t)πr
i,t; δr

i ≡
∑

t:r∈It

πr
i,t; ξr

t ≡
I∑

i=1

∑

s≤t,r∈Is

πr
i,s − 1,

92 LECTURE 2. CONIC QUADRATIC PROGRAMMING

we can straightforwardly convert the AARC (2.4.12) into an equivalent LP (cf. Remark 2.4.1):

min
π,F,α,β,γ,δ,ζ,ξ,η

F

I∑
i=1

∑
t:r∈It

ci(t)πr
i,t = αr, −βr ≤ αr ≤ βr, 1 ≤ r ≤ T,

T∑
t=1

I∑
i=1

ci(t)π0
i,t +

T∑
r=1

αrd
∗
r + θ

T∑
r=1

βrd
∗
r ≤ F ;

−γr
i,t ≤ πr

i,t ≤ γr
i,t, r ∈ It, π0

i,t +
∑

r∈It

πr
i,td

∗
r + θ

∑
r∈It

γr
i,td

∗
r ≤ Pi(t), 1 ≤ i ≤ I, 1 ≤ t ≤ T ;

π0
i,t +

∑
r∈It

πr
i,td

∗
r − θ

∑
r∈It

γr
i,td

∗
r ≥ 0,

∑
t:r∈It

πr
i,t = δr

i , −ζr
i ≤ δr

i ≤ ζr
i , 1 ≤ i ≤ I, 1 ≤ r ≤ T,

T∑
t=1

π0
i,t +

T∑
r=1

δr
i d∗r + θ

T∑
r=1

ζr
i d∗r ≤ Qi, 1 ≤ i ≤ I;

I∑
i=1

∑
s≤t,r∈Is

πr
i,s − ξr

t = 1, −ηr
t ≤ ξr

t ≤ ηr
t , 1 ≤ r ≤ t ≤ T,

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

ξr
t d∗r + θ

t∑
r=1

ηr
t d∗r ≤ Vmax − v(1), 1 ≤ t ≤ T,

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

ξr
t d∗r − θ

t∑
r=1

ηr
t d∗r ≥ v(1)− Vmin, 1 ≤ t ≤ T.

(2.4.13)

An illustrative example. There are I = 3 factories producing a seasonal product, and one warehouse.
The decisions concerning production are made every two weeks, and we are planning production for 48 weeks,
thus the time horizon is T = 24 periods. The nominal demand d∗ is seasonal, reaching its maximum in winter,
specifically,

d∗t = 1000

(
1 +

1

2
sin

(
π (t− 1)

12

))
, t = 1, . . . , 24.

We assume that the uncertainty level θ is 20%, i.e., dt ∈ [0.8d∗t , 1.2d∗t], as shown on the picture.

0 5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

• Nominal demand (solid)

• “demand tube” – nominal demand ±20% (dashed)

• a sample realization of actual demand (dotted)

Demand

The production costs per unit of the product depend on the factory and on time and follow the same seasonal
pattern as the demand, i.e., rise in winter and fall in summer. The production cost for a factory i at a period t

2.4. MORE APPLICATIONS: ROBUST LINEAR PROGRAMMING 93

is given by:

ci(t) = αi

(
1 + 1

2
sin

(
π (t−1)

12

))
, t = 1, . . . , 24.

α1 = 1
α2 = 1.5
α3 = 2

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Production costs for the 3 factories

The maximal production capacity of each one of the factories at each two-weeks period is Pi(t) = 567 units,
and the integral production capacity of each one of the factories for a year is Qi = 13600. The inventory at the
warehouse should not be less then 500 units, and cannot exceed 2000 units.

With this data, the AARC (2.4.13) of the uncertain inventory problem is an LP, the dimensions of which vary,
depending on the “information basis” (see below), from 919 variables and 1413 constraints (empty information
basis) to 2719 variables and 3213 constraints (on-line information basis).

The experiments. In every one of the experiments, the corresponding management policy was tested
against a given number (100) of simulations; in every one of the simulations, the actual demand dt of period t
was drawn at random, according to the uniform distribution on the segment [(1 − θ)d∗t , (1 + θ)d∗t] where θ was
the “uncertainty level” characteristic for the experiment. The demands of distinct periods were independent of
each other.

We have conducted two series of experiments:

1. The aim of the first series of experiments was to check the influence of the demand uncertainty θ on the
total production costs corresponding to the robustly adjustable management policy – the policy (2.4.10)
yielded by the optimal solution to the AARC (2.4.13). We compared this cost to the “ideal” one, i.e., the
cost we would have paid in the case when all the demands were known to us in advance and we were using
the corresponding optimal management policy as given by the optimal solution of (2.4.7).

2. The aim of the second series of experiments was to check the influence of the “information basis” allowed
for the management policy, on the resulting management cost. Specifically, in our model as described in
the previous section, when making decisions pi(t) at time period t, we can make these decisions depending
on the demands of periods r ∈ It, where It is a given subset of the segment {1, 2, ..., t}. The larger are these
subsets, the more flexible can be our decisions, and hopefully the less are the corresponding management
costs. In order to quantify this phenomenon, we considered 4 “information bases” of the decisions:

(a) It = {1, ..., t} (the richest “on-line” information basis);

(b) It = {1, ..., t− 1} (this standard information basis seems to be the most natural “information basis”:
past is known, present and future are unknown);

(c) It = {1, ..., t− 4} (the information about the demand is received with a four-day delay);

(d) It = ∅ (i.e., no adjusting of future decisions to actual demands at all. This “information basis”
corresponds exactly to the management policy yielded by the usual RC of our uncertain LP.).

94 LECTURE 2. CONIC QUADRATIC PROGRAMMING

The results of our experiments are as follows:
1. The influence of the uncertainty level on the management cost. Here we tested the robustly

adjustable management policy with the standard information basis against different levels of uncertainty, specifi-
cally, the levels of 20%, 10%, 5% and 2.5%. For every uncertainty level, we have computed the average (over 100
simulations) management costs when using the corresponding robustly adaptive management policy. We saved
the simulated demand trajectories and then used these trajectories to compute the ideal management costs. The
results are summarized in the table below. As expected, the less is the uncertainty, the closer are our management
costs to the ideal ones. What is surprising, is the low “price of robustness”: even at the 20% uncertainty level,
the average management cost for the robustly adjustable policy was just by 3.4% worse than the corresponding
ideal cost; the similar quantity for 2.5%-uncertainty in the demand was just 0.3%.

AARC Ideal case

Uncertainty Mean Std Mean Std
price of

robustness

2.5% 33974 190 33878 194 0.3%
5% 34063 432 33864 454 0.6%
10% 34471 595 34009 621 1.6%
20% 35121 1458 33958 1541 3.4%

Management costs vs. uncertainty level

2. The influence of the information basis. The influence of the information basis on the performance of the
robustly adjustable management policy is displayed in the following table:

information basis Management cost
for decision pi(t) Mean Std

is demand in periods

1, ..., t 34583 1475
1, . . . , t− 1 35121 1458
1, . . . , t− 4 Infeasible

∅ Infeasible

These experiments were carried out at the uncertainty level of 20%. We see that the poorer is the information
basis of our management policy, the worse are the results yielded by this policy. In particular, with 20% level
of uncertainty, there does not exist a robust non-adjustable management policy: the usual RC of our uncertain
LP is infeasible. In other words, in our illustrating example, passing from a priori decisions yielded by RC to
“adjustable” decisions yielded by AARC is indeed crucial.

An interesting question is what is the uncertainty level which still allows for a priori decisions. It turns out
that the RC is infeasible even at the 5% uncertainty level. Only at the uncertainty level as small as 2.5% the RC
becomes feasible and yields the following management costs:

RC Ideal cost

Uncertainty Mean Std Mean Std
price of

robustness

2.5% 35287 0 33842 172 4.3%

Note that even at this unrealistically small uncertainty level the price of robustness for the policy yielded by the

RC is by 4.3% larger than the ideal cost (while for the robustly adjustable management this difference is just

0.3%.

Comparison with Dynamic Programming. An Inventory problem we have considered is a
typical example of sequential decision-making under dynamical uncertainty, where the information basis
for the decision xt made at time t is the part of the uncertainty revealed at instant t. This example allows
for an instructive comparison of the AARC-based approach with Dynamic Programming, which is the
traditional technique for sequential decision-making under dynamical uncertainty. Restricting ourselves
with the case where the decision-making problem can be modelled as a Linear Programming problem
with the data affected by dynamical uncertainty, we could say that (minimax-oriented) Dynamic Pro-
gramming is a specific technique for solving the ARC of this uncertain LP. Therefore when applicable,
Dynamic Programming has a significant advantage as compared to the above AARC-based approach,

2.5. DOES CONIC QUADRATIC PROGRAMMING EXIST? 95

since it does not impose on the adjustable variables an “ad hoc” restriction (motivated solely by the
desire to end up with a tractable problem) to be affine functions of the uncertain data. At the same
time, the above “if applicable” is highly restrictive: the computational effort in Dynamical Programming
explodes exponentially with the dimension of the state space of the dynamical system in question. For
example, the simple Inventory problem we have considered has 4-dimensional state space (the current
amount of product in the warehouse plus remaining total capacities of the three factories), which is al-
ready computationally too demanding for accurate implementation of Dynamic Programming. The main
advantage of the AARC-based dynamical decision-making as compared with Dynamic Programming (as
well as with Multi-Stage Stochastic Programming) comes from the “built-in” computational tractabil-
ity of the approach, which prevents the “curse of dimensionality” and allows to process routinely fairly
complicated models with high-dimensional state spaces and many stages.

By the way, it is instructive to compare the AARC approach with Dynamic Programming when the
latter is applicable. For example, let us reduce the number of factories in our Inventory problem from 3
to 1, increasing the production capacity of this factory from the previous 567 to 1800 units per period,
and let us make the cumulative capacity of the factory equal to 24 × 1800, so that the restriction on
cumulative production becomes redundant. The resulting dynamical decision-making problem has just
one-dimensional state space (all which matters for the future is the current amount of product in the
warehouse). Therefore we can easily find by Dynamic Programming the “minimax optimal” inventory
management cost (minimum over arbitrary casual6) decision rules, maximum over the realizations of the
demands from the uncertainty set). With 20% uncertainty, this minimax optimal inventory management
cost turns out to be Opt∗ = 31269.69. The guarantees for the AARC-based inventory policy can be only
worse than for the minimax optimal one: we should pay a price for restricting the decision rules to be
affine in the demands. How large is this price? Computation shows that the optimal value in the AARC
is OptAARC = 31514.17, i.e., it is just by 0.8% larger than the minimax optimal cost Opt∗. And all this
– at the uncertainty level as large as 20%! We conclude that the AARC is perhaps not as bad as one
could think...

2.5 Does Conic Quadratic Programming exist?

Of course it does. What is meant is whether SQP exists as an independent entity?. Specifically, we ask:

(?) Whether a conic quadratic problem can be “efficiently approximated” by a Linear Pro-
gramming one?

To pose the question formally, let us say that a system of linear inequalities

Py + tp + Qu ≥ 0 (LP)

approximates the conic quadratic inequality

‖y‖2 ≤ t (CQI)

within accuracy ε (or, which is the same, is an ε-approximation of (CQI)), if
(i) Whenever (y, t) satisfies (CQI), there exists u such that (y, t, u) satisfies (LP);
(ii) Whenever (y, t, u) satisfies (LP), (y, t) “nearly satisfies” (CQI), namely,

‖y‖2 ≤ (1 + ε)t. (CQIε)

Note that given a conic quadratic program

min
x

{
cT x : ‖Aix− bi‖2 ≤ cT

i x− di, i = 1, ...,m
}

(CQP)

6)That is, decision of instant t depends solely on the demands at instants τ < t

96 LECTURE 2. CONIC QUADRATIC PROGRAMMING

with mi × n-matrices Ai and ε-approximations

P iyi + tip
i + Qiui ≥ 0

of conic quadratic inequalities
‖yi‖2 ≤ ti [dim yi = mi],

one can approximate (CQP) by the Linear Programming program

min
x,u

{
cT x : P i(Aix− bi) + (cT

i x− di)pi + Qiui ≥ 0, i = 1, ..., m
}

;

if ε is small enough, this program, for every practical purpose, is “the same” as (CQP) 7).
Now, in principle, any closed cone of the form

{(y, t) : t ≥ φ(y)}
can be approximated, in the aforementioned sense, by a system of linear inequalities within any accuracy
ε > 0. The question of crucial importance, however, is how large should be the approximating system –
how many linear constraints and additional variables it requires. With naive approach to approximating
Ln+1 – “take tangent hyperplanes along a fine finite grid of boundary directions and replace the Lorentz
cone with the resulting polyhedral one” – the number of linear constraints in, say, 0.5-approximation blows
up exponentially as n grows, rapidly making the approximation completely meaningless. Surprisingly,
there is a much smarter way to approximate Ln+1:

Theorem 2.5.1 Let n be the dimension of y in (CQI), and let 0 < ε < 1/2. There exists (and can
be explicitly written) a system of no more than O(1)n ln 1

ε linear inequalities of the form (LP) with
dim u ≤ O(1)n ln 1

ε which is an ε-approximation of (CQI). Here O(1)’s are appropriate absolute constants.

To get an impression of the constant factors in the Theorem, look at the numbers I(n, ε) of linear
inequalities and V (n, ε) of additional variables u in an ε-approximation (LP) of the conic quadratic
inequality (CQI) with dim y = n:

n ε = 10−1 ε = 10−6 ε = 10−14

I(n, ε) V (N, ε) I(n, ε) V (n, ε) I(n, ε) V (n, ε)
4 6 17 31 69 70 148
16 30 83 159 345 361 745
64 133 363 677 1458 1520 3153
256 543 1486 2711 5916 6169 12710
1024 2203 6006 10899 23758 24773 51050

You can see that I(n, ε) ≈ 0.7n ln 1
ε , V (n, ε) ≈ 2n ln 1

ε .
The smart approximation described in Theorem 2.5.1 is incomparably better than the outlined naive

approximation. On a closest inspection, the “power” of the smart approximation comes from the fact
that here we approximate the Lorentz cone by a projection of a simple higher-dimensional polyhedral
cone. When projecting a polyhedral cone living in RN onto a linear subspace of dimension << N , you
get a polyhedral cone with the number of facets which can be by an exponential in N factor larger than
the number of facets of the original cone. Thus, the projection of a simple (with small number of facets)
polyhedral cone onto a subspace of smaller dimension can be a very complicated (with an astronomical
number of facets) polyhedral cone, and this is the fact exploited in the approximation scheme to follow.

Proof of Theorem 2.5.1

Let ε > 0 and a positive integer n be given. We intend to build a polyhedral ε-approximation of the
Lorentz cone Ln+1. Without loss of generality we may assume that n is an integer power of 2: n = 2κ,
κ ∈ N.

7) Note that standard computers do not distinguish between 1 and 1 ± 10−17. It follows that “numerically
speaking”, with ε ∼ 10−17, (CQI) is the same as (CQIε).

2.5. DOES CONIC QUADRATIC PROGRAMMING EXIST? 97

10. “Tower of variables”. The first step of our construction is quite straightforward: we introduce
extra variables to represent a conic quadratic constraint

√
y2
1 + ... + y2

n ≤ t (CQI)

of dimension n + 1 by a system of conic quadratic constraints of dimension 3 each. Namely, let us call
our original y-variables “variables of generation 0” and let us split them into pairs (y1, y2), ..., (yn−1, yn).
We associate with every one of these pairs its “successor” – an additional variable “ of generation 1”. We
split the resulting 2κ−1 variables of generation 1 into pairs and associate with every pair its successor –
an additional variable of “generation 2”, and so on; after κ− 1 steps we end up with two variables of the
generation κ− 1. Finally, the only variable of generation κ is the variable t from (CQI).

To introduce convenient notation, let us denote by y`
i i-th variable of generation `, so that y0

1 , ..., y0
n

are our original y-variables y1, ..., yn, yκ
1 ≡ t is the original t-variable, and the “parents” of y`

i are the
variables y`−1

2i−1, y
`−1
2i .

Note that the total number of all variables in the “tower of variables” we end up with is 2n− 1.
It is clear that the system of constraints

√
[y`−1

2i−1]2 + [y`−1
2i]2 ≤ y`

i , i = 1, ..., 2κ−`, ` = 1, ..., κ (2.5.1)

is a representation of (CQI) in the sense that a collection (y0
1 ≡ y1, ..., y

0
n ≡ yn, yκ

1 ≡ t) can be extended
to a solution of (2.5.1) if and only if (y, t) solves (CQI). Moreover, let Π`(x1, x2, x3, u

`) be polyhedral
ε`-approximations of the cone

L3 = {(x1, x2, x3) :
√

x2
1 + x2

2 ≤ x3},

` = 1, ..., κ. Consider the system of linear constraints in variables y`
i , u

`
i :

Π`(y`−1
2i−1, y

`−1
2i , y`

i , u
`
i) ≥ 0, i = 1, ..., 2κ−`, ` = 1, ..., κ. (2.5.2)

Writing down this system of linear constraints as Π(y, t, u) ≥ 0, where Π is linear in its arguments,
y = (y0

1 , ..., y0
n), t = yκ

1 , and u is the collection of all u`
i , ` = 1, ..., κ and all y`

i , ` = 1, ..., κ − 1, we
immediately conclude that Π is a polyhedral ε-approximation of Ln+1 with

1 + ε =
κ∏

`=1

(1 + ε`). (2.5.3)

In view of this observation, we may focus on building polyhedral approximations of the Lorentz cone L3.

20. Polyhedral approximation of L3 we intend to use is given by the system of linear inequalities
as follows (positive integer ν is the parameter of the construction):

(a)
{

ξ0 ≥ |x1|
η0 ≥ |x2|

(b)
{

ξj = cos
(

π
2j+1

)
ξj−1 + sin

(
π

2j+1

)
ηj−1

ηj ≥ ∣∣− sin
(

π
2j+1

)
ξj−1 + cos

(
π

2j+1

)
ηj−1

∣∣ , j = 1, ..., ν

(c)
{

ξν ≤ x3

ην ≤ tg
(

π
2ν+1

)
ξν

(2.5.4)

Note that (2.5.4) can be straightforwardly written down as a system of linear homogeneous inequalities
Π(ν)(x1, x2, x3, u) ≥ 0, where u is the collection of 2(ν + 1) variables ξj , ηi, j = 0, ..., ν.

Proposition 2.5.1 Π(ν) is a polyhedral δ(ν)-approximation of L3 = {(x1, x2, x3) :
√

x2
1 + x2

2 ≤ x3} with

δ(ν) =
1

cos
(

π
2ν+1

) − 1. (2.5.5)

98 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Proof. We should prove that
(i) If (x1, x2, x3) ∈ L3, then the triple (x1, x2, x3) can be extended to a solution to (2.5.4);
(ii) If a triple (x1, x2, x3) can be extended to a solution to (2.5.4), then ‖(x1, x2)‖2 ≤ (1 + δ(ν))x3.
(i): Given (x1, x2, x3) ∈ L3, let us set ξ0 = |x1|, η0 = |x2|, thus ensuring (2.5.4.a). Note that

‖(ξ0, η0)‖2 = ‖(x1, x2)‖2 and that the point P 0 = (ξ0, η0) belongs to the first quadrant.
Now, for j = 1, ..., ν let us set

ξj = cos
(

π
2j+1

)
ξj−1 + sin

(
π

2j+1

)
ηj−1

ηj =
∣∣− sin

(
π

2j+1

)
ξj−1 + cos

(
π

2j+1

)
ηj−1

∣∣ ,

thus ensuring (2.5.4.b), and let P j = (ξj , ηj). The point P i is obtained from P j−1 by the following
construction: we rotate clockwise P j−1 by the angle φj = π

2j+1 , thus getting a point Qj−1; if this point
is in the upper half-plane, we set P j = Qj−1, otherwise P j is the reflection of Qj−1 with respect to the
x-axis. From this description it is clear that

(I) ‖P j‖2 = ‖P j−1‖2, so that all vectors P j are of the same Euclidean norm as P 0, i.e., of the norm
‖(x1, x2)‖2;

(II) Since the point P 0 is in the first quadrant, the point Q0 is in the angle −π
4 ≤ arg(P) ≤ π

4 ,
so that P 1 is in the angle 0 ≤ arg(P) ≤ π

4 . The latter relation, in turn, implies that Q1 is in the
angle −π

8 ≤ arg(P) ≤ π
8 , whence P 2 is in the angle 0 ≤ arg(P) ≤ π

8 . Similarly, P 3 is in the angle
0 ≤ arg(P) ≤ π

16 , and so on: P j is in the angle 0 ≤ arg(P) ≤ π
2j+1 .

By (I), ξν ≤ ‖P ν‖2 = ‖(x1, x2)‖2 ≤ x3, so that the first inequality in (2.5.4.c) is satisfied. By (II),
P ν is in the angle 0 ≤ arg(P) ≤ π

2ν+1 , so that the second inequality in (2.5.4.c) also is satisfied. We have
extended a point from L3 to a solution to (2.5.4).

(ii): Let (x1, x2, x3) can be extended to a solution (x1, x2, x3, {ξj , ηj}ν
j=0) to (2.5.4). Let us set

P j = (ξj , ηj). From (2.5.4.a, b) it follows that all vectors P j are nonnegative. We have ‖ P 0 ‖2 ≥
‖ (x1, x2) ‖2 by (2.5.4.a). Now, (2.5.4.b) says that the coordinates of P j are ≥ absolute values of the
coordinates of P j−1 taken in certain orthonormal system of coordinates, so that ‖P j‖2 ≥ ‖P j−1‖2. Thus,
‖P ν‖2 ≥ ‖(x1, x2)T ‖2. On the other hand, by (2.5.4.c) one has ‖P ν‖2 ≤ 1

cos(π

2ν+1)ξν ≤ 1

cos(π

2ν+1)x3, so

that ‖(x1, x2)T ‖2 ≤ δ(ν)x3, as claimed.

Specifying in (2.5.2) the mappings Π`(·) as Π(ν`)(·), we conclude that for every collection of positive
integers ν1, ..., νκ one can point out a polyhedral β-approximation Πν1,...,νκ(y, t, u) of Ln, n = 2κ:

(a`,i)

{
ξ0
`,i ≥ |y`−1

2i−1|
η0

`,i ≥ |y`−1
2i |

(b`,i)

{
ξj
`,i = cos

(
π

2j+1

)
ξj−1
`,i + sin

(
π

2j+1

)
ηj−1

`,i

ηj
`,i ≥

∣∣∣− sin
(

π
2j+1

)
ξj−1
`,i + cos

(
π

2j+1

)
ηj−1

`,i

∣∣∣ , j = 1, ..., ν`

(c`,i)
{

ξν`

`,i ≤ y`
i

ην`

`,i ≤ tg
(

π
2ν`+1

)
ξν`

`,i

i = 1, ..., 2κ−`, ` = 1, ..., κ.

(2.5.6)

The approximation possesses the following properties:

1. The dimension of the u-vector (comprised of all variables in (2.5.6) except yi = y0
i and t = yκ

1) is

p(n, ν1, ..., νκ) ≤ n + O(1)
κ∑

`=1

2κ−`ν`;

2. The image dimension of Πν1,...,νκ(·) (i.e., the # of linear inequalities plus twice the # of linear
equations in (2.5.6)) is

q(n, ν1, ..., νκ) ≤ O(1)
κ∑

`=1

2κ−`ν`;

2.6. EXERCISES 99

3. The quality β of the approximation is

β = β(n; ν1, ..., νκ) =
κ∏

`=1

1
cos

(
π

2ν`+1

) − 1.

30. Back to the general case. Given ε ∈ (0, 1] and setting

ν` = bO(1)` ln
2
ε
c, ` = 1, ..., κ,

with properly chosen absolute constant O(1), we ensure that

β(ν1, ..., νκ) ≤ ε,
p(n, ν1, ..., νκ) ≤ O(1)n ln 2

ε ,
q(n, ν1, ..., νκ) ≤ O(1)n ln 2

ε ,

as required.

2.6 Exercises

2.6.1 Around randomly perturbed linear constraints

Consider a linear constraint
aT x ≥ b [x ∈ Rn]. (2.6.1)

We have seen that if the coefficients aj of the left hand side are subject to random perturbations:

aj = a∗j + εj , (2.6.2)

where εj are independent random variables with zero means taking values in segments [−σj , σj], then “a
reliable version” of the constraint is

∑

j

a∗jxj − ω

√∑

j

σ2
j x2

j

︸ ︷︷ ︸
α(x)

≥ b, (2.6.3)

where ω > 0 is a “safety parameter”. “Reliability” means that if certain x satisfies (2.6.3), then x is
“exp{−ω2/4}-reliable solution to (2.6.1)”, that is, the probability that x fails to satisfy a realization
of the randomly perturbed constraint (2.6.1) does not exceed exp{−ω2/4} (see Proposition 2.4.1). Of
course, there exists a possibility to build an “absolutely safe” version of (2.6.1) – (2.6.2) (an analogy of
the Robust Counterpart), that is, to require that min

|εj |≤σj

∑
j

(a∗j + εj)xj ≥ b, which is exactly the inequality

∑

j

a∗jxj −
∑

j

σj |xj |
︸ ︷︷ ︸

β(x)

≥ b. (2.6.4)

Whenever x satisfies (2.6.4), x satisfies all realizations of (2.6.1), and not “all, up to exceptions of small
probability”. Since (2.6.4) ensures more guarantees than (2.6.3), it is natural to expect from the latter
inequality to be “less conservative” than the former one, that is, to expect that the solution set of (2.6.3)
is larger than the solution set of (2.6.4). Whether this indeed is the case? The answer depends on the
value of the safety parameter ω: when ω ≤ 1, the “safety term” α(x) in (2.6.3) is, for every x, not greater
than the safety term β(x) in (2.6.4), so that every solution to (2.6.4) satisfies (2.6.3). When

√
n > ω > 1,

the “safety terms” in our inequalities become “non-comparable”: depending on x, it may happen that
α(x) ≤ β(x) (which is typical when ω <<

√
n), same as it may happen that α(x) > β(x). Thus, in the

100 LECTURE 2. CONIC QUADRATIC PROGRAMMING

range 1 < ω <
√

n no one of inequalities (2.6.3), (2.6.4) is more conservative than the other one. Finally,
when ω ≥ √

n, we always have α(x) ≥ β(x) (why?), so that for “large” values of ω (2.6.3) is even more
conservative than (2.6.4). The bottom line is that (2.6.3) is not completely satisfactory candidate to the
role of “reliable version” of linear constraint (2.6.1) affected by random perturbations (2.6.2): depending
on the safety parameter, this candidate not necessarily is less conservative than the “absolutely reliable”
version (2.6.4).

The goal of the subsequent exercises is to build and to investigate an improved version of (2.6.3).

Exercise 2.1 1) Given x, assume that there exist u, v such that

(a) x = u + v

(b)
∑
j

a∗jxj −
∑
j

σj |uj | − ω
√∑

j

σ2
j v2

j ≥ b (2.6.5)

Prove that then the probability for x to violate a realization of (2.6.1) is ≤ exp{−ω2/4} (and is ≤
exp{−ω2/2} in the case of symmetrically distributed εj).

2) Verify that the requirement “x can be extended, by properly chosen u, v, to a solution of (2.6.5)”
is weaker than every one of the requirements

(a) x satisfies (2.6.3)
(b) x satisfies (2.6.4)

The conclusion of Exercise 2.1 is:

A good “reliable version” of randomly perturbed constraint (2.6.1) – (2.6.2) is system (2.6.5)
of linear and conic quadratic constraints in variables x, u, v:

• whenever x can be extended to a solution of system (2.6.5), x is exp{−ω2/4}-reliable
solution to (2.6.1) (when the perturbations are symmetrically distributed, you can replace
exp{−ω2/4} with exp{−ω2/2});

• at the same time, “as far as x is concerned”, system (2.6.5) is less conservative than
every one of the inequalities (2.6.3), (2.6.4): if x solves one of these inequalities, x can be
extended to a feasible solution of the system.

Recall that both (2.6.3) and (2.6.4) are Robust Counterparts

min
a∈U

aT x ≥ b (2.6.6)

of (2.6.1) corresponding to certain choices of the uncertainty set U : (2.6.3) corresponds to the ellipsoidal
uncertainty set

U = {a : aj = a∗j + σjζj ,
∑

j

ζ2
j ≤ ω2},

while (2.6.3) corresponds to the box uncertainty set

U = {a : aj = a∗j + σjζj , max
j
|ζj | ≤ 1}.

What about (2.6.5)? Here is the answer:

(!) System (2.6.5) is (equivalent to) the Robust Counterpart (2.6.6) of (2.6.1), the uncertainty
set being the intersection of the above ellipsoid and box:

U∗ = {a : aj = a∗j + σjζj ,
∑

j

ζ2
j ≤ ω2,max

j
|ζj | ≤ 1}.

Specifically, x can be extended to a feasible solution of (2.6.5) if and only if one has

min
a∈U∗

aT x ≥ b.

2.6. EXERCISES 101

Exercise 2.2 Prove (!) by demonstrating that

max
z



pT z :

∑

j

z2
j ≤ R2, |zj | ≤ 1



 = min

u,v





∑

j

|uj |+ R‖v‖2 : u + v = p



 .

Exercise 2.3 Extend the above constructions and results to the case of uncertain linear inequality

aT x ≥ b

with certain b and the vector of coefficients a randomly perturbed according to the scheme

a = a∗ + Bε,

where B is deterministic, and the entries ε1, ..., εN of ε are independent random variables with zero means
and such that |εi| ≤ σi for all i (σi are deterministic).

2.6.2 Around Robust Antenna Design

Consider Antenna Design problem as follows:

Given locations p1, ..., pk ∈ R3 of k coherent harmonic oscillators, design antenna array
which sends as much energy as possible in a given direction (which w.l.o.g. may be taken as
the positive direction of the x-axis).

Of course, this is informal setting. The goal of subsequent exercises is to build and process the corre-
sponding model.

Background. In what follows, you can take for granted the following facts:

1. The diagram of “standardly invoked” harmonic oscillator placed at a point p ∈ R3 is the following
function of a 3D unit direction δ:

Dp(δ) = cos
(

2πpT δ

λ

)
+ i sin

(
2πpT δ

λ

)
[δ ∈ R3, δT δ = 1] (2.6.7)

where λ is the wavelength, and i is the imaginary unit.

2. The diagram of an array of oscillators placed at points p1, ..., pk, is the function

D(δ) =
k∑

`=1

z`Dp`
(δ),

where z` are the “element weights” (which form the antenna design and can be arbitrary complex
numbers).

3. A natural for engineers way to measure the “concentration” of the energy sent by antenna around
a given direction e (which from now on is the positive direction of the x-axis) is

• to choose a θ > 0 and to define the corresponding sidelobe angle ∆θ as the set of all unit 3D
directions δ which are at the angle ≥ θ with the direction e;

• to measure the “energy concentration” by the index ρ = |D(e)|
max
δ∈∆θ

|D(δ)| , where D(·) is the diagram

of the antenna.

4. To make the index easily computable, let us replace in its definition the maximum over the entire
sidelobe angle with the maximum over a given “fine finite grid” Γ ⊂ ∆θ, thus arriving at the
quantity

ρ =
|D(e)|

max
δ∈Γθ

|D(δ)|
which we from now on call the concentration index.

102 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Developments. Now we can formulate the Antenna Design problem as follows:

(*) Given

• locations p1, ..., pk of harmonic oscillators,

• wavelength λ,

• finite set Γ of unit 3D directions,

choose complex weights z` = x` + iy`, ` = 1, ..., k which maximize the index

ρ =
|∑

`

z`D`(e)|
max
δ∈Γ

|∑
`

z`D`(δ)| (2.6.8)

where D`(·) are given by (2.6.7).

Exercise 2.4 1) Whether the objective (2.6.8) is a concave (and thus “easy to maximize”) function?
2) Prove that (∗) is equivalent to the convex optimization program

max
x`,y`∈R

{
<

(∑

`

(x` + iy`)D`(e)

)
: |

∑

`

(x` + iy`)D`(δ)| ≤ 1, δ ∈ Γ

}
. (2.6.9)

In order to carry out our remaining tasks, it makes sense to approximate (2.6.9) with a Linear Program-
ming problem. To this end, it suffices to approximate the modulus of a complex number z (i.e., the
Euclidean norm of a 2D vector) by the quantity

πJ(z) = max
j=1,...,J

<(ωjz) [ωj = cos(2πj
J) + i sin(2πj

J)]

(geometrically: we approximate the unit disk in C = R2 by circumscribed perfect J-side polygon).

Exercise 2.5 What is larger – πJ(z) or |z|? Within which accuracy the “polyhedral norm” πJ(·) ap-
proximates the modulus?

With the outlined approximation of the modulus, (2.6.9) becomes the optimization program

max
x`,y`∈R

{
<

(∑

`

(x` + iy`)D`(e)

)
: <

(
ωj

∑

`

(x` + iy`)D`(δ)

)
≤ 1, 1 ≤ j ≤ J, δ ∈ Γ

}
. (2.6.10)

Exercise 2.6 1) Verify that (2.6.10) is a Linear Programming program and solve it numerically for the
following two setups:

Data A:

• k = 16 oscillators placed at the points p` = (`− 1)e, ` = 1, ..., 16;
• wavelength λ = 2.5;
• J = 10;
• sidelobe grid Γ: since with the oscillators located along the x-axis, the dia-

gram of the array is symmetric with respect to rotations around the x-axis,
it suffices to look at the “sidelobe directions” from the xy-plane. To get Γ,
we form the set of all directions which are at the angle at least θ = 0.3rad
away from the positive direction of the x-axis, and take 64-point equidistant
grid in the resulting “arc of directions”, so that

Γ =



δs =




cos(α + sdα)
sin(α + sdα)

0








63

s=0

[α = 0.3, dα = 2(π−α)
63]

2.6. EXERCISES 103

Data B: exactly as Data A, except for the wavelength, which is now λ = 5.

2) Assume that in reality the weights are affected by “implementation errors”:

x` = x∗` (1 + σξ`), y` = x∗` (1 + ση`),

where x∗` , y
∗
` are the “nominal optimal weights” obtained when solving (2.6.10), x`, y` are actual weights,

σ > 0 is the “perturbation level”, and ξ`, η` are mutually independent random perturbations uniformly
distributed in [−1, 1].

2.1) Check by simulation what happens with the concentration index of the actual diagram as a result
of implementation errors. Carry out the simulations for the perturbation level σ taking values 1.e-4, 5.e-4,
1.e-3.

2.2) If you are not satisfied with the behaviour of nominal design(s) in the presence implementation
errors, use the Robust Counterpart methodology to replace the nominal designs with the robust ones. What
is the “price of robustness” in terms of the index? What do you gain in stability of the diagram w.r.t.
implementation errors?

104 LECTURE 2. CONIC QUADRATIC PROGRAMMING

Lecture 3

Semidefinite Programming

In this lecture we study Semidefinite Programming – a generic conic program with an extremely wide
area of applications.

3.1 Semidefinite cone and Semidefinite programs

3.1.1 Preliminaries

Let Sm be the space of symmetric m×m matrices, and Mm,n be the space of rectangular m×n matrices
with real entries. In the sequel, we always think of these spaces as of Euclidean spaces equipped with the
Frobenius inner product

〈A,B〉 ≡ Tr(ABT) =
∑

i,j

AijBij ,

and we may use in connection with these spaces all notions based upon the Euclidean structure, e.g., the
(Frobenius) norm of a matrix

‖X‖2 =
√
〈X,X〉 =

√√√√
m∑

i,j=1

X2
ij =

√
Tr(XT X)

and likewise the notions of orthogonality, orthogonal complement of a linear subspace, etc. Of course,
the Frobenius inner product of symmetric matrices can be written without the transposition sign:

〈X, Y 〉 = Tr(XY), X, Y ∈ Sm.

Let us focus on the space Sm. After it is equipped with the Frobenius inner product, we may speak about
a cone dual to a given cone K ⊂ Sm:

K∗ = {Y ∈ Sm | 〈Y,X〉 ≥ 0 ∀X ∈ K}.

Among the cones in Sm, the one of special interest is the semidefinite cone Sm
+ , the cone of all

symmetric positive semidefinite matrices1). It is easily seen that Sm
+ indeed is a cone, and moreover it is

self-dual:
(Sm

+)∗ = Sm
+ .

Another simple fact is that the interior Sm
++ of the semidefinite cone Sm

+ is exactly the set of all positive
definite symmetric m×m matrices, i.e., symmetric matrices A for which xT Ax > 0 for all nonzero vectors
x, or, which is the same, symmetric matrices with positive eigenvalues.

1)Recall that a symmetric n × n matrix A is called positive semidefinite if xT Ax ≥ 0 for all x ∈ Rm; an
equivalent definition is that all eigenvalues of A are nonnegative

105

106 LECTURE 3. SEMIDEFINITE PROGRAMMING

The semidefinite cone gives rise to a family of conic programs “minimize a linear objective over the
intersection of the semidefinite cone and an affine plane”; these are the semidefinite programs we are
about to study.

Before writing down a generic semidefinite program, we should resolve a small difficulty with notation.
Normally we use lowercase Latin and Greek letters to denote vectors, and the uppercase letters – to denote
matrices; e.g., our usual notation for a conic problem is

min
x

{
cT x : Ax− b ≥K 0

}
. (CP)

In the case of semidefinite programs, where K = Sm
+ , the usual notation leads to a conflict with the

notation related to the space where Sm
+ lives. Look at (CP): without additional remarks it is unclear

what is A – is it a m ×m matrix from the space Sm or is it a linear mapping acting from the space of
the design vectors – some Rn – to the space Sm? When speaking about a conic problem on the cone Sm

+ ,
we should have in mind the second interpretation of A, while the standard notation in (CP) suggests the
first (wrong!) interpretation. In other words, we meet with the necessity to distinguish between linear
mappings acting to/from Sm and elements of Sm (which themselves are linear mappings from Rm to
Rm). In order to resolve the difficulty, we make the following

Notational convention: To denote a linear mapping acting from a linear space to a space of matrices
(or from a space of matrices to a linear space), we use uppercase script letters like A, B,... Elements of
usual vector spaces Rn are, as always, denoted by lowercase Latin/Greek letters a, b, ..., z, α, ..., ζ, while
elements of a space of matrices usually are denoted by uppercase Latin letters A,B, ..., Z. According to
this convention, a semidefinite program of the form (CP) should be written as

min
x

{
cT x : Ax−B ≥Sm

+
0
}

. (∗)

We also simplify the sign ≥Sm
+

to º and the sign >Sm
+

to Â (same as we write ≥ instead of ≥Rm
+

and >

instead of >Rm
+

). Thus, A º B (⇔ B ¹ A) means that A and B are symmetric matrices of the same size
and A−B is positive semidefinite, while A Â B (⇔ B ≺ A) means that A, B are symmetric matrices of
the same size with positive definite A−B.

Our last convention is how to write down expressions of the type AAxB (A is a linear mapping
from some Rn to Sm, x ∈ Rn, A,B ∈ Sm); what we are trying to denote is the result of the following
operation: we first take the value Ax of the mapping A at a vector x, thus getting an m×m matrix Ax,
and then multiply this matrix from the left and from the right by the matrices A,B. In order to avoid
misunderstandings, we write expressions of this type as

A[Ax]B

or as AA(x)B, or as AA[x]B.

How to specify a mapping A : Rn → Sm. A natural data specifying a linear mapping A : Rn →
Rm is a collection of n elements of the “destination space” – n vectors a1, a2, ..., an ∈ Rm – such that

Ax =
n∑

j=1

xjaj , x = (x1, ..., xn)T ∈ Rn.

Similarly, a natural data specifying a linear mapping A : Rn → Sm is a collection A1, ..., An of n matrices
from Sm such that

Ax =
n∑

j=1

xjAj , x = (x1, ..., xn)T ∈ Rn. (3.1.1)

In terms of these data, the semidefinite program (*) can be written as

min
x

{
cT x : x1A1 + x2A2 + ... + xnAn −B º 0

}
. (SDPr)

3.1. SEMIDEFINITE CONE AND SEMIDEFINITE PROGRAMS 107

It is a simple exercise to verify that if A is represented as in (3.1.1), then the conjugate to A linear
mapping A∗ : Sm → Rn is given by

A∗Λ = (Tr(ΛA1), ..., Tr(ΛAn))T : Sm → Rn. (3.1.2)

Linear Matrix Inequality constraints and semidefinite programs. In the case of conic
quadratic problems, we started with the simplest program of this type – the one with a single conic
quadratic constraint Ax − b ≥Lm 0 – and then defined a conic quadratic program as a program with
finitely many constraints of this type, i.e., as a conic program on a direct product of the ice-cream cones.
In contrast to this, when defining a semidefinite program, we impose on the design vector just one Linear
Matrix Inequality (LMI) Ax−B º 0. Now we indeed should not bother about more than a single LMI,
due to the following simple fact:

A system of finitely many LMI’s

Aix−Bi º 0, i = 1, ..., k,

is equivalent to the single LMI
Ax−B º 0,

with
Ax = Diag (A1x,A2x, ...,Akx) , B = Diag(B1, ..., Bk);

here for a collection of symmetric matrices Q1, ..., Qk

Diag(Q1, ..., Qk) =




Q1

. . .

Qk




is the block-diagonal matrix with the diagonal blocks Q1, ..., Qk.

Indeed, a block-diagonal symmetric matrix is positive (semi)definite if and only if all its
diagonal blocks are so.

Dual to a semidefinite program (SDP). Specifying the general concept of conic dual of a conic
program in the case when the latter is a semidefinite program (*) and taking into account (3.1.2) along
with the fact that the semidefinite cone is self-dual, we see that the dual to (*) is the semidefinite program

max
Λ
{〈B, Λ〉 ≡ Tr(BΛ) : Tr(AiΛ) = ci, i = 1, ..., n; Λ º 0} . (SDDl)

Conic Duality in the case of Semidefinite Programming. Let us see what we get from the
Conic Duality Theorem in the case of semidefinite programs. First note that our default assumption A
on a conic program in the form of (CP) (Lecture 1) as applied to (SDPr) says that no nontrivial linear
combination of the matrices A1, ..., An is 0. Strict feasibility of (SDPr) means that there exists x such
that Ax−B is positive definite, and strict feasibility of (SDDl) means that there exists a positive definite
Λ satisfying A∗Λ = c. According to the Conic Duality Theorem, if both primal and dual are strictly
feasible, both are solvable, the optimal values are equal to each other, and the complementary slackness
condition

[Tr(Λ[Ax−B]) ≡] 〈Λ,Ax−B〉 = 0

is necessary and sufficient for a pair of a primal feasible solution x and a dual feasible solution Λ to be
optimal for the corresponding problems.

It is easily seen that for a pair X,Y of positive semidefinite symmetric matrices one has

Tr(XY) = 0 ⇔ XY = Y X = 0;

108 LECTURE 3. SEMIDEFINITE PROGRAMMING

in particular, in the case of strictly feasible primal and dual problems, the “primal slack” S∗ = Ax∗ −B
corresponding to a primal optimal solution commutes with (any) dual optimal solution Λ∗, and the
product of these two matrices is 0. Besides this, S∗ and Λ∗, as a pair of commuting symmetric matrices,
share a common eigenbasis, and the fact that S∗Λ∗ = 0 means that the eigenvalues of the matrices in
this basis are “complementary”: for every common eigenvector, either the eigenvalue of S∗, or the one of
Λ∗, or both, are equal to 0 (cf. with complementary slackness in the LP case).

3.2 What can be expressed via LMI’s?

As in the previous lecture, the first thing to realize when speaking about the “semidefinite programming
universe” is how to recognize that a convex optimization program

min
x

{
cT x : x ∈ X =

m⋂

i=1

Xi

}
(P)

can be cast as a semidefinite program. Just as in the previous lecture, this question actually asks whether
a given convex set/convex function is positive semidefinite representable (in short: SDr). The definition
of the latter notion is completely similar to the one of a CQr set/function:

We say that a convex set X ⊂ Rn is SDr, if there exists an affine mapping (x, u) → A
(

x
u

)
−

B : Rn
x ×Rk

u → Sm such that

x ∈ X ⇔ ∃u : A
(

x
u

)
−B º 0;

in other words, X is SDr, if there exists LMI

A
(

x
u

)
−B º 0,

in the original design vector x and a vector u of additional design variables such that X is
a projection of the solution set of the LMI onto the x-space. An LMI with this property is
called Semidefinite Representation (SDR) of the set X.

A convex function f : Rn → R ∪ {+∞} is called SDr, if its epigraph

{(x, t) | t ≥ f(x)}

is a SDr set. A SDR of the epigraph of f is called semidefinite representation of f .

By exactly the same reasons as in the case of conic quadratic problems, one has:

1. If f is a SDr function, then all its level sets {x | f(x) ≤ a} are SDr; the SDR of the
level sets are explicitly given by (any) SDR of f ;

2. If all the sets Xi in problem (P) are SDr with known SDR’s, then the problem can
explicitly be converted to a semidefinite program.

In order to understand which functions/sets are SDr, we may use the same approach as in Lecture
2. “The calculus”, i.e., the list of basic operations preserving SD-representability, is exactly the same as
in the case of conic quadratic problems; we just may repeat word by word the relevant reasoning from
Lecture 2, each time replacing “CQr” with “SDr”. Thus, the only issue to be addressed is the derivation
of a catalogue of “simple” SDr functions/sets. Our first observation in this direction is as follows:

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 109

1-17. 2) If a function/set is CQr, it is also SDr, and any CQR of the function/set can be explicitly
converted to its SDR.

Indeed, the notion of a CQr/SDr function is a “derivative” of the notion of a CQr/SDr set:
by definition, a function is CQr/SDr if and only if its epigraph is so. Now, CQr sets are
exactly those sets which can be obtained as projections of the solution sets of systems of
conic quadratic inequalities, i.e., as projections of inverse images, under affine mappings, of
direct products of ice-cream cones. Similarly, SDr sets are projections of the inverse images,
under affine mappings, of positive semidefinite cones. Consequently,

(i) in order to verify that a CQr set is SDr as well, it suffices to show that an inverse image,
under an affine mapping, of a direct product of ice-cream cones – a set of the form

Z = {z | Az − b ∈ K =
l∏

i=1

Lki}

is the inverse image of a semidefinite cone under an affine mapping. To this end, in turn, it
suffices to demonstrate that

(ii) a direct product K =
l∏

i=1

Lki of ice-cream cones is an inverse image of a semidefinite cone

under an affine mapping.

Indeed, representing K as {y | Ay − b ∈ Sm
+}, we get

Z = {z | Az − b ∈ K} = {z | Âz − B̂ ∈ Sm
+},

where Âz − B̂ = A(Az − b)−B is affine.

In turn, in order to prove (ii) it suffices to show that

(iii) Every ice-cream cone Lk is an inverse image of a semidefinite cone under an affine
mapping.

In fact the implication (iii) ⇒ (ii) is given by our calculus, since a direct product of SDr

sets is again SDr3).

We have reached the point where no more reductions are necessary, and here is the demon-
stration of (iii). To see that the Lorentz cone Lk, k > 1, is SDr, it suffices to observe
that (

x
t

)
∈ Lk ⇔ A(x, t) =

(
tIk−1 x
xT t

)
º 0 (3.2.1)

(x is k − 1-dimensional, t is scalar, Ik−1 is the (k − 1)× (k − 1) unit matrix). (3.2.1) indeed
resolves the problem, since the matrix A(x, t) is linear in (x, t)!

2)We refer to Examples 1-17 of CQ-representable functions/sets from Section 2.3
3) Just to recall where the calculus comes from, here is a direct verification:

Given a direct product K =
l∏

i=1

Lki of ice-cream cones and given that every factor in the product is the inverse

image of a semidefinite cone under an affine mapping:

Lki = {xi ∈ Rki | Aixi −Bi º 0},

we can represent K as the inverse image of a semidefinite cone under an affine mapping, namely, as

K = {x = (x1, ..., xl) ∈ Rk1 × ...×Rkl | Diag(A1xi −B1, ...,Alxl −Bl) º 0}.

110 LECTURE 3. SEMIDEFINITE PROGRAMMING

It remains to verify (3.2.1), which is immediate. If (x, t) ∈ Lk, i.e., if ‖x‖2 ≤ t, then for

every y =
(

ξ
τ

)
∈ Rk (ξ is (k − 1)-dimensional, τ is scalar) we have

yTA(x, t)y = τ2t + 2τxT ξ + tξT ξ ≥ τ2t− 2|τ |‖x‖2‖ξ‖2 + t‖ξ‖22
≥ tτ2 − 2t|τ |‖ξ‖2 + t‖ξ‖22
≥ t(|τ | − ‖ξ‖2)2 ≥ 0,

so that A(x, t) º 0. Vice versa, if A(t, x) º 0, then of course t ≥ 0. Assuming t = 0, we

immediately obtain x = 0 (since otherwise for y =
(

x
0

)
we would have 0 ≤ yTA(x, t)y =

−2‖x‖22); thus, A(x, t) º 0 implies ‖x‖2 ≤ t in the case of t = 0. To see that the same

implication is valid for t > 0, let us set y =
(−x

t

)
to get

0 ≤ yTA(x, t)y = txT x− 2txT x + t3 = t(t2 − xT x),

whence ‖x‖2 ≤ t, as claimed.

We see that the “expressive abilities” of semidefinite programming are even richer than those of Conic
Quadratic programming. In fact the gap is quite significant. The first new possibility is the ability to
handle eigenvalues, and the importance of this possibility can hardly be overestimated.

SD-representability of functions of eigenvalues of symmetric matrices. Our first
eigenvalue-related observation is as follows:

18. The largest eigenvalue λmax(X) regarded as a function of m × m symmetric matrix X is SDr.
Indeed, the epigraph of this function

{(X, t) ∈ Sm ×R | λmax(X) ≤ t}
is given by the LMI

tIm −X º 0,

where Im is the unit m×m matrix.

Indeed, the eigenvalues of tIm−X are t minus the eigenvalues of X, so that the matrix tIm−X
is positive semidefinite – all its eigenvalues are nonnegative – if and only if t majorates all
eigenvalues of X.

The latter example admits a natural generalization. Let M, A be two symmetric m ×m matrices, and
let M be positive definite. A real λ and a nonzero vector e are called eigenvalue and eigenvector of
the pencil [M, A], if Ae = λMe (in particular, the usual eigenvalues/eigenvectors of A are exactly the
eigenvalues/eigenvectors of the pencil [Im, A]). Clearly, λ is an eigenvalue of [M, A] if and only if the
matrix λM − A is singular, and nonzero vectors from the kernel of the latter matrix are exactly the
eigenvectors of [M, A] associated with the eigenvalue λ. The eigenvalues of the pencil [M, A] are the
usual eigenvalues of the matrix M−1/2AM−1/2, as can be concluded from:

Det(λM −A) = 0 ⇔ Det(M1/2(λIm −M−1/2AM−1/2)M1/2) = 0 ⇔ Det(λIm −M−1/2AM−1/2) = 0.

The announced extension of Example 18 is as follows:

18a. [The maximum eigenvalue of a pencil]: Let M be a positive definite symmetric m×m matrix,
and let λmax(X : M) be the largest eigenvalue of the pencil [M, X], where X is a symmetric m × m
matrix. The inequality

λmax(X : M) ≤ t

is equivalent to the matrix inequality
tM −X º 0.

In particular, λmax(X : M), regarded as a function of X, is SDr.

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 111

18b. The spectral norm |X| of a symmetric m×m matrix X, i.e., the maximum of absolute val-
ues of the eigenvalues of X, is SDr. Indeed, a SDR of the epigraph

{(X, t) | |X| ≤ t} = {(X, t) | λmax(X) ≤ t, λmax(−X) ≤ t}

of |X| is given by the pair of LMI’s

tIm −X º 0, tIm + X º 0.

In spite of their simplicity, the indicated results are extremely useful. As a more complicated example,
let us build a SDr for the sum of the k largest eigenvalues of a symmetric matrix.

From now on, speaking about m × m symmetric matrix X, we denote by λi(X), i = 1, ..., m, its
eigenvalues counted with their multiplicities and arranged in a non-ascending order:

λ1(X) ≥ λ2(X) ≥ ... ≥ λm(X).

The vector of the eigenvalues (in the indicated order) will be denoted λ(X):

λ(X) = (λ1(X), ..., λm(X))T ∈ Rm.

The question we are about to address is which functions of the eigenvalues are SDr. We already know
that this is the case for the largest eigenvalue λ1(X). Other eigenvalues cannot be SDr since they are
not convex functions of X. And convexity, of course, is a necessary condition for SD-representability (cf.
Lecture 2). It turns out, however, that the m functions

Sk(X) =
k∑

i=1

λi(X), k = 1, ..., m,

are convex and, moreover, are SDr:

18c. Sums of largest eigenvalues of a symmetric matrix. Let X be m ×m symmetric matrix, and
let k ≤ m. Then the function Sk(X) is SDr. Specifically, the epigraph

{(X, t) | Sk(x) ≤ t}

of the function admits the SDR
(a) t− ks− Tr(Z) ≥ 0
(b) Z º 0
(c) Z −X + sIm º 0

(3.2.2)

where Z ∈ Sm and s ∈ R are additional variables.

We should prove that

(i) If a given pair X, t can be extended, by properly chosen s, Z, to a solution of the system
of LMI’s (3.2.2), then Sk(X) ≤ t;

(ii) Vice versa, if Sk(X) ≤ t, then the pair X, t can be extended, by properly chosen s, Z, to
a solution of (3.2.2).

To prove (i), we use the following basic fact4):

4) which is n immediate corollary of the fundamental Variational Characterization of Eigenvalues of symmetric
matrices, see Section A.7.3: for a symmetric m×m matrix A,

λi(A) = min
E∈Ei

max
e∈E:eT e=1

eT Ae,

where Ei is the collection of all linear subspaces of the dimension n− i + 1 in Rm,

112 LECTURE 3. SEMIDEFINITE PROGRAMMING

(W) The vector λ(X) is a º-monotone function of X ∈ Sm:

X º X ′ ⇒ λ(X) ≥ λ(X ′).

Assuming that (X, t, s, Z) is a solution to (3.2.2), we get X ¹ Z + sIm, so that

λ(X) ≤ λ(Z + sIm) = λ(Z) + s




1
...
1


 ,

whence
Sk(X) ≤ Sk(Z) + sk.

Since Z º 0 (see (3.2.2.b)), we have Sk(Z) ≤ Tr(Z), and combining these inequalities we get

Sk(X) ≤ Tr(Z) + sk.

The latter inequality, in view of (3.2.2.a)), implies Sk(X) ≤ t, and (i) is proved.
To prove (ii), assume that we are given X, t with Sk(X) ≤ t, and let us set s = λk(X).
Then the k largest eigenvalues of the matrix X−sIm are nonnegative, and the remaining are
nonpositive. Let Z be a symmetric matrix with the same eigenbasis as X and such that the
k largest eigenvalues of Z are the same as those of X − sIm, and the remaining eigenvalues
are zeros. The matrices Z and Z − X + sIm are clearly positive semidefinite (the first by
construction, and the second since in the eigenbasis of X this matrix is diagonal with the first
k diagonal entries being 0 and the remaining being the same as those of the matrix sIm−X,
i.e., nonnegative). Thus, the matrix Z and the real s we have built satisfy (3.2.2.b, c). In
order to see that (3.2.2.a) is satisfied as well, note that by construction Tr(Z) = Sk(x)− sk,
whence t− sk − Tr(Z) = t− Sk(x) ≥ 0.

In order to proceed, we need the following highly useful technical result:

Lemma 3.2.1 [Lemma on the Schur Complement] Let

A =
(

B CT

C D

)

be a symmetric matrix with k × k block B and ` × ` block D. Assume that B is positive definite. Then
A is positive (semi)definite if and only if the matrix

D − CB−1CT

is positive (semi)definite (this matrix is called the Schur complement of B in A).

Proof. The positive semidefiniteness of A is equivalent to the fact that

0 ≤ (xT , yT)
(

B CT

C D

) (
x
y

)
= xT Bx + 2xT CT y + yT Dy ∀x ∈ Rk, y ∈ R`,

or, which is the same, to the fact that

inf
x∈Rk

[
xT Bx + 2xT CT y + yT Dy

] ≥ 0 ∀y ∈ R`.

Since B is positive definite by assumption, the infimum in x can be computed explicitly for every fixed
y: the optimal x is −B−1CT y, and the optimal value is

yT Dy − yT CB−1CT y = yT [D − CB−1CT]y.

The positive definiteness/semidefiniteness of A is equivalent to the fact that the latter expression is,
respectively, positive/nonnegative for every y 6= 0, i.e., to the positive definiteness/semidefiniteness of the
Schur complement of B in A.

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 113

18d. “Determinant” of a symmetric positive semidefinite matrix. Let X be a symmetric positive
semidefinite m×m matrix. Although its determinant

Det(X) =
m∏

i=1

λi(X)

is neither a convex nor a concave function of X (if m ≥ 2), it turns out that the function Detq(X) is
concave in X whenever 0 ≤ q ≤ 1

m . Function of this type are important in many volume-related problems
(see below); we are about to prove that

if q is a rational number,, 0 ≤ q ≤ 1
m , then the function

fq(X) =
{−Detq(X), X º 0

+∞, otherwise

is SDr.

Consider the following system of LMI’s:
(

X ∆
∆T D(∆)

)
º 0, (D)

where ∆ is m ×m lower triangular matrix comprised of additional variables, and D(∆) is
the diagonal matrix with the same diagonal entries as those of ∆. Let diag(∆) denote the
vector of the diagonal entries of the square matrix ∆.
As we know from Lecture 2 (see Example 15), the set

{(δ, t) ∈ Rm
+ ×R | t ≤ (δ1...δm)q}

admits an explicit CQR. Consequently, this set admits an explicit SDR as well. The latter
SDR is given by certain LMI S(δ, t; u) º 0, where u is the vector of additional variables of
the SDR, and S(δ, t, u) is a matrix affinely depending on the arguments. We claim that

(!) The system of LMI’s (D) & S(diag(∆), t; u) º 0 is a SDR for the set

{(X, t) | X º 0, t ≤ Detq(X)},

which is basically the epigraph of the function fq (the latter is obtained from our set by
reflection with respect to the plane t = 0).
To support our claim, recall that by Linear Algebra a matrix X is positive semidefinite if and
only if it can be factorized as X = ∆̂∆̂T with a lower triangular ∆̂, diag(∆̂) ≥ 0; the resulting
matrix ∆̂ is called the Choleski factor of X. No note that if X º 0 and t ≤ Detq(X), then
(1) We can extend X by appropriately chosen lower triangular matrix ∆ to a solution of (D)

in such a way that if δ = diag(∆), then
m∏

i=1

δi = Det(X).

Indeed, let ∆̂ be the Choleski factor of X. Let D̂ be the diagonal matrix with the same

diagonal entries as those of ∆̂, and let ∆ = ∆̂D̂, so that the diagonal entries δi of ∆ are

squares of the diagonal entries δ̂i of the matrix ∆̂. Thus, D(∆) = D̂2. It follows that

for every ε > 0 one has ∆[D(∆) + εI]−1∆T = ∆̂D̂[D̂2 + εI]−1D̂∆̂T ¹ ∆̂∆̂T = X. We

see that by the Schur Complement Lemma all matrices of the form

(
X ∆
∆T D(∆) + εI

)

with ε > 0 are positive semidefinite, whence

(
X ∆
∆T D(∆)

)
º 0. Thus, (D) is indeed

satisfied by (X, ∆). And of course X = ∆̂∆̂T ⇒ Det(X) = Det2(∆̂) =
m∏

i=1

δ̂2
i =

m∏
i=1

δi.

114 LECTURE 3. SEMIDEFINITE PROGRAMMING

(2) Since δ = diag(∆) ≥ 0 and
m∏

i=1

δi = Det(X), we get t ≤ Detq(X) =
(

m∏
i=1

δi

)q

, so that we

can extend (t, δ) by a properly chosen u to a solution of the LMI S(diag(∆), t; u) º 0.
We conclude that if X º 0 and t ≤ Detq(X), then one can extend the pair X, t by properly
chosen ∆ and u to a solution of the LMI (D) & S(diag(∆), t;u) º 0, which is the first part
of the proof of (!).
To complete the proof of (!), it suffices to demonstrate that if for a given pair X, t there
exist ∆ and u such that (D) and the LMI S(diag(∆), t;u) º 0 are satisfied, then X is
positive semidefinite and t ≤ Detq(X). This is immediate: denoting δ = diag(∆) [≥ 0]
and applying the Schur Complement Lemma, we conclude that X º ∆[D(∆) + εI]−1∆T

for every ε > 0. Applying (W), we get λ(X) ≥ λ(∆[D(∆) + εI]−1∆T), whence of course

Det(X) ≥ Det(∆[D(∆) + εI]−1∆T) =
m∏

i=1

δ2
i /(δi + ε). Passing to limit as ε → 0, we get

m∏
i=1

δi ≤ Det(X). On the other hand, the LMI S(δ, t; u) º 0 takes place, which means that

t ≤
(

m∏
i=1

δi

)q

. Combining the resulting inequalities, we come to t ≤ Detq(X), as required.

18e. Negative powers of the determinant. Let q be a positive rational. Then the function

f(X) =
{

Det−q(X), X Â 0
+∞, otherwise

of symmetric m×m matrix X is SDr.

The construction is completely similar to the one used in Example 18d. As we remember from
Lecture 2, Example 16, the function g(δ) = (δ1...δm)−q of positive vector δ = (δ1, ..., δm)T is
CQr and is therefore SDr as well. Let an SDR of the function be given by LMI R(δ, t, u) º
0. The same arguments as in Example 18d demonstrate that the pair of LMI’s (D) &
R(Dg(∆), t, u) º 0 is an SDR for f .

In examples 18, 18b – 18d we were discussed SD-representability of particular functions of eigenvalues of
a symmetric matrix. Here is a general statement of this type:

Proposition 3.2.1 Let g(x1, ..., xm) : Rm → R ∪ {+∞} be a symmetric (i.e., invariant with respect to
permutations of the coordinates x1,, xm) SD-representable function:

t ≥ f(x) ⇔ ∃u : S(x, t, u) º 0,

with S affinely depending on x, t, u. Then the function

f(X) = g(λ(X))

of symmetric m×m matrix X is SDr, with SDR given by the relation

(a) t ≥ f(X)
m

∃x1, ..., xm, u :

(b)





S(x1, ..., xm, t, u) º 0
x1 ≥ x2 ≥ ... ≥ xm

Sj(X) ≤ x1 + ... + xj , j = 1, ...,m− 1
Tr(X) = x1 + ... + xm

(3.2.3)

(recall that the functions Sj(X) =
k∑

i=1

λi(X) are SDr, see Example 18c). Thus, the solution set of (b) is

SDr (as an intersection of SDr sets), which implies SD-representability of the projection of this set onto
the (X, t)-plane; by (3.2.3) the latter projection is exactly the epigraph of f).

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 115

The proof of Proposition 3.2.1 is based upon an extremely useful result known as Birkhoff’s Theorem5).
As a corollary of Proposition 3.2.1, we see that the following functions of a symmetric m×m matrix

X are SDr:

• f(X) = −Detq(X), X º 0, q ≤ 1
m is a positive rational (this fact was already established directly);

[here g(x1, ..., xm) = (x1...xm)q : Rn
+ → R; a CQR (and thus – a SDR) of g is presented in Example

15 of Lecture 2]

• f(x) = Det−q(X), X Â 0, q is a positive rational (cf. Example 18e)
[here g(x1, ..., xm) = (x1, ..., xm)−q : Rm

++ → R; a CQR of g is presented in Example 16 of Lecture
2]

• ‖X‖p =
(

m∑
i=1

|λi(X)|p
)1/p

, p ≥ 1 is rational

[g(x) = ‖x‖p ≡
(

m∑
i=1

|xi|p
)1/p

, see Lecture 2, Example 17a]

• ‖X+‖p =
(

m∑
i=1

maxp[λi(X), 0]
)1/p

, p ≥ 1 is rational

[here g(x) = ‖x+‖p ≡
(

m∑
i=1

|maxp[xi, 0]
)1/p

, see Lecture 2, Example 17b]

SD-representability of functions of singular values. Consider the space Mk,l of k × l rect-
angular matrices and assume that k ≤ l. Given a matrix A ∈ Mk,l, consider the symmetric positive
semidefinite k × k matrix (AAT)1/2; its eigenvalues are called singular values of A and are denoted by
σ1(A), ...σk(A): σi(A) = λi((AAT)1/2). According to the convention on how we enumerate eigenvalues
of a symmetric matrix, the singular values form a non-ascending sequence:

σ1(A) ≥ σ2(A) ≥ ... ≥ σk(A).

The importance of the singular values comes from the Singular Value Decomposition Theorem which
states that a k × l matrix A (k ≤ l) can be represented as

A =
k∑

i=1

σi(A)eif
T
i ,

where {ei}k
i=1 and {fi}k

i=1 are orthonormal sequences in Rk and Rl, respectively; this is a surrogate of
the eigenvalue decomposition of a symmetric k × k matrix

A =
k∑

i=1

λi(A)eie
T
i ,

where {ei}k
i=1 form an orthonormal eigenbasis of A.

Among the singular values of a rectangular matrix, the most important is the largest σ1(A). This is
nothing but the operator (or spectral) norm of A:

|A| = max{‖Ax‖2 | ‖x‖2 ≤ 1}.
5)The Birkhoff Theorem, which, aside of other applications, implies a number of crucial facts about eigenvalues

of symmetric matrices, by itself even does not mention the word “eigenvalue” and reads: The extreme points of
the polytope P of double stochastic m×m matrices – those with nonnegative entries and unit sums of entries in
every row and every column – are exactly the permutation matrices (those with a single nonzero entry, equal to
1, in every row and every column).

116 LECTURE 3. SEMIDEFINITE PROGRAMMING

For a symmetric matrix, the singular values are exactly the modulae of the eigenvalues, and our new
definition of the norm coincides with the one already given in 18b.

It turns out that the sum of a given number of the largest singular values of A

Σp(A) =
p∑

i=1

σi(A)

is a convex and, moreover, a SDr function of A. In particular, the operator norm of A is SDr:

19. The sum Σp(X) of p largest singular values of a rectangular matrix X ∈ Mk,l is SDr. In particular,
the operator norm of a rectangular matrix is SDr:

|X| ≤ t ⇔
(

tIl −XT

−X tIk

)
º 0.

Indeed, the result in question follows from the fact that the sums of p largest eigenvalues of
a symmetric matrix are SDr (Example 18c) due to the following

Observation. The singular values σi(X) of a rectangular k× l matrix X (k ≤ l)
for i ≤ k are equal to the eigenvalues λi(X̄) of the (k + l) × (k + l) symmetric
matrix

X̄ =
(

0 XT

X 0

)
.

Since X̄ linearly depends on X, SDR’s of the functions Sp(·) induce SDR’s of the functions
Σp(X) = Sp(X̄) (Rule on affine substitution, Lecture 2; recall that all “calculus rules”
established in Lecture 2 for CQR’s are valid for SDR’s as well).

Let us justify our observation. Let X =
k∑

i=1

σi(X)eif
T
i be a singular value de-

composition of X. We claim that the 2k (k + l)-dimensional vectors g+
i =

(
fi

ei

)

and g−i =
(

fi

−ei

)
are orthogonal to each other, and they are eigenvectors of X̄

with the eigenvalues σi(X) and −σi(X), respectively. Moreover, X̄ vanishes on
the orthogonal complement of the linear span of these vectors. In other words,
we claim that the eigenvalues of X̄, arranged in the non-ascending order, are as
follows:

σ1(X), σ2(X), ..., σk(X), 0, ..., 0︸ ︷︷ ︸
2(l−k)

,−σk(X),−σk−1(X), ...,−σ1(X);

this, of course, proves our Observation.
Now, the fact that the 2k vectors g±i , i = 1, ..., k, are mutually orthogonal and
nonzero is evident. Furthermore (we write σi instead of σi(X)),

(
0 XT

X 0

) (
fi

ei

)
=




0
k∑

j=1

σjfje
T
j

k∑
j=1

σjejf
T
j 0




(
fi

ei

)

=




k∑
j=1

σjfj(eT
j ei)

k∑
j=1

σjej(fT
j fi)




= σi

(
fi

ei

)

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 117

(we have used that both {fj} and {ej} are orthonormal systems). Thus, g+
i is an

eigenvector of X̄ with the eigenvalue σi(X). Similar computation shows that g−i
is an eigenvector of X̄ with the eigenvalue −σi(X).

It remains to verify that if h =
(

f
e

)
is orthogonal to all g±i (f is l-dimensional,

e is k-dimensional), then X̄h = 0. Indeed, the orthogonality assumption means
that fT fi±eT ei = 0 for all i, whence eT ei=0 and fT fi = 0 for all i. Consequently,

(
0 XT

X 0

)(
f
e

)
=




k∑
i=1

fj(eT
j e)

k∑
i=1

ej(fT
j f)


 = 0.

Looking at Proposition 3.2.1, we see that the fact that specific functions of eigenvalues of a symmetric
matrix X, namely, the sums Sk(X) of k largest eigenvalues of X, are SDr, underlies the possibility to
build SDR’s for a wide class of functions of the eigenvalues. The role of the sums of k largest singular
values of a rectangular matrix X is equally important:

Proposition 3.2.2 Let g(x1, ..., xk) : Rk
+ → R ∪ {+∞} be a symmetric monotone function:

0 ≤ y ≤ x ∈ Dom f ⇒ f(y) ≤ f(x).

Assume that g is SDr:
t ≥ g(x) ⇔ ∃u : S(x, t, u) º 0,

with S affinely depending on x, t, u. Then the function

f(X) = g(σ(X))

of k × l (k ≤ l) rectangular matrix X is SDr, with SDR given by the relation

(a) t ≥ f(X)
m

∃x1, ..., xk, u :

(b)





S(x1, ..., xk, t, u) º 0
x1 ≥ x2 ≥ ... ≥ xk

Σj(X) ≤ x1 + ... + xj , j = 1, ...,m

(3.2.4)

Note the difference between the symmetric (Proposition 3.2.1) and the non-symmetric (Proposition 3.2.2)
situations: in the former the function g(x) was assumed to be SDr and symmetric only, while in the latter
the monotonicity requirement is added.
The proof of Proposition 3.2.2 is outlined in Section 3.7

“Nonlinear matrix inequalities”. There are several cases when matrix inequalities F (x) º 0,
where F is a nonlinear function of x taking values in the space of symmetric m × m matrices, can be
“linearized” – expressed via LMI’s.

20a. General quadratic matrix inequality. Let X be a rectangular k × l matrix and

F (X) = (AXB)(AXB)T + CXD + (CXD)T + E

be a “quadratic” matrix-valued function of X; here A,B,C, D,E = ET are rectangular matrices of
appropriate sizes. Let m be the row size of the values of F . Consider the “º-epigraph” of the (matrix-
valued!) function F – the set

{(X, Y) ∈ Mk,l × Sm | F (X) ¹ Y }.
We claim that this set is SDr with the SDR(

Ir (AXB)T

AXB Y − E − CXD − (CXD)T

)
º 0 [B : l × r]

118 LECTURE 3. SEMIDEFINITE PROGRAMMING

Indeed, by the Schur Complement Lemma our LMI is satisfied if and only if the Schur
complement of the North-Western block is positive semidefinite, which is exactly our original
“quadratic” matrix inequality.

20b. General “fractional-quadratic” matrix inequality. Let X be a rectangular k× l matrix, and V
be a positive definite symmetric l × l matrix. Then we can define the matrix-valued function

F (X, V) = XV −1XT

taking values in the space of k × k symmetric matrices. We claim that the closure of the º-epigraph of
this (matrix-valued!) function, i.e., the set

E = cl {(X, V ; Y) ∈ Mk,l × Sl
++ × Sk | F (X, V) ≡ XV −1XT ¹ Y }

is SDr, and an SDR of this set is given by the LMI
(

V XT

X Y

)
º 0. (R)

Indeed, by the Schur Complement Lemma a triple (X, V, Y) with positive definite V belongs
to the “epigraph of F” – satisfies the relation F (X, V) ¹ Y – if and only if it satisfies (R).
Now, if a triple (X,V, Y) belongs to E, i.e., it is the limit of a sequence of triples from
the epigraph of F , then it satisfies (R) (as a limit of triples satisfying (R)). Vice versa, if a
triple (X,V, Y) satisfies (R), then V is positive semidefinite (as a diagonal block in a positive
semidefinite matrix). The “regularized” triples (X, Vε = V + εIl, Y) associated with ε > 0
satisfy (R) along with the triple (X, V,R); since, as we just have seen, V º 0, we have
Vε Â 0, for ε > 0. Consequently, the triples (X, Vε, Y) belong to E (this was our very first
observation); since the triple (X, V, Y) is the limit of the regularized triples which, as we
have seen, all belong to the epigraph of F , the triple (X, Y, V) belongs to the closure E of
this epigraph.

20c. Matrix inequality Y ¹ (CT X−1C)−1. In the case of scalars x, y the inequality y ≤ (cx−1c)−1

in variables x, y is just an awkward way to write down the linear inequality y ≤ c−2x, but it naturally to
the matrix analogy of the original inequality, namely, Y ¹ (CT X−1C)−1, with rectangular m×n matrix
C and variable symmetric n × n matrix Y and m ×m matrix X. In order for the matrix inequality to
make sense, we should assume that the rank of C equals n (and thus m ≥ n). Under this assumption,
the matrix (CT X−1C)−1 makes sense at least for a positive definite X. We claim that the closure of the
solution set of the resulting inequality – the set

X = cl {(X, Y) ∈ Sm × Sn | X Â 0, Y ¹ (CT X−1C)−1}
is SDr:

X = {(X, Y) | ∃Z : Y ¹ Z, Z º 0, X º CZCT }.
Indeed, let us denote by X ′ the set in the right hand side of the latter relation; we should
prove that X ′ = X . By definition, X is the closure of its intersection with the domain X Â 0.
It is clear that X ′ also is the closure of its intersection with the domain X Â 0. Thus, all we
need to prove is that a pair (Y, X) with X Â 0 belongs to X if and only if it belongs to X ′.
“If” part: Assume that X Â 0 and (Y,X) ∈ X ′. Then there exists Z such that Z º 0,
Z º Y and X º CZCT . Let us choose a sequence Zi Â Z such that Zi → Z, i → ∞.
Since CZiC

T → CZCT ¹ X as i → ∞, we can find a sequence of matrices Xi such that
Xi → X, i → ∞, and Xi Â CZiC

T for all i. By the Schur Complement Lemma, the

matrices
(

Xi C
CT Z−1

i

)
are positive definite; applying this lemma again, we conclude that

Z−1
i º CT X−1

i C. Note that the left and the right hand side matrices in the latter inequality
are positive definite. Now let us use the following simple fact

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 119

Lemma 3.2.2 Let U, V be positive definite matrices of the same size. Then

U ¹ V ⇔ U−1 º V −1.

Proof. Note that we can multiply an inequality A ¹ B by a matrix Q from the
left and QT from the right:

A ¹ B ⇒ QAQT ¹ QBQT [A,B ∈ Sm, Q ∈ Mk,m]

(why?) Thus, if 0 ≺ U ¹ V , then V −1/2UV −1/2 ¹ V −1/2V V −1/2 = I (note
that V −1/2 = [V −1/2]T), whence clearly V 1/2U−1V 1/2 = [V −1/2UV −1/2]−1 º I.
Thus, V 1/2U−1V 1/2 º I; multiplying this inequality from the left and from the
right by V −1/2 = [V −1/2]T , we get U−1 º V −1.

Applying Lemma 3.2.2 to the inequality Z−1
i º CT X−1

i C[Â 0], we get Zi ¹ (CT X−1
i C)−1.

As i → ∞, the left hand side in this inequality converges to Z, and the right hand side
converges to (CT X−1C)−1. Hence Z ¹ (CT X−1C)−1, and since Y ¹ Z, we get Y ¹
(CT X−1C)−1, as claimed.

“Only if” part: Let X Â 0 and Y ¹ (CT X−1C)−1; we should prove that there exists Z º 0
such that Z º Y and X º CZCT . We claim that the required relations are satisfied by
Z = (CT X−1C)−1. The only nontrivial part of the claim is that X º CZCT , and here is the
required justification: by its origin Z Â 0, and by the Schur Complement Lemma the matrix(

Z−1 CT

C X

)
is positive semidefinite, whence, by the same Lemma, X º C(Z−1)−1CT =

CZCT .

Nonnegative polynomials. Consider the problem of the best polynomial approximation – given a
function f on certain interval, we want to find its best uniform (or Least Squares, etc.) approximation
by a polynomial of a given degree. This problem arises typically as a subproblem in all kinds of signal
processing problems. In some situations the approximating polynomial is required to be nonnegative
(think, e.g., of the case where the resulting polynomial is an estimate of an unknown probability density);
how to express the nonnegativity restriction? As it was shown by Yu. Nesterov [14], it can be done via
semidefinite programming:

The set of all nonnegative (on the entire axis, or on a given ray, or on a given segment)
polynomials of a given degree is SDr.

In this statement (and everywhere below) we identify a polynomial p(t) =
k∑

i=0

pit
i of degree (not exceeding)

k with the (k + 1)-dimensional vector Coef(p) = Coef(p) = (p0, p1, ..., pk)T of the coefficients of p.
Consequently, a set of polynomials of the degree ≤ k becomes a set in Rk+1, and we may ask whether
this set is or is not SDr.

Let us look what are the SDR’s of different sets of nonnegative polynomials. The key here is to get
a SDR for the set P+

2k(R) of polynomials of (at most) a given degree 2k which are nonnegative on the
entire axis6)

21a. Polynomials nonnegative on the entire axis: The set P+
2k(R) is SDr – it is the image of the

semidefinite cone Sk+1
+ under the affine mapping

X 7→ Coef(eT (t)Xe(t)) : Sk+1 → R2k+1, e(t) =




1
t
t2

...
tk


 (C)

6) It is clear why we have restricted the degree to be even: a polynomial of an odd degree cannot be nonnegative
on the entire axis!

120 LECTURE 3. SEMIDEFINITE PROGRAMMING

First note that the fact that P+ ≡ P+
2k(R) is an affine image of the semidefinite cone indeed

implies the SD-representability of P+, see the “calculus” of conic representations in Lecture
2. Thus, all we need is to show that P+ is exactly the same as the image, let it be called P ,
of Sk+1

+ under the mapping (C).

(1) The fact that P is contained in P+ is immediate. Indeed, let X be a (k + 1) × (k + 1)
positive semidefinite matrix. Then X is a sum of dyadic matrices:

X =
k+1∑

i=1

pi(pi)T , pi = (pi0, pi1, ..., pik)T ∈ Rk+1

(why?) But then

eT (t)Xe(t) =
k+1∑

i=1

eT (t)pi[pi]T e(t) =
k+1∑

i=1




k∑

j=0

pijt
j




2

is the sum of squares of other polynomials and therefore is nonnegative on the axis. Thus,
the image of X under the mapping (C) belongs to P+.

Note that reversing our reasoning, we get the following result:

(!) If a polynomial p(t) of degree ≤ 2k can be represented as a sum of squares of
other polynomials, then the vector Coef(p) of the coefficients of p belongs to the
image of Sk+1

+ under the mapping (C).

With (!), the remaining part of the proof – the demonstration that the image of Sk+1
+ contains

P+, is readily given by the following well-known algebraic fact:

(!!) A polynomial is nonnegative on the axis if and only if it is a sum of squares
of polynomials.

The proof of (!!) is so nice that we cannot resist the temptation to present it here. The
“if” part is evident. To prove the “only if” one, assume that p(t) is nonnegative on the
axis, and let the degree of p (it must be even) be 2k. Now let us look at the roots of p.
The real roots λ1, ..., λr must be of even multiplicities 2m1, 2m2, ...2mr each (otherwise
p would alter its sign in a neighbourhood of a root, which contradicts the nonnegativity).
The complex roots of p can be arranged in conjugate pairs (µ1, µ

∗
1), (µ2, µ

∗
2), ..., (µs, µ

∗
s),

and the factor of p
(t− µi)(t− µ∗i) = (t−<µi)

2 + (=µi)
2

corresponding to such a pair is a sum of two squares. Finally, the leading coefficient of
p is positive. Consequently, we have

p(t) = ω2[(t− λ1)
2]m1 ...[(t− λr)

2]mr [(t− µ1)(t− µ∗1)]...[(t− µs)(t− µ∗s)]

is a product of sums of squares. But such a product is itself a sum of squares (open the
parentheses)!

In fact we can say more: a nonnegative polynomial p is a sum of just two
squares! To see this, note that, as we have seen, p is a product of sums of two
squares and take into account the following fact (Louville):
The product of sums of two squares is again a sum of two squares:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2

(cf. with: “the modulus of a product of two complex numbers is the product
of their modulae”).

Equipped with the SDR of the set P+
2k(R) of polynomials nonnegative on the entire axis, we can

immediately obtain SDR’s for the polynomials nonnegative on a given ray/segment:

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 121

21b. Polynomials nonnegative on a ray/segment.
1) The set P+

k (R+) of (coefficients of) polynomials of degree ≤ k which are nonnegative on the
nonnegative ray, is SDr.

Indeed, this set is the inverse image of the SDr set P+
2k(R) under the linear mapping of the

spaces of (coefficients of) polynomials given by the mapping

p(t) 7→ p+(t) ≡ p(t2)

(recall that the inverse image of an SDr set is SDr).

2) The set P+
k ([0, 1]) of (coefficients of) polynomials of degree ≤ k which are nonnegative on the

segment [0, 1], is SDr.

Indeed, a polynomial p(t) of degree ≤ k is nonnegative on [0, 1] if and only if the rational
function

g(t) = p

(
t2

1 + t2

)

is nonnegative on the entire axis, or, which is the same, if and only if the polynomial

p+(t) = (1 + t2)kg(t)

of degree ≤ 2k is nonnegative on the entire axis. The coefficients of p+ depend linearly on
the coefficients of p, and we conclude that P+

k ([0, 1]) is the inverse image of the SDr set
P+

2k(R) under certain linear mapping.

Our last example in this series deals with trigonometric polynomials

p(φ) = a0 +
k∑

`=1

[a` cos(`φ) + b` sin(`φ)]

Identifying such a polynomial with its vector of coefficients Coef(p) ∈ R2k+1, we may ask how to express
the set S+

k (∆) of those trigonometric polynomials of degree ≤ k which are nonnegative on a segment
∆ ⊂ [0, 2π].

21c. Trigonometric polynomials nonnegative on a segment. The set S+
k (∆) is SDr.

Indeed, sin(`φ) and cos(`φ) are polynomials of sin(φ) and cos(φ), and the latter functions,
in turn, are rational functions of ζ = tan(φ/2):

cos(φ) =
1− ζ2

1 + ζ2
, sin(φ) =

2ζ

1 + ζ2
[ζ = tan(φ/2)].

Consequently, a trigonometric polynomial p(φ) of degree ≤ k can be represented as a rational
function of ζ = tan(φ/2):

p(φ) =
p+(ζ)

(1 + ζ2)k
[ζ = tan(φ/2)],

where the coefficients of the algebraic polynomial p+ of degree ≤ 2k are linear functions
of the coefficients of p. Now, the requirement for p to be nonnegative on a given segment
∆ ⊂ [0, 2π] is equivalent to the requirement for p+ to be nonnegative on a “segment” ∆+

(which, depending on ∆, may be either the usual finite segment, or a ray, or the entire axis).
We see that S+

k (∆) is inverse image, under certain linear mapping, of the SDr set P+
2k(∆+),

so that S+
k (∆) itself is SDr.

122 LECTURE 3. SEMIDEFINITE PROGRAMMING

Finally, we may ask which part of the above results can be saved when we pass from nonnegative
polynomials of one variable to those of two or more variables. Unfortunately, not too much. E.g., among
nonnegative polynomials of a given degree with r > 1 variables, exactly those of them who are sums
of squares can be obtained as the image of a positive semidefinite cone under certain linear mapping
similar to (D). The difficulty is that in the multi-dimensional case the nonnegativity of a polynomial is
not equivalent to its representability as a sum of squares, thus, the positive semidefinite cone gives only
part of the polynomials we are interested to describe.

3.3 Applications of Semidefinite Programming in Engineering

Due to its tremendous expressive abilities, Semidefinite Programming allows to pose and process numerous
highly nonlinear convex optimization programs arising in applications, in particular, in Engineering. We
are about to outline briefly just few instructive examples.

3.3.1 Dynamic Stability in Mechanics

“Free motions” of the so called linearly elastic mechanical systems, i.e., their behaviour when no external
forces are applied, are governed by systems of differential equations of the type

M
d2

dt2
x(t) = −Ax(t), (N)

where x(t) ∈ Rn is the state vector of the system at time t, M is the (generalized) “mass matrix”, and A
is the “stiffness” matrix of the system. Basically, (N) is the Newton law for a system with the potential
energy 1

2xT Ax.

As a simple example, consider a system of k points of masses µ1, ..., µk linked by springs with
given elasticity coefficients; here x is the vector of the displacements xi ∈ Rd of the points
from their equilibrium positions ei (d = 1/2/3 is the dimension of the model). The Newton
equations become

µi
d2

dt2
xi(t) = −

∑

j 6=i

νij(ei − ej)(ei − ej)T (xi − xj), i = 1, ..., k,

with νij given by

νij =
κij

‖ei − ej‖32
,

where κij > 0 are the elasticity coefficients of the springs. The resulting system is of the
form (N) with a diagonal matrix M and a positive semidefinite symmetric matrix A. The
well-known simplest system of this type is a pendulum (a single point capable to slide along
a given axis and linked by a spring to a fixed point on the axis):

l x
d2

dt2 x(t) = −νx(t), ν = κ
l .

Another example is given by trusses – mechanical constructions, like a railway bridge or the
Eiffel Tower, built from linked to each other thin elastic bars.

Note that in the above examples both the mass matrix M and the stiffness matrix A are symmetric
positive semidefinite; in “nondegenerate” cases they are even positive definite, and this is what we assume

3.3. APPLICATIONS OF SEMIDEFINITE PROGRAMMING IN ENGINEERING 123

from now on. Under this assumption, we can pass in (N) from the variables x(t) to the variables
y(t) = M1/2x(t); in these variables the system becomes

d2

dt2
y(t) = −Ây(t), Â = M−1/2AM−1/2. (N′)

It is well known that the space of solutions of system (N′) (where Â is symmetric positive definite) is
spanned by fundamental (perhaps complex-valued) solutions of the form exp{µt}f . A nontrivial (with
f 6= 0) function of this type is a solution to (N′) if and only if

(µ2I + Â)f = 0,

so that the allowed values of µ2 are the minus eigenvalues of the matrix Â, and f ’s are the corresponding
eigenvectors of Â. Since the matrix Â is symmetric positive definite, the only allowed values of µ are

purely imaginary, with the imaginary parts ±
√

λj(Â). Recalling that the eigenvalues/eigenvectors of Â

are exactly the eigenvalues/eigenvectors of the pencil [M,A], we come to the following result:

(!) In the case of positive definite symmetric M,A, the solutions to (N) – the “free motions”
of the corresponding mechanical system S – are of the form

x(t) =
n∑

j=1

[aj cos(ωjt) + bj sin(ωjt)]ej ,

where aj , bj are free real parameters, ej are the eigenvectors of the pencil [M, A]:

(λjM −A)ej = 0

and ωj =
√

λj . Thus, the “free motions” of the system S are mixtures of harmonic oscilla-
tions along the eigenvectors of the pencil [M, A], and the frequencies of the oscillations (“the
eigenfrequencies of the system”) are the square roots of the corresponding eigenvalues of the
pencil.

ω = 1.274 ω = 0.957 ω = 0.699
“Nontrivial” modes of a spring triangle (3 unit masses linked by springs)

Shown are 3 “eigenmotions” (modes) of a spring triangle with nonzero frequencies; at each picture,
the dashed lines depict two instant positions of the oscillating triangle.
There are 3 more “eigenmotions” with zero frequency, corresponding to shifts and rotation of the triangle.

From the engineering viewpoint, the “dynamic behaviour” of mechanical constructions such as build-
ings, electricity masts, bridges, etc., is the better the larger are the eigenfrequencies of the system7). This
is why a typical design requirement in mechanical engineering is a lower bound

λmin(A : M) ≥ λ∗ [λ∗ > 0] (3.3.1)

7)Think about a building and an earthquake or about sea waves and a light house: in this case the external
load acting at the system is time-varying and can be represented as a sum of harmonic oscillations of different
(and low) frequencies; if some of these frequencies are close to the eigenfrequencies of the system, the system can
be crushed by resonance. In order to avoid this risk, one is interested to move the eigenfrequencies of the system
away from 0 as far as possible.

124 LECTURE 3. SEMIDEFINITE PROGRAMMING

on the smallest eigenvalue λmin(A : M) of the pencil [M,A] comprised of the mass and the stiffness
matrices of the would-be system. In the case of positive definite symmetric mass matrices (3.3.1) is
equivalent to the matrix inequality

A− λ∗M º 0. (3.3.2)

If M and A are affine functions of the design variables (as is the case in, e.g., Truss Design), the matrix
inequality (3.3.2) is a linear matrix inequality on the design variables, and therefore it can be processed
via the machinery of semidefinite programming. Moreover, in the cases when A is affine in the design
variables, and M is constant, (3.3.2) is an LMI in the design variables and λ∗, and we may play with
λ∗, e.g., solve a problem of the type “given the mass matrix of the system to be designed and a number
of (SDr) constraints on the design variables, build a system with the minimum eigenfrequency as large
as possible”, which is a semidefinite program, provided that the stiffness matrix is affine in the design
variables.

3.3.2 Design of chips and Boyd’s time constant

Consider an RC-electric circuit, i.e., a circuit comprised of three types of elements: (1) resistors; (2)
capacitors; (3) resistors in a series combination with outer sources of voltage:

O O

A B

VOA

σ

σ

C

AB

OA

BO

O

CAO

A simple circuit
Element OA: outer supply of voltage VOA and resistor with conductance σOA

Element AO: capacitor with capacitance CAO

Element AB: resistor with conductance σAB

Element BO: capacitor with capacitance CBO

E.g., a chip is, electrically, a complicated circuit comprised of elements of the indicated type. When
designing chips, the following characteristics are of primary importance:

• Speed. In a chip, the outer voltages are switching at certain frequency from one constant value
to another. Every switch is accompanied by a “transition period”; during this period, the poten-
tials/currents in the elements are moving from their previous values (corresponding to the static
steady state for the “old” outer voltages) to the values corresponding to the new static steady state.
Since there are elements with “inertia” – capacitors – this transition period takes some time8). In
order to ensure stable performance of the chip, the transition period should be much less than
the time between subsequent switches in the outer voltages. Thus, the duration of the transition
period is responsible for the speed at which the chip can perform.

• Dissipated heat. Resistors in the chip dissipate heat which should be eliminated, otherwise the
chip will not function. This requirement is very serious for modern “high-density” chips. Thus, a
characteristic of vital importance is the dissipated heat power.

The two objectives: high speed (i.e., a small transition period) and small dissipated heat – usually are
conflicting. As a result, a chip designer faces the tradeoff problem like “how to get a chip with a given
speed and with the minimal dissipated heat”. It turns out that different optimization problems related

8)From purely mathematical viewpoint, the transition period takes infinite time – the currents/voltages ap-
proach asymptotically the new steady state, but never actually reach it. From the engineering viewpoint, however,
we may think that the transition period is over when the currents/voltages become close enough to the new static
steady state.

3.3. APPLICATIONS OF SEMIDEFINITE PROGRAMMING IN ENGINEERING 125

to the tradeoff between the speed and the dissipated heat in an RC circuit belong to the “semidefinite
universe”. We restrict ourselves with building an SDR for the speed.

Simple considerations, based on Kirchoff laws, demonstrate that the transition period in an RC circuit
is governed by a linear system of differential equations as follows:

C
d

dt
w(t) = −Sw(t) + Rv. (3.3.3)

Here

• The state vector w(·) is comprised of the potentials at all but one nodes of the circuit (the potential
at the remaining node – “the ground” – is normalized to be identically zero);

• Matrix C º 0 is readily given by the topology of the circuit and the capacitances of the capacitors
and is linear in these capacitances. Similarly, matrix S º 0 is readily given by the topology of the
circuit and the conductances of the resistors and is linear in these conductances. Matrix R is given
solely by the topology of the circuit;

• v is the vector of outer voltages; recall that this vector is set to certain constant value at the
beginning of the transition period.

As we have already mentioned, the matrices C and S, due to their origin, are positive semidefinite; in
nondegenerate cases, they are even positive definite, which we assume from now on.

Let ŵ be the steady state of (3.3.3), so that Sŵ = Rv. The difference δ(t) = w(t) − ŵ is a solution
to the homogeneous differential equation

C
d

dt
δ(t) = −Sδ(t). (3.3.4)

Setting γ(t) = C1/2δ(t) (cf. Section 3.3.1), we get

d

dt
γ(t) = −(C−1/2SC−1/2)γ(t). (3.3.5)

Since C and S are positive definite, all eigenvalues λi of the symmetric matrix C−1/2SC−1/2 are positive.
It is clear that the space of solutions to (3.3.5) is spanned by the “eigenmotions”

γi(t) = exp{−λit}ei,

where {ei} is an orthonormal eigenbasis of the matrix C−1/2SC−1/2. We see that all solutions to (3.3.5)
(and thus - to (3.3.4) as well) are exponentially fast converging to 0, or, which is the same, the state w(t)
of the circuit exponentially fast approaches the steady state ŵ. The “time scale” of this transition is,
essentially, defined by the quantity λmin = min

i
λi; a typical “decay rate” of a solution to (3.3.5) is nothing

but T = λ−1
min. S. Boyd has proposed to use T to quantify the length of the transition period, and to use

the reciprocal of it – i.e., the quantity λmin itself – as the quantitative measure of the speed. Technically,
the main advantage of this definition is that the speed turns out to be the minimum eigenvalue of the
matrix C−1/2SC−1/2, i.e., the minimum eigenvalue of the matrix pencil [C : S]. Thus, the speed in Boyd’s
definition turns out to be efficiently computable (which is not the case for other, more sophisticated, “time
constants” used by engineers). Even more important, with Boyd’s approach, a typical design specification
“the speed of a circuit should be at least such and such” is modelled by the matrix inequality

S º λ∗C. (3.3.6)

As it was already mentioned, S and C are linear in the capacitances of the capacitors and conductances
of the resistors; in typical circuit design problems, the latter quantities are affine functions of the design
parameters, and (3.3.6) becomes an LMI in the design parameters.

126 LECTURE 3. SEMIDEFINITE PROGRAMMING

3.3.3 Lyapunov stability analysis/synthesis

Uncertain dynamical systems. Consider a time-varying uncertain linear dynamical system

d

dt
x(t) = A(t)x(t), x(0) = x0. (ULS)

Here x(t) ∈ Rn represents the state of the system at time t, and A(t) is a time-varying n × n matrix.
We assume that the system is uncertain in the sense that we have no idea of what is x0, and all we
know about A(t) is that this matrix, at any time t, belongs to a given uncertainty set U . Thus, (ULS)
represents a wide family of linear dynamic systems rather than a single system; and it makes sense to
call a trajectory of the uncertain linear system (ULS) every function x(t) which is an “actual trajectory”
of a system from the family, i.e., is such that

d

dt
x(t) = A(t)x(t)

for all t ≥ 0 and certain matrix-valued function A(t) taking all its values in U .

Note that we can model a nonlinear dynamic system

d

dt
x(t) = f(t, x(t)) [x ∈ Rn] (NLS)

with a given right hand side f(t, x) and a given equilibrium x(t) ≡ 0 (i.e., f(t, 0) = 0, t ≥ 0)
as an uncertain linear system. Indeed, let us define the set Uf as the closed convex hull of
the set of n× n matrices

{
∂
∂xf(t, x) | t ≥ 0, x ∈ Rn

}
. Then for every point x ∈ Rn we have

f(t, x) = f(t, 0) +
s∫
0

[
∂
∂xf(t, sx)

]
xds = Ax(t)x,

Ax(t) =
1∫
0

∂
∂xf(t, sx)ds ∈ U .

We see that every trajectory of the original nonlinear system (NLS) is also a trajectory of the
uncertain linear system (ULS) associated with the uncertainty set U = Uf (this trick is called
“global linearization”). Of course, the set of trajectories of the resulting uncertain linear
system can be much wider than the set of trajectories of (NLS); however, all “good news”
about the uncertain system (like “all trajectories of (ULS) share such and such property”)
are automatically valid for the trajectories of the “nonlinear system of interest” (NLS), and
only “bad news” about (ULS) (“such and such property is not shared by some trajectories
of (ULS)”) may say nothing about the system of interest (NLS).

Stability and stability certificates. The basic question about a dynamic system is the one of its
stability. For (ULS), this question sounds as follows:

(?) Is it true that (ULS) is stable, i.e., that

x(t) → 0 as t →∞

for every trajectory of the system?

A sufficient condition for the stability of (ULS) is the existence of a quadratic Lyapunov function, i.e., a
quadratic form L(x) = xT Xx with symmetric positive definite matrix X such that

d

dt
L(x(t)) ≤ −αL(x(t)) (3.3.7)

for certain α > 0 and all trajectories of (ULS):

3.3. APPLICATIONS OF SEMIDEFINITE PROGRAMMING IN ENGINEERING 127

Lemma 3.3.1 [Quadratic Stability Certificate] Assume (ULS) admits a quadratic Lyapunov function L.
Then (ULS) is stable.

Proof. If (3.3.7) is valid with some α > 0 for all trajectories of (ULS), then, by integrating this differential
inequality, we get

L(x(t)) ≤ exp{−αL(x(0))} → 0 as t →∞.

Since L(·) is a positive definite quadratic form, L(x(t)) → 0 implies that x(t) → 0.
Of course, the statement of Lemma 3.3.1 also holds for non-quadratic Lyapunov functions: all we

need is (3.3.7) plus the assumption that L(x) is smooth, nonnegative and is bounded away from 0 outside
every neighbourhood of the origin. The advantage of a quadratic Lyapunov function is that we more or
less know how to find such a function, if it exists:

Proposition 3.3.1 [Existence of Quadratic Stability Certificate] Let U be the uncertainty set associated
with uncertain linear system (ULS). The system admits quadratic Lyapunov function if and only if the
optimal value of the “semi-infinite9) semidefinite program”

minimize s
s.t.

sIn −AT X −XA º 0, ∀A ∈ U
X º In

(Ly)

with the design variables s ∈ R and X ∈ Sn, is negative. Moreover, every feasible solution to the problem
with negative value of the objective provides a quadratic Lyapunov stability certificate for (ULS).

We shall refer to a positive definite matrix X º In which can be extended, by properly chosen s < 0, to
a feasible solution of (Ly), as to a Lyapunov stability certificate for (ULS), the uncertainty set being U .
Proof of Proposition 3.3.1. The derivative d

dt

[
xT (t)Xx(t)

]
of the quadratic function xT Xx along a

trajectory of (ULS) is equal to

[
d

dt
x(t)

]T

Xx(t) + xT (t)X
[

d

dt
x(t)

]
= xT (t)[AT (t)X + XA(t)]x(t).

If xT Xx is a Lyapunov function, then the resulting quantity must be at most −αxT (t)Xx(t), i.e., we
should have

xT (t)
[−αX −AT (t)X −XA(t)

]
x(t) ≥ 0

for every possible value of A(t) at any time t and for every possible value x(t) of a trajectory of the
system at this time. Since possible values of x(t) fill the entire Rn and possible values of A(t) fill the
entire U , we conclude that

−αX −AT X −XA º 0 ∀A ∈ U .

By definition of a quadratic Lyapunov function, X Â 0 and α > 0; by normalization (dividing both X
and α by the smallest eigenvalue of X), we get a pair ŝ > 0, X̂ ≥ In such that

−ŝX̂ −AT X̂ − X̂A º 0 ∀A ∈ U .

Since X̂ º In, we conclude that

−ŝIn −AT X̂ − X̂A º ŝX̂ −AT X̂ − X̂A º 0 ∀A ∈ U ;

thus, (s = −ŝ, X̂) is a feasible solution to (Ly) with negative value of the objective. We have demonstrated
that if (ULS) admits a quadratic Lyapunov function, then (Ly) has a feasible solution with negative value
of the objective. Reversing the reasoning, we can verify the inverse implication.

9)i.e., with infinitely many LMI constraints

128 LECTURE 3. SEMIDEFINITE PROGRAMMING

Lyapunov stability analysis. According to Proposition 3.3.1, the existence of a Lyapunov stability
certificate is a sufficient, but, in general, not a necessary stability condition for (ULS). When the condition
is not satisfied (i.e., if the optimal value in (Ly) is nonnegative), then all we can say is that the stability
of (ULS) cannot be certified by a quadratic Lyapunov function, although (ULS) still may be stable.10) In
this sense, the stability analysis based on quadratic Lyapunov functions is conservative. This drawback,
however, is in a sense compensated by the fact that this kind of stability analysis is “implementable”: in
many cases we can efficiently solve (Ly), thus getting a quadratic “stability certificate”, provided that it
exists, in a constructive way. Let us look at two such cases.

Polytopic uncertainty set. The first “tractable case” of (Ly) is when U is a polytope given as
a convex hull of finitely many points:

U = Conv{A1, ..., AN}.

In this case (Ly) is equivalent to the semidefinite program

min
s,X

{
s : sIn −AT

i X −XAi º 0, i = 1, ..., N ;X º In

}
(3.3.8)

(why?).
The assumption that U is a polytope given as a convex hull of a finite set is crucial for a possibility

to get a “computationally tractable” equivalent reformulation of (Ly). If U is, say, a polytope given
by a list of linear inequalities (e.g., all we know about the entries of A(t) is that they reside in certain
intervals; this case is called “interval uncertainty”), (Ly) may become as hard as a problem can be: it may
happen that just to check whether a given pair (s,X) is feasible for (Ly) is already a “computationally
intractable” problem. The same difficulties may occur when U is a general-type ellipsoid in the space
of n × n matrices. There exists, however, a specific type of “uncertainty ellipsoids” U for which (Ly) is
“easy”. Let us look at this case.

Norm-bounded perturbations. In numerous applications the n × n matrices A forming the
uncertainty set U are obtained from a fixed “nominal” matrix A∗ by adding perturbations of the form
B∆C, where B ∈ Mn,k and C ∈ Ml,n are given rectangular matrices and ∆ ∈ Mk,l is “the perturbation”
varying in a “simple” set D:

U = {A = A∗ + B∆C | ∆ ∈ D ⊂ Mk,l} [
B ∈ Mn,k, 0 6= C ∈ Ml,n

]
(3.3.9)

As an instructive example, consider a controlled linear time-invariant dynamic system

d
dtx(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.3.10)

(x is the state, u is the control and y is the output we can observe) “closed” by a feedback

u(t) = Ky(t).

10)The only case when the existence of a quadratic Lyapunov function is a criterion (i.e., a necessary and
sufficient condition) for stability is the simplest case of certain time-invariant linear system d

dt
x(t) = Ax(t)

(U = {A}). This is the case which led Lyapunov to the general concept of what is now called “a Lyapunov
function” and what is the basic approach to establishing convergence of different time-dependent processes to
their equilibria. Note also that in the case of time-invariant linear system there exists a straightforward algebraic
stability criterion – all eigenvalues of A should have negative real parts. The advantage of the Lyapunov approach
is that it can be extended to more general situations, which is not the case for the eigenvalue criterion.

3.3. APPLICATIONS OF SEMIDEFINITE PROGRAMMING IN ENGINEERING 129

y(t) = Cx(t)

x(t)

u(t) = K y(t)

x’(t) = Ax(t) + Bu(t)

x(t)

y(t) = Cx(t)x’(t) = Ax(t) + Bu(t)

y(t)u(t)u(t) y(t)

Open loop (left) and closed loop (right) controlled systems

The resulting “closed loop system” is given by

d

dt
x(t) = Âx(t), Â = A + BKC. (3.3.11)

Now assume that A, B and C are constant and known, but the feedback K is drifting around
certain nominal feedback K∗: K = K∗ + ∆. As a result, the matrix Â of the closed loop
system also drifts around its nominal value A∗ = A + BK∗C, and the perturbations in Â
are exactly of the form B∆C.

Note that we could get essentially the same kind of drift in Â assuming, instead of additive
perturbations, multiplicative perturbations C = (Il +∆)C∗ in the observer (or multiplicative
disturbances in the actuator B).

Now assume that the input perturbations ∆ are of spectral norm |∆| not exceeding a given ρ (norm-
bounded perturbations):

D = {∆ ∈ Mk,l | |∆| ≤ ρ}. (3.3.12)

Proposition 3.3.2 [5] In the case of uncertainty set (3.3.9), (3.3.12) the “semi-infinite” semidefinite
program (Ly) is equivalent to the usual semidefinite program

minimize α
s.t.(

αIn −AT
∗X −XA∗ − λCT C ρXB

ρBT X λIk

)
º 0

X º In

(3.3.13)

in the design variables α, λ, X.
When shrinking the set of perturbations (3.3.12) to the ellipsoid

E = {∆ ∈ Mk,l | ‖∆‖2 ≡
√√√√

k∑

i=1

l∑

j=1

∆2
ij ≤ ρ}, 11) (3.3.14)

we basically do not vary (Ly): in the case of the uncertainty set (3.3.9), (Ly) is still equivalent to (3.3.13).

Proof. It suffices to verify the following general statement:

Lemma 3.3.2 Consider the matrix inequality

Y −QT ∆T PT ZT R−RT ZP∆Q º 0 (3.3.15)

where Y is symmetric n × n matrix, ∆ is a k × l matrix and P , Q, Z, R are rectangular
matrices of appropriate sizes (i.e., q × k, l × n, p × q and p × n, respectively). Given
Y, P, Q,Z, R, with Q 6= 0 (this is the only nontrivial case), this matrix inequality is satisfied

11) This indeed is a “shrinkage”: |∆| ≤ ‖∆‖2 for every matrix ∆ (prove it!)

130 LECTURE 3. SEMIDEFINITE PROGRAMMING

for all ∆ with |∆| ≤ ρ if and only if it is satisfied for all ∆ with ‖∆‖2 ≤ ρ, and this is the
case if and only if (

Y − λQT Q −ρRT ZP
−ρPT ZT R λIk

)
º 0

for a properly chosen real λ.

The statement of Proposition 3.4.14 is just a particular case of Lemma 3.3.2. For example, in the case
of uncertainty set (3.3.9), (3.3.12) a pair (α, X) is a feasible solution to (Ly) if and only if X º In and
(3.3.15) is valid for Y = αX − AT

∗X −XA∗, P = B, Q = C, Z = X, R = In; Lemma 3.3.2 provides us
with an LMI reformulation of the latter property, and this LMI is exactly what we see in the statement
of Proposition 3.4.14.

Proof of Lemma. (3.3.15) is valid for all ∆ with |∆| ≤ ρ (let us call this property of (Y, P,Q, Z,R)
“Property 1”) if and only if

2[ξT RT ZP]∆[Qξ] ≤ ξT Y ξ ∀ξ ∈ Rn ∀(∆ : |∆| ≤ ρ),

or, which is the same, if and only if

max
∆:|∆|≤ρ

2
[
[PT ZT Rξ]T ∆[Qξ]

] ≤ ξT Y ξ ∀ξ ∈ Rn. (Property 2)

The maximum over ∆, |∆| ≤ ρ, of the quantity ηT ∆ζ, clearly is equal to ρ times the product of the
Euclidean norms of the vectors η and ζ (why?). Thus, Property 2 is equivalent to

ξT Y ξ − 2ρ‖Qξ‖2‖PT ZT Rξ‖2 ≥ 0 ∀ξ ∈ Rn. (Property 3)

Now is the trick: Property 3 is clearly equivalent to the following

Property 4: Every pair ζ = (ξ, η) ∈ Rn ×Rk which satisfies the quadratic inequality

ξT QT Qξ − ηT η ≥ 0 (I)

satisfies also the quadratic inequality

ξT Y ξ − 2ρηT PT ZT Rξ ≥ 0. (II)

Indeed, for a fixed ξ the minimum over η satisfying (I) of the left hand side in (II) is

nothing but the left hand side in (Property 3).

It remains to use the S-Lemma:

S-Lemma. Let A,B be symmetric n×n matrices, and assume that the quadratic inequality

xT Ax ≥ 0 (A)

is strictly feasible: there exists x̄ such that x̄T Ax̄ > 0. Then the quadratic inequality

xT Bx ≥ 0 (B)

is a consequence of (A) if and only if it is a linear consequence of (A), i.e., if and only if there
exists a nonnegative λ such that

B º λA.

(for a proof, see Section 3.5). Property 4 says that the quadratic inequality (II) with variables ξ, η is a
consequence of (I); by the S-Lemma (recall that Q 6= 0, so that (I) is strictly feasible!) this is equivalent
to the existence of a nonnegative λ such that

(
Y −ρRT ZP

−ρPT ZT R

)
− λ

(
QT Q

−Ik

)
º 0,

which is exactly the statement of Lemma 3.3.2 for the case of |∆| ≤ ρ. The case of perturbations with
‖∆‖2 ≤ ρ is completely similar, since the equivalence between Properties 2 and 3 is valid independently
of which norm of ∆ – | · | or ‖ · ‖2 – is used.

3.3. APPLICATIONS OF SEMIDEFINITE PROGRAMMING IN ENGINEERING 131

Lyapunov Stability Synthesis. We have seen that under reasonable assumptions on the under-
lying uncertainty set the question of whether a given uncertain linear system (ULS) admits a quadratic
Lyapunov function can be reduced to a semidefinite program. Now let us switch from the analysis
question: “whether a stability of an uncertain linear system may be certified by a quadratic Lyapunov
function” to the synthesis question which is as follows. Assume that we are given an uncertain open loop
controlled system

d
dtx(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t); (UOS)

all we know about the collection (A(t), B(t), C(t)) of time-varying n× n matrix A(t), n× k matrix B(t)
and l × n matrix C(t) is that this collection, at every time t, belongs to a given uncertainty set U . The
question is whether we can equip our uncertain “open loop” system (UOS) with a linear feedback

u(t) = Ky(t)

in such a way that the resulting uncertain closed loop system

d

dt
x(t) = [A(t) + B(t)KC(t)] x(t) (UCS)

will be stable and, moreover, such that its stability can be certified by a quadratic Lyapunov function. In
other words, now we are simultaneously looking for a “stabilizing controller” and a quadratic Lyapunov
certificate of its stabilizing ability.

With the “global linearization” trick we may use the results on uncertain controlled linear
systems to build stabilizing linear controllers for nonlinear controlled systems

d
dtx(t) = f(t, x(t), u(t))

y(t) = g(t, x(t))

Assuming f(t, 0, 0) = 0, g(t, 0) = 0 and denoting by U the closed convex hull of the set
{(

∂

∂x
f(t, x, u),

∂

∂u
f(t, x, u),

∂

∂x
g(t, x)

) ∣∣∣∣t ≥ 0, x ∈ Rn, u ∈ Rk

}
,

we see that every trajectory of the original nonlinear system is a trajectory of the uncertain
linear system (UOS) associated with the set U . Consequently, if we are able to find a
stabilizing controller for (UOS) and certify its stabilizing property by a quadratic Lyapunov
function, then the resulting controller/Lyapunov function will stabilize the nonlinear system
and will certify the stability of the closed loop system, respectively.

Exactly the same reasoning as in the previous section leads us to the following

Proposition 3.3.3 Let U be the uncertainty set associated with an uncertain open loop controlled system
(UOS). The system admits a stabilizing controller along with a quadratic Lyapunov stability certificate
for the resulting closed loop system if and only if the optimal value in the optimization problem

minimize s
s.t.

[A + BKC]T X + X[A + BKC] ¹ sIn ∀(A, B,C) ∈ U
X º In,

(LyS)

in design variables s,X,K, is negative. Moreover, every feasible solution to the problem with negative
value of the objective provides stabilizing controller along with quadratic Lyapunov stability certificate for
the resulting closed loop system.

A bad news about (LyS) is that it is much more difficult to rewrite this problem as a semidefinite program
than in the analysis case (i.e., the case of K = 0), since (LyS) is a semi-infinite system of nonlinear matrix

132 LECTURE 3. SEMIDEFINITE PROGRAMMING

inequalities. There is, however, an important particular case where this difficulty can be eliminated. This
is the case of a feedback via the full state vector – the case when y(t) = x(t) (i.e., C(t) is the unit matrix).
In this case, all we need in order to get a stabilizing controller along with a quadratic Lyapunov certificate
of its stabilizing ability, is to solve a system of strict matrix inequalities

[A + BK]T X + X[A + BK] ¹ Z ≺ 0 ∀(A,B) ∈ U
X Â 0 . (∗)

Indeed, given a solution (X, K,Z) to this system, we always can convert it by normalization of X to a
solution of (LyS). Now let us make the change of variables

Y = X−1, L = KX−1,W = X−1ZX−1
[⇔ X = Y −1,K = LY −1, Z = Y −1WY −1

]
.

With respect to the new variables Y, L,K system (*) becomes
{

[A + BLY −1]T Y −1 + Y −1[A + BLY −1] ¹ Y −1WY −1 ≺ 0
Y −1 Â 0

m{
LT BT + Y AT + BL + AY ¹ W ≺ 0, ∀(A,B) ∈ U

Y Â 0

(we have multiplied all original matrix inequalities from the left and from the right by Y). What we end
up with, is a system of strict linear matrix inequalities with respect to our new design variables L, Y, W ;
the question of whether this system is solvable can be converted to the question of whether the optimal
value in a problem of the type (LyS) is negative, and we come to the following

Proposition 3.3.4 Consider an uncertain controlled linear system with a full observer:

d
dtx(t) = A(t)x(t) + B(t)u(t)

y(t) = x(t)

and let U be the corresponding uncertainty set (which now is comprised of pairs (A,B) of possible values
of (A(t), B(t)), since C(t) ≡ In is certain).

The system can be stabilized by a linear controller

u(t) = Ky(t) [≡ Kx(t)]

in such a way that the resulting uncertain closed loop system

d

dt
x(t) = [A(t) + B(t)K]x(t)

admits a quadratic Lyapunov stability certificate if and only if the optimal value in the optimization
problem

minimize s
s.t.

BL + AY + LT BT + Y AT ¹ sIn ∀(A,B) ∈ U
Y º I

(Ly∗)

in the design variables s ∈ R, Y ∈ Sn, L ∈ Mk,n, is negative. Moreover, every feasible solution to (Ly∗)
with negative value of the objective provides a stabilizing linear controller along with related quadratic
Lyapunov stability certificate.

In particular, in the polytopic case:

U = Conv{(A1, B1), ..., (AN , BN)}
the Quadratic Lyapunov Stability Synthesis reduces to solving the semidefinite program

min
s,Y,L

{
s : BiL + AiY + Y AT

i + LT BT
i ¹ sIn, i = 1, ..., N ; Y º In

}
.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 133

3.4 Semidefinite relaxations of intractable problems

One of the most challenging and promising applications of Semidefinite Programming is in building
tractable approximations of “computationally intractable” optimization problems. Let us look at several
applications of this type.

3.4.1 Semidefinite relaxations of combinatorial problems

Combinatorial problems and their relaxations. Numerous problems of planning, scheduling,
routing, etc., can be posed as combinatorial optimization problems, i.e., optimization programs with
discrete design variables (integer or zero-one). There are several “universal forms” of combinatorial
problems, among them Linear Programming with integer variables and Linear Programming with 0-1
variables; a problem given in one of these forms can always be converted to any other universal form,
so that in principle it does not matter which form to use. Now, the majority of combinatorial problems
are difficult – we do not know theoretically efficient (in certain precise meaning of the notion) algorithms
for solving these problems. What we do know is that nearly all these difficult problems are, in a sense,
equivalent to each other and are NP-complete. The exact meaning of the latter notion will be explained
in Lecture 4; for the time being it suffices to say that NP-completeness of a problem P means that the
problem is “as difficult as a combinatorial problem can be” – if we knew an efficient algorithm for P , we
would be able to convert it to an efficient algorithm for any other combinatorial problem. NP-complete
problems may look extremely “simple”, as it is demonstrated by the following example:

(Stones) Given n stones of positive integer weights (i.e., given n positive integers a1, ..., an),
check whether you can partition these stones into two groups of equal weight, i.e., check
whether a linear equation

n∑

i=1

aixi = 0

has a solution with xi = ±1.

Theoretically difficult combinatorial problems happen to be difficult to solve in practice as well. An
important ingredient in basically all algorithms for combinatorial optimization is a technique for building
bounds for the unknown optimal value of a given (sub)problem. A typical way to estimate the optimal
value of an optimization program

f∗ = min
x
{f(x) : x ∈ X}

from above is to present a feasible solution x̄; then clearly f∗ ≤ f(x̄). And a typical way to bound the
optimal value from below is to pass from the problem to its relaxation

f∗ = min
x
{f(x) : x ∈ X ′}

increasing the feasible set: X ⊂ X ′. Clearly, f∗ ≤ f∗, so, whenever the relaxation is efficiently solvable
(to ensure this, we should take care of how we choose X ′), it provides us with a “computable” lower
bound on the actual optimal value.

When building a relaxation, one should take care of two issues: on one hand, we want the relaxation
to be “efficiently solvable”. On the other hand, we want the relaxation to be “tight”, otherwise the lower
bound we get may be by far “too optimistic” and therefore not useful. For a long time, the only practical
relaxations were the LP ones, since these were the only problems one could solve efficiently. With recent
progress in optimization techniques, nonlinear relaxations become more and more “practical”; as a result,
we are witnessing a growing theoretical and computational activity in the area of nonlinear relaxations
of combinatorial problems. These developments mostly deal with semidefinite relaxations. Let us look
how they emerge.

134 LECTURE 3. SEMIDEFINITE PROGRAMMING

Shor’s Semidefinite Relaxation scheme

As it was already mentioned, there are numerous “universal forms” of combinatorial problems. E.g.,
a combinatorial problem can be posed as minimizing a quadratic objective under quadratic inequality
constraints:

minimize in x ∈ Rn f0(x) = xT A0x + 2bT
0 x + c0

s.t.
fi(x) = xT Aix + 2bT

i x + ci ≤ 0, i = 1, ..., m.
(3.4.1)

To see that this form is “universal”, note that it covers the classical universal combinatorial problem – a
generic LP program with Boolean (0-1) variables:

min
x

{
cT x : aT

i x− bi ≤ 0, i = 1, ..., m; xj ∈ {0, 1}, j = 1, ..., n
}

(B)

Indeed, the fact that a variable xj must be Boolean can be expressed by the quadratic equality

x2
j − xj = 0,

which can be represented by a pair of opposite quadratic inequalities and a linear inequality aT
i x− bi ≤ 0

is a particular case of quadratic inequality. Thus, (B) is equivalent to the problem

min
x,s

{
cT x : aT

i x− bi ≤ 0, i = 1, ..., m;x2
j − xj ≤ 0,−x2

j + xj ≤ 0 j = 1, ..., n
}

,

and this problem is of the form (3.4.1).
To bound from below the optimal value in (3.4.1), we may use the same technique we used for

building the dual problem (it is called the Lagrange relaxation). We choose somehow “weights” λi ≥ 0,
i = 1, ...,m, and add the constraints of (3.4.1) with these weights to the objective, thus coming to the
function

fλ(x) = f0(x) +
m∑

i=1

λifi(x)

= xT A(λ)x + 2bT (λ)x + c(λ),
(3.4.2)

where
A(λ) = A0 +

m∑
i=1

λiAi

b(λ) = b0 +
m∑

i=1

λibi

c(λ) = c0 +
m∑

i=1

λici

By construction, the function fλ(x) is ≤ the actual objective f0(x) on the feasible set of the problem
(3.4.1). Consequently, the unconstrained infimum of this function

a(λ) = inf
x∈Rn

fλ(x)

is a lower bound for the optimal value in (3.4.1). We come to the following simple result (cf. the Weak
Duality Theorem:)

(*) Assume that λ ∈ Rm
+ and ζ ∈ R are such that

fλ(x)− ζ ≥ 0 ∀x ∈ Rn (3.4.3)

(i.e., that ζ ≤ a(λ)). Then ζ is a lower bound for the optimal value in (3.4.1).

It remains to clarify what does it mean that (3.4.3) holds. Recalling the structure of fλ, we see that it
means that the inhomogeneous quadratic form

gλ(x) = xT A(λ)x + 2bT (λ)x + c(λ)− ζ

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 135

is nonnegative on the entire space. Now, an inhomogeneous quadratic form

g(x) = xT Ax + 2bT x + c

is nonnegative everywhere if and only if certain associated homogeneous quadratic form is nonnegative
everywhere. Indeed, given t 6= 0 and x ∈ Rn, the fact that g(t−1x) ≥ 0 means exactly the nonnegativity
of the homogeneous quadratic form G(x, t)

G(x, t) = xT Ax + 2tbT x + ct2

with (n + 1) variables x, t. We see that if g is nonnegative, then G is nonnegative whenever t 6= 0; by
continuity, G then is nonnegative everywhere. Thus, if g is nonnegative, then G is, and of course vice
versa (since g(x) = G(x, 1)). Now, to say that G is nonnegative everywhere is literally the same as to
say that the matrix (

c bT

b A

)
(3.4.4)

is positive semidefinite.
It is worthy to catalogue our simple observation:

Simple Lemma. A quadratic inequality with a (symmetric) n× n matrix A

xT Ax + 2bT x + c ≥ 0

is identically true – is valid for all x ∈ Rn – if only if the matrix (3.4.4) is positive semidefinite.

Applying this observation to gλ(x), we get the following equivalent reformulation of (*):

If (λ, ζ) ∈ Rm
+ ×R satisfy the LMI




m∑
i=1

λici − ζ bT
0 +

m∑
i=1

λib
T
i

b0 +
m∑

i=1

λibi A0 +
m∑

i=1

λiAi


 º 0,

then ζ is a lower bound for the optimal value in (3.4.1).

Now, what is the best lower bound we can get with this scheme? Of course, it is the optimal value of the
semidefinite program

max
ζ,λ





ζ :




c0 +
m∑

i=1

λici − ζ bT
0 +

m∑
i=1

λib
T
i

b0 +
m∑

i=1

λibi A0 +
m∑

i=1

λiAi


 º 0, λ ≥ 0





. (3.4.5)

We have proved the following simple

Proposition 3.4.1 The optimal value in (3.4.5) is a lower bound for the optimal value in (3.4.1).

The outlined scheme is extremely transparent, but it looks different from a relaxation scheme as
explained above – where is the extension of the feasible set of the original problem? In fact the scheme
is of this type. To see it, note that the value of a quadratic form at a point x ∈ Rn can be written as
the Frobenius inner product of a matrix defined by the problem data and the dyadic matrix X(x) =(

1
x

) (
1
x

)T

:

xT Ax + 2bT x + c =
(

1
x

)T (
c bT

b A

) (
1
x

)
= Tr

((
c bT

b A

)
X(x)

)
.

136 LECTURE 3. SEMIDEFINITE PROGRAMMING

Consequently, (3.4.1) can be written as

min
x

{
Tr

((
c0 bT

0

b0 A0

)
X(x)

)
: Tr

((
ci bT

i

bi Ai

)
X(x)

)
≤ 0, i = 1, ..., m

}
. (3.4.6)

Thus, we may think of (3.4.2) as a problem with linear objective and linear equality constraints and
with the design vector X which is a symmetric (n + 1) × (n + 1) matrix running through the nonlinear
manifold X of dyadic matrices X(x), x ∈ Rn. Clearly, all points of X are positive semidefinite matrices
with North-Western entry 1. Now let X̄ be the set of all such matrices. Replacing X by X̄ , we get a
relaxation of (3.4.6) (the latter problem is, essentially, our original problem (3.4.1)). This relaxation is
the semidefinite program

minX

{
Tr(Ā0X) : Tr(ĀiX) ≤ 0, i = 1, ..., m; X º 0; X11 = 1

}
[
Ai =

(
ci bT

i

bi Ai

)
, i = 1, ...,m

]
.

(3.4.7)

We get the following

Proposition 3.4.2 The optimal value of the semidefinite program (3.4.7) is a lower bound for the optimal
value in (3.4.1).

One can easily verify that problem (3.4.5) is just the semidefinite dual of (3.4.7); thus, when deriving
(3.4.5), we were in fact implementing the idea of relaxation. This is why in the sequel we call both (3.4.7)
and (3.4.5) semidefinite relaxations of (3.4.1).

When the semidefinite relaxation is exact? In general, the optimal value in (3.4.7) is just a
lower bound on the optimal value of (3.4.1). There are, however, two cases when this bound is exact.
These are

• Convex case, where all quadratic forms in (3.4.1) are convex (i.e., Qi º 0, i = 0, 1, ...,m). Here,
strict feasibility of the problem (i.e., the existence of a feasible solution x̄ with fi(x̄) < 0, i =
1, ...,m) plus below boundedness of it imply that (3.4.7) is solvable with the optimal value equal to
the one of (3.4.1). This statement is a particular case of the well-known Lagrange Duality Theorem
in Convex Programming.

• The case of m = 1. Here the optimal value in (3.4.1) is equal to the one in (3.4.7), provided that
(3.4.1) is strictly feasible. This highly surprising fact (no convexity is assumed!) is called Inhomo-
geneous S-Lemma; we shall prove it in Section .

Let us look at several interesting examples of Semidefinite relaxations.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 137

Stability number, Shannon capacity and Lovasz capacity of a graph

Stability number of a graph. Consider a (non-oriented) graph – a finite set of nodes linked by
arcs12), like the simple 5-node graph C5:

B

C

D

E

A

Graph C5

One of the fundamental characteristics of a graph Γ is its stability number α(Γ) defined as the maximum
cardinality of an independent subset of nodes – a subset such that no two nodes from it are linked by an
arc. E.g., the stability number for the graph C5 is 2, and a maximal independent set is, e.g., {A;C}.

The problem of computing the stability number of a given graph is NP-complete, this is why it is
important to know how to bound this number.

Shannon capacity of a graph. An upper bound on the stability number of a graph which inter-
esting by its own right is the Shannon capacity Θ(Γ) defined as follows.

Let us treat the nodes of Γ as letters of certain alphabet, and the arcs as possible errors in certain
communication channel: you can send trough the channel one letter per unit time, and what arrives on
the other end of the channel can be either the letter you have sent, or any letter adjacent to it. Now
assume that you are planning to communicate with an addressee through the channel by sending n-letter
words (n is fixed). You fix in advance a dictionary Dn of words to be used and make this dictionary
known to the addressee. What you are interested in when building the dictionary is to get a good one,
meaning that no word from it could be transformed by the channel into another word from the dictionary.
If your dictionary satisfies this requirement, you may be sure that the addressee will never misunderstand
you: whatever word from the dictionary you send and whatever possible transmission errors occur, the
addressee is able either to get the correct message, or to realize that the message was corrupted during
transmission, but there is no risk that your “yes” will be read as “no!”. Now, in order to utilize the
channel “at full capacity”, you are interested to get as large dictionary as possible. How many words
it can include? The answer is clear: this is precisely the stability number of the graph Γn as follows:
the nodes of Γn are ordered n-element collections of the nodes of Γ – all possible n-letter words in your
alphabet; two distinct nodes (i1, ..., in) (j1, ..., jn) are adjacent in Γn if and only if for every l the l-th
letters il and jl in the two words either coincide, or are adjacent in Γ (i.e., two distinct n-letter words are
adjacent, if the transmission can convert one of them into the other one). Let us denote the maximum
number of words in a “good” dictionary Dn (i.e., the stability number of Γn) by f(n), The function f(n)
possesses the following nice property:

f(k)f(l) ≤ f(k + l), k, l = 1, 2, ... (∗)
Indeed, given the best (of the cardinality f(k)) good dictionary Dk and the best good
dictionary Dl, let us build a dictionary comprised of all (k + l)-letter words as follows: the
initial k-letter fragment of a word belongs to Dk, and the remaining l-letter fragment belongs
to Dl. The resulting dictionary is clearly good and contains f(k)f(l) words, and (*) follows.

12)One of the formal definitions of a (non-oriented) graph is as follows: a n-node graph is just a n×n symmetric
matrix A with entries 0, 1 and zero diagonal. The rows (and the columns) of the matrix are identified with the
nodes 1, 2, ..., n of the graph, and the nodes i, j are adjacent (i.e., linked by an arc) exactly for those i, j with

Aij = 1.

138 LECTURE 3. SEMIDEFINITE PROGRAMMING

Now, this is a simple exercise in analysis to see that for a nonnegative function f with property (*) one
has

lim
k→∞

(f(k))1/k = sup
k≥1

(f(k))1/k ∈ [0,+∞].

In our situation sup
k≥1

(f(k))1/k < ∞, since clearly f(k) ≤ nk, n being the number of letters (the number

of nodes in Γ). Consequently, the quantity

Θ(Γ) = lim
k→∞

(f(k))1/k

is well-defined; moreover, for every k the quantity (f(k))1/k is a lower bound for Θ(Γ). The number Θ(Γ)
is called the Shannon capacity of Γ. Our immediate observation is that

(!) The Shannon capacity Θ(Γ) majorates the stability number of Γ:

α(Γ) ≤ Θ(Γ).

Indeed, as we remember, (f(k))1/k is a lower bound for Θ(Γ) for every k = 1, 2, ...; setting
k = 1 and taking into account that f(1) = α(Γ), we get the desired result.

We see that the Shannon capacity number is an upper bound on the stability number; and this bound
has a nice interpretation in terms of the Information Theory. The bad news is that we do not know how
to compute the Shannon capacity. E.g., what is it for the toy graph C5?

The stability number of C5 clearly is 2, so that our first observation is that

Θ(C5) ≥ α(C5) = 2.

To get a better estimate, let us look the graph (C5)2 (as we remember, Θ(Γ) ≥ (f(k))1/k = (α(Γk))1/k

for every k). The graph (C5)2 has 25 nodes, so that we do not draw it; it, however, is not that difficult to
find its stability number, which turns out to be 5. A good 5-element dictionary (≡ a 5-node independent
set in (C5)2) is, e.g.,

AA, BC,CE,DB, ED.

Thus, we get
Θ(C5) ≥

√
α((C5)2) =

√
5.

Attempts to compute the subsequent lower bounds (f(k))1/k, as long as they are implementable (think
how many vertices there are in (C5)4!), do not yield any improvements, and for more than 20 years it
remained unknown whether Θ(C5) =

√
5 or is >

√
5. And this is for a toy graph! The breakthrough in

the area of upper bounds for the stability number is due to L. Lovasz who in early 70’s found a new –
computable! – bound of this type.

Lovasz capacity number. Given a n-node graph Γ, let us associate with it an affine matrix-valued
function L(x) taking values in the space of n× n symmetric matrices, namely, as follows:

• For every pair i, j of indices (1 ≤ i, j ≤ n) such that the nodes i and j are not linked by an arc, the
ij-th entry of L is equal to 1;

• For a pair i < j of indices such that the nodes i, j are linked by an arc, the ij-th and the ji-th
entries in L are equal to xij – to the variable associated with the arc (i, j).

Thus, L(x) is indeed an affine function of N design variables xij , where N is the number of arcs in
the graph. E.g., for graph C5 the function L is as follows:

L =




1 xAB 1 1 xEA

xAB 1 xBC 1 1
1 xBC 1 xCD 1
1 1 xCD 1 xDE

xEA 1 1 xDE 1


 .

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 139

Now, the Lovasz capacity number ϑ(Γ) is defined as the optimal value of the optimization program

min
x
{λmax(L(x))} ,

i.e., as the optimal value in the semidefinite program

min
λ,x

{λ : λIn − L(x) º 0} . (L)

Proposition 3.4.3 [Lovasz] The Lovasz capacity number is an upper bound for the Shannon capacity:

ϑ(Γ) ≥ Θ(Γ)

and, consequently, for the stability number:

ϑ(Γ) ≥ Θ(Γ) ≥ α(Γ).

For the graph C5, the Lovasz capacity can be easily computed analytically and turns out to be exactly√
5. Thus, a small byproduct of Lovasz’s result is a solution to the problem which remained open for two

decades.
Let us look how the Lovasz bound on the stability number can be obtained from the general relaxation

scheme. To this end note that the stability number of an n-node graph Γ is the optimal value of the
following optimization problem with 0-1 variables:

maxx

{
eT x : xixj = 0 whenever i, j are adjacent nodes , xi ∈ {0, 1}, i = 1, ..., n

}
,

e = (1, ..., 1)T ∈ Rn.

Indeed, 0-1 n-dimensional vectors can be identified with sets of nodes of Γ: the coordinates xi of the
vector x representing a set A of nodes are ones for i ∈ A and zeros otherwise. The quadratic equality
constraints xixj = 0 for such a vector express equivalently the fact that the corresponding set of nodes
is independent, and the objective eT x counts the cardinality of this set.

As we remember, the 0-1 restrictions on the variables can be represented equivalently by quadratic
equality constraints, so that the stability number of Γ is the optimal value of the following problem with
quadratic (in fact linear) objective and quadratic equality constraints:

maximize eT x
s.t.

xixj = 0, (i, j) is an arc
x2

i − xi = 0, i = 1, ..., n.

(3.4.8)

The latter problem is in the form of (3.4.1), with the only difference that the objective should be max-
imized rather than minimized. Switching from maximization of eT x to minimization of (−e)T x and
passing to (3.4.5), we get the problem

max
ζ,µ

{
ζ :

(−ζ − 1
2 (e + µ)T

− 1
2 (e + µ) A(µ, λ)

)
º 0

}
,

where µ is n-dimensional and A(µ, λ) is as follows:

• The diagonal entries of A(µ, λ) are µ1, ..., µn;

• The off-diagonal cells ij corresponding to non-adjacent nodes i, j (“empty cells”) are zeros;

• The off-diagonal cells ij, i < j, and the symmetric cells ji corresponding to adjacent nodes i, j
(“arc cells”) are filled with free variables λij .

140 LECTURE 3. SEMIDEFINITE PROGRAMMING

Note that the optimal value in the resulting problem is a lower bound for minus the optimal value of
(3.4.8), i.e., for minus the stability number of Γ.

Passing in the resulting problem from the variable ζ to a new variable ξ = −ζ and again switching
from maximization of ζ = −ξ to minimization of ξ, we end up with the semidefinite program

min
ξ,λ,µ

{
ξ :

(
ξ − 1

2 (e + µ)T

− 1
2 (e + µ) A(µ, λ)

)
º 0

}
. (3.4.9)

The optimal value in this problem is the minus optimal value in the previous one, which, in turn, is a
lower bound on the minus stability number of Γ; consequently, the optimal value in (3.4.9) is an upper
bound on the stability number of Γ.

We have built a semidefinite relaxation (3.4.9) of the problem of computing the stability number of
Γ; the optimal value in the relaxation is an upper bound on the stability number. To get the Lovasz
relaxation, let us further fix the µ-variables at the level 1 (this may only increase the optimal value in
the problem, so that it still will be an upper bound for the stability number)13). With this modification,
we come to the problem

min
ξ,λ

{
ξ :

(
ξ −eT

−e A(e, λ)

)
º 0

}
.

In every feasible solution to the problem, ξ should be ≥ 1 (it is an upper bound for α(Γ) ≥ 1). When
ξ ≥ 1, the LMI (

ξ −eT

e A(e, λ)

)
º 0

by the Schur Complement Lemma is equivalent to the LMI

A(e, λ) º (−e)ξ−1(−e)T ,

or, which is the same, to the LMI
ξA(e, λ)− eeT º 0.

The left hand side matrix in the latter LMI is equal to ξIn − B(ξ, λ), where the matrix B(ξ, λ) is as
follows:

• The diagonal entries of B(ξ, λ) are equal to 1;

• The off-diagonal “empty cells” are filled with ones;

• The “arc cells” from a symmetric pair off-diagonal pair ij and ji (i < j) are filled with ξλij .

Passing from the design variables λ to the new ones xij = ξλij , we conclude that problem (3.4.9) with
µ’s set to ones is equivalent to the problem

min
ξ,x

{ξ → min | ξIn − L(x) º 0} ,

whose optimal value is exactly the Lovasz capacity number of Γ.
As a byproduct of our derivation, we get the easy part of the Lovasz Theorem – the inequality

ϑ(Γ) ≥ α(Γ); this inequality, however, could be easily obtained directly from the definition of ϑ(Γ). The
advantage of our derivation is that it demonstrates what is the origin of ϑ(Γ).

How good is the Lovasz capacity number? The Lovasz capacity number plays a crucial role
in numerous graph-related problems; there is an important sub-family of graphs – perfect graphs – for
which this number coincides with the stability number. However, for a general-type graph Γ, ϑ(Γ) may
be a fairly poor bound for α(Γ). Lovasz has proved that for any graph Γ with n nodes, ϑ(Γ)ϑ(Γ̂) ≥ n,
where Γ̂ is the complement to Γ (i.e., two distinct nodes are adjacent in Γ̂ if and only if they are not
adjacent in Γ). It follows that for n-node graph Γ one always has max[ϑ(Γ), ϑ(Γ̂)] ≥ √

n. On the other

13)In fact setting µi = 1, we do not vary the optimal value at all.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 141

hand, it turns out that for a random n-node graph Γ (the arcs are drawn at random and independently
of each other, with probability 0.5 to draw an arc linking two given distinct nodes) max[α(Γ), α(Γ̂)] is
“typically” (with probability approaching 1 as n grows) of order of ln n. It follows that for random n-node
graphs a typical value of the ratio ϑ(Γ)/α(Γ) is at least of order of n1/2/ ln n; as n grows, this ratio blows
up to ∞.

A natural question arises: are there “difficult” (NP-complete) combinatorial problems admitting
“good” semidefinite relaxations – those with the quality of approximation not deteriorating as the sizes
of instances grow? Let us look at two breakthrough results in this direction.

The MAXCUT problem and maximizing quadratic form over a box

The MAXCUT problem. The maximum cut problem is as follows:

Problem 3.4.1 [MAXCUT] Let Γ be an n-node graph, and let the arcs (i, j) of the graph be associated
with nonnegative “weights” aij. The problem is to find a cut of the largest possible weight, i.e., to partition
the set of nodes in two parts S, S′ in such a way that the total weight of all arcs “linking S and S′” (i.e.,
with one incident node in S and the other one in S′) is as large as possible.

In the MAXCUT problem, we may assume that the weights aij = aji ≥ 0 are defined for every pair i, j
of indices; it suffices to set aij = 0 for pairs i, j of non-adjacent nodes.

In contrast to the minimum cut problem (where we should minimize the weight of a cut instead of
maximizing it), which is, basically, a nice LP program of finding the maximum flow in a network and is
therefore efficiently solvable, the MAXCUT problem is as difficult as a combinatorial problem can be –
it is NP-complete.

Theorem of Goemans and Williamson [7]. It is easy to build a semidefinite relaxation of
MAXCUT. To this end let us pose MAXCUT as a quadratic problem with quadratic equality constraints.
Let Γ be a n-node graph. A cut (S, S′) – a partitioning of the set of nodes in two disjoint parts S, S′

– can be identified with a n-dimensional vector x with coordinates ±1 – xi = 1 for i ∈ S, xi = −1 for

i ∈ S′. The quantity 1
2

n∑
i,j=1

aijxixj is the total weight of arcs with both ends either in S or in S′ minus

the weight of the cut (S, S′); consequently, the quantity

1
2


1

2

n∑

i,j=1

aij − 1
2

n∑

i,j=1

aijxixj


 =

1
4

n∑

i,j=1

aij(1− xixj)

is exactly the weight of the cut (S, S′).
We conclude that the MAXCUT problem can be posed as the following quadratic problem with

quadratic equality constraints:

max
x





1
4

n∑

i,j=1

aij(1− xixj) : x2
i = 1, i = 1, ..., n



 . (3.4.10)

For this problem, the semidefinite relaxation (3.4.7) after evident simplifications becomes the semidefinite
program

maximize 1
4

n∑
i,j=1

aij(1−Xij)

s.t.
X = [Xij]ni,j=1 = XT º 0

Xii = 1, i = 1, ..., n;

(3.4.11)

the optimal value in the latter problem is an upper bound for the optimal value of MAXCUT.

142 LECTURE 3. SEMIDEFINITE PROGRAMMING

The fact that (3.4.11) is a relaxation of (3.4.10) can be established directly, independently
of any “general theory”: (3.4.10) is the problem of maximizing the objective

1
4

n∑

i,j=1

aij − 1
2

n∑

i,j=1

aijxixj ≡ 1
4

n∑

i,j=1

aij − 1
4
Tr(AX(x)), X(x) = xxT

over all rank 1 matrices X(x) = xxT given by n-dimensional vectors x with entries ±1. All
these matrices are symmetric positive semidefinite with unit entries on the diagonal, i.e.,
they belong the feasible set of (3.4.11). Thus, (3.4.11) indeed is a relaxation of (3.4.10).

The quality of the semidefinite relaxation (3.4.11) is given by the following brilliant result of Goemans
and Williamson (1995):

Theorem 3.4.1 Let OPT be the optimal value of the MAXCUT problem (3.4.10), and SDP be the
optimal value of the semidefinite relaxation (3.4.11). Then

OPT ≤ SDP ≤ α ·OPT, α = 1.138... (3.4.12)

Proof. The left inequality in (3.4.12) is what we already know – it simply says that semidefinite program
(3.4.11) is a relaxation of MAXCUT. To get the right inequality, Goemans and Williamson act as follows.
Let X = [Xij] be a feasible solution to the semidefinite relaxation. Since X is positive semidefinite, it
is the covariance matrix of a Gaussian random vector ξ with zero mean, so that E {ξiξj} = Xij . Now
consider the random vector ζ = sign[ξ] comprised of signs of the entries in ξ. A realization of ζ is
almost surely a vector with coordinates ±1, i.e., it is a cut. What is the expected weight of this cut? A
straightforward computation demonstrates that E {ζiζj} = 2

π asin(Xij) 14). It follows that

E





1
4

n∑

i,j=1

aij(1− ζiζi)



 =

1
4

n∑

i,j=1

aij

(
1− 2

π
asin(Xij)

)
. (3.4.13)

Now, it is immediately seen that

−1 ≤ t ≤ 1 ⇒ 1− 2
π

asin(t) ≥ α−1(1− t), α = 1.138...

In view of aij ≥ 0, the latter observation combines with (3.4.13) to imply that

E





1
4

n∑

i,j=1

aij(1− ζiζi)



 ≥ α−1 1

4

n∑

i,j=1

aij(1−Xij).

The left hand side in this inequality, by evident reasons, is ≤ OPT . We have proved that the value of the
objective in (3.4.11) at every feasible solution X to the problem is ≤ α ·OPT , whence SDP ≤ α ·OPT
as well.

Note that the proof of Theorem 3.4.1 provides a randomized algorithm for building a suboptimal,
within the factor α−1 = 0.878..., solution to MAXCUT: we find a (nearly) optimal solution X to the
semidefinite relaxation (3.4.11) of MAXCUT, generate a sample of, say, 100 realizations of the associated
random cuts ζ and choose the one with the maximum weight.

Nesterov’s π
2 Theorem

In the MAXCUT problem, we are in fact maximizing the homogeneous quadratic form

xT Ax ≡
n∑

i=1




n∑

j=1

aij


 x2

i −
n∑

i,j=1

aijxixj

14)Recall that Xij º 0 is normalized by the requirement Xii = 1 for all i. Omitting this normalization, we

would get E {ζiζj} = 2
π
asin

(
Xij√

XiiXjj

)
.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 143

over the set Sn of n-dimensional vectors x with coordinates ±1. It is easily seen that the matrix A of this
form is positive semidefinite and possesses a specific feature that the off-diagonal entries are nonpositive,
while the sum of the entries in every row is 0. What happens when we are maximizing over Sn a quadratic
form xT Ax with a general-type (symmetric) matrix A? An extremely nice result in this direction was
obtained by Yu. Nesterov. The cornerstone of Nesterov’s construction relates to the case when A is
positive semidefinite, and this is the case we shall focus on. Note that the problem of maximizing a
quadratic form xT Ax with positive semidefinite (and, say, integer) matrix A over Sn, same as MAXCUT,
is NP-complete.

The semidefinite relaxation of the problem

max
x

{
xT Ax : x ∈ Sn [⇔ xi ∈ {−1, 1}, i = 1, ..., n]

}
(3.4.14)

can be built exactly in the same way as (3.4.11) and turns out to be the semidefinite program

maximize Tr(AX)
s.t.

X = XT = [Xij]ni,j=1 º 0
Xii = 1, i = 1, ..., n.

(3.4.15)

The optimal value in this problem, let it again be called SDP , is ≥ the optimal value OPT in the original
problem (3.4.14). The ratio OPT/SDP , however, cannot be too large:

Theorem 3.4.2 [Nesterov’s π
2 Theorem] Let A be positive semidefinite. Then

OPT ≤ SDP ≤ π

2
SDP [

π

2
= 1.570...]

The proof utilizes the central idea of Goemans and Williamson in the following brilliant reasoning:
The inequality SDP ≥ OPT is valid since (3.4.15) is a relaxation of (3.4.14). Let X be a feasible

solution to the relaxed problem; let, same as in the MAXCUT construction, ξ be a Gaussian random
vector with zero mean and the covariance matrix X, and let ζ = sign[ξ]. As we remember,

E
{
ζT Aζ

}
=

∑

i,j

Aij
2
π

asin(Xij) =
2
π

Tr(A, asin[X]), (3.4.16)

where for a function f on the axis and a matrix X f [X] denotes the matrix with the entries f(Xij). Now
– the crucial (although simple) observation:

For a positive semidefinite symmetric matrix X with diagonal entries ±1 (in fact, for any
positive semidefinite X with |Xij | ≤ 1) one has

asin[X] º X. (3.4.17)

The proof is immediate: denoting by [X]k the matrix with the entries Xk
ij and making

use of the Taylor series for the asin (this series converges uniformly on [−1, 1]), for a
matrix X with all entries belonging to [−1, 1] we get

asin[X]−X =

∞∑
k=1

1× 3× 5× ...× (2k − 1)

2kk!(2k + 1)
[X]2k+1,

and all we need is to note is that all matrices in the left hand side are º 0 along with

X 15)

15)The fact that the entry-wise product of two positive semidefinite matrices is positive semidefinite is a standard
fact from Linear Algebra. The easiest way to understand it is to note that if P, Q are positive semidefinite
symmetric matrices of the same size, then they are Gram matrices: Pij = pT

i pj for certain system of vectors pi

from certain (no matter from which exactly) RN and Qij = qT
i qj for a system of vectors qi from certain RM . But

then the entry-wise product of P and Q – the matrix with the entries PijQij = (pT
i pj)(q

T
i qj) – also is a Gram

matrix, namely, the Gram matrix of the matrices piq
T
i ∈ MN,M = RNM . Since every Gram matrix is positive

semidefinite, the entry-wise product of P and Q is positive semidefinite.

144 LECTURE 3. SEMIDEFINITE PROGRAMMING

Combining (3.4.16), (3.4.17) and the fact that A is positive semidefinite, we conclude that

[OPT ≥] E
{
ζT Aζ

}
=

2
π

Tr(Aasin[X]) ≥ 2
π

Tr(AX).

The resulting inequality is valid for every feasible solution X of (3.4.15), whence SDP ≤ π
2 OPT .

The π
2 Theorem has a number of far-reaching consequences (see Nesterov’s papers [15, 16]), for

example, the following two:

Theorem 3.4.3 Let T be an SDr compact subset in Rn
+. Consider the set

T = {x ∈ Rn : (x2
1, ..., x

2
n)T ∈ T},

and let A be a symmetric n×n matrix. Then the quantities m∗(A) = min
x∈T

xT Ax and m∗(A) = max
x∈T

xT Ax

admit efficiently computable bounds

s∗(A) ≡ min
X

{
Tr(AX) : X º 0, (X11, ..., Xnn)T ∈ T

}
,

s∗(A) ≡ max
X

{
Tr(AX) : X º 0, (X11, ..., Xnn)T ∈ T

}
,

such that

s∗(A) ≤ m∗(A) ≤ m∗(A) ≤ s∗(A)

and

m∗(A)−m∗(A) ≤ s∗(A)− s∗(A) ≤ π

4− π
(m∗(A)−m∗(A))

(in the case of A º 0 and 0 ∈ T , the factor π
4−π can be replaced with π

2).
Thus, the “variation” max

x∈T
xT Ax − min

x∈T
xT Ax of the quadratic form xT Ax on T can be efficiently

bounded from above, and the bound is tight within an absolute constant factor.
Note that if T is given by a strictly feasible SDR, then both (−s∗(A)) and s∗(A) are SDr functions

of A (Proposition 2.4.4).

Theorem 3.4.4 Let p ∈ [2,∞], r ∈ [1, 2], and let A be an m × n matrix. Consider the problem of
computing the operator norm ‖A‖p,r of the linear mapping x 7→ Ax, considered as the mapping from the
space Rn equipped with the norm ‖ · ‖p to the space Rm equipped with the norm ‖ · ‖r:

‖A‖p,r = max {‖Ax‖r : ‖x‖p ≤ 1} ;

note that it is difficult (NP-hard) to compute this norm, except for the case of p = r = 2. The “compu-
tationally intractable” quantity ‖A‖p,r admits an efficiently computable upper bound

ωp,r(A) = min
λ∈Rm,µ∈Rn

{
1
2

[
‖µ‖ p

p−2
+ ‖λ‖ r

2−r

]
:
(

Diag{µ} AT

A Diag{λ}
)
º 0

}
;

this bound is exact for a nonnegative matrix A, and for an arbitrary A the bound is tight within the factor
π

2
√

3−2π/3
= 2.293...:

‖A‖p,r ≤ ωp,r(A) ≤ π

2
√

3− 2π/3
‖A‖p,r.

Moreover, when p ∈ [1,∞) and r ∈ [1, 2] are rational (or p = ∞ and r ∈ [1, 2] is rational), the bound
ωp,r(A) is an SDr function of A.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 145

3.4.2 Matrix Cube Theorem and interval stability analysis/synthesis

Consider the problem of Lyapunov Stability Analysis in the case of interval uncertainty:

U = Uρ = {A ∈ Mn,n | |Aij −A∗ij | ≤ ρDij , i, j = 1, ..., n}, (3.4.18)

where A∗ is the “nominal” matrix, D 6= 0 is a matrix with nonnegative entries specifying the “scale” for
perturbations of different entries, and ρ ≥ 0 is the “level of perturbations”. We deal with a polytopic
uncertainty, and as we remember from Section 3.3.3, to certify the stability is the same as to find a
feasible solution of the associated semidefinite program (3.3.8) with a negative value of the objective.
The difficulty, however, is that the number N of LMI constraints in this problem is the number of
vertices of the polytope (3.4.18), i.e., N = 2m, where m is the number of uncertain entries in our interval
matrix (≡the number of positive entries in D). For 5 × 5 interval matrices with “full uncertainty”
m = 25, i.e., N = 225 = 33, 554, 432, which is “a bit” too many; for “fully uncertain” 10 × 10 matrices,
N = 2100 > 1.2 × 1030... Thus, the “brute force” approach fails already for “pretty small” matrices
affected by interval uncertainty.

In fact, the difficulty we have encountered lies in the NP-hardness of the following problem:

Given a candidate Lyapunov stability certificate X Â 0 and ρ > 0, check whether X indeed
certifies stability of all instances of Uρ, i.e., whether X solves the semi-infinite system of
LMI’s

AT X + XA ¹ −I ∀A ∈ Uρ. (3.4.19)

(in fact, we are interested in the system “AT X + XA ≺ 0∀A ∈ Uρ”, but this is a minor
difference – the “system of interest” is homogeneous in X, and therefore every feasible
solution of it can be converted to a solution of (3.4.19) just by scaling X 7→ tX).

The above problem, in turn, is a particular case of the following problem:

“Matrix Cube”: Given matrices A0, A1, ..., Am ∈ Sn with A0 º 0, find the largest ρ =
R[A1, ..., Am : A0] such that the set

Aρ =

{
A = A0 +

m∑

i=1

ziAi | ‖z‖∞ ≤ ρ

}
(3.4.20)

– the image of the m-dimensional cube {z ∈ Rm | ‖z‖∞ ≤ ρ} under the affine mapping

z 7→ A0 +
m∑

i=1

ziAi – is contained in the semidefinite cone Sn
+.

This is the problem we will focus on.

The Matrix Cube Theorem. The problem “Matrix Cube” (MC for short) is NP-hard; this is
true also for the “feasibility version” MCρ of MC, where we, given a ρ ≥ 0, are interested to verify
the inclusion Aρ ⊂ Sn

+. However, we can point out a simple sufficient condition for the validity of the
inclusion Aρ ⊂ Sn

+:

Proposition 3.4.4 Assume that the system of LMI’s

(a) Xi º ρAi, Xi º −ρAi, i = 1, ..., m;

(b)
m∑

i=1

Xi ¹ A0
(Sρ)

in matrix variables X1, ..., Xm ∈ Sn is solvable. Then Aρ ⊂ Sn
+.

Proof. Let X1, ..., Xm be a solution of (Sρ). From (a) it follows that whenever ‖z‖∞ ≤ ρ, we have
Xi º ziAi for all i, whence by (b)

A0 +
m∑

i=1

ziAi º A0 −
∑

i

Xi º 0.

146 LECTURE 3. SEMIDEFINITE PROGRAMMING

Our main result is that the sufficient condition for the inclusion Aρ ⊂ Sn
+ stated by Proposition 3.4.4 is

not too conservative:

Theorem 3.4.5 If the system of LMI’s (Sρ) is not solvable, then

Aϑ(µ)ρ 6⊂ Sn
+; (3.4.21)

here
µ = max

1≤i≤m
Rank(Ai)

(note “i ≥ 1” in the max!), and

ϑ(k) ≤ π
√

k

2
, k ≥ 1; ϑ(2) =

π

2
. (3.4.22)

Proof. Below ζ ∼ N (0, In) means that ζ is a random Gaussian n-dimensional vector with zero mean and
the unit covariance matrix, and pn(·) stands for the density of the corresponding probability distribution:

pn(u) = (2π)−n/2 exp
{
−uT u

2

}
, u ∈ Rn.

Let us set
ϑ(k) =

1

min
{∫

|αiu
2
1 + ... + αku2

k|pk(u)du
∣∣ α ∈ Rk, ‖α‖1 = 1

} . (3.4.23)

It suffices to verify that
(i): With the just defined ϑ(·), insolvability of (Sρ) does imply (3.4.21);
(ii): ϑ(·) satisfies (3.4.22).
Let us prove (i).
10. Assume that (Sρ) has no solutions. It means that the optimal value of the semidefinite problem

min
t,{Xi}



t

∣∣∣∣
Xi º ρAi, Xi º −ρAi, i = 1, ...,m;

m∑
i=1

Xi ¹ A0 + tI



 (3.4.24)

is positive. Since the problem is strictly feasible, its optimal value is positive if and only if the optimal
value of the dual problem

max
W,{Ui,V i}



ρ

m∑

i=1

Tr([U i − V i]Ai)− Tr(WA0)
∣∣∣∣

U i + V i = W, i = 1, ..., m,
Tr(W) = 1,

U i, V i,W º 0





is positive. Thus, there exists matrices U i, V i,W such that

(a) U i, V i,W º 0,
(b) U i + V i = W, i = 1, 2, ...m,

(c) ρ
m∑

i=1

Tr([U i − V i]Ai) > Tr(WA0).
(3.4.25)

20. Now let us use simple

Lemma 3.4.1 Let W,A ∈ Sn, W º 0. Then

max
U,Vº0,U+V =W

Tr([U − V]A) = max
X=XT :‖λ(X)‖∞≤1

Tr(XW 1/2AW 1/2) = ‖λ(W 1/2AW 1/2)‖1. (3.4.26)

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 147

Proof of Lemma. We clearly have

U, V º 0, U + V = W ⇔ U = W 1/2PW 1/2, V = W 1/2QW 1/2, P, Q º 0, P + Q = I,

whence

max
U,V :U,Vº0,U+V =W

Tr([U − V]A) = max
P,Q:P,Qº0,P+Q=I

Tr([P −Q]W 1/2AW 1/2).

When P, Q are linked by the relation P + Q = I and vary in {P º 0, Q º 0}, the matrix
X = P − Q runs through the entire “interval” {−I ¹ X ¹ I} (why?); we have proved the
first equality in (3.4.26). When proving the second equality, we may assume w.l.o.g. that
the matrix W 1/2AW 1/2 is diagonal, so that Tr(XW 1/2AW 1/2) = λT (W 1/2AW 1/2)Dg(X),
where Dg(X) is the diagonal of X. When X runs through the “interval” {−I ¹ X ¹ I}, the
diagonal of X runs through the entire unit cube {‖x‖∞ ≤ 1}, which immediately yields the
second equality in (3.4.26).

By Lemma 3.4.1, from (3.4.25) it follows that there exists W º 0 such that

ρ

m∑

i=1

‖λ(W 1/2AiW
1/2)‖1 > Tr(W 1/2A0W

1/2). (3.4.27)

30. Now let us use the following observation:

Lemma 3.4.2 With ξ ∼ N (0, In), for every k and every symmetric n× n matrix A with Rank(A) ≤ k
one has

(a) E
{
ξT Aξ

}
= Tr(A),

(a) E
{|ξT Aξ|} ≥ 1

ϑ(Rank(A))
‖λ(A)‖1; (3.4.28)

here E stands for the expectation w.r.t. the distribution of ξ.

Proof of Lemma. (3.4.28.a) is evident:

E
{
ξT Aξ

}
=

m∑

i,j=1

AijE {ξiξj} = Tr(A).

To prove (3.4.28.b), by homogeneity it suffices to consider the case when ‖λ(A)‖1 = 1, and
by rotational invariance of the distribution of ξ – the case when A is diagonal, and the
first Rank(A) of diagonal entries of A are the nonzero eigenvalues of the matrix; with this
normalization, the required relation immediately follows from the definition of ϑ(·).

40. Now we are ready to prove (i). Let ξ ∼ N (0, In). We have

E
{

ρϑ(µ)
k∑

i=1

|ξT W 1/2AiW
1/2ξ|

}
=

m∑
i=1

ρϑ(µ)E
{|ξT W 1/2AiW

1/2ξ|}

≥ ρ
m∑

i=1

‖λ(W 1/2AiW
1/2‖1

[by (3.4.28.b) due to Rank(W 1/2AiW
1/2) ≤ Rank(Ai) ≤ µ, i ≥ 1]

> Tr(W 1/2A0W
1/2)

[by (3.4.27)]
= Tr(ξT W 1/2A0W

1/2ξ),
[by (3.4.28.a)]

whence

E

{
ρϑ(µ)

k∑

i=1

|ξT W 1/2AiW
1/2ξ| − ξT W 1/2A0W

1/2ξ

}
> 0.

148 LECTURE 3. SEMIDEFINITE PROGRAMMING

It follows that there exists r ∈ Rn such that

ϑ(µ)ρ
m∑

i=1

|rT W 1/2AiW
1/2r| > rT W 1/2A0W

1/2r,

so that setting zi = −ϑ(µ)ρsign(rT W 1/2AiW
1/2r), we get

rT W 1/2

(
A0 +

m∑

i=1

ziAi

)
W 1/2r < 0.

We see that the matrix A0 +
m∑

i=1

ziAi is not positive semidefinite, while by construction ‖z‖∞ ≤ ϑ(µ)ρ.

Thus, (3.4.21) holds true. (i) is proved.

To prove (ii), let α ∈ Rk be such that ‖α‖1 = 1, and let

J =
∫
|α1u

2
1 + ... + αku2

k|pk(u)du.

Let β =
[

α
−α

]
, and let ξ ∼ N (0, I2k). We have

E

{∣∣∣∣∣
2k∑

i=1

βiξ
2
i

∣∣∣∣∣

}
≤ E

{∣∣∣∣∣
k∑

i=1

βiξ
2
i

∣∣∣∣∣

}
+ E

{∣∣∣∣∣
k∑

i=1

βi+kξ2
i+k

∣∣∣∣∣

}
= 2J. (3.4.29)

On the other hand, let ηi = 1√
2
(ξi − ξk+i), ζi = 1√

2
(ξi + ξk+i), i = 1, ..., k, and let ω =




α1η1
...

αkηk


,

ω̃ =



|α1η1|

...
|αkηk|


, ζ =




ζ1
...
ζk


 . Observe that ζ and ω are independent and ζ ∼ N (0, Ik). We have

E

{∣∣∣∣∣
2k∑

i=1

βiξ
2
i

∣∣∣∣∣

}
= 2E

{∣∣∣∣∣
k∑

i=1

αiηiζi

∣∣∣∣∣

}
= 2E

{|ωT ζ|} = E {‖ω‖2}E {|ζ1|} ,

where the concluding equality follows from the fact that ζ ∼ N (0, Ik) is independent of ω. We further
have

E {|ζ1|} =
∫
|t|p1(t)dt =

2√
2π

and

E {‖ω‖2} = E {‖ω̃‖2} ≥ ‖E {ω̃} ‖2 =
[∫

|t|p1(t)dt

]√√√√
m∑

i=1

α2
i .

Combining our observations, we come to

E

{∣∣∣∣∣
2k∑

i=1

βiξ
2
i

∣∣∣∣∣

}
≥ 2

(
2√
2π

)2

‖α‖2 ≥ 4
π
√

k
‖α‖1 =

4
π
√

k
.

This relation combines with (3.4.29) to yield J ≥ 2
π
√

k
. Recalling the definition of ϑ(k), we come to

ϑ(k) ≤ π
√

k
2 , as required in (3.4.22).

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 149

It remains to prove that ϑ(2) = π
2 . From the definition of ϑ(·) it follows that

ϑ−1(2) = min
0≤θ≤1

∫
|θu2

1 − (1− θ)u2
2|p2(u)du ≡ min

0≤θ≤1
f(θ).

The function f(θ) is clearly convex and satisfies the identity f(θ) = f(1 − θ), 0 ≤ θ ≤ 1, so that its
minimum is attained at θ = 1

2 . A direct computation says that f(1
2) = 2

π .

Corollary 3.4.1 Let the ranks of all matrices A1, ..., Am in MC be ≤ µ. Then the optimal value in the
semidefinite problem

ρ[A1, ..., Am : A0] = max
ρ,Xi



ρ |

Xi º ρAi, Xi º −ρAi, i = 1, ..., m,
m∑

i=1

Xi ¹ A0



 (3.4.30)

is a lower bound on R[A1, ..., Am : A0], and the “true” quantity is at most ϑ(µ) times (see (3.4.23),
(3.4.22)) larger than the bound:

ρ[A1, ..., Am : A0] ≤ R[A1, ..., Am : A0] ≤ ϑ(µ)ρ[A1, ..., Am : A0]. (3.4.31)

Application: Lyapunov Stability Analysis for an interval matrix. Now we are equipped
to attack the problem of certifying the stability of uncertain linear dynamic system with interval uncer-
tainty. The problem we are interested in is as follows:

“Interval Lyapunov”: Given a stable n × n matrix A∗ 16) and an n × n matrix D 6= 0 with
nonnegative entries, find the supremum R[A∗, D] of those ρ ≥ 0 for which all instances of
the “interval matrix”

Uρ = {A ∈ Mn,n : |Aij − (A∗)ij | ≤ ρDij , i, j = 1, ..., n}
share a common quadratic Lyapunov function, i.e., the semi-infinite system of LMI’s

X º I; AT X + XA ¹ −I ∀A ∈ Uρ (Lyρ)

in matrix variable X ∈ Sn is solvable.

Observe that X º I solves (Lyρ) if and only if the matrix cube

Aρ[X] =
{

B =
[−I −AT

∗X −XA∗
]

︸ ︷︷ ︸
A0[X]

+
∑

(i,j)∈D
zij

[
[DijE

ij]T X + X[DijE
ij]

]
︸ ︷︷ ︸

Aij [X]

∣∣∣∣ |zij | ≤ ρ, (i, j) ∈ D
}

D = {(i, j) : Dij > 0}
is contained in Sn

+; here Eij are the “basic n× n matrices” (ij-th entry of Eij is 1, all other entries are
zero). Note that the ranks of the matrices Aij [X], (i, j) ∈ D, are at most 2. Therefore from Proposition
3.4.4 and Theorem 3.4.5 we get the following result:

Proposition 3.4.5 Let ρ ≥ 0. Then
(i) If the system of LMI’s

X º I,
Xij º −ρDij

[
[Eij]T X + XEij

]
, Xij º ρDij

[
[Eij]T X + XEij

]
, (i, j) ∈ D

n∑
(i,j)∈D

Xij ¹ −I −AT
∗X −XA∗

(Aρ)

16)I.e., with all eigenvalues from the open left half-plane, or, which is the same, such that AT
∗X + XA∗ ≺ 0 for

certain X Â 0.

150 LECTURE 3. SEMIDEFINITE PROGRAMMING

in matrix variables X, Xij, (i, j) ∈ D, is solvable, then so is the system (Lyρ), and the X-component of
a solution of the former system solves the latter system.

(ii) If the system of LMI’s (Aρ) is not solvable, then so is the system (Lyπρ
2

).
In particular, the supremum ρ[A∗, D] of those ρ for which (Aρ) is solvable is a lower bound for

R[A∗, D], and the “true” quantity is at most π
2 times larger than the bound:

ρ[A∗, D] ≤ R[A∗, D] ≤ π

2
ρ[A∗, D].

Computing ρ[A∗, D]. The quantity ρ[A∗, D], in contrast to R[A∗, D], is “efficiently computable”:
applying dichotomy in ρ, we can find a high-accuracy approximation of ρ[A∗, D] via solving a small series
of semidefinite feasibility problems (Aρ). Note, however, that problem (Aρ), although “computationally
tractable”, is not that simple: in the case of “full uncertainty” (Dij > 0 for all i, j) it has n2 + n
matrix variables of the size n × n each. It turns out that applying semidefinite duality, one can reduce
dramatically the sizes of the problem specifying ρ[A∗, D]. The resulting (equivalent!) description of the
bound is:

1
ρ[A∗, D]

= inf
λ,Y,X,{ηi}





λ

∣∣∣∣

X º I,
 Y −

m∑
`=1

η`ej`
eT
j`

[Xei1 ;Xei2 ; ...;Xeim]

[Xei1 ; Xei2 ; ...; Xeim
]T Diag(η1, ..., ηm)


 º 0,

A0[X] ≡ −I −AT
∗X + XA∗ Â 0,

Y ¹ λA0[X]





, (3.4.32)

where (i1, j1), ..., (im, jm) are the positions of the uncertain entries in our uncertain matrix (i.e., the
pairs (i, j) such that Dij > 0) and e1, ..., en are the standard basic orths in Rn.

Note that the optimization program in (3.4.32) has just two symmetric matrix variables X, Y , a single
scalar variable λ and m ≤ n2 scalar variables ηi, i.e., totally at most 2n2 + n + 2 scalar design variables,
which, for large m, is much less than the design dimension of (Aρ).

Remark 3.4.1 Note that our results on the Matrix Cube problem can be applied to the interval version
of the Lyapunov Stability Synthesis problem, where we are interested to find the supremum R of those
ρ for which an uncertain controllable system

d

dt
x(t) = A(t)x(t) + B(t)u(t)

with interval uncertainty

(A(t), B(t)) ∈ Uρ = {(A,B) : |Aij − (A∗)ij | ≤ ρDij , |Bi` − (B∗)i`| ≤ ρCi` ∀i, j, `}
admits a linear feedback

u(t) = Kx(t)

such that all instances A(t) + B(t)K of the resulting closed loop system share a common quadratic
Lyapunov function. Here our constructions should be applied to the semi-infinite system of LMI’s

Y º I, BL + AY + LT BT + Y AT ¹ −I ∀(A, B) ∈ Uρ

in variables L, Y (see Proposition 3.3.4), and them yield an efficiently computable lower bound on R
which is at most π

2 times less than R.

We have seen that the Matrix Cube Theorem allows to build tight computationally tractable approx-
imations to semi-infinite systems of LMI’s responsible for stability of uncertain linear dynamical systems
affected by interval uncertainty. The same is true for many other semi-infinite systems of LMI’s arising
in Control in the presence of interval uncertainty, since in a typical Control-related LMI, a perturbation
of a single entry in the underlying data results in a small-rank perturbation of the LMI – a situation
well-suited for applying the Matrix Cube Theorem.

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 151

Nesterov’s Theorem revisited. Our results on the Matrix Cube problem give an alternative
proof of Nesterov’s π

2 Theorem (Theorem 3.4.2). Recall that in this theorem we are comparing the true
maximum

OPT = max
d
{dT Ad | ‖d‖∞ ≤ 1}

of a positive semidefinite (A º 0) quadratic form on the unit n-dimensional cube and the semidefinite
upper bound

SDP = max
X
{Tr(AX) | X º 0, Xii ≤ 1, i = 1, ..., n} (3.4.33)

on OPT ; the theorem says that
OPT ≤ SDP ≤ π

2
OPT. (3.4.34)

To derive (3.4.34) from the Matrix Cube-related considerations, assume that A Â 0 rather than A º 0
(by continuity reasons, to prove (3.4.34) for the case of A Â 0 is the same as to prove the relation for all
A º 0) and let us start with the following simple observation:

Lemma 3.4.3 Let A Â 0 and
OPT = max

d

{
dT Ad | ‖d‖∞ ≤ 1

}
.

Then
1

OPT
= max

{
ρ :

(
1 dT

d A−1

)
º 0 ∀(d : ‖d‖∞ ≤ ρ1/2)

}
(3.4.35)

and
1

OPT
= max

{
ρ : A−1 º X ∀(X ∈ Sn : |Xij | ≤ ρ∀i, j)} . (3.4.36)

Proof. To get (3.4.35), note that by the Schur Complement Lemma, all matrices of the form
(

1 dT

d A−1

)

with ‖d‖∞ ≤ ρ1/2 are º 0 if and only if dT (A−1)−1d = dT Ad ≤ 1 for all d, ‖d‖∞ ≤ ρ1/2, i.e., if and only
if ρ·OPT ≤ 1; we have derived (3.4.35). We now have

(a) 1
OPT ≥ ρ

m [by (3.4.35)](
1 dT

d A−1

)
º 0 ∀(d : ‖d‖∞ ≤ ρ1/2)

m [the Schur Complement Lemma]
A−1 º ρddT ∀(d, ‖d‖∞ ≤ 1)

m
xT A−1x ≥ ρ(dT x)2 ∀x∀(d : ‖d‖∞ ≤ 1)

m
xT A−1x ≥ ρ‖x‖21 ∀x

m
(b) A−1 º ρY ∀(Y = Y T : |Yij | ≤ 1∀i, j)

where the concluding m is given by the evident relation

‖x‖21 = max
Y

{
xT Y x : Y = Y T , |Yij | ≤ 1 ∀i, j} .

The equivalence (a) ⇔ (b) is exactly (3.4.36).

By (3.4.36), 1
OPT is exactly the maximum R of those ρ for which the matrix cube

Cρ = {A−1 +
∑

1≤i≤j≤n

zijS
ij

∣∣max
i,j

|zij | ≤ ρ}

is contained in Sn
+; here Sij are the “basic symmetric matrices” (Sii has a single nonzero entry, equal to

1, in the cell ii, and Sij , i < j, has exactly two nonzero entries, equal to 1, in the cells ij and ji). Since

152 LECTURE 3. SEMIDEFINITE PROGRAMMING

the ranks of the matrices Sij do not exceed 2, Proposition 3.4.4 and Theorem 3.4.5 say that the optimal
value in the semidefinite program

ρ(A) = max
ρ,Xij

{
ρ

∣∣∣∣
Xij º ρSij , Xij º −ρSij , 1 ≤ i ≤ j ≤ n,∑

i≤j

Xij ¹ A−1

}
(S)

is a lower bound for R, and this bound coincides with R up to the factor π
2 ; consequently, 1

ρ(A) is an
upper bound on OPT , and this bound is at most π

2 times larger than OPT . It remains to note that a
direct computation demonstrates that 1

ρ(A) is exactly the quantity SDP given by (3.4.33).

3.4.3 Robust Quadratic Programming

The concept of robust counterpart of an optimization problem with uncertain data (see Section 2.4.1) is
in no sense restricted to Linear Programming. Whenever we have an optimization problem depending on
certain data, we may ask what happens when the data are uncertain and all we know is an uncertainty
set the data belong to. Given such an uncertainty set, we may require from candidate solutions to be
robust feasible – to satisfy the realizations of the constraints for all data running through the uncertainty
set. The robust counterpart of an uncertain problem is the problem of minimizing the objective17) over
the set of robust feasible solutions.

Now, we have seen in Section 2.4.1 that the “robust form” of an uncertain linear inequality with the
coefficients varying in an ellipsoid is a conic quadratic inequality; as a result, the robust counterpart of
an uncertain LP problem with ellipsoidal uncertainty (or, more general, with a CQr uncertainty set) is a
conic quadratic problem. What is the “robust form” of an uncertain conic quadratic inequality

‖Ax + b‖2 ≤ cT x + d [A ∈ Mm,n, b ∈ Rm, c ∈ Rn, d ∈ R] (3.4.37)

with uncertain data (A, b, c, d) ∈ U? The question is how to describe the set of all robust feasible solutions
of this inequality, i.e., the set of x’s such that

‖Ax + b‖2 ≤ cT x + d ∀(A, b, c, d) ∈ U . (3.4.38)

We intend to focus on the case when the uncertainty is “side-wise” – the data (A, b) of the left hand
side and the data (c, d) of the right hand side of the inequality (3.4.37) independently of each other run
through respective uncertainty sets U left

ρ , U right (ρ is the left hand side uncertainty level). It suffices to
assume the right hand side uncertainty set to be SDr with a strictly feasible SDR:

U right = {(c, d) | ∃u : Pc + Qd +Ru º S}. (3.4.39)

As about the left hand side uncertainty set, we assume that it is an intersection of concentric ellipsoids,
specifically, that

U left
ρ =

{
[A, b] = [A∗, b∗] +

L∑

`=1

ζ`[A`, b`] : ζT Qjζ ≤ ρ2, j = 1, ..., J

}
, (3.4.40)

where Q1, ..., QJ are positive semidefinite matrices with positive definite sum.
Since the left hand side and the right hand side data independently of each other run through

respective uncertainty sets, a point x is robust feasible if and only if there exists a real τ such that

(a) τ ≤ cT x + d ∀(c, d) ∈ U right,
(b) ‖Ax + b‖2 ≤ τ ∀[A, b] ∈ U left

ρ .
(3.4.41)

17)Without loss of generality, we may assume that the objective is “certain” – is not affected by the data
uncertainty. Indeed, we can always ensure this situation by passing to an equivalent problem with linear (and
standard) objective:

min
x
{f(x) : x ∈ X} 7→ min

t,x
{t : f(x)− t ≤ 0, x ∈ X} .

3.4. SEMIDEFINITE RELAXATIONS OF INTRACTABLE PROBLEMS 153

We know from the previous Lecture that the set of (τ, x) satisfying (3.4.41.a) is SDr (see Proposition
2.4.2 and Remark 2.4.1); it is easy to verify that the corresponding SDR is as follows:

(a) (x, τ) satisfies (3.4.41.a)
m

∃Λ :
(b) Λ º 0, P∗Λ = x, Tr(QΛ) = 1, R∗Λ = 0, Tr(SΛ) ≥ τ.

(3.4.42)

As about building SDR of the set of pairs (τ, x) satisfying (3.4.41.b), this is much more difficult (and in
many cases even hopeless) task, since (3.4.38) in general turns out to be NP-hard and as such cannot be
posed as an explicit semidefinite program. We can, however, build a kind of “inner approximation” of
the set in question. To this end we shall use the ideas of semidefinite relaxation. Specifically, let us set

a[x] = A∗x + b∗, A[x] = [A1x + b1, ..., ALx + bL],

so that

(A∗ +
L∑

`=1

ζ`A`)x + (b∗ +
L∑

`=1

ζ`b`) = a[x] + A[x]ζ.

In view of the latter identity, relation (3.4.41.b) reads

‖a[x] + ρA[x]ζ‖2 ≤ τ ∀(ζ : ζT Qjζ ≤ 1, j = 1, ..., J),

or, which is the same (set ζ = t−1ξ), as

‖ta[x] + ρA[x]ξ‖2 ≤ τt2 ∀((t, ξ) : ξT Qjξ ≤ t2, j = 1, ..., J),

which in turn is equivalent to

{τ ≥ 0}I &
{

t2(τ2 − aT [x]a[x])− 2tρaT [x]A[x]ξ − ρ2ξT AT [x]A[x]ξ ≥ 0
∀((ξ, t) : ξT Qjξ ≤ t2, j = 1, ..., J)

}

II

.

Predicate {·}II requires from certain quadratic form of t, ξ to be nonnegative when a number of other
quadratic forms of these variables are nonnegative. An evident sufficient condition for this is that the
former quadratic form is º a linear combination, with nonnegative coefficients, of the latter forms. When
τ ≥ 0, this sufficient condition for the predicate {·}II to be valid can be reduced to the existence of
nonnegative weights λj such that the quadratic form

t2(τ2 − aT [x]a[x])− 2tρaT [x]A[x]ξ − ρ2ξT AT [x]A[x]ξ − τ
∑

j

λj(t2 − ξT Qjξ)

in variables t, ξ is positive semidefinite. This condition is the same as the existence of nonnegative λj

such that

τ




τ −∑
j

λj

∑
j

λjQj


− [a[x], ρA[x]]T [a[x], ρA[x]] º 0.

Invoking the Schur Complement Lemma, the latter condition, in turn, is equivalent to the existence of

nonnegative λj such that the matrix




τ −∑
j

λj aT [x]
∑
j

λjQj ρAT [x]

a[x] ρA[x] τI


 is positive semidefinite. We have

established the implication as follows:

(a) {τ º 0} &




∃(λj ≥ 0) :




τ −∑
j

λj aT [x]
∑
j

λjQj ρAT [x]

a[x] ρA[x] τI


 º 0





⇓
(b) (x, τ) satisfies (3.4.41.b)

(3.4.43)

Combining our observations, we arrive at the first – easy – part of the following statement:

154 LECTURE 3. SEMIDEFINITE PROGRAMMING

Proposition 3.4.6 Let the data in the conic quadratic inequality (3.4.37) be affected by side-wise uncer-
tainty (3.4.39), (3.4.40). Then

(i) The system (S[ρ]) of LMIs (3.4.42.b), (3.4.43.a) in variables x, τ, Λ, {λj} is a “conservative ap-
proximation” of the Robust Counterpart of (3.4.37) in the sense that whenever x can be extended to a
feasible solution of (S[ρ]), x is robust feasible for (3.4.37), the uncertainty set being U left

ρ × U right.

(ii) The tightness of (S[ρ]) as an approximation to the robust counterpart of (3.4.37) can be quantified
as follows: if x cannot be extended to a feasible solution of (S[ρ]), then x is not robust feasible for (3.4.37),
the uncertainty set being U left

ϑρ × U right. Here the “tightness factor” ϑ can be bounded as follows:

1. In the case of J = 1 (i.e., perturbations ζ are varying in an ellipsoid rather than in an intersection
of concentric ellipsoids), one has ϑ = 1 (i.e., (S[ρ]) is exactly equivalent to the robust counterpart
of U left

ϑρ × U right);

2. In the case of “box uncertainty” J = dim ζ, ζT Qjζ = ζ2
j , one has ϑ = π

2 = 1.570...;

3. In the general case,

ϑ =

√√√√√2 ln


6

J∑

j=1

Rank(Qj)


.

For the proof of the “difficult part” (ii) of the Proposition, see [4].

Example: Antenna Synthesis revisited. To illustrate the potential of the Robust Optimization
methodology as applied to conic quadratic problems, consider the Circular Antenna Design problem
from Section 2.4.1. Assume that now we deal with 40 ring-type antenna elements, and that our goal is

to minimize the (discretized) L2-distance from the synthesized diagram
40∑

j=1

xjDrj−1,rj (·) to the “ideal”

diagram D∗(·) which is equal to 1 in the range 77o ≤ θ ≤ 90o and is equal to 0 in the range 0o ≤ θ ≤ 70o.
The associated problem is just the Least Squares problem

minτ,x





τ :

√√√√
∑

θ∈Θcns

D2
x(θ) +

∑
θ∈Θobj

(Dx(θ)− 1)2

card(Θcns ∪Θobj)︸ ︷︷ ︸
‖D∗−Dx‖2

≤ τ





,

Dx(θ) =
40∑

j=1

xjDrj−1,rj (θ)

(3.4.44)

where Θcns and Θobj are the intersections of the 240-point grid on the segment 0 ≤ θ ≤ 90o with the
“angle of interest” 77o ≤ θ ≤ 90o and the “sidelobe angle” 0o ≤ θ ≤ 70o, respectively.

The Nominal Least Squares design obtained from the optimal solution to this problem is completely
unstable w.r.t. small implementation errors xj 7→ (1 + ξj)xj , |ξj | ≤ ρ:

3.5. S-LEMMA AND APPROXIMATE S-LEMMA 155

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.23215

 0.4643

 0.69644

 0.92859

 1.1607

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

103
110

Dream
no errors

‖D∗ −D‖2 = 0.014

Reality
0.1% errors

‖D∗ −D‖2 ∈ [0.17, 0.89]

Reality
2% errors

‖D∗ −D‖2 ∈ [2.9, 19.6]
Nominal Least Squares design: dream and reality

Data over a 100-diagram sample

In order to take into account implementation errors, we should treat (3.4.44) as an uncertain conic
quadratic problem {

min
τ,x

{τ : ‖Ax− b‖2 ≤ τ}
∣∣A ∈ U

}

with the uncertainty set of the form

U = {A = A∗ + A∗Diag(ξ) | ‖ξ‖∞ ≤ ρ} ,

which is a particular case of the ellipsoidal uncertainty (specifically, what was called “box uncertainty”
in Proposition 3.4.6). In the experiments to be reported, we use ρ = 0.02. The approximate Robust
Counterpart (S[ρ]) of our uncertain conic quadratic problem yields the Robust design as follows:

 0.20689

 0.41378

 0.62066

 0.82755

 1.0344

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.20695

 0.4139

 0.62086

 0.82781

 1.0348

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.2084

 0.41681

 0.62521

 0.83362

 1.042

30

210

60

240

90

270

120

300

150

330

180 0

103
110

Dream
no errors

‖D∗ −D‖2 = 0.025

Reality
0.1% errors

‖D∗ −D‖2 ≈ 0.025

Reality
2% errors

‖D∗ −D‖2 ≈ 0.025
Robust Least Squares design: dream and reality

Data over a 100-diagram sample

3.5 S-Lemma and Approximate S-Lemma

3.5.1 S-Lemma

Let us look again at the Lagrange relaxation of a quadratically constrained quadratic problem, but in the
very special case when all the forms involved are homogeneous, and the right hand sides of the inequality
constraints are zero:

minimize xT Bx
s.t. xT Aix ≥ 0, i = 1, ...,m

(3.5.1)

156 LECTURE 3. SEMIDEFINITE PROGRAMMING

(B, A1, ..., Am are given symmetric m ×m matrices). Assume that the problem is feasible. In this case
(3.5.1) is, at a first glance, a trivial problem: due to homogeneity, its optimal value is either −∞ or
0, depending on whether there exists or does not exist a feasible vector x such that xT Bx < 0. The
challenge here is to detect which one of these two alternatives takes place, i.e., to understand whether
or not a homogeneous quadratic inequality xT Bx ≥ 0 is a consequence of the system of homogeneous
quadratic inequalities xT Aix ≥ 0, or, which is the same, to understand when the implication

(a) xT Aix ≥ 0, i = 1, ...,m
⇓

(b) xT Bx ≥ 0
(3.5.2)

holds true.
In the case of homogeneous linear inequalities it is easy to recognize when an inequality xT b ≥ 0

is a consequence of the system of inequalities xT ai ≥ 0, i = 1, ..., m: by Farkas Lemma, it is the case
if and only if the inequality is a linear consequence of the system, i.e., if b is representable as a linear
combination, with nonnegative coefficients, of the vectors ai. Now we are asking a similar question about
homogeneous quadratic inequalities: when (b) is a consequence of (a)?

In general, there is no analogy of the Farkas Lemma for homogeneous quadratic inequalities. Note,
however, that the easy “if” part of the Lemma can be extended to the quadratic case: if the target
inequality (b) can be obtained by linear aggregation of the inequalities (a) and a trivial – identically true
– inequality, then the implication in question is true. Indeed, a linear aggregation of the inequalities (a)
is an inequality of the type

xT (
m∑

i=1

λiAi)x ≥ 0

with nonnegative weights λi, and a trivial – identically true – homogeneous quadratic inequality is of the
form

xT Qx ≥ 0

with Q º 0. The fact that (b) can be obtained from (a) and a trivial inequality by linear aggregation

means that B can be represented as B =
m∑

i=1

λiAi + Q with λi ≥ 0, Q º 0, or, which is the same, if

B º
m∑

i=1

λiAi for certain nonnegative λi. If this is the case, then (3.5.2) is trivially true. We have arrived

at the following simple

Proposition 3.5.1 Assume that there exist nonnegative λi such that B º ∑
i

λiAi. Then the implication

(3.5.2) is true.

Proposition 3.5.1 is no more than a sufficient condition for the implication (3.5.2) to be true, and in
general this condition is not necessary. There is, however, an extremely fruitful particular case when the
condition is both necessary and sufficient – this is the case of m = 1, i.e., a single quadratic inequality in
the premise of (3.5.2):

Theorem 3.5.1 [S-Lemma] Let A,B be symmetric n × n matrices, and assume that the quadratic in-
equality

xT Ax ≥ 0 (A)

is strictly feasible: there exists x̄ such that x̄T Ax̄ > 0. Then the quadratic inequality

xT Bx ≥ 0 (B)

is a consequence of (A) if and only if it is a linear consequence of (A), i.e., if and only if there exists a
nonnegative λ such that

B º λA.

3.5. S-LEMMA AND APPROXIMATE S-LEMMA 157

We are about to present an “intelligent” proof of the S-Lemma based on the ideas of semidefinite relax-
ation.

In view of Proposition 3.5.1, all we need is to prove the “only if” part of the S-Lemma, i.e., to
demonstrate that if the optimization problem

min
x

{
xT Bx : xT Ax ≥ 0

}

is strictly feasible and its optimal value is ≥ 0, then B º λA for certain λ ≥ 0. By homogeneity reasons,
it suffices to prove exactly the same statement for the optimization problem

min
x

{
xT Bx : xT Ax ≥ 0, xT x = n

}
. (P)

The standard semidefinite relaxation of (P) is the problem

min
X
{Tr(BX) : Tr(AX) ≥ 0,Tr(X) = n,X º 0} . (P′)

If we could show that when passing from the original problem (P) to the relaxed problem (P′) the optimal
value (which was nonnegative for (P)) remains nonnegative, we would be done. Indeed, observe that (P′)
is clearly bounded below (its feasible set is compact!) and is strictly feasible (which is an immediate
consequence of the strict feasibility of (A)). Thus, by the Conic Duality Theorem the problem dual to
(P′) is solvable with the same optimal value (let it be called nθ∗) as the one in (P′). The dual problem is

max
µ,λ

{nµ : λA + µI ¹ B, λ ≥ 0} ,

and the fact that its optimal value is nθ∗ means that there exists a nonnegative λ such that

B º λA + nθ∗I.

If we knew that the optimal value nθ∗ in (P′) is nonnegative, we would conclude that B º λA for certain
nonnegative λ, which is exactly what we are aiming at. Thus, all we need is to prove that under the
premise of the S-Lemma the optimal value in (P′) is nonnegative, and here is the proof:

Observe first that problem (P′) is feasible with a compact feasible set, and thus is solvable.
Let X∗ be an optimal solution to the problem. Since X∗ ≥ 0, there exists a matrix D such
that X∗ = DDT . Note that we have

0 ≤ Tr(AX∗) = Tr(ADDT) = Tr(DT AD),
nθ∗ = Tr(BX∗) = Tr(BDDT) = Tr(DT BD),

n = Tr(X∗) = Tr(DDT) = Tr(DT D).
(*)

It remains to use the following observation

(!) Let P,Q be symmetric matrices such that Tr(P) ≥ 0 and Tr(Q) < 0. Then
there exists a vector e such that eT Pe ≥ 0 and eT Qe < 0.

Indeed, let us believe that (!) is valid, and let us prove that θ∗ ≥ 0. Assume, on the contrary,
that θ∗ < 0. Setting P = DT BD and Q = DT AD and taking into account (*), we see that
the matrices P, Q satisfy the premise in (!), whence, by (!), there exists a vector e such that
0 ≤ eT Pe = [De]T A[De] and 0 > eT Qe = [De]T B[De], which contradicts the premise of the
S-Lemma.
It remains to prove (!). Given P and Q as in (!), note that Q, as every symmetric matrix,
admits a representation

Q = UT ΛU

with an orthonormal U and a diagonal Λ. Note that θ ≡ Tr(Λ) = Tr(Q) < 0. Now let ξ be
a random n-dimensional vector with independent entries taking values ±1 with probabilities
1/2. We have

[UT ξ]T Q[UT ξ] = [UT ξ]T UT ΛU [UT ξ] = ξT Λξ = Tr(Λ) = θ ∀ξ,

158 LECTURE 3. SEMIDEFINITE PROGRAMMING

while
[UT ξ]T P [UT ξ] = ξT [UPUT]ξ,

and the expectation of the latter quantity over ξ is clearly Tr(UPUT) = Tr(P) ≥ 0. Since
the expectation is nonnegative, there is at least one realization ξ̄ of our random vector ξ such
that

0 ≤ [UT ξ̄]T P [UT ξ̄].

We see that the vector e = UT ξ̄ is a required one: eT Qe = θ < 0 and eT Pe ≥ 0.

3.5.2 Inhomogeneous S-Lemma

Proposition 3.5.2 [Inhomogeneous S-Lemma] Consider optimization problem with quadratic objective
and a single quadratic constraint:

f∗ = min
x

{
f0(x) ≡ xT A0x + 2bT

0 x + c0 : f1(x) ≡ xT A1x + 2bT
1 x + c1 ≤ 0

}
(3.5.3)

Assume that the problem is strictly feasible and below bounded. Then the Semidefinite relaxation (3.4.5)
of the problem is solvable with the optimal value f∗.

Proof. By Proposition 3.4.1, the optimal value in (3.4.5) can be only ≤ f∗. Thus, it suffices to verify
that (3.4.5) admits a feasible solution with the value of the objective ≥ f∗, that is, that there exists
λ∗ ≥ 0 such that (

c0 + λ∗c1 − f∗ bT
0 + λ∗bT

1

b0 + λ∗b1 A0 + λ∗A1

)
º 0. (3.5.4)

To this end, let us associate with (3.5.3) a pair of homogeneous quadratic forms of the extended vector
of variables y = (t, x), where t ∈ R, specifically, the forms

yT Py ≡ xT A1x + 2tbT
1 x + c1t

2, yT Qy = −xT A0y − 2tbT
0 x− (c0 − f∗)t2.

We claim that, first, there exist ε0 > 0 and ȳ with ȳT P ȳ < −ε0ȳ
T ȳ and, second, that for every ε ∈ (0, ε0]

the implication
yT Py ≤ −εyT y ⇒ yT Qy ≤ 0 (3.5.5)

holds true. The first claim is evident: by assumption, there exists x̄ such that f1(x̄) < 0; setting ȳ = (1, x̄),
we see that ȳT P ȳ = f1(x̄) < 0, whence ȳT P ȳ < −ε0ȳ

T ȳ for appropriately chosen ε0 > 0. To support the
second claim, assume that y = (t, x) is such that yT Py ≤ −εyT y, and let us prove that then yT Qy ≤ 0.

• Case 1: t 6= 0. Setting y′ = t−1y = (1, x′), we have f1(x′) = [y′]T Py′ = t−2yT Py ≤ 0, whence
f0(x′) ≥ f∗, or, which is the same, [y′]T Qy′ ≤ 0, so that yT Qy ≤ 0, as required in (3.5.5).

• Case 2: t = 0. In this case, −εxT x = −εyT y ≥ yT Py = xT A1x and yT Qy = −xT A0x, and we
should prove that the latter quantity is nonpositive. Assume, on the contrary, that this quantity
is positive, that is, xT A0x < 0. Then x 6= 0 and therefore xT A1x ≤ −εxT x < 0. From xT A1x < 0
and xT A0x < 0 it follows that f1(sx) → −∞ and f0(sx) → −∞ as s → +∞, which contradicts
the assumption that (3.5.3) is below bounded. Thus, yT Qy ≤ 0.

Our observations combine with S-Lemma to imply that for every ε ∈ (0, ε0] there exists λ = λε ≥ 0 such
that

B ¹ λε(A + εI), (3.5.6)

whence, in particular,
ȳT Bȳ ≤ λεȳ

T [A + εI]ȳ.

The latter relation, due to ȳT Aȳ < 0, implies that λε remains bounded as ε → +0. Thus, we have
λεi → λ∗ ≥ 0 as i → ∞ for a properly chosen sequence εi → +0 of values of ε, and (3.5.6) implies that
B ¹ λ∗A. Recalling what are A and B, we arrive at (3.5.4).

3.5. S-LEMMA AND APPROXIMATE S-LEMMA 159

3.5.3 Approximate S-Lemma

In general, the S-Lemma fails to be true when there is more than a single quadratic form in (3.5.2) (that
is, when m > 1). Similarly, Inhomogeneous S-Lemma fails to be true for general quadratic quadratically
constrained problems with more than a single quadratic constraint. There exists, however, a useful
approximate version of the Inhomogeneous S-Lemma in the “multi-constrained” case which is as follows:

Proposition 3.5.3 [Approximate S-Lemma] Consider the following quadratic quadratically constrained
optimization problem:

Opt = max
x

{
f(x) = xT Ax + 2bT x : xT Aix ≤ ci, i = 1, ..., m

}
, (3.5.7)

where ci > 0, Ai º 0, i = 1, ...,m (A can be arbitrary symmetric matrix) and
m∑

i=1

Ai Â 0. Let SDP be the

optimal value in the Semidefinite relaxation of this problem:

SDP = min
ω,λ





ω :




ω −
m∑

i=1

ciλi −bT

−b
m∑

i=1

λiAi −A


 º 0, λ ≥ 0





(3.5.8)

(note that the problem of interest is a maximization one, whence the difference between the relaxation
and (3.4.5)). Then

Opt ≤ SDP ≤ ΘOpt, (3.5.9)

where Θ = 1 in the case of m = 1 and

Θ = 2 ln

(
6

m∑

i=1

Rank(Ai)

)

in the case of m > 1. Moreover, in the latter case there exists x∗ such that

bT x∗ ≥ 0,
xT
∗Ax∗ + 2bT x∗ ≥ SDP,

xT
∗Aix

∗ ≤ Θci, i = 1, ...,m.
(3.5.10)

Proof. The case of m = 1 is given by the Inhomogeneous S-Lemma. Thus, let m > 1.
10. We clearly have

Opt = max
t,x

{
xT Ax + 2tbT x : t2 ≤ 1, xT Aix ≤ ci, i = 1, ..., m

}

= max
z=(t,x)

{
zT Bz : zT Biz ≤ ci, i = 0, 1, ...,m

}
,

B =
[

bT

b A

]
,

B0 =
[

1
]

,

Bi =
[

Ai

]
, i = 1, ..., m,

c0 = 1.

(3.5.11)

Note that (3.5.8) is nothing but the semidefinite dual of the semidefinite program

max
Z
{Tr(BZ) : Tr(BiZ) ≤ ci, i = 0, 1, ...,m, Z º 0} . (3.5.12)

Since ci > 0 for i ≥ 0, (3.5.12) is strictly feasible, and since
m∑

i=0

Bi Â 0, the feasible set of the problem is

bounded (so that the problem is solvable). Since (3.5.12) is strictly feasible and bounded, by Semidefinite
Duality Theorem we have

SDP = max
Z
{Tr(BZ) : Tr(BiZ) ≤ ci, i = 0, 1, ...,m, Z º 0} . (3.5.13)

160 LECTURE 3. SEMIDEFINITE PROGRAMMING

20. Let Z∗ be an optimal solution to (3.5.12). Let us set

B̂ = Z
1/2
∗ BZ

1/2
∗

B̂i = Z
1/2
∗ BiZ

1/2
∗ , i = 0, ..., m,

and let B̂ = UT DU be the eigenvalue decomposition of B̂ (so that U is orthogonal and D is diagonal).
Finally, let us set Di = UB̂iU

T . Thus, we have arrived at the symmetric matrices D, D0, D1, ..., Dm such
that

1) D = UZ
1/2
∗ BZ

1/2
∗ UT is diagonal, and Tr(D) = Tr(Z∗B) = SDP;

2) For i = 0, 1, ..., m, the matrices Di = UZ
1/2
∗ BiZ

1/2
∗ UT are symmetric positive semidefinite,

Rank(Di) ≤ Rank(Bi), and Tr(Di) = Tr(Z∗Bi) ≤ ci.

Now let ξ be a random vector with independent coordinates taking values ±1 with probability 1/2, and
let η = Z

1/2
∗ UT ξ. Observe that

(a) ηT Bη ≡ ξT Dξ
≡ SDP [by 1)]

(b) E
{
ηT Biη

}
= E

{
ξT Diξ

}
= Tr(Di)

≤ ci, i = 0, 1, ..., m [by 2)]

(3.5.14)

30. We claim that from (3.5.14.b) it follows that

(a) Prob
{
ηT B0η > 1

} ≤ 2
3

(b) Prob
{
ηT Biη > θci

} ≤ Rank(Ai) exp{−θ/2}, i = 1, ..., m
(3.5.15)

Indeed, ηT B0η = ξT D0ξ. Note that D0 = d0d
T
0 for certain vector d0 (since B0 = b0b

T
0 for certain b0).

Besides this, Tr(D0) ≤ c0 = 1 by (3.5.14.b). Thus,

ηT B0η = (
∑

j

pjεj)2,

where deterministic pj satisfy
∑
j

p2
j ≤ 1, and εj are independent random variables taking values ±1 with

probabilities 1/2. Now (3.5.15.a) is given by the following fact [4]:

With pj and εj as above, one has Prob

{
|∑

j

pjεj | ≤ 1

}
≥ 1

3 .

To verify (3.5.15.b), let us fix i ≥ 1. Since Di is positive semidefinite along with Bi, we have

Di =
k∑

j=1

djd
T
j [k = Rank(Di) ≤ Rank(Bi) = Rank(Ai)].

By Bernstein’s Inequality (see the proof of Proposition 2.4.1), we have

Prob
{
|dT

j ξ| ≥
√

θ‖dj‖2
}
≤ 2 exp{−θ/2}.

In the case of ξT Diξ ≥ θ
k∑

j=1

‖dj‖22 we clearly have ξT djd
T
j ξ ≥ θ‖dj‖22 for certain (depending on ξ) value

of j, so that

Prob

{
ξT Diξ > θ

k∑
j=1

‖dj‖22
}

≤
k∑

j=1

Prob
{
|dT

j ξ| ≥
√

θ‖dj‖2
}

≤ 2k exp{−θ/2}.

3.5. S-LEMMA AND APPROXIMATE S-LEMMA 161

The resulting inequality implies (3.5.15.b) due to the facts that ηT Biη = ξT Diξ and that

k∑

j=1

‖dj‖22 = Tr(
∑

j

djd
T
j) = Tr(Di) ≤ ci.

40. Let K =
m∑

i=1

Rank(Ai). For every θ > Θ = 2 ln(6K) we have θ ≥ 1 and 2
3 + 2K exp{−θ/2} < 1.

In view of the latter fact and (3.5.15), there exists a realization η̄ = (t̄, x̄) of η such that

(a) t̄2 ≡ η̄T B0η̄ ≤ 1,
(b) x̄T Aix̄ ≡ η̄T Biη̄ ≤ θci, i = 1, ..., m.

(3.5.16)

while
x̄T Ax̄ + 2t̄bT x̄ = η̄T Bbarη = SDP

by (3.5.14.a). Replacing, if necessary, t̄ with −t̄ and x̄ with −x̄, we ensure the validity of (3.5.16.b) along
with the relation

x̄T Ax̄ + 2bT x̄︸ ︷︷ ︸
≥0

≥ SDP. (3.5.17)

Since
∑
i

Ai Â 0, relations (3.5.16) imply that (t̄, x̄) remain bounded as θ → +Θ, whence (3.5.16) and

(3.5.17) are valid for properly chosen t̄, x̄ and θ = Θ; setting x∗ = x̄, we arrive at (3.5.10). By (3.5.10),
Θ−1/2x∗ is a feasible solution of (3.5.7) and

Θ−1xT
∗Ax∗ + 2Θ−1/2bT x∗ ≥ Θ−1SDP, (3.5.18)

whence Opt ≥ Θ−1SDP.

Application: Approximating the Affinely Adjustable Robust Counterpart of an
Uncertain Linear Programming problem

The notion of Affinely Adjustable Robust Counterpart (AARC) of uncertain LP was introduced and
motivated in Section 2.4.5. As applied to uncertain LP

LP =
{

min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≥ 0

}
: ζ ∈ Z

}
(3.5.19)

affinely parameterized by perturbation vector ζ and with variables xj allowed to be affine functions of
Pjζ:

xj = µj + νT
j Pjζ, (3.5.20)

the AARC is the following semi-infinite optimization program in variables t, µj , νj :

min
t,{µj ,νj}n

j=1



t :

∑
j

cj [z][µj + νT
j Pjζ] ≤ t ∀ζ ∈ Z

∑
j

[µj + νT
j Pj]Aj [ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z



 (AARC)

It was explained that in the case of fixed recourse (cj [ζ] and Aj [ζ] are independent of ζ for all j for which
xj is adjustable, that is, Pj 6= 0), (AARC) is equivalent to an explicit conic quadratic program, provided
that the perturbation set Z is CQr with strictly feasible CQR. In fact CQ-representability plays no crucial
role here (see Remark 2.4.1); in particular, when Z is SDr with a strictly feasible SDR, (AARC), in the
case of fixed recourse, is equivalent to an explicit semidefinite program. What indeed plays a crucial role
is the assumption of fixed recourse; it can be shown that when this assumption does not hold, (AARC)
can be computationally intractable. Our current goal is to demonstrate that even in this difficult case

162 LECTURE 3. SEMIDEFINITE PROGRAMMING

(AARC) admits a “tight” computationally tractable approximation, provided that Z is an intersection
of ellipsoids centered at the origin:

Z = Zρ ≡
{
ζ : ζT Qiζ ≤ ρ2, i = 1, ..., m

}
[
Qi º 0,

∑

i

Qi Â 0

]
(3.5.21)

Indeed, since Aj [ζ] are affine in ζ, every semi-infinite constraint in (AARC) is of the form

ζT A[z]ζ + 2bT [z]ζ ≤ c[z] ∀ζ ∈ Zρ (3.5.22)

where z = (t, {µj , νj}n
j=1) is the vector of variables in (AARC), and A[z], b[z], c[z] are affine in z matrix,

vector and scalar. Applying Approximate S-Lemma, a sufficient condition for (3.5.22) to be valid for a
given z is the relation

min
ω,λ





ω :




ω −
m∑

i=1

ρ2λi −bT [z]

−b[z]
m∑

i=1

λiQi −A[z]


 º 0, λ ≥ 0




≤ c[z],

or, which is the same, the possibility to extend z, by properly chosen λ, to a solution to the system of
constraints

λ ≥ 0,




c[z]−
m∑

i=1

ρ2λi −bT [z]

−b[z]
m∑

i=1

λiQi −A[z]


 , (3.5.23)

which is a system of LMIs in variables (z, λ). Replacing every one of the semi-infinite constraints in
(AARC) with corresponding system (3.5.23), we end up with an explicit semidefinite program which is a
“conservative approximation” of (AARC): both problems have the same objective, and the z-component
of a feasible solution to the approximation is feasible solution of (AARC). At the same time, the approx-
imation is tight up to the quite moderate factor

θ =

√√√√2 ln

(
6

m∑

i=1

Rank(Qi)

)
:

whenever z cannot be extended to a feasible solution of the approximation, the “moreover” part of the
Approximate S-Lemma says that z becomes infeasible for (AARC) after the original level of perturbations
is increased by the factor θ.

3.6 Extremal ellipsoids

We already have met, on different occasions, with the notion of an ellipsoid – a set E in Rn which can
be represented as the image of the unit Euclidean ball under an affine mapping:

E = {x = Au + c | uT u ≤ 1} [A ∈ Mn,q] (Ell)

Ellipsoids are very convenient mathematical entities:

• it is easy to specify an ellipsoid – just to point out the corresponding matrix A and vector c;

• the family of ellipsoids is closed with respect to affine transformations: the image of an ellipsoid
under an affine mapping again is an ellipsoid;

• there are many operations, like minimization of a linear form, computation of volume, etc., which
are easy to carry out when the set in question is an ellipsoid, and is difficult to carry out for more
general convex sets.

3.6. EXTREMAL ELLIPSOIDS 163

By the indicated reasons, ellipsoids play important role in different areas of applied mathematics; in
particular, people use ellipsoids to approximate more complicated sets. Just as a simple motivating
example, consider a discrete-time linear time invariant controlled system:

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, ...
x(0) = 0

and assume that the control is norm-bounded:

‖u(t)‖2 ≤ 1 ∀t.

The question is what is the set XT of all states “reachable in a given time T”, i.e., the set of all possible
values of x(T). We can easily write down the answer:

XT = {x = BuT−1 + ABuT−2 + A2BuT−3 + ... + AT−1Bu0 | ‖ut‖2 ≤ 1, t = 0, ..., T − 1},

but this answer is not “explicit”; just to check whether a given vector x belongs to XT requires to solve a
nontrivial conic quadratic problem, the complexity of the problem being the larger the larger is T . In fact
the geometry of XT may be very complicated, so that there is no possibility to get a “tractable” explicit
description of the set. This is why in many applications it makes sense to use “simple” – ellipsoidal -
approximations of XT ; as we shall see, approximations of this type can be computed in a recurrent and
computationally efficient fashion.

It turns out that the natural framework for different problems of the “best possible” approximation
of convex sets by ellipsoids is given by semidefinite programming. In this section we intend to consider a
number of basic problems of this type.

Preliminaries on ellipsoids. According to our definition, an ellipsoid in Rn is the image of the
unit Euclidean ball in certain Rq under an affine mapping; e.g., for us a segment in R100 is an ellipsoid;
indeed, it is the image of one-dimensional Euclidean ball under affine mapping. In contrast to this, in
geometry an ellipsoid in Rn is usually defined as the image of the n-dimensional unit Euclidean ball
under an invertible affine mapping, i.e., as the set of the form (Ell) with additional requirements that
q = n, i.e., that the matrix A is square, and that it is nonsingular. In order to avoid confusion, let us
call these “true” ellipsoids full-dimensional. Note that a full-dimensional ellipsoid E admits two nice
representations:

• First, E can be represented in the form (Ell) with positive definite symmetric A:

E = {x = Au + c | uT u ≤ 1} [A ∈ Sn
++] (3.6.1)

Indeed, it is clear that if a matrix A represents, via (Ell), a given ellipsoid E, the matrix AU , U
being an orthogonal n× n matrix, represents E as well. It is known from Linear Algebra that by
multiplying a nonsingular square matrix from the right by a properly chosen orthogonal matrix,
we get a positive definite symmetric matrix, so that we always can parameterize a full-dimensional
ellipsoid by a positive definite symmetric A.

• Second, E can be given by a strictly convex quadratic inequality:

E = {x | (x− c)T D(x− c) ≤ 1} [D ∈ Sn
++]. (3.6.2)

Indeed, one may take D = A−2, where A is the matrix from the representation (3.6.1).

Note that the set (3.6.2) makes sense and is convex when the matrix D is positive semidefinite rather
than positive definite. When D º 0 is not positive definite, the set (3.6.1) is, geometrically, an “elliptic
cylinder” – a shift of the direct product of a full-dimensional ellipsoid in the range space of D and the
complementary to this range linear subspace – the kernel of D.

In the sequel we deal a lot with volumes of full-dimensional ellipsoids. Since an invertible affine
transformation x 7→ Ax + b : Rn → Rn multiplies the volumes of n-dimensional domains by |DetA|,

164 LECTURE 3. SEMIDEFINITE PROGRAMMING

the volume of a full-dimensional ellipsoid E given by (3.6.1) is κnDetA, where κn is the volume of the
n-dimensional unit Euclidean ball. In order to avoid meaningless constant factors, it makes sense to pass
from the usual n-dimensional volume mesn(G) of a domain G to its normalized volume

Vol(G) = κ−1
n mesn(G),

i.e., to choose, as the unit of volume, the volume of the unit ball rather than the one of the cube with unit
edges. From now on, speaking about volumes of n-dimensional domains, we always mean their normalized
volume (and omit the word “normalized”). With this convention, the volume of a full-dimensional ellipsoid
E given by (3.6.1) is just

Vol(E) = DetA,

while for an ellipsoid given by (3.6.1) the volume is

Vol(E) = [DetD]−1/2
.

Outer and inner ellipsoidal approximations. It was already mentioned that our current goal
is to realize how to solve basic problems of “the best” ellipsoidal approximation E of a given set S. There
are two types of these problems:

• Outer approximation, where we are looking for the “smallest” ellipsoid E containing the set S;

• Inner approximation, where we are looking for the “largest” ellipsoid E contained in the set S.

In both these problems, a natural way to say when one ellipsoid is “smaller” than another one is to
compare the volumes of the ellipsoids. The main advantage of this viewpoint is that it results in affine-
invariant constructions: an invertible affine transformation multiplies volumes of all domains by the same
constant and therefore preserves ratios of volumes of the domains.

Thus, what we are interested in are the largest volume ellipsoid(s) contained in a given set S and
the smallest volume ellipsoid(s) containing a given set S. In fact these extremal ellipsoids are unique,
provided that S is a solid – a closed and bounded convex set with a nonempty interior, and are not too
bad approximations of the set:

Theorem 3.6.1 [Löwner – Fritz John] Let S ⊂ Rn be a solid. Then
(i) There exists and is uniquely defined the largest volume full-dimensional ellipsoid Ein contained in

S. The concentric to Ein n times larger (in linear sizes) ellipsoid contains S; if S is central-symmetric,
then already

√
n times larger than Ein concentric to Ein ellipsoid contains S.

(ii) There exists and is uniquely defined the smallest volume full-dimensional ellipsoid Eout containing
S. The concentric to Eout n times smaller (in linear sizes) ellipsoid is contained in S; if S is central-
symmetric, then already

√
n times smaller than Eout concentric to Eout ellipsoid is contained in S.

The proof is the subject of Exercise 3.37.

The existence of extremal ellipsoids is, of course, a good news; but how to compute these ellipsoids?
The possibility to compute efficiently (nearly) extremal ellipsoids heavily depends on the description of
S. Let us start with two simple examples.

Inner ellipsoidal approximation of a polytope. Let S be a polyhedral set given by a number
of linear equalities:

S = {x ∈ Rn | aT
i x ≤ bi, i = 1, ...,m}.

Proposition 3.6.1 Assume that S is a full-dimensional polytope (i.e., is bounded and possesses a
nonempty interior). Then the largest volume ellipsoid contained in S is

E = {x = Z∗u + z∗ | uT u ≤ 1},

3.6. EXTREMAL ELLIPSOIDS 165

where Z∗, z∗ are given by an optimal solution to the following semidefinite program:

maximize t
s.t.
(a) t ≤ (DetZ)1/n,
(b) Z º 0,
(c) ‖Zai‖2 ≤ bi − aT

i z, i = 1, ...,m,

(In)

with the design variables Z ∈ Sn, z ∈ Rn, t ∈ R.
Note that (In) indeed is a semidefinite program: both (In.a) and (In.c) can be represented by LMIs,

see Examples 18d and 1-17 in Section 3.2.

Proof. Indeed, an ellipsoid (3.6.1) is contained in S if and only if

aT
i (Au + c) ≤ bi ∀u : uT u ≤ 1,

or, which is the same, if and only if

‖Aai‖2 + aT
i c = max

u:uT u≤1
[aT

i Au + aT
i c] ≤ bi.

Thus, (In.b − c) just express the fact that the ellipsoid {x = Zu + z | uT u ≤ 1} is contained in S, so
that (In) is nothing but the problem of maximizing (a positive power of) the volume of an ellipsoid over
ellipsoids contained in S.

We see that if S is a polytope given by a set of linear inequalities, then the problem of the best inner
ellipsoidal approximation of S is an explicit semidefinite program and as such can be efficiently solved.
In contrast to this, if S is a polytope given as a convex hull of finite set:

S = Conv{x1, ..., xm},

then the problem of the best inner ellipsoidal approximation of S is “computationally intractable” – in
this case, it is difficult just to check whether a given candidate ellipsoid is contained in S.

Outer ellipsoidal approximation of a finite set. Let S be a polyhedral set given as a convex
hull of a finite set of points:

S = Conv{x1, ..., xm}.
Proposition 3.6.2 Assume that S is a full-dimensional polytope (i.e., possesses a nonempty interior).
Then the smallest volume ellipsoid containing S is

E = {x | (x− c∗)T D∗(x− c∗) ≤ 1},

where c∗, D∗ are given by an optimal solution (t∗, Z∗, z∗, s∗) to the semidefinite program

maximize t
s.t.
(a) t ≤ (DetZ)1/n,
(b) Z º 0,

(c)
(

s zT

z Z

)
º 0,

(d) xT
i Zxi − 2xT

i z + s ≤ 1, i = 1, ..., m,

(Out)

with the design variables Z ∈ Sn, z ∈ Rn, t, s ∈ R via the relations

D∗ = Z∗; c∗ = Z−1
∗ z∗.

Note that (Out) indeed is a semidefinite program, cf. Proposition 3.6.1.

166 LECTURE 3. SEMIDEFINITE PROGRAMMING

Proof. Indeed, let us pass in the description (3.6.2) from the “parameters” D, c to the parameters
Z = D, z = Dc, thus coming to the representation

E = {x | xT Zx− 2xT z + zT Z−1z ≤ 1}. (!)

The ellipsoid of the latter type contains the points x1, ..., xm if and only if

xT
i Zxi − 2xT

i z + zT Z−1z ≤ 1, i = 1, ..., m,

or, which is the same, if and only if there exists s ≥ zT Z−1z such that

xT
i Zxi − 2xT

i z + s ≤ 1, i = 1, ...,m.

Recalling Lemma on the Schur Complement, we see that the constraints (Out.b − d) say exactly that
the ellipsoid (!) contains the points x1, ..., xm. Since the volume of such an ellipsoid is (DetZ)−1/2,
(Out) is the problem of maximizing a negative power of the volume of an ellipsoid containing the finite
set {x1, ..., xm}, i.e., the problem of finding the smallest volume ellipsoid containing this finite set. It
remains to note that an ellipsoid is convex, so that it is exactly the same – to say that it contains a finite
set {x1, ..., xm} and to say that it contains the convex hull of this finite set.

We see that if S is a polytope given as a convex hull of a finite set, then the problem of the best outer
ellipsoidal approximation of S is an explicit semidefinite program and as such can be efficiently solved.
In contrast to this, if S is a polytope given by a list of inequality constraints, then the problem of the
best outer ellipsoidal approximation of S is “computationally intractable” – in this case, it is difficult
just to check whether a given candidate ellipsoid contains S.

3.6.1 Ellipsoidal approximations of unions/intersections of ellipsoids

Speaking informally, Proposition 3.6.1 deals with inner ellipsoidal approximation of the intersection of
“degenerate” ellipsoids, namely, half-spaces (a half-space is just a very large Euclidean ball!) Similarly,
Proposition 3.6.2 deals with the outer ellipsoidal approximation of the union of degenerate ellipsoids,
namely, points (a point is just a ball of zero radius!). We are about to demonstrate that when passing
from “degenerate” ellipsoids to the “normal” ones, we still have a possibility to reduce the corresponding
approximation problems to explicit semidefinite programs. The key observation here is as follows:

Proposition 3.6.3 [5] An ellipsoid

E = E(Z, z) ≡ {x = Zu + z | uT u ≤ 1} [Z ∈ Mn,q]

is contained in the full-dimensional ellipsoid

W = W (Y, y) ≡ {x | (x− y)T Y T Y (x− y) ≤ 1} [Y ∈ Mn,n, DetY 6= 0]

if and only if there exists λ such that



In Y (z − y) Y Z
(z − y)T Y T 1− λ

ZT Y T λIq


 º 0 (3.6.3)

as well as if and only if there exists λ such that



Y −1(Y −1)T z − y Z
(z − y)T 1− λ

ZT λIq


 º 0 (3.6.4)

3.6. EXTREMAL ELLIPSOIDS 167

Proof. We clearly have

E ⊂ W
m

uT u ≤ 1 ⇒ (Zu + z − y)T Y T Y (Zu + z − y) ≤ 1
m

uT u ≤ t2 ⇒ (Zu + t(z − y))T Y T Y (Zu + t(z − y)) ≤ t2

m S-Lemma
∃λ ≥ 0 : [t2 − (Zu + t(z − y))T Y T Y (Zu + t(z − y))]− λ[t2 − uT u] ≥ 0 ∀(u, t)

m
∃λ ≥ 0 :

(
1− λ− (z − y)T Y T Y (z − y) −(z − y)T Y T Y Z

−ZT Y T Y (z − y) λIq − ZT Y T Y Z

)
º 0

m
∃λ ≥ 0 :

(
1− λ

λIq

)
−

(
(z − y)T Y T

ZT Y T

)
(Y (z − y) Y Z) º 0

Now note that in view of Lemma on the Schur Complement the matrix
(

1− λ
λIq

)
−

(
(z − y)T Y T

ZT Y T

)
(Y (z − y) Y Z)

is positive semidefinite if and only if the matrix in (3.6.3) is so. Thus, E ⊂ W if and only if there exists
a nonnegative λ such that the matrix in (3.6.3), let it be called P (λ), is positive semidefinite. Since the
latter matrix can be positive semidefinite only when λ ≥ 0, we have proved the first statement of the
proposition. To prove the second statement, note that the matrix in (3.6.4), let it be called Q(λ), is
closely related to P (λ):

Q(λ) = SP (λ)ST , S =




Y −1

1
Iq


 Â 0,

so that Q(λ) is positive semidefinite if and only if P (λ) is so.

Here are some consequences of Proposition 3.6.3.

Inner ellipsoidal approximation of the intersection of full-dimensional ellipsoids. Let

Wi = {x | (x− ci)T B2
i (x− ci) ≤ 1} [Bi ∈ Sn

++],

i = 1, ..., m, be given full-dimensional ellipsoids in Rn; assume that the intersection W of these ellipsoids
possesses a nonempty interior. Then the problem of the best inner ellipsoidal approximation of W is the
explicit semidefinite program

maximize t
s.t.

t ≤ (DetZ)1/n,


In Bi(z − ci) BiZ
(z − ci)T Bi 1− λi

ZBi λiIn


 º 0, i = 1, ..., m,

Z º 0

(InEll)

with the design variables Z ∈ Sn, z ∈ Rn, λi, t ∈ R. The largest ellipsoid contained in W =
m⋂

i=1

Wi is

given by an optimal solution Z∗, z∗, t∗, {λ∗i }) of (InEll) via the relation

E = {x = Z∗u + z∗ | uT u ≤ 1}.

168 LECTURE 3. SEMIDEFINITE PROGRAMMING

Indeed, by Proposition 3.6.3 the LMIs



In Bi(z − ci) BiZ
(z − ci)T Bi 1− λi

ZBi λiIn


 º 0, i = 1, ..., m

express the fact that the ellipsoid {x = Zu + z | uT u ≤ 1} with Z º 0 is contained in
every one of the ellipsoids Wi, i.e., is contained in the intersection W of these ellipsoids.
Consequently, (InEll) is exactly the problem of maximizing (a positive power of) the volume
of an ellipsoid over the ellipsoids contained in W .

Outer ellipsoidal approximation of the union of ellipsoids. Let

Wi = {x = Aiu + ci | uT u ≤ 1} [Ai ∈ Mn,ki],

i = 1, ..., m, be given ellipsoids in Rn; assume that the convex hull W of the union of these ellipsoids
possesses a nonempty interior. Then the problem of the best outer ellipsoidal approximation of W is the
explicit semidefinite program

maximize t
s.t.

t ≤ (DetY)1/n,


In Y ci − z Y Ai

(Y ci − z)T 1− λi

AT
i Y λiIki


 º 0, i = 1, ...,m,

Y º 0

(OutEll)

with the design variables Y ∈ Sn, z ∈ Rn, λi, t ∈ R. The smallest ellipsoid containing W = Conv(
m⋃

i=1

Wi)

is given by an optimal solution (Y∗, z∗, t∗, {λ∗i }) of (OutEll) via the relation

E = {x | (x− y∗)Y 2
∗ (x− y∗) ≤ 1}, y∗ = Y −1

∗ z∗.

Indeed, by Proposition 3.6.3 for Y Â 0 the LMIs



In Y ci − z Y Ai

(Y ci − z)T 1− λi

AT
i Y λiIki


 º 0, i = 1, ...,m

express the fact that the ellipsoid E = {x | (x− Y −1z)T Y 2(x− Y −1y) ≤ 1} contains every
one of the ellipsoids Wi, i.e., contains the convex hull W of the union of these ellipsoids.
The volume of the ellipsoid E is (DetY)−1; consequently, (OutEll) is exactly the problem
of maximizing a negative power (i.e., of minimizing a positive power) of the volume of an
ellipsoid over the ellipsoids containing W .

3.6.2 Approximating sums of ellipsoids

Let us come back to our motivating example, where we were interested to build ellipsoidal approximation
of the set XT of all states x(T) where a given discrete time invariant linear system

x(t + 1) = Ax(t) + Bu(t), t = 0, ..., T − 1
x(0) = 0

can be driven in time T by a control u(·) satisfying the norm bound

‖u(t)‖2 ≤ 1, t = 0, ..., T − 1.

3.6. EXTREMAL ELLIPSOIDS 169

How could we build such an approximation recursively? Let Xt be the set of all states where the
system can be driven in time t ≤ T , and assume that we have already built inner and outer ellipsoidal
approximations Et

in and Et
out of the set Xt:

Et
in ⊂ Xt ⊂ Et

out.

Let also
E = {x = Bu | uT u ≤ 1}.

Then the set
F t+1

in = AEt
in + E ≡ {x = Ay + z | y ∈ Et

in, z ∈ E}
clearly is contained in Xt+1, so that a natural recurrent way to define an inner ellipsoidal approximation
of Xt+1 is to take as Et+1

in the largest volume ellipsoid contained in F t+1
in . Similarly, the set

F t+1
out = AEt

out + E ≡ {x = Ay + z | y ∈ Et
out, z ∈ E}

clearly covers Xt+1, and the natural recurrent way to define an outer ellipsoidal approximation of Xt+1

is to take as Et+1
out the smallest volume ellipsoid containing F t+1

out .
Note that the sets F t+1

in and F t+1
out are of the same structure: each of them is the arithmetic sum

{x = v + w | v ∈ V, w ∈ W} of two ellipsoids V and W . Thus, we come to the problem as follows:
Given two ellipsoids W,V , find the best inner and outer ellipsoidal approximations of their arithmetic
sum W + V . In fact, it makes sense to consider a little bit more general problem:

Given m ellipsoids W1, ...,Wm in Rn, find the best inner and outer ellipsoidal approximations
of the arithmetic sum

W = {x = w1 + w1 + ... + wm | wi ∈ Wi, i = 1, ...,m}

of the ellipsoids W1, ..., Wm.

In fact, we have posed two different problems: the one of inner approximation of W (let this problem
be called (I)) and the other one, let it be called (O), of outer approximation. It seems that in general
both these problems are difficult (at least when m is not once for ever fixed). There exist, however,
“computationally tractable” approximations of both (I) and (O) we are about to consider.

In considerations to follow we assume, for the sake of simplicity, that the ellipsoids W1, ..., Wm are
full-dimensional (which is not a severe restriction – a “flat” ellipsoid can be easily approximated by a
“nearly flat” full-dimensional ellipsoid). Besides this, we may assume without loss of generality that all
our ellipsoids Wi are centered at the origin. Indeed, we have Wi = ci + Vi, where ci is the center of Wi

and Vi = Wi − ci is centered at the origin; consequently,

W1 + ... + Wm = (c1 + ... + cm) + (V1 + ... + Vm),

so that the problems (I) and (O) for the ellipsoids W1, ..., Wm can be straightforwardly reduced to similar
problems for the centered at the origin ellipsoids V1, ..., Vm.

Problem (O). Let the ellipsoids W1, ..., Wm be represented as

Wi = {x ∈ Rn | xT Bix ≤ 1} [Bi Â 0].

Our strategy to approximate (O) is very natural: we intend to build a parametric family of ellipsoids
in such a way that, first, every ellipsoid from the family contains the arithmetic sum W1 + ... + Wm of
given ellipsoids, and, second, the problem of finding the smallest volume ellipsoid within the family is a
“computationally tractable” problem (specifically, is an explicit semidefinite program)18). The seemingly

18) Note that we, in general, do not pretend that our parametric family includes all ellipsoids containing
W1 + ...+Wm, so that the ellipsoid we end with should be treated as nothing more than a “computable surrogate”
of the smallest volume ellipsoid containing the sum of Wi’s.

170 LECTURE 3. SEMIDEFINITE PROGRAMMING

simplest way to build the desired family was proposed in [5] and is based on the idea of semidefinite
relaxation. Let us start with the observation that an ellipsoid

W [Z] = {x | xT Zx ≤ 1} [Z Â 0]

contains W1 + ... + Wm if and only if the following implication holds:
{{xi ∈ Rn}m

i=1, [x
i]T Bix

i ≤ 1, i = 1, ..., m
} ⇒ (x1 + ... + xm)T Z(x1 + ... + xm) ≤ 1. (∗)

Now let Bi be (nm) × (nm) block-diagonal matrix with m diagonal blocks of the size n × n each, such
that all diagonal blocks, except the i-th one, are zero, and the i-th block is the n × n matrix Bi. Let
also M [Z] denote (mn)× (mn) block matrix with m2 blocks of the size n× n each, every of these blocks
being the matrix Z. This is how Bi and M [Z] look in the case of m = 2:

B1 =
[

B1

]
, B2 =

[
B2

]
, M [Z] =

[
Z Z
Z Z

]
.

Validity of implication (∗) clearly is equivalent to the following fact:

(*.1) For every (mn)-dimensional vector x such that

xT Bix ≡ Tr(Bi xxT︸︷︷︸
X[x]

) ≤ 1, i = 1, ...,m,

one has

xT M [Z]x ≡ Tr(M [Z]X[x]) ≤ 1.

Now we can use the standard trick: the rank one matrix X[x] is positive semidefinite, so that we for sure
enforce the validity of the above fact when enforcing the following stronger fact:

(*.2) For every (mn)× (mn) symmetric positive semidefinite matrix X such that

Tr(BiX) ≤ 1, i = 1, ..., m,

one has

Tr(M [Z]X) ≤ 1.

We have arrived at the following result.

(D) Let a positive definite n×n matrix Z be such that the optimal value in the semidefinite
program

max
X

{
Tr(M [Z]X)

∣∣Tr(BiX) ≤ 1, i = 1, ..., m, X º 0
}

(SDP)

is ≤ 1. Then the ellipsoid

W [Z] = {x | xT Zx ≤ 1}
contains the arithmetic sum W1 + ... + Wm of the ellipsoids Wi = {x | xT Bix ≤ 1}.

We are basically done: the set of those symmetric matrices Z for which the optimal value in (SDP) is
≤ 1 is SD-representable; indeed, the problem is clearly strictly feasible, and Z affects, in a linear fashion,
the objective of the problem only. On the other hand, the optimal value in a strictly feasible semidefinite
maximization program is a SDr function of the objective (“semidefinite version” of Proposition 2.4.4).
Consequently, the set of those Z for which the optimal value in (SDP) is ≤ 1 is SDr (as the inverse image,
under affine mapping, of the level set of a SDr function). Thus, the “parameter” Z of those ellipsoids W [Z]
which satisfy the premise in (D) and thus contain W1+...+Wm varies in an SDr set Z. Consequently, the
problem of finding the smallest volume ellipsoid in the family {W [Z]}Z∈Z is equivalent to the problem of
maximizing a positive power of Det(Z) over the SDr set Z, i.e., is equivalent to a semidefinite program.

3.6. EXTREMAL ELLIPSOIDS 171

It remains to build the aforementioned semidefinite program. By the Conic Duality Theorem the optimal
value in the (clearly strictly feasible) maximization program (SDP) is ≤ 1 if and only if the dual problem

min
λ

{
m∑

i=1

λi

∣∣ ∑

i

λiB
i º M [Z], λi ≥ 0, i = 1, ...,m

}
.

admits a feasible solution with the value of the objective ≤ 1, or, which is clearly the same (why?), admits
a feasible solution with the value of the objective equal 1. In other words, whenever Z º 0 is such that
M [Z] is ¹ a convex combination of the matrices Bi, the set

W [Z] = {x | xT Zx ≤ 1}
(which is an ellipsoid when Z Â 0) contains the set W1 + ... + Wm. We have arrived at the following
result (see [5], Section 3.7.4):

Proposition 3.6.4 Given m centered at the origin full-dimensional ellipsoids

Wi = {x ∈ Rn | xT Bix ≤ 1} [Bi Â 0],

i = 1, ..., m, in Rn, let us associate with these ellipsoids the semidefinite program

max
t,Z,λ





t

∣∣∣∣

t ≤ Det1/n(Z)
m∑

i=1

λiB
i º M [Z]

λi ≥ 0, i = 1, ..., m
Z º 0

m∑
i=1

λi = 1





(Õ)

where Bi is the (mn) × (mn) block-diagonal matrix with blocks of the size n × n and the only nonzero
diagonal block (the i-th one) equal to Bi, and M [Z] is the (mn)× (mn) matrix partitioned into m2 blocks,
every one of them being Z. Every feasible solution (Z, ...) to this program with positive value of the
objective produces ellipsoid

W [Z] = {x | xT Zx ≤ 1}
which contains W1 + ... + Wm, and the volume of this ellipsoid is at most t−n/2. The smallest volume
ellipsoid which can be obtained in this way is given by (any) optimal solution of (Õ).

How “conservative” is (Õ) ? The ellipsoid W [Z∗] given by the optimal solution of (Õ) contains
the arithmetic sum W of the ellipsoids Wi, but not necessarily is the smallest volume ellipsoid containing
W ; all we know is that this ellipsoid is the smallest volume one in certain subfamily of the family of all
ellipsoids containing W . “In the nature” there exists the “true” smallest volume ellipsoid W [Z∗∗] = {x |
xT Z∗∗x ≤ 1}, Z∗∗ Â 0, containing W . It is natural to ask how large could be the ratio

ϑ =
Vol(W [Z∗])
Vol(W [Z∗∗])

.

The answer is as follows:

Proposition 3.6.5 One has ϑ ≤ (
π
2

)n/2
.

Note that the bound stated by Proposition 3.6.5 is not as bad as it looks: the natural way to compare the

“sizes” of two n-dimensional bodies E′, E′′ is to look at the ratio of their average linear sizes
(

Vol(E′)
Vol(E′′)

)1/n

(it is natural to assume that shrinking a body by certain factor, say, 2, we reduce the “size” of the body
exactly by this factor, and not by 2n). With this approach, the “level of non-optimality” of W [Z∗] is no
more than

√
π/2 = 1.253..., i.e., is within 25% margin.

172 LECTURE 3. SEMIDEFINITE PROGRAMMING

Proof of Proposition 3.6.5: Since Z∗∗ contains W , the implication (*.1) holds true, i.e., one has

max
x∈Rmn

{xT M [Z∗∗]x | xT Bix ≤ 1, i = 1, ...,m} ≤ 1.

Since the matrices Bi, i = 1, ...,m, commute and M [Z∗∗] º 0, we can apply Proposition 3.7.1 (see Section
3.7.5) to conclude that there exist nonnegative µi, i = 1, ...,m, such that

M [Z∗∗] ¹
m∑

i=1

µiB
i,

∑

i

µi ≤ π

2
.

It follows that setting λi =

(
∑
j

µj

)−1

µi, Z =

(
∑
j

µj

)−1

Z∗∗, t = Det1/n(Z), we get a feasible solution

of (Õ). Recalling the origin of Z∗, we come to

Vol(W [Z∗]) ≤ Vol(W [Z]) =


∑

j

µj




n/2

Vol(W [Z∗∗]) ≤ (π/2)n/2Vol(W [Z∗∗]),

as claimed.

Problem (O), the case of “co-axial” ellipsoids. Consider the co-axial case – the one when
there exist coordinates (not necessarily orthogonal) such that all m quadratic forms defining the ellipsoids
Wi are diagonal in these coordinates, or, which is the same, there exists a nonsingular matrix C such
that all the matrices CT BiC, i = 1, ..., m, are diagonal. Note that the case of m = 2 always is co-axial –
Linear Algebra says that every two homogeneous quadratic forms, at least one of the forms being positive
outside of the origin, become diagonal in a properly chosen coordinates.

We are about to prove that

(E) In the “co-axial” case, (Õ) yields the smallest in volume ellipsoid containing W1+...+Wm.

Consider the co-axial case. Since we are interested in volume-related issues, and the ratio of volumes
remains unchanged under affine transformations, we can assume w.l.o.g. that the matrices Bi defining
the ellipsoids Wi = {x | xT Bix ≤ 1} are positive definite and diagonal; let bi

` be the `-th diagonal entry
of Bi, ` = 1, ..., n.

By the Fritz John Theorem, “in the nature” there exists a unique smallest volume ellipsoid W∗ which
contains W1+...+Wm; from uniqueness combined with the fact that the sum of our ellipsoids is symmetric
w.r.t. the origin it follows that this optimal ellipsoid W∗ is centered at the origin:

W∗ = {x | xT Z∗x ≤ 1}
with certain positive definite matrix Z∗.

Our next observation is that the matrix Z∗ is diagonal. Indeed, let E be a diagonal matrix with diag-
onal entries ±1. Since all Bi’s are diagonal, the sum W1 + ...+Wm remains invariant under multiplication
by E:

x ∈ W1 + ... + Wm ⇔ Ex ∈ W1 + ... + Wm.

It follows that the ellipsoid E(W∗) = {x | xT (ET Z∗E)x ≤ 1} covers W1 + ... + Wm along with W∗
and of course has the same volume as W∗; from the uniqueness of the optimal ellipsoid it follows that
E(W∗) = W∗, whence ET Z∗E = Z∗ (why?). Since the concluding relation should be valid for all diagonal
matrices E with diagonal entries ±1, Z∗ must be diagonal.

Now assume that the set
W (z) = {x | xT Diag(z)x ≤ 1} (3.6.5)

given by a nonnegative vector z contains W1 + ... + Wm. Then the following implication holds true:

∀{xi
`} i=1,...,m

`=1,...,n
:

n∑

`=1

bi
`(x

i
`)

2 ≤ 1, i = 1, ..., m ⇒
n∑

`=1

z`(x1
` + x2

` + ... + xm
`)2 ≤ 1. (3.6.6)

3.6. EXTREMAL ELLIPSOIDS 173

Denoting yi
` = (xi

`)
2 and taking into account that z` ≥ 0, we see that the validity of (3.6.6) implies the

validity of the implication

∀{yi
` ≥ 0} i=1,...,m

`=1,...,n
:

n∑

`=1

bi
`y

i
` ≤ 1, i = 1, ..., m ⇒

n∑

`=1

z`




m∑

i=1

yi
` + 2

∑

1≤i<j≤m

√
yi

`y
j
`


 ≤ 1. (3.6.7)

Now let Y be an (mn)× (mn) symmetric matrix satisfying the relations

Y º 0; Tr(Y Bi) ≤ 1, i = 1, ...,m. (3.6.8)

Let us partition Y into m2 square blocks, and let Y ij
` be the `-th diagonal entry of the ij-th block of

Y . For all i, j with 1 ≤ i < j ≤ m, and all `, 1 ≤ ` ≤ n, the 2 × 2 matrix
(

Y ii
` Y ij

`

Y ij
` Y jj

`

)
is a principal

submatrix of Y and therefore is positive semidefinite along with Y , whence

Y ij
` ≤

√
Y ii

` Y jj
` . (3.6.9)

In view of (3.6.8), the numbers yi
` ≡ Y ii

` satisfy the premise in the implication (3.6.7), so that

1 ≥
n∑

`=1

z`

[
m∑

i=1

Y ii
` + 2

∑
1≤i<j≤m

√
Y ii

` Y jj
`

]
[by (3.6.7)]

≥
n∑

`=1

z`

[
m∑

i=1

Y ii
` + 2

∑
1≤i<j≤m

Y ij
`

]
[since z ≥ 0 and by (3.6.9)]

= Tr(Y M [Diag(z)]).

Thus, (3.6.8) implies the inequality Tr(Y M [Diag(z)]) ≤ 1, i.e., the implication

Y º 0, Tr(Y Bi) ≤ 1, i = 1, ..., m ⇒ Tr(Y M [Diag(z)]) ≤ 1

holds true. Since the premise in this implication is strictly feasible, the validity of the implication, by
Semidefinite Duality, implies the existence of nonnegative λi,

∑
i λi ≤ 1, such that

M [Diag(z)] ¹
∑

i

λiB
i.

Combining our observations, we come to the conclusion as follows:

In the case of diagonal matrices Bi, if the set (3.6.5), given by a nonnegative vector z,
contains W1 + ... + Wm, then the matrix Diag(z) can be extended to a feasible solution of
the problem (Õ). Consequently, in the case in question the approximation scheme given by
(Õ) yields the minimum volume ellipsoid containing W1 + ...+Wm (since the latter ellipsoid,
as we have seen, is of the form (3.6.5) with z ≥ 0).

It remains to note that the approximation scheme associated with (Õ) is affine-invariant, so that the
above conclusion remains valid when we replace in its premise “the case of diagonal matrices Bi” with
“the co-axial case”.

Remark 3.6.1 In fact, (E) is an immediate consequence of the following fact (which, essentially, is
proved in the above reasoning):

Let A1, ..., Am, B be symmetric matrices such that the off-diagonal entries of all Ai’s are nonpositive,
and the off-diagonal entries of B are nonnegative. Assume also that the system of inequalities

xT Aix ≤ ai, i = 1, ..., m (S)

is strictly feasible. Then the inequality
xT Bx ≤ b

174 LECTURE 3. SEMIDEFINITE PROGRAMMING

is a consequence of the system (S) if and only if it is a “linear consequence” of (S), i.e., if and only if
there exist nonnegative weights λi such that

B ¹
∑

i

λiAi,
∑

i

λiai ≤ b.

In other words, in the case in question the optimization program

max
x

{
xT Bx | xT Aix ≤ ai, i = 1, ...,m

}

and its standard semidefinite relaxation

max
X

{Tr(BX) | X º 0, Tr(AiX) ≤ ai, i = 1, ..., m}

share the same optimal value.

Problem (I). Let us represent the given centered at the origin ellipsoids Wi as

Wi = {x | x = Aiu | uT u ≤ 1} [Det(Ai) 6= 0].

We start from the following observation:

(F) An ellipsoid E[Z] = {x = Zu | uT u ≤ 1} ([Det(Z) 6= 0]) is contained in the sum
W1 + ... + Wm of the ellipsoids Wi if and only if one has

∀x : ‖ZT x‖2 ≤
m∑

i=1

‖AT
i x‖2. (3.6.10)

Indeed, assume, first, that there exists a vector x∗ such that the inequality in (3.6.10) is
violated at x = x∗, and let us prove that in this case W [Z] is not contained in the set
W = W1 + ... + Wm. We have

max
x∈Wi

xT
∗ x = max

[
xT
∗Aiu | uT u ≤ 1

]
= ‖AT

i x∗‖2, i = 1, ...,m,

and similarly
max

x∈E[Z]
xT
∗ x = ‖ZT x∗‖2,

whence

max
x∈W

xT
∗ x = max

xi∈Wi

xT
∗ (x1 + ... + xm) =

m∑
i=1

max
xi∈Wi

xT
∗ xi

=
m∑

i=1

‖AT
i x∗‖2 < ‖ZT x∗‖2 = max

x∈E[Z]
xT
∗ x,

and we see that E[Z] cannot be contained in W . Vice versa, assume that E[Z] is not
contained in W , and let y ∈ E[Z]\W . Since W is a convex compact set and y 6∈ W , there
exists a vector x∗ such that xT

∗ y > max
x∈W

xT
∗ x, whence, due to the previous computation,

‖ZT x∗‖2 = max
x∈E[Z]

xT
∗ x ≥ xT

∗ y > max
x∈W

xT
∗ x =

m∑

i=1

‖AT
i x∗‖2,

and we have found a point x = x∗ at which the inequality in (3.6.10) is violated. Thus, E[Z]
is not contained in W if and only if (3.6.10) is not true, which is exactly what should be
proved.

3.6. EXTREMAL ELLIPSOIDS 175

A natural way to generate ellipsoids satisfying (3.6.10) is to note that whenever Xi are n×n matrices of
spectral norms

|Xi| ≡
√

λmax(XT
i Xi) =

√
λmax(XiXT

i) = max
x
{‖Xix‖2 | ‖x‖2 ≤ 1}

not exceeding 1, the matrix

Z = Z(X1, ..., Xm) = A1X1 + A2X2 + ... + AmXm

satisfies (3.6.10):

‖ZT x‖2 = ‖[XT
1 AT

1 + ... + XT
mAT

m]x‖2 ≤
m∑

i=1

‖XT
i AT

i x‖2 ≤
m∑

i=1

|XT
i |‖AT

i x‖2 ≤
m∑

i=1

‖AT
i x‖2.

Thus, every collection of square matrices Xi with spectral norms not exceeding 1 produces an ellipsoid
satisfying (3.6.10) and thus contained in W , and we could use the largest volume ellipsoid of this form
(i.e., the one corresponding to the largest |Det(A1X1 + ...+AmXm)|) as a surrogate of the largest volume
ellipsoid contained in W . Recall that we know how to express a bound on the spectral norm of a matrix
via LMI:

|X| ≤ t ⇔
(

tIn −XT

−X tIn

)
º 0 [X ∈ Mn,n]

(item 16 of Section 3.2). The difficulty, however, is that the matrix
m∑

i=1

AiXi specifying the ellipsoid

E(X1, ..., Xm), although being linear in the “design variables” Xi, is not necessarily symmetric positive
semidefinite, and we do not know how to maximize the determinant over general-type square matrices.
We may, however, use the following fact from Linear Algebra:

Lemma 3.6.1 Let Y = S + C be a square matrix represented as the sum of a symmetric matrix S and
a skew-symmetric (i.e., CT = −C) matrix C. Assume that S is positive definite. Then

|Det(Y)| ≥ Det(S).

Proof. We have Y = S + C = S1/2(I + Σ)S1/2, where Σ = S−1/2CS−1/2 is skew-symmetric along
with C. We have |Det(Y)| = Det(S)|Det(I + Σ)|; it remains to note that all eigenvalues of the skew-
symmetric matrix Σ are purely imaginary, so that the eigenvalues of I + Σ are ≥ 1 in absolute value,
whence |Det(I + Σ)| ≥ 1.

In view of Lemma, it makes sense to impose on X1, ..., Xm, besides the requirement that their spectral
norms are ≤ 1, also the requirement that the “symmetric part”

S(X1, ..., Xm) =
1
2

[
m∑

i=1

AiXi +
m∑

i=1

XT
i Ai

]

of the matrix
∑
i

AiXi is positive semidefinite, and to maximize under these constraints the quantity

Det(S(X1, ..., Xm)) – a lower bound on the volume of the ellipsoid E[Z(X1, ..., Xm)]. With this approach,
we come to the following result:

Proposition 3.6.6 Let Wi = {x = Aiu | uT u ≤ 1}, Ai Â 0, i = 1, .., m. Consider the semidefinite
program

maximize t
s.t.

(a) t ≤
(

Det
(

1
2

m∑
i=1

[XT
i Ai + AiXi]

))1/n

(b)
m∑

i=1

[XT
i Ai + AiXi] º 0

(c)
(

In −XT
i

−Xi In

)
º 0, i = 1, ..., m

(Ĩ)

176 LECTURE 3. SEMIDEFINITE PROGRAMMING

with design variables X1, ..., Xm ∈ Mn,n, t ∈ R. Every feasible solution ({Xi}, t) to this problem produces
the ellipsoid

E(X1, ..., Xm) = {x = (
m∑

i=1

AiXi)u | uT u ≤ 1}

contained in the arithmetic sum W1 + ... + Wm of the original ellipsoids, and the volume of this ellipsoid
is at least tn. The largest volume ellipsoid which can be obtained in this way is associated with (any)
optimal solution to (̃I).

In fact, problem (I) is equivalent to the problem

|Det(
m∑

i=1

AiXi)| → max | |Xi| ≤ 1, i = 1, ..., m (3.6.11)

we have started with, since the latter problem always has an optimal solution {X∗
i } with

positive semidefinite symmetric matrix G∗ =
m∑

i=1

AiX
∗
i . Indeed, let {X+

i } be an optimal

solution of the problem. The matrix G+ =
m∑

i=1

AiX
+
i , as every n× n square matrix, admits

a representation G+ = G∗U , where G+ is a positive semidefinite symmetric, and U is an
orthogonal matrix. Setting X∗

i = XiU
T , we convert {X+

i } into a new feasible solution of

(3.6.11); for this solution
m∑

i=1

AiX
∗
i = G∗ º 0, and Det(G+) = Det(G∗), so that the new

solution is optimal along with {X+
i }.

Problem (I), the co-axial case. We are about to demonstrate that in the co-axial case, when in
properly chosen coordinates in Rn the ellipsoids Wi can be represented as

Wi = {x = Aiu | uT u ≤ 1}
with positive definite diagonal matrices Ai, the above scheme yields the best (the largest volume) ellipsoid
among those contained in W = W1 + ... + Wm. Moreover, this ellipsoid can be pointed out explicitly –
it is exactly the ellipsoid E[Z] with Z = Z(In, ..., In) = A1 + ... + Am!

The announced fact is nearly evident. Assuming that Ai are positive definite and diagonal,
consider the parallelotope

Ŵ = {x ∈ Rn | |xj | ≤ `j =
m∑

i=1

[Ai]jj , j = 1, ..., n}.

This parallelotope clearly contains W (why?), and the largest volume ellipsoid contained in
Ŵ clearly is the ellipsoid

{x |
n∑

j=1

`−2
j x2

j ≤ 1},

i.e., is nothing else but the ellipsoid E[A1 + ... + Am]. As we know from our previous
considerations, the latter ellipsoid is contained in W , and since it is the largest volume
ellipsoid among those contained in the set Ŵ ⊃ W , it is the largest volume ellipsoid contained
in W as well.

Example. In the example to follow we are interested to understand what is the domain DT on the
2D plane which can be reached by a trajectory of the differential equation

d

dt

(
x1(t)
x2(t)

)
=

(−0.8147 −0.4163
0.8167 −0.1853

)

︸ ︷︷ ︸
A

(
x1(t)
x2(t)

)
+

(
u1(t)

0.7071u2(t)

)
,

(
x1(0)
x2(0)

)
=

(
0
0

)

3.6. EXTREMAL ELLIPSOIDS 177

in T sec under a piecewise-constant control u(t) =
(

u1(t)
u2(t)

)
which switches from one constant value to

another one every ∆t = 0.01 sec and is subject to the norm bound

‖u(t)‖2 ≤ 1 ∀t.
The system is stable (the eigenvalues of A are −0.5±0.4909i). In order to build DT , note that the states

of the system at time instants k∆t, k = 0, 1, 2, ... are the same as the states x[k] =
(

x1(k∆t)
x2(k∆t)

)
of the

discrete time system

x[k + 1] = exp{A∆t}︸ ︷︷ ︸
S

x[k] +




∆t∫

0

exp{As}
(

1 0
0 0.7071

)
ds




︸ ︷︷ ︸
B

u[k], x[0] =
(

0
0

)
, (3.6.12)

where u[k] is the value of the control on the “continuous time” interval (k∆t, (k + 1)∆t).
We build the inner Ik and the outer Ok ellipsoidal approximations of the domains Dk = Dk∆t in a

recurrent manner:

• the ellipses I0 and O0 are just the singletons (the origin);

• Ik+1 is the best (the largest in the area) ellipsis contained in the set

SIk + BW, W = {u ∈ R2 | ‖u‖2 ≤ 1},
which is the sum of two ellipses;

• Ok+1 is the best (the smallest in the area) ellipsis containing the set

SOk + BW,

which again is the sum of two ellipses.

Here is the picture we get:

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Outer and inner approximations of the “reachability domains”
D10` = D0.1` sec, ` = 1, 2, ..., 10, for system (3.6.12)

• Ten pairs of ellipses are the outer and inner approximations of the domains
D1, ..., D10 (look how close the ellipses from a pair are close to each other!);

• Four curves are sample trajectories of the system (dots correspond to time instants
0.1` sec in continuous time, i.e., time instants 10` in discrete time, ` = 0, 1, ..., 10).

178 LECTURE 3. SEMIDEFINITE PROGRAMMING

3.7 Exercises

3.7.1 Around positive semidefiniteness, eigenvalues and º-ordering

Criteria for positive semidefiniteness

Recall the criterion of positive definiteness of a symmetric matrix:

[Sylvester] A symmetric m × m matrix A = [aij]mi,j=1 is positive definite if and only if all
angular minors

Det
(
[aij]ki,j=1

)
, k = 1, ...,m,

are positive.

Exercise 3.1 Prove that a symmetric m×m matrix A is positive semidefinite if and only if all its prin-
cipal minors (i.e., determinants of square sub-matrices symmetric w.r.t. the diagonal) are nonnegative.

Hint: look at the angular minors of the matrices A + εIn for small positive ε.

Demonstrate by an example that nonnegativity of angular minors of a symmetric matrix is not sufficient
for the positive semidefiniteness of the matrix.

Exercise 3.2 [Diagonal-dominant matrices] Let a symmetric matrix A = [aij]mi,j=1 satisfy the relation

aii ≥
∑

j 6=i

|aij |, i = 1, ...,m.

Prove that A is positive semidefinite.

Variational characterization of eigenvalues

The basic fact about eigenvalues of a symmetric matrix is the following

Variational Characterization of Eigenvalues [Theorem A.7.3] Let A be a symmetric
m ×m matrix and λ(A) = (λ1(A), ..., λm(A)) be the vector of eigenvalues of A taken with
their multiplicities and arranged in non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A).

Then for every i = 1, ..., m one has:

λi(A) = min
E∈Ei

max
v∈E,vT v=1

vT Av,

where Ei is the family of all linear subspaces of Rm of dimension m− i + 1.

Singular values of rectangular matrices also admit variational description:

Variational Characterization of Singular Values Let A be an m × n matrix, m ≤ n,

and let σ(A) = λ((AAT)1/2) be the vector of singular values of A. Then for every i = 1, ...,m
one has:

σi(A) = min
E∈Ei

max
v∈E,vT v=1

‖Av‖2,

where Ei is the family of all linear subspaces of Rn of dimension n− i + 1.

Exercise 3.3 Derive the Variational Characterization of Singular Values from the Variational Charac-
terization of Eigenvalues.

3.7. EXERCISES 179

Exercise 3.4 Derive from the Variational Characterization of Eigenvalues the following facts:
(i) [Monotonicity of the vector of eigenvalues] If A º B, then λ(A) ≥ λ(B);
(ii) The functions λ1(X), λm(X) of X ∈ Sm are convex and concave, respectively.
(iii) If ∆ is a convex subset of the real axis, then the set of all matrices X ∈ Sm with spectrum from

∆ is convex.

Recall now the definition of a function of symmetric matrix. Let A be a symmetric m ×m matrix
and

p(t) =
k∑

i=0

pit
i

be a real polynomial on the axis. By definition,

p(A) =
k∑

i=0

piA
i ∈ Sm.

This definition is compatible with the arithmetic of real polynomials: when you add/multiply polynomials,
you add/multiply the “values” of these polynomials at every fixed symmetric matrix:

(p + q)(A) = p(A) + q(A); (p · q)(A) = p(A)q(A).

A nice feature of this definition is that

(A) For A ∈ Sm, the matrix p(A) depends only on the restriction of p on the spectrum
(set of eigenvalues) of A: if p and q are two polynomials such that p(λi(A)) = q(λi(A)) for
i = 1, ...,m, then p(A) = q(A).
Indeed, we can represent a symmetric matrix A as A = UT ΛU , where U is orthogonal and Λ
is diagonal with the eigenvalues of A on its diagonal. Since UUT = I, we have Ai = UT ΛiU ;
consequently,

p(A) = UT p(Λ)U,

and since the matrix p(Λ) depends on the restriction of p on the spectrum of A only, the
result follows.
As a byproduct of our reasoning, we get an “explicit” representation of p(A) in terms of the
spectral decomposition A = UT ΛU (U is orthogonal, Λ is diagonal with the diagonal λ(A)):
(B) The matrix p(A) is just UT Diag(p(λ1(A)), ..., p(λn(A)))U .

(A) allows to define arbitrary functions of matrices, not necessarily polynomials:

Let A be symmetric matrix and f be a real-valued function defined at least at the spectrum
of A. By definition, the matrix f(A) is defined as p(A), where p is a polynomial coinciding
with f on the spectrum of A. (The definition makes sense, since by (A) p(A) depends only
on the restriction of p on the spectrum of A, i.e., every “polynomial continuation” p(·) of f
from the spectrum of A to the entire axis results in the same p(A)).

The “calculus of functions of a symmetric matrix” is fully compatible with the usual arithmetic of
functions, e.g:

(f + g)(A) = f(A) + g(A); (µf)(A) = µf(A); (f · g)(A) = f(A)g(A); (f ◦ g)(A) = f(g(A)),

provided that the functions in question are well-defined on the spectrum of the corresponding matrix.
And of course the spectral decomposition of f(A) is just f(A) = UT Diag(f(λ1(A)), ..., f(λm(A)))U ,
where A = UT Diag(λ1(A), ..., λm(A))U is the spectral decomposition of A.

Note that “Calculus of functions of symmetric matrices” becomes very unusual when we are trying to
operate with functions of several (non-commuting) matrices. E.g., it is generally not true that exp{A +
B} = exp{A} exp{B} (the right hand side matrix may be even non-symmetric!). It is also generally not
true that if f is monotone and A º B, then f(A) º f(B), etc.

180 LECTURE 3. SEMIDEFINITE PROGRAMMING

Exercise 3.5 Demonstrate by an example that the relation 0 ¹ A ¹ B does not necessarily imply that
A2 ¹ B2.

By the way, the relation 0 ¹ A ¹ B does imply that 0 ¹ A1/2 ¹ B1/2.
Sometimes, however, we can get “weak” matrix versions of usual arithmetic relations. E.g.,

Exercise 3.6 Let f be a nondecreasing function on the real line, and let A º B. Prove that λ(f(A)) ≥
λ(f(B)).

The strongest (and surprising) “weak” matrix version of a usual (“scalar”) inequality is as follows.
Let f(t) be a closed convex function on the real line; by definition, it means that f is a function on

the axis taking real values and the value +∞ such that
– the set Dom f of the values of argument where f is finite is convex and nonempty;
– if a sequence {ti ∈ Dom f} converges to a point t and the sequence f(ti) has a limit, then t ∈ Dom f

and f(t) ≤ lim
i→∞

f(ti) (this property is called “lower semicontinuity”).

E.g., the function f(x) =
{

0, 0 ≤ t ≤ 1
+∞, otherwise is closed. In contrast to this, the functions

g(x) =

{ 0, 0 < t ≤ 1
1, t = 0
+∞, for all remaining t

and

h(x) =
{

0, 0 < t < 1
+∞, otherwise

are not closed, although they are convex: a closed function cannot “jump up” at an endpoint of its
domain, as it is the case for g, and it cannot take value +∞ at a point, if it takes values ≤ a < ∞ in a
neighbourhood of the point, as it is the case for h.

For a convex function f , its Legendre transformation f∗ (also called the conjugate, or the Fenchel
dual of f) is defined as

f∗(s) = sup
t

[ts− f(t)] .

It turns out that the Legendre transformation of a closed convex function also is closed and convex, and
that twice taken Legendre transformation of a closed convex function is this function.

The Legendre transformation (which, by the way, can be defined for convex functions on Rn as well)
underlies many standard inequalities. Indeed, by definition of f∗ we have

f∗(s) + f(t) ≥ st ∀s, t; (L)

For specific choices of f , we can derive from the general inequality (L) many useful inequalities. E.g.,

• If f(t) = 1
2 t2, then f∗(s) = 1

2s2, and (L) becomes the standard inequality

st ≤ 1
2
t2 +

1
2
s2 ∀s, t ∈ R;

• If 1 < p < ∞ and f(t) =
{

tp

p , t ≥ 0
+∞, t < 0

, then f∗(s) =
{

sq

q , s ≥ 0
+∞, s < 0

, with q given by 1
p + 1

q = 1,

and (L) becomes the Young inequality

∀(s, t ≥ 0) : ts ≤ tp

p
+

sq

q
, 1 < p, q < ∞,

1
p

+
1
q

= 1.

Now, what happens with (L) if s, t are symmetric matrices? Of course, both sides of (L) still make sense
and are matrices, but we have no hope to say something reasonable about the relation between these
matrices (e.g., the right hand side in (L) is not necessarily symmetric). However,

3.7. EXERCISES 181

Exercise 3.7 Let f∗ be a closed convex function with the domain Dom f∗ ⊂ R+, and let f be the Legendre
transformation of f∗. Then for every pair of symmetric matrices X, Y of the same size with the spectrum
of X belonging to Dom f and the spectrum of Y belonging to Dom f∗ one has

λ(f(X)) ≥ λ
(
Y 1/2XY 1/2 − f∗(Y)

)
19)

Birkhoff’s Theorem

Surprisingly enough, one of the most useful facts about eigenvalues of symmetric matrices is the following,
essentially combinatorial, statement (it does not mention the word “eigenvalue” at all).

Birkhoff’s Theorem. Consider the set Sm of double-stochastic m×m matrices, i.e., square
matrices [pij]mi,j=1 satisfying the relations

pij ≥ 0, i, j = 1, ..., m;
m∑

i=1

pij = 1, j = 1, ...,m;
m∑

j=1

pij = 1, i = 1, ...,m.

A matrix P belongs to Sm if and only if it can be represented as a convex combination of
m×m permutation matrices:

P ∈ Sm ⇔ ∃(λi ≥ 0,
∑

i

λi = 1) : P =
∑

i

λiΠi,

where all Πi are permutation matrices (i.e., with exactly one nonzero element, equal to 1, in
every row and every column).

An immediate corollary of the Birkhoff Theorem is the following fact:

(C) Let f : Rm → R ∪ {+∞} be a convex symmetric function (symmetry means that the
value of the function remains unchanged when we permute the coordinates in an argument),
let x ∈ Dom f and P ∈ Sm. Then

f(Px) ≤ f(x).

The proof is immediate: by Birkhoff’s Theorem, Px is a convex combination of a number of
permutations xi of x. Since f is convex, we have

f(Px) ≤ max
i

f(xi) = f(x),

the concluding equality resulting from the symmetry of f .

The role of (C) in numerous questions related to eigenvalues is based upon the following simple

Observation. Let A be a symmetric m×m matrix. Then the diagonal Dg(A) of the matrix
A is the image of the vector λ(A) of the eigenvalues of A under multiplication by a double
stochastic matrix:

Dg(A) = Pλ(A) for some P ∈ Sm

Indeed, consider the spectral decomposition of A:

A = UT Diag(λ1(A), ..., λm(A))U

19) In the scalar case, our inequality reads f(x) ≥ y1/2xy1/2 − f∗(y), which is an equivalent form of (L) when
Dom f∗ ⊂ R+.

182 LECTURE 3. SEMIDEFINITE PROGRAMMING

with orthogonal U = [uij]. Then

Aii =
m∑

j=1

u2
jiλj(A) ≡ (Pλ(A))i,

where the matrix P = [u2
ji]

m
i,j=1 is double stochastic.

Combining the Observation and (C), we conclude that if f is a convex symmetric function on Rm, then
for every m×m symmetric matrix A one has

f(Dg(A)) ≤ f(λ(A)).

Moreover, let Om be the set of all orthogonal m ×m matrices. For every V ∈ Om, the matrix V T AV
has the same eigenvalues as A, so that for a convex symmetric f one has

f(Dg(V T AV)) ≤ f(λ(V T AV)) = f(λ(A)),

whence
f(λ(A)) ≥ max

V ∈Om

f(Dg(V T AV)).

In fact the inequality here is equality, since for properly chosen V ∈ Om we have Dg(V T AV) = λ(A).
We have arrived at the following result:

(D) Let f be a symmetric convex function on Rm. Then for every symmetric m×m matrix
A one has

f(λ(A)) = max
V ∈Om

f(Dg(V T AV)),

Om being the set of all m×m orthogonal matrices.

In particular, the function
F (A) = f(λ(A))

is convex in A ∈ Sm (as the maximum of a family of convex in A functions FV (A) =
f(Dg(V T AV)), V ∈ Om.)

Exercise 3.8 Let g(t) : R → R ∪ {+∞} be a convex function, and let Fn be the set of all matrices
X ∈ Sn with the spectrum belonging to Dom g. Prove that the function Tr(g(X)) is convex on Fn.

Hint: Apply (D) to the function f(x1, ..., xn) = g(x1) + ... + g(xn).

Exercise 3.9 Let A = [aij] be a symmetric m×m matrix. Prove that

(i) Whenever p ≥ 1, one has
m∑

i=1

|aii|p ≤
m∑

i=1

|λi(A)|p;

(ii) Whenever A is positive semidefinite,
m∏

i=1

aii ≥ Det(A);

(iii) For x ∈ Rm, let the function Sk(x) be the sum of k largest entries of x (i.e., the sum of the first
k entries in the vector obtained from x by writing down the coordinates of x in the non-ascending order).
Prove that Sk(x) is a convex symmetric function of x and derive from this observation that

Sk(Dg(A)) ≤ Sk(λ(A)).

Hint: note that Sk(x) = max
1≤i1<i2<...<ik≤m

k∑
l=1

xil
.

(iv) [Trace inequality] Whenever A,B ∈ Sm, one has

λT (A)λ(B) ≥ Tr(AB).

3.7. EXERCISES 183

Exercise 3.10 Prove that if A ∈ Sm and p, q ∈ [1,∞] are such that 1
p + 1

q = 1, then

max
B∈Sm:‖λ(B)‖q=1

Tr(AB) = ‖λ(A)‖p.

In particular, ‖λ(·)‖p is a norm on Sm, and the conjugate of this norm is ‖λ(·)‖q, 1
p + 1

q = 1.

Exercise 3.11 Let X =




X11 X12 ... X1m

XT
12 X22 ... X2m

...
...

. . . · · ·
XT

1m XT
2m ... Xmm


 be an n×n symmetric matrix which is partitioned

into m2 blocks Xij in a symmetric, w.r.t. the diagonal, fashion (so that the blocks Xjj are square), and
let

X̂ =




X11

X22

. . .
Xmm


 .

1) Let F : Sn → R ∪ {+∞} be a convex “rotation-invariant” function: for all Y ∈ Sn and all
orthogonal matrices U one has F (UT Y U) = F (Y). Prove that

F (X̂) ≤ F (X).

Hint: Represent the matrix X̂ as a convex combination of the rotations UT XU , UT U = I,
of X.

2) Let f : Rn → R∪{+∞} be a convex symmetric w.r.t. permutations of the entries in the argument
function, and let F (Y) = f(λ(Y)), Y ∈ Sn. Prove that

F (X̂) ≤ F (X).

3) Let g : R → R∪{+∞} be convex function on the real line which is finite on the set of eigenvalues
of X, and let Fn ⊂ Sn be the set of all n × n symmetric matrices with all eigenvalues belonging to the
domain of g. Assume that the mapping

Y 7→ g(Y) : Fn → Sn

is º-convex:

g(λ′Y ′ + λ′′Y ′′) ¹ λ′g(Y ′) + λ′′g(Y ′′) ∀(Y ′, Y ′′ ∈ Fn, λ′, λ′′ ≥ 0, λ′ + λ′′ = 1).

Prove that
(g(X))ii º g(Xii), i = 1, ..., m,

where the partition of g(X) into the blocks (g(X))ij is identical to the partition of X into the blocks Xij.

Exercise 3.11 gives rise to a number of interesting inequalities. Let X, X̂ be the same as in the Exercise,
and let [Y] denote the northwest block, of the same size as X11, of an n× n matrix Y . Then

1.
(

m∑
i=1

‖λ(Xii)‖p
p

)1/p

≤ ‖λ(X)‖p, 1 ≤ p < ∞
[Exercise 3.11.2), f(x) = ‖x‖p];

2. If X Â 0, then Det(X) ≤
m∏

i=1

Det(Xii)

[Exercise 3.11.2), f(x) = −(x1...xn)1/n for x ≥ 0];

184 LECTURE 3. SEMIDEFINITE PROGRAMMING

3. [X2] º X2
11

[This inequality is nearly evident; it follows also from Exercise 3.11.3) with g(t) = t2 (the º-
convexity of g(Y) is stated in Exercise 3.21.1))];

4. If X Â 0, then X−1
11 ¹ [X−1]

[Exercise 3.11.3) with g(t) = t−1 for t > 0; the º-convexity of g(Y) on Sn
++ is stated by Exercise

3.21.2)];

5. For every X º 0, [X1/2] ¹ X
1/2
11

[Exercise 3.11.3) with g(t) = −√t; the º-convexity of g(Y) is stated by Exercise 3.21.4)].
Extension: If X º 0, then for every α ∈ (0, 1) one has [Xα] ¹ Xα

11

[Exercise 3.11.3) with g(t) = −tα; the function −Y α of Y º 0 is known to be º-convex];

6. If X Â 0, then [ln(X)] ¹ ln(X11)
[Exercise 3.11.3) with g(t) = − ln t, t > 0; the º-convexity of g(Y) is stated by Exercise 3.21.5)].

Exercise 3.12 1) Let A = [aij]i,j º 0, let α ≥ 0, and let B ≡ [bij]i,j = Aα. Prove that

bii

{≤ aα
ii, α ≤ 1

≥ aα
ii, α ≥ 1

2) Let A = [aij]i,j Â 0, and let B ≡ [bij]i,j = A−1. Prove that bii ≥ a−1
ii .

3) Let [A] denote the northwest 2× 2 block of a square matrix. Which of the implications

(a) A º 0 ⇒ [A4] º [A]4

(b) A º 0 ⇒ [A4]1/4 º [A]

are true?

Semidefinite representations of functions of eigenvalues

The goal of the subsequent series of exercises is to prove Proposition 3.2.1.
We start with a description (important by its own right) of the convex hull of permutations of a given

vector. Let x ∈ Rm, and let X[x] be the set of all convex combinations of m! vectors obtained from x by
all permutations of the coordinates.

Claim: [“Majorization principle”] X[x] is exactly the solution set of the following system of
inequalities in variables y ∈ Rm:

Sj(y) ≤ Sj(x), j = 1, ..., m− 1
y1 + ... + ym = x1 + ... + xm

(+)

(recall that Sj(y) is the sum of the largest j entries of a vector y).

Exercise 3.13 [Easy part of the claim] Let Y be the solution set of (+). Prove that Y ⊃ X[x].

Hint: Use (C) and the convexity of the functions Sj(·).
Exercise 3.14 [Difficult part of the claim] Let Y be the solution set of (+). Prove that Y ⊂ X[x].

Sketch of the proof: Let y ∈ Y . We should prove that y ∈ X[x]. By symmetry, we may
assume that the vectors x and y are ordered: x1 ≥ x2 ≥ ... ≥ xm, y1 ≥ y2 ≥ ... ≥ ym.
Assume that y 6∈ X[x], and let us lead this assumption to a contradiction.
1) Since X[x] clearly is a convex compact set and y 6∈ X[x], there exists a linear functional

c(z) =
m∑

i=1

cizi which separates y and X[x]:

c(y) > max
z∈X[x]

c(z).

3.7. EXERCISES 185

Prove that such a functional can be chosen “to be ordered”: c1 ≥ c2 ≥ ... ≥ cm.
2) Verify that

c(y) ≡
m∑

i=1

ciyi =
m−1∑

i=1

(ci − ci+1)
i∑

j=1

yj + cm

m∑

j=1

yj

(Abel’s formula – a discrete version of integration by parts). Use this observation along with
“orderedness” of c(·) and the inclusion y ∈ Y to conclude that c(y) ≤ c(x), thus coming to
the desired contradiction.

Exercise 3.15 Use the Majorization principle to prove Proposition 3.2.1.

The next pair of exercises is aimed at proving Proposition 3.2.2.

Exercise 3.16 Let x ∈ Rm, and let X+[x] be the set of all vectors x′ dominated by a vector form X[x]:

X+[x] = {y | ∃z ∈ X[x] : y ≤ z}.
1) Prove that X+[x] is a closed convex set.
2) Prove the following characterization of X+[x]:

X+[x] is exactly the set of solutions of the system of inequalities Sj(y) ≤ Sj(x), j = 1, ..., m,
in variables y.

Hint: Modify appropriately the constriction outlined in Exercise 3.14.

Exercise 3.17 Derive Proposition 3.2.2 from the result of Exercise 3.16.2).

Cauchy’s inequality for matrices

The standard Cauchy’s inequality says that

|
∑

i

xiyi| ≤
√∑

i

x2
i

√∑

i

y2
i (3.7.1)

for reals xi, yi, i = 1, ..., n; this inequality is exact in the sense that for every collection x1, ..., xn there
exists a collection y1, ..., yn with

∑
i

y2
i = 1 which makes (3.7.1) an equality.

Exercise 3.18 (i) Prove that whenever Xi, Yi ∈ Mp,q, one has

σ(
∑

i

XT
i Yi) ≤ λ




[∑

i

XT
i Xi

]1/2

 ‖λ

(∑

i

Y T
i Yi

)
‖1/2
∞ (∗)

where σ(A) = λ([AAT]1/2) is the vector of singular values of a matrix A arranged in the non-ascending
order.

Prove that for every collection X1, ..., Xn ∈ Mp,q there exists a collection Y1, ..., Yn ∈ Mp,q with∑
i

Y T
i Yi = Iq which makes (∗) an equality.

(ii) Prove the following “matrix version” of the Cauchy inequality: whenever Xi, Yi ∈ Mp,q, one has

|
∑

i

Tr(XT
i Yi)| ≤ Tr




[∑

i

XT
i Xi

]1/2

 ‖λ(

∑

i

Y T
i Yi)‖1/2

∞ , (∗∗)

and for every collection X1, ..., Xn ∈ Mp,q there exists a collection Y1, ..., Yn ∈ Mp,q with
∑
i

Y T
i Yi = Iq

which makes (∗∗) an equality.

186 LECTURE 3. SEMIDEFINITE PROGRAMMING

Here is another exercise of the same flavour:

Exercise 3.19 For nonnegative reals a1, ..., am and a real α > 1 one has

(
m∑

i=1

aα
i

)1/α

≤
m∑

i=1

ai.

Both sides of this inequality make sense when the nonnegative reals ai are replaced with positive semidef-
inite n× n matrices Ai. What happens with the inequality in this case?

Consider the following four statements (where α > 1 is a real and m,n > 1):
1)

∀(Ai ∈ Sn
+) :

(
m∑

i=1

Aα
i

)1/α

¹
m∑

i=1

Ai.

2)

∀(Ai ∈ Sn
+) : λmax




(
m∑

i=1

Aα
i

)1/α

 ≤ λmax

(
m∑

i=1

Ai

)
.

3)

∀(Ai ∈ Sn
+) : Tr




(
m∑

i=1

Aα
i

)1/α

 ≤ Tr

(
m∑

i=1

Ai

)
.

4)

∀(Ai ∈ Sn
+) : Det




(
m∑

i=1

Aα
i

)1/α

 ≤ Det

(
m∑

i=1

Ai

)
.

Among these 4 statements, exactly 2 are true. Identify and prove the true statements.

º-convexity of some matrix-valued functions

Consider a function F (x) defined on a convex set X ⊂ Rn and taking values in Sm. We say that such a
function is º-convex, if

F (αx + (1− α)y) ¹ αF (x) + (1− α)F (y)

for all x, y ∈ X and all α ∈ [0, 1]. F is called º-concave, if −F is º-convex.
A function F : Dom F → Sm defined on a set DomF ⊂ Sk is called º-monotone, if

x, y ∈ Dom F, x º y ⇒ F (x) º F (y);

F is called º-antimonotone, if −F is º-monotone.

Exercise 3.20 1) Prove that a function F : X → Sm, X ⊂ Rn, is º-convex if and only if its “epigraph”

{(x, Y) ∈ Rn → Sm | x ∈ X,F (x) ¹ Y }

is a convex set.
2) Prove that a function F : X → Sm with convex domain X ⊂ Rn is º-convex if and only if for

every A ∈ Sm
+ the function Tr(AF (x)) is convex on X.

3) Let X ⊂ Rn be a convex set with a nonempty interior and F : X → Sm be a function continuous
on X which is twice differentiable in intX. Prove that F is º-convex if and only if the second directional
derivative of F

D2F (x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

F (x + th)

3.7. EXERCISES 187

is º 0 for every x ∈ intX and every direction h ∈ Rn.
4) Let F : domF → Sm be defined and continuously differentiable on an open convex subset of Sk.

Prove that the necessary and sufficient condition for F to be º-monotone is the validity of the implication

h ∈ Sk
+, x ∈ Dom F ⇒ DF (x)[h] º 0.

5) Let F be º-convex and S ⊂ Sm be a convex set which is º-antimonotone, i.e. whenever Y ′ ¹ Y
and Y ∈ S, one has Y ′ ∈ S. Prove that the set F−1(S) = {x ∈ X | F (x) ∈ S} is convex.

6) Let G : Dom G → Sk and F : DomF → Sm, let G(Dom G) ⊂ Dom F , and let H(x) = F (G(x)) :
Dom G → Sm.

a) Prove that if G and F are º-convex and F is º-monotone, then H is º-convex.
b) Prove that if G and F are º-concave and F is º-monotone, then H is º-concave.

7) Let Fi : G → Sm, and assume that for every x ∈ G exists

F (x) = lim
i→∞

Fi(x).

Prove that if all functions from the sequence {Fi} are (a) º-convex, or (b) º-concave, or (c) º-monotone,
or (d) º-antimonotone, then so is F .

The goal of the next exercise is to establish the º-convexity of several matrix-valued functions.

Exercise 3.21 Prove that the following functions are º-convex:
1) F (x) = xxT : Mp,q → Sp;
2) F (x) = x−1 : intSm

+ → intSm
+ ;

3) F (u, v) = uT v−1u : Mp,q × intSp
+ → Sq;

Prove that the following functions are º-concave and monotone:
4) F (x) = x1/2 : Sm

+ → Sm;
5) F (x) = ln x : intSm

+ → Sm;
6) F (x) =

(
Ax−1AT

)−1 : intSn
+ → Sm, provided that A is an m× n matrix of rank m.

3.7.2 SD representations of epigraphs of convex polynomials

Mathematically speaking, the central question concerning the “expressive abilities” of Semidefinite Pro-
gramming is how wide is the family of convex sets which are SDr. By definition, an SDr set is the
projection of the inverse image of Sm

+ under affine mapping. In other words, every SDr set is a projection
of a convex set given by a number of polynomial inequalities (indeed, the cone Sm

+ is a convex set given
by polynomial inequalities saying that all principal minors of matrix are nonnegative). Consequently,
the inverse image of Sm

+ under an affine mapping is also a convex set given by a number of (non-strict)
polynomial inequalities. And it is known that every projection of such a set is also given by a number of
polynomial inequalities (both strict and non-strict). We conclude that

A SD-representable set always is a convex set given by finitely many polynomial inequalities
(strict and non-strict).

A natural (and seemingly very difficult) question is whether the inverse is true – whether a convex set
given by a number of polynomial inequalities is always SDr. This question can be simplified in many
ways – we may fix the dimension of the set, we may assume the polynomials participating in inequalities
to be convex, we may fix the degrees of the polynomials, etc.; to the best of our knowledge, all these
questions are open.

The goal of the subsequent exercises is to answer affirmatively the simplest question of the above
series:

Let π(x) be a convex polynomial of one variable. Then its epigraph

{(t, x) ∈ R2 | t ≥ π(x)}
is SDr.

188 LECTURE 3. SEMIDEFINITE PROGRAMMING

Let us fix a nonnegative integer k and consider the curve

p(x) = (1, x, x2, ..., x2k)T ∈ R2k+1.

Let Πk be the closure of the convex hull of values of the curve. How can one describe Πk?
A convenient way to answer this question is to pass to a matrix representation of all objects involved.

Namely, let us associate with a vector ξ = (ξ0, ξ1, ..., ξ2k) ∈ R2k+1 the (k +1)× (k +1) symmetric matrix

M(ξ) =




ξ0 ξ1 ξ2 ξ3 · · · ξk

ξ1 ξ2 ξ3 ξ4 · · · ξk+1

ξ2 ξ3 ξ4 ξ5 · · · ξk+2

ξ3 ξ4 ξ5 ξ6 · · · ξk+3

...
...

...
...

. . .
...

ξk ξk+1 ξk+2 ξk+3 ... ξ2k




,

so that
[M(ξ)]ij = ξi+j , i, j = 0, ..., k.

The transformation ξ 7→ M(ξ) : R2k+1 → Sk+1 is a linear embedding; the image of Πk under this
embedding is the closure of the convex hull of values of the curve

P (x) = M(p(x)).

It follows that the image Π̂k of Πk under the mapping M possesses the following properties:
(i) Π̂k belongs to the image of M, i.e., to the subspace Hk of S2k+1 comprised of Hankel matrices –

matrices with entries depending on the sum of indices only:

Hk =
{
X ∈ S2k+1|i + j = i′ + j′ ⇒ Xij = Xi′j′

}
;

(ii) Π̂k ⊂ Sk+1
+ (indeed, every matrix M(p(x)) is positive semidefinite);

(iii) For every X ∈ Π̂k one has X00 = 1.
It turns out that properties (i) – (iii) characterize Π̂k:

(G) A symmetric (k + 1) × (k + 1) matrix X belongs to Π̂k if and only if it possesses the
properties (i) – (iii): its entries depend on sum of indices only (i.e., X ∈ Hk), X is positive
semidefinite and X00 = 1.

(G) is a particular case of the classical results related to the so called “moment problem”. The goal of
the subsequent exercises is to give a simple alternative proof of this statement.

Note that the mapping M∗ : Sk+1 → R2k+1 conjugate to the mapping M is as follows:

(M∗X)l =
l∑

i=0

Xi,l−i, l = 0, 1, ..., 2k,

and we know something about this mapping: Example 21a (Lecture 3) says that

(H) The image of the cone Sk+1
+ under the mapping M∗ is exactly the cone of coefficients

of polynomials of degree ≤ 2k which are nonnegative on the entire real line.

Exercise 3.22 Derive (G) from (H).

(G), among other useful things, implies the result we need:

(I) Let π(x) = π0 + π1x + π2x
2 + ... + π2kx2k be a convex polynomial of degree 2k. Then

the epigraph of π is SDr:
{(t, x) ∈ R2 | t ≥ p(x)} = X [π],

3.7. EXERCISES 189

where

X [π] = {(t, x)|∃x2, ..., x2k :




1 x x2 x3 ... xk

x x2 x3 x4 ... xk+1

x2 x3 x4 x5 ... xk+2

x3 x4 x5 x6 ... xk+3

...
.

xk xk+1 xk+2 xk+3 ... x2k



º 0,

π0 + π1x + π2x2 + π3x3 + ... + π2kx2k ≤ t}
Exercise 3.23 Prove (I).

Note that the set X [π] makes sense for an arbitrary polynomial π, not necessary for a convex one. What
is the projection of this set onto the (t, x)-plane? The answer is surprisingly nice: this is the convex hull
of the epigraph of the polynomial π!

Exercise 3.24 Let π(x) = π0 + π1x + ... + π2kx2k with π2k > 0, and let

G[π] = Conv{(t, x) ∈ R2 | t ≥ p(x)}

be the convex hull of the epigraph of π (the set of all convex combinations of points from the epigraph of
π).

1) Prove that G[π] is a closed convex set.
2) Prove that

G[π] = X [π].

3.7.3 Around the Lovasz capacity number and semidefinite relaxations of
combinatorial problems

Recall that the Lovasz capacity number Θ(Γ) of an n-node graph Γ is the optimal value of the following
semidefinite program:

min
λ,x

{λ : λIn − L(x) º 0} (L)

where the symmetric n× n matrix L(x) is defined as follows:

• the dimension of x is equal to the number of arcs in Γ, and the coordinates of x are indexed by
these arcs;

• the element of L(x) in an “empty” cell ij (one for which the nodes i and j are not linked by an
arc in Γ) is 1;

• the elements of L(x) in a pair of symmetric “non-empty” cells ij, ji (those for which the nodes i
and j are linked by an arc) are equal to the coordinate of x indexed by the corresponding arc.

As we remember, the importance of Θ(Γ) comes from the fact that Θ(Γ) is a computable upper bound
on the stability number α(Γ) of the graph. We have seen also that the Shor semidefinite relaxation of
the problem of finding the stability number of Γ leads to a “seemingly stronger” upper bound on α(Γ),
namely, the optimal value σ(Γ) in the semidefinite program

min
λ,µ,ν

{
λ :

(
λ − 1

2 (e + µ)T

− 1
2 (e + µ) A(µ, ν)

)
º 0

}
(Sh)

where e = (1, ..., 1)T ∈ Rn and A(µ, ν) is the matrix as follows:

• the dimension of ν is equal to the number of arcs in Γ, and the coordinates of ν are indexed by
these arcs;

• the diagonal entries of A(µ, ν) are µ1, ..., µn;

190 LECTURE 3. SEMIDEFINITE PROGRAMMING

• the off-diagonal entries of A(µ, ν) corresponding to “empty cells” are zeros;

• the off-diagonal entries of A(µ, ν) in a pair of symmetric “non-empty” cells ij, ji are equal to the
coordinate of ν indexed by the corresponding arc.

We have seen that (L) can be obtained from (Sh) when the variables µi are set to 1, so that σ(Γ) ≤ Θ(Γ).
Thus,

α(Γ) ≤ σ(Γ) ≤ Θ(Γ). (3.7.2)

Exercise 3.25 1) Prove that if (λ, µ, ν) is a feasible solution to (Sh), then there exists a symmetric n×n
matrix A such that λIn − A º 0 and at the same time the diagonal entries of A and the off-diagonal
entries in the “empty cells” are ≥ 1. Derive from this observation that the optimal value in (Sh) is not
less than the optimal value Θ′(Γ) in the following semidefinite program:

min
λ,x

{λ : λIn −X º 0, Xij ≥ 1 whenever i, j are not adjacent in Γ} (Sc).

2) Prove that Θ′(Γ) ≥ α(Γ).

Hint: Demonstrate that if all entries of a symmetric k×k matrix are ≥ 1, then the maximum
eigenvalue of the matrix is at least k. Derive from this observation and the Interlacing
Eigenvalues Theorem (Exercise 3.4.(ii)) that if a symmetric matrix contains a principal k×k
submatrix with entries ≥ 1, then the maximum eigenvalue of the matrix is at least k.

The upper bound Θ′(Γ) on the stability number of Γ is called the Schrijver capacity of graph Γ. Note
that we have

α(Γ) ≤ Θ′(Γ) ≤ σ(Γ) ≤ Θ(Γ).

A natural question is which inequalities in this chain may happen to be strict. In order to answer it, we
have computed the quantities in question for about 2,000 random graphs with number of nodes varying
8 to 20. In our experiments, the stability number was computed – by brute force – for graphs with
≤ 12 nodes; for all these graphs, the integral part of Θ(Γ) was equal to α(Γ). Furthermore, Θ(Γ) was
non-integer in 156 of our 2,000 experiments, and in 27 of these 156 cases the Schrijver capacity number
Θ′(Γ) was strictly less than Θ(Γ). The quantities Θ′(·), σ(·), Θ(·) for 13 of these 27 cases are listed in the
table below:

Graph # # of nodes α Θ′ σ Θ
1 20 ? 4.373 4.378 4.378
2 20 ? 5.062 5.068 5.068
3 20 ? 4.383 4.389 4.389
4 20 ? 4.216 4.224 4.224
5 13 ? 4.105 4.114 4.114
6 20 ? 5.302 5.312 5.312
7 20 ? 6.105 6.115 6.115
8 20 ? 5.265 5.280 5.280
9 9 3 3.064 3.094 3.094
10 12 4 4.197 4.236 4.236
11 8 3 3.236 3.302 3.302
12 12 4 4.236 4.338 4.338
13 10 3 3.236 3.338 3.338

3.7. EXERCISES 191

Graphs # 13 (left) and # 8 (right); all nodes are on circumferences.

Exercise 3.26 Compute the stability numbers of the graphs # 8 and # 13.

Exercise 3.27 Prove that σ(Γ) = Θ(Γ).

The chromatic number ξ(Γ) of a graph Γ is the minimal number of colours such that one can colour
the nodes of the graph in such a way that no two adjacent (i.e., linked by an arc) nodes get the same
colour20). The complement Γ̄ of a graph Γ is the graph with the same set of nodes, and two distinct
nodes in Γ̄ are linked by an arc if and only if they are not linked by an arc in Γ.

Lovasz proved that for every graph
Θ(Γ) ≤ ξ(Γ̄) (∗)

so that
α(Γ) ≤ Θ(Γ) ≤ ξ(Γ̄)

(Lovasz’s Sandwich Theorem).

Exercise 3.28 Prove (*).

Hint: Let us colour the vertices of Γ in k = ξ(Γ̄) colours in such a way that no two vertices
of the same colour are adjacent in Γ̄, i.e., every two nodes of the same colour are adjacent
in Γ. Set λ = k, and let x be such that

[L(x)]ij =
{−(k − 1), i 6= j, i, j are of the same colour

1, otherwise

Prove that (λ, x) is a feasible solution to (L).

Now let us switch from the Lovasz capacity number to semidefinite relaxations of combinatorial problems,
specifically to those of maximizing a quadratic form over the vertices of the unit cube, and over the entire
cube:

(a) max
x

{
xT Ax : x ∈ Vrt(Cn) = {x ∈ Rn | xi = ±1 ∀i}}

(b) max
x

{
xT Ax : x ∈ Cn = {x ∈ Rn | −1 ≤ xi ≤ 1, ∀i}} (3.7.3)

The standard semidefinite relaxations of the problems are, respectively, the problems

(a) max
X

{Tr(AX) : X º 0, Xii = 1, i = 1, ..., n} ,

(b) max
X

{Tr(AX) : X º 0, Xii ≤ 1, i = 1, ..., n} ; (3.7.4)

the optimal value of a relaxation is an upper bound for the optimal value of the respective original
problem.

20) E.g., when colouring a geographic map, it is convenient not to use the same colour for a pair of countries
with a common border. It was observed that to meet this requirement for actual maps, 4 colours are sufficient.
The famous “4-colour” Conjecture claims that this is so for every geographic map. Mathematically, you can
represent a map by a graph, where the nodes represent the countries, and two nodes are linked by an arc if and
only if the corresponding countries have common border. A characteristic feature of such a graph is that it is
planar – you may draw it on 2D plane in such a way that the arcs will not cross each other, meeting only at the
nodes. Thus, mathematical form of the 4-colour Conjecture is that the chromatic number of any planar graph is
at most 4. This is indeed true, but it took about 100 years to prove the conjecture!

192 LECTURE 3. SEMIDEFINITE PROGRAMMING

Exercise 3.29 Let A ∈ Sn. Prove that

max
x:xi=±1, i=1,...,n

xT Ax ≥ Tr(A).

Develop an efficient algorithm which, given A, generates a point x with coordinates ±1 such that xT Ax ≥
Tr(A).

Exercise 3.30 Prove that if the diagonal entries of A are nonnegative, then the optimal values in
(3.7.4.a) and (3.7.4.b) are equal to each other. Thus, in the case in question, the relaxations “do not
understand” whether we are maximizing over the vertices of the cube or over the entire cube.

Exercise 3.31 Prove that the problems dual to (3.7.4.a, b) are, respectively,

(a) min
Λ
{Tr(Λ) : Λ º A, Λ is diagonal} ,

(b) min
Λ
{Tr(Λ) : Λ º A,Λ º 0, Λ is diagonal} ; (3.7.5)

the optimal values in these problems are equal to those of the respective problems in (3.7.4) and are
therefore upper bounds on the optimal values of the respective combinatorial problems from (3.7.3).

The latter claim is quite transparent, since the problems (3.7.5) can be obtained as follows:
• In order to bound from above the optimal value of a quadratic form xT Ax on a given set S, we look

at those quadratic forms xT Λx which can be easily maximized over S. For the case of S = Vrt(Cn) these
are quadratic forms with diagonal matrices Λ, and for the case of S = Cn these are quadratic forms with
diagonal and positive semidefinite matrices Λ; in both cases, the respective maxima are merely Tr(Λ).

• Having specified a family F of quadratic forms xT Λx “easily optimizable over S”, we then look at
those forms from F which majorate everywhere the original quadratic form xT Ax, and take among these
forms the one with the minimal max

x∈S
xT Λx, thus coming to the problem

min
Λ

{
max
x∈S

xT Λx : Λ º A, Λ ∈ F
}

. (!)

It is evident that the optimal value in this problem is an upper bound on max
x∈S

xT Ax. It is also immediately

seen that in the case of S = Vrt(Cn) the problem (!), with F specified as the set D of all diagonal
matrices, is equivalent to (3.7.5.a), while in the case of S = Cn (!), with F specified as the set D+ of
positive semidefinite diagonal matrices, is nothing but (3.7.5.b).

Given the direct and quite transparent road leading to (3.7.5.a, b), we can try to move a little bit
further along this road. To this end observe that there are trivial upper bounds on the maximum of an
arbitrary quadratic form xT Λx over Vrt(Cn) and Cn, specifically:

max
x∈Vrt(Cn)

xT Λx ≤ Tr(Λ) +
∑

i 6=j

|Λij |, max
x∈Cn

xT Λx ≤
∑

i,j

|Λij |.

For the above families D, D+ of matrices Λ for which xT Λx is “easily optimizable” over Vrt(Cn), respec-
tively, Cn, the above bounds are equal to the precise values of the respective maxima. Now let us update
(!) as follows: we eliminate the restriction Λ ∈ F , replacing simultaneously the objective max

x∈S
xT Λx with

its upper bound, thus coming to the pair of problems

(a) min
Λ

{
Tr(Λ) +

∑
i6=j

|Λij | : Λ º A

}
[S = Vrt(Cn)]

(b) min
Λ

{
∑
i,j

|Λij | : Λ º A

}
[S = Cn]

(3.7.6)

3.7. EXERCISES 193

From the origin of the problems it is clear that they still yield upper bounds on the optimal values of the
respective problems (3.7.3.a, b), and that these bounds are at least as good as the bounds yielded by the
standard relaxations (3.7.4.a, b):

(a) Opt(3.7.3.a) ≤ Opt(3.7.6.a) ≤︸︷︷︸
(∗)

Opt(3.7.4.a) = Opt(3.7.5.a),

(b) Opt(3.7.3.b) ≤ Opt(3.7.6.b) ≤︸︷︷︸
(∗∗)

Opt(3.7.4.b) = Opt(3.7.5.b), (3.7.7)

where Opt(·) means the optimal value of the corresponding problem.

Indeed, consider the problem (3.7.6.a). Whenever Λ is a feasible solution of this problem,
the quadratic form xT Λx majorates everywhere the form xT Ax, so that max

x∈Vrt(Cn)
xT Ax ≤

max
x∈Vrt(Cn)

xT Λx; the latter quantity, in turn, is majorated by Tr(Λ) +
∑
i 6=j

|Λij |, whence the

value of the objective of the problem (3.7.6.a) at every feasible solution of the problem
majorates the quantity max

x∈Vrt(Cn)
xT Ax. Thus, the optimal value in (3.7.6.a) is an upper

bound on the maximum of xT Ax over the vertices of the cube Cn. At the same time,
when passing from the (dual form of the) standard relaxation (3.7.5.a) to our new bounding
problem (3.7.6.a), we only extend the feasible set and do not vary the objective at the “old”
feasible set; as a result of such a modification, the optimal value may only decrease. Thus,
the upper bound on the maximum of xT Ax over Vrt(Cn) yielded by (3.7.6.a) is at least as
good as those (equal to each other) bounds yielded by the standard relaxations (3.7.4.a),
(3.7.5.a), as required in (3.7.7.a). Similar reasoning proves (3.7.7.b).

Note that problems (3.7.6) are equivalent to semidefinite programs and thus are of the same status of
“computational tractability” as the standard SDP relaxations (3.7.5) of the combinatorial problems in
question. At the same time, our new bounding problems are more difficult than the standard SDP
relaxations. Can we justify this by getting an improvement in the quality of the bounds?

Exercise 3.32 Find out whether the problems (3.7.6.a, b) yield better bounds than the respective problems
(3.7.5.a, b), i.e., whether the inequalities (*), (**) in (3.7.7) can be strict.

Hint: Look at the problems dual to (3.7.6.a, b).

Exercise 3.33 Let D be a given subset of Rn
+. Consider the following pair of optimization problems:

max
x

{
xT Ax : (x2

1, x
2
2, ..., x

2
n)T ∈ D

}
(P)

max
X

{Tr(AX) : X º 0, Dg(X) ∈ D} (R)

(Dg(X) is the diagonal of a square matrix X). Note that when D = {(1, ..., 1)T }, (P) is the problem of
maximizing a quadratic form over the vertices of Cn, while (R) is the standard semidefinite relaxation of
(P); when D = {x ∈ Rn | 0 ≤ xi ≤ 1 ∀i}, (P) is the problem of maximizing a quadratic form over the
cube Cn, and (R) is the standard semidefinite relaxation of the latter problem.

1) Prove that if D is semidefinite-representable, then (R) can be reformulated as a semidefinite pro-
gram.

2) Prove that (R) is a relaxation of (P), i.e., that

Opt(P) ≤ Opt(R).

3) [Nesterov; Ye] Let A º 0. Prove that then

Opt(P) ≤ Opt(R) ≤ π

2
Opt(P).

194 LECTURE 3. SEMIDEFINITE PROGRAMMING

Hint: Use Nesterov’s Theorem (Theorem 3.4.2).

Exercise 3.34 Let A ∈ Sm
+ . Prove that

max{xT Ax | xi = ±1, i = 1, ..., m} = max{ 2
π

m∑

i,j=1

aijasin(Xij) | X º 0, Xii = 1, i = 1, ..., m}.

3.7.4 Around Lyapunov Stability Analysis

A natural mathematical model of a swing is the linear time invariant dynamic system

y′′(t) = −ω2y(t)− 2µy′(t) (S)

with positive ω2 and 0 ≤ µ < ω (the term 2µy′(t) represents friction). A general solution to this equation
is

y(t) = a cos(ω′t + φ0) exp{−µt}, ω′ =
√

ω2 − µ2,

with free parameters a and φ0, i.e., this is a decaying oscillation. Note that the equilibrium

y(t) ≡ 0

is stable – every solution to (S) converges to 0, along with its derivative, exponentially fast.
After stability is observed, an immediate question arises: how is it possible to swing on a swing?

Everybody knows from practice that it is possible. On the other hand, since the equilibrium is stable, it
looks as if it was impossible to swing, without somebody’s assistance, for a long time. The reason which
makes swinging possible is highly nontrivial – parametric resonance. A swinging child does not sit on the
swing in a once forever fixed position; what he does is shown below:

A swinging child

As a result, the “effective length” of the swing l – the distance from the point where the rope is fixed to
the center of gravity of the system – is varying with time: l = l(t). Basic mechanics says that ω2 = g/l,
g being the gravity acceleration. Thus, the actual swing is a time-varying linear dynamic system:

y′′(t) = −ω2(t)y(t)− 2µy′(t), (S′)

and it turns out that for properly varied ω(t) the equilibrium y(t) ≡ 0 is not stable. A swinging child is
just varying l(t) in a way which results in an unstable dynamic system (S′), and this instability is in fact

3.7. EXERCISES 195

what the child enjoys...

0 2 4 6 8 10 12 14 16 18
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10 12 14 16 18
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

y′′(t) = − g
l+h sin(2ωt)y(t)− 2µy′(t), y(0) = 0, y′(0) = 0.1[

l = 1 [m], g = 10 [m
sec2], µ = 0.15[1

sec], ω =
√

g/l
]

Graph of y(t)
left: h = 0.125: this child is too small; he should grow up...
right: h = 0.25: this child can already swing...

Exercise 3.35 Assume that you are given parameters l (“nominal length of the swing rope”), h > 0 and
µ > 0, and it is known that a swinging child can vary the “effective length” of the rope within the bounds
l ± h, i.e., his/her movement is governed by the uncertain linear time-varying system

y′′(t) = −a(t)y(t)− 2µy′(t), a(t) ∈
[

g

l + h
,

g

l − h

]
.

Try to identify the domain in the 3D-space of parameters l, µ, h where the system is stable, as well as the
domain where its stability can be certified by a quadratic Lyapunov function. What is “the difference”
between these two domains?

3.7.5 Around Nesterov’s π
2

Theorem

Exercise 3.36 Prove the following statement:

Proposition 3.7.1 [Nesterov;Ye] Consider the optimization program

Opt = max
x

{
xT Ax : xT Bix ≤ 1, i = 1, ..., m

}
, (P)

along with its semidefinite relaxation

SDP = max
X

{Tr(AX) : Tr(BiX) ≤ bi, i = 1, ...,m, X º 0} (SDP)

and the dual of the latter problem:

min
λ

{∑

i

λibi :
∑

i

λiBi º A, λ ≥ 0

}
. (SDD)

Assume that

1. The matrices B1, ..., Bm commute with each other;

2. There exists a combination of the matrices Bi with nonnegative coefficients which is positive definite;

3. A º 0.

Then Opt ≥ 0, (SDP) and (SDD) are solvable with equal optimal values, and

Opt ≤ SDP ≤ π

2
Opt. (3.7.8)

Hint: Observe that since Bi are commuting symmetric matrices, they share a common or-
thogonal eigenbasis, so that w.l.o.g. we can assume that all Bi’s are diagonal. In this latter
case, use Theorem 3.4.3.

196 LECTURE 3. SEMIDEFINITE PROGRAMMING

3.7.6 Around ellipsoidal approximations

Exercise 3.37 Prove the Löwner – Fritz John Theorem (Theorem 3.6.1).

More on ellipsoidal approximations of sums of ellipsoids. The goal of two subsequent
exercises is to get in an alternative way the problem (Õ) “generating” a parametric family of ellipsoids
containing the arithmetic sum of m given ellipsoids (Section 3.6.2).

Exercise 3.38 Let Pi be nonsingular, and Λi be positive definite n×n matrices, i = 1, ..., m. Prove that
for every collection x1, ..., xm of vectors from Rn one has

[x1 + ... + xm]T
[

m∑

i=1

[PT
i]−1Λ−1

i P−1
i

]−1

[x1 + ... + xm] ≤
m∑

i=1

[xi]T PiΛiP
T
i xi. (3.7.9)

Hint: Consider the (nm + n)× (nm + n) symmetric matrix

A =




P1Λ1P
T
1 In

. . .
...

PmΛmPT
m In

In · · · In

m∑
i=1

[PT
i]−1Λ−1

i P−1
i




and apply twice the Schur Complement Lemma: first time – to prove that the matrix is
positive semidefinite, and the second time – to get from the latter fact the desired inequality.

Exercise 3.39 Assume you are given m full-dimensional ellipsoids centered at the origin

Wi = {x ∈ Rn | xT Bix ≤ 1}, i = 1, ..., m [Bi Â 0]

in Rn.
1) Prove that for every collection Λ of positive definite n× n matrices Λi such that

∑

i

λmax(Λi) ≤ 1

the ellipsoid

EΛ = {x | xT

[
m∑

i=1

B
−1/2
i Λ−1

i B
−1/2
i

]−1

x ≤ 1}

contains the sum W1 + ... + Wm of the ellipsoids Wi.
2) Prove that in order to find the smallest volume ellipsoid in the family {EΛ}Λ defined in 1) it suffices

to solve the semidefinite program

maximize t s.t.
(a) t ≤ Det1/n(Z),

(b)




Λ1

Λ2

. . .
Λm


 º




B−1
1 ZB−1

1 B
−1/2
1 ZB

−1/2
2 ... B

−1/2
1 ZB

−1/2
m

B
−1/2
2 ZB

−1/2
1 B

−1/2
2 ZB

−1/2
2 ... B

−1/2
2 ZB

−1/2
m

...
...

. . .
...

B
−1/2
m ZB

−1/2
1 B

−1/2
m ZB

−1/2
2 ... B

−1/2
m ZB

−1/2
m




,

(c) Z º 0,
(d) Λi ¹ λiIn, i = 1, ..., m,

(e)
m∑

i=1

λi ≤ 1

(3.7.10)

in variables Z, Λi ∈ Sn, t, λi ∈ R; the smallest volume ellipsoid in the family {EΛ}Λ is EΛ∗ , where Λ∗ is
the “Λ-part” of an optimal solution of the problem.

3.7. EXERCISES 197

Hint: Use example 20c from Lecture 3.

3) Demonstrate that the optimal value in (3.7.10) remains unchanged when the matrices Λi are further
restricted to be scalar: Λi = λiIn. Prove that with this additional constraint problem (3.7.10) becomes
equivalent to problem (Õ) from Section 3.6.2.

Remark 3.7.1 Exercise 3.39 demonstrates that the approximating scheme for solving problem (O) pre-
sented in Proposition 3.6.4 is equivalent to the following one:

Given m positive reals λi with unit sum, one defines the ellipsoid E(λ) = {x | xT

[
m∑

i=1

λ−1
i B−1

i

]−1

x ≤
1}. This ellipsoid contains the arithmetic sum W of the ellipsoids {x | xT Bix ≤ 1}, and
in order to approximate the smallest volume ellipsoid containing W , we merely minimize
Det(E(λ)) over λ varying in the standard simplex {λ ≥ 0,

∑
i

λi = 1}.

In this form, the approximation scheme in question was proposed by Schweppe (1975).

Exercise 3.40 Let Ai be nonsingular n × n matrices, i = 1, ..., m, and let Wi = {x = Aiu | uT u ≤ 1}
be the associated ellipsoids in Rn. Let ∆m = {λ ∈ Rm

+ | ∑
i

λi = 1}. Prove that

1) Whenever λ ∈ ∆m and A ∈ Mn,n is such that

AAT º F (λ) ≡
m∑

i=1

λ−1
i AiA

T
i ,

the ellipsoid E[A] = {x = Au | uT u ≤ 1} contains W = W1 + ... + Wm.

Hint: Use the result of Exercise 3.39.1)

2) Whenever A ∈ Mn,n is such that

AAT ¹ F (λ) ∀λ ∈ ∆m,

the ellipsoid E[A] is contained in W1 + ... + Wm, and vice versa.

Hint: Note that (
m∑

i=1

|αi|
)2

= min
λ∈∆m

m∑

i=1

α2
i

λi

and use statement (F) from Section 3.6.2.

“Simple” ellipsoidal approximations of sums of ellipsoids. Let Wi = {x = Aiu | uT u ≤ 1},
i = 1, ..., m, be full-dimensional ellipsoids in Rn (so that Ai are nonsingular n × n matrices), and let
W = W1 + ... + Wm be the arithmetic sum of these ellipsoids. Observe that W is the image of the set

B =





u =




u[1]
...

u[m]


 ∈ Rnm | uT [i]u[i] ≤ 1, i = 1, ..., m





under the linear mapping

u 7→ Au =
m∑

i=1

Aiu[i] : Rnm → Rn.

It follows that

Whenever an nm-dimensional ellipsoid W contains B, the set A(W), which is an n-
dimensional ellipsoid (why?) contains W , and whenever W is contained in B, the ellipsoid
A(W) is contained in W .

198 LECTURE 3. SEMIDEFINITE PROGRAMMING

In view of this observation, we can try to approximate W from inside and from outside by the ellipsoids
W− ≡ A(W−) and W+ = A(W+), where W− and W+ are, respectively, the largest and the smallest
volume nm-dimensional ellipsoids contained in/containing B.

Exercise 3.41 1) Prove that

W− = {u ∈ Rnm |
m∑

i=1

uT [i]u[i] ≤ 1},

W+ = {u ∈ Rnm |
m∑

i=1

uT [i]u[i] ≤ m},

so that
W ⊃ W− ≡ {x =

m∑
i=1

Aiu[i] |
m∑

i=1

uT [i]u[i] ≤ 1},

W ⊂ W+ ≡ {x =
m∑

i=1

Aiu[i] |
m∑

i=1

uT [i]u[i] ≤ m} =
√

mW−.

2) Prove that W− can be represented as

W− = {x = Bu | u ∈ Rn, uT u ≤ 1}

with matrix B Â 0 representable as

B =
m∑

i=1

AiXi

with square matrices Xi of norms |Xi| ≤ 1.
Derive from this observation that the “level of conservativeness” of the inner ellipsoidal approximation

of W given by Proposition 3.6.6 is at most
√

m: if W∗ is this inner ellipsoidal approximation and W∗∗
is the largest volume ellipsoid contained in W , then

(
Vol(W∗∗)
Vol(W∗)

)1/n

≤
(

Vol(W)
Vol(W∗)

)1/n

≤ √
m.

Invariant ellipsoids

Exercise 3.42 Consider a discrete time controlled dynamic system

x(t + 1) = Ax(t) + bu(t), t = 0, 1, 2, ...
x(0) = 0,

where x(t) ∈ Rn is the state vector and u(t) ∈ [−1, 1] is the control at time t. An ellipsoid centered at
the origin

W = {x | xT Zx ≤ 1} [Z Â 0]

is called invariant, if
x ∈ W ⇒ Ax± b ∈ W.

Prove that
1) If W is an invariant ellipsoid and x(t) ∈ W for some t, then x(t′) ∈ W for all t′ ≥ t.
2) Assume that the vectors b, Ab,A2b, ..., An−1b are linearly independent. Prove that an invariant

ellipsoid exists if and only if A is stable (the absolute values of all eigenvalues of A are < 1).
3) Assuming that A is stable, prove that an ellipsoid {x | xT Zx ≤ 1} [Z Â 0] is invariant if and only

if there exists λ ≥ 0 such that
(

1− bT Zb− λ −bT ZA
−AT Zb λZ −AT ZA

)
º 0.

How could one use this fact to approximate numerically the smallest volume invariant ellipsoid?

3.7. EXERCISES 199

Greedy “infinitesimal” ellipsoidal approximations. Consider a linear time-varying con-
trolled system

d

dt
x(t) = A(t)x(t) + B(t)u(t) + v(t) (3.7.11)

with continuous matrix-valued functions A(t), B(t), continuous vector-valued function v(·) and norm-
bounded control:

‖u(·)‖2 ≤ 1. (3.7.12)

Assume that the initial state of the system belongs to a given ellipsoid:

x(0) ∈ E(0) = {x | (x− x0)T G0(x− x0) ≤ 1} [G0 = [G0]T Â 0]. (3.7.13)

Our goal is to build, in an “on-line” fashion, a system of ellipsoids

E(t) = {x | (x− xt)T Gt(x− xt) ≤ 1} [Gt = GT
t Â 0] (3.7.14)

in such a way that if u(·) is a control satisfying (3.7.12) and x(0) is an initial state satisfying (3.7.13),
then for every t ≥ 0 it holds

x(t) ∈ E(t).

We are interested to minimize the volumes of the resulting ellipsoids.
There is no difficulty with the path xt of centers of the ellipsoids: it “obviously” should satisfy the

requirements
d

dt
xt = A(t)xt + v(t), t ≥ 0; x0 = x0. (3.7.15)

Let us take this choice for granted and focus on how should we define the positive definite matrices Gt.
Let us look for a continuously differentiable matrix-valued function Gt, taking values in the set of positive
definite symmetric matrices, with the following property:

(L) For every t ≥ 0 and every point xt ∈ E(t) (see (3.7.14)), every trajectory x(τ), τ ≥ t, of
the system

d

dτ
x(τ) = A(τ)x(τ) + B(τ)u(τ) + v(τ), x(t) = xt

with ‖u(·)‖2 ≤ 1 satisfies x(τ) ∈ E(τ) for all τ ≥ t.

Note that (L) is a sufficient (but in general not necessary) condition for the system of ellipsoids E(t),
t ≥ 0, “to cover” all trajectories of (3.7.11) – (3.7.12). Indeed, when formulating (L), we act as if we were
sure that the states x(t) of our system run through the entire ellipsoid E(t), which is not necessarily the
case. The advantage of (L) is that this condition can be converted into an “infinitesimal” form:

Exercise 3.43 Prove that if Gt Â 0 is continuously differentiable and satisfies (L), then

∀ (
t ≥ 0, x, u : xT Gtx = 1, uT u ≤ 1

)
: 2uT BT (t)Gtx + xT [

d

dt
Gt + AT (t)Gt + GtA(t)]x ≤ 0. (3.7.16)

Vice versa, if Gt is a continuously differentiable function taking values in the set of positive definite
symmetric matrices and satisfying (3.7.16) and the initial condition G0 = G0, then the associated system
of ellipsoids {E(t)} satisfies (L).

The result of Exercise 3.43 provides us with a kind of description of the families of ellipsoids {E(t)} we
are interested in. Now let us take care of the volumes of these ellipsoids. The latter can be done via
a “greedy” (locally optimal) policy: given E(t), let us try to minimize, under restriction (3.7.16), the
derivative of the volume of the ellipsoid at time t. Note that this locally optimal policy does not necessary
yield the smallest volume ellipsoids satisfying (L) (achieving “instant reward” is not always the best way
to happiness); nevertheless, this policy makes sense.

We have 2 ln vol(Et) = − lnDet(Gt), whence

2
d

dt
ln vol(E(t)) = −Tr(G−1

t

d

dt
Gt);

200 LECTURE 3. SEMIDEFINITE PROGRAMMING

thus, our greedy policy requires to choose Ht ≡ d
dtGt as a solution to the optimization problem

max
H=HT

{
Tr(G−1

t H) : 2uT BT (t)Gtx + xT [d
dtGt −AT (t)Gt −GtA(t)]x ≤ 0

∀ (
x, u : xT Gtx = 1, uT u ≤ 1

) }
.

Exercise 3.44 Prove that the outlined greedy policy results in the solution Gt to the differential equation

d
dtGt = −AT (t)Gt −GtA(t)−

√
n

Tr(GtB(t)BT (t))
GtB(t)BT (t)Gt −

√
Tr(GtB(t)BT (t))

n Gt, t ≥ 0;

G0 = G0.

Prove that the solution to this equation is symmetric and positive definite for all t > 0, provided that
G0 = [G0]T Â 0.

Exercise 3.45 Modify the previous reasoning to demonstrate that the “locally optimal” policy for building
inner ellipsoidal approximation of the set

X(t) =
{
x(t) | ∃x0 ∈ E(0) ≡ {x | (x− x0)T G0(x− x0) ≤ 1}, ∃u(·), ‖u(·)‖2 ≤ 1 :

d
dτ x(τ) = A(τ)x(τ) + B(τ)u(τ) + v(τ), 0 ≤ τ ≤ t, x(0) = x0

}

results in the family of ellipsoids

E(t) = {x | (x− xt)T Wt(x− xt) ≤ 1},

where xt is given by (3.7.15) and Wt is the solution of the differential equation

d

dt
Wt = −AT (t)Wt −WtA(t)− 2W

1/2
t (W 1/2

t B(t)BT (t)W 1/2
t)1/2W

1/2
t , t ≥ 0; W0 = G0.

Lecture 4

Polynomial Time Interior Point
algorithms for LP, CQP and SDP

4.1 Complexity of Convex Programming

When we attempt to solve any problem, we would like to know whether it is possible to find a correct
solution in a “reasonable time”. Had we known that the solution will not be reached in the next 30
years, we would think (at least) twice before starting to solve it. Of course, this in an extreme case, but
undoubtedly, it is highly desirable to distinguish between “computationally tractable” problems – those
that can be solved efficiently – and problems which are “computationally intractable”. The corresponding
complexity theory was first developed in Computer Science for combinatorial (discrete) problems, and
later somehow extended onto the case of continuous computational problems, including those of Continu-
ous Optimization. In this section, we outline the main concepts of the CCT – Combinatorial Complexity
Theory – along with their adaptations to Continuous Optimization.

4.1.1 Combinatorial Complexity Theory

A generic combinatorial problem is a family P of problem instances of a “given structure”, each
instance (p) ∈ P being identified by a finite-dimensional data vector Data(p), specifying the particular
values of the coefficients of “generic” analytic expressions. The data vectors are assumed to be Boolean
vectors – with entries taking values 0, 1 only, so that the data vectors are, actually, finite binary words.

The model of computations in CCT: an idealized computer capable to store only integers (i.e.,
finite binary words), and its operations are bitwise: we are allowed to multiply, add and compare integers.
To add and to compare two `-bit integers, it takes O(`) “bitwise” elementary operations, and to multiply
a pair of `-bit integers it costs O(`2) elementary operations (the cost of multiplication can be reduced to
O(` ln(`)), but it does not matter) .

In CCT, a solution to an instance (p) of a generic problem P is a finite binary word y such that
the pair (Data(p),y) satisfies certain “verifiable condition” A(·, ·). Namely, it is assumed that there exists
a code M for the above “Integer Arithmetic computer” such that executing the code on every input
pair x, y of finite binary words, the computer after finitely many elementary operations terminates and
outputs either “yes”, if A(x, y) is satisfied, or “no”, if A(x, y) is not satisfied. Thus, P is the problem

Given x, find y such that
A(x, y) = true, (4.1.1)

or detect that no such y exists.

For example, the problem Stones:

201

202 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Given n positive integers a1, ..., an, find a vector x = (x1, ..., xn)T with coordinates ±1 such
that

∑
i

xiai = 0, or detect that no such vector exists

is a generic combinatorial problem. Indeed, the data of the instance of the problem, same as candidate
solutions to the instance, can be naturally encoded by finite sequences of integers. In turn, finite sequences
of integers can be easily encoded by finite binary words. And, of course, for this problem you can
easily point out a code for the “Integer Arithmetic computer” which, given on input two binary words
x = Data(p), y encoding the data vector of an instance (p) of the problem and a candidate solution,
respectively, verifies in finitely many “bit” operations whether y represents or does not represent a solution
to (p).

A solution algorithm for a generic problem P is a code S for the Integer Arithmetic computer
which, given on input the data vector Data(p) of an instance (p) ∈ P, after finitely many operations
either returns a solution to the instance, or a (correct!) claim that no solution exists. The running time
TS(p) of the solution algorithm on instance (p) is exactly the number of elementary (i.e., bit) operations
performed in course of executing S on Data(p).

A solvability test for a generic problem P is defined similarly to a solution algorithm, but now all
we want of the code is to say (correctly!) whether the input instance is or is not solvable, just “yes” or
“no”, without constructing a solution in the case of the “yes” answer.

The complexity of a solution algorithm/solvability test S is defined as

ComplS(`) = max{TS(p) | (p) ∈ P, length(Data(p)) ≤ `},
where length(x) is the bit length (i.e., number of bits) of a finite binary word x. The algorithm/test is
called polynomial time, if its complexity is bounded from above by a polynomial of `.

Finally, a generic problem P is called to be polynomially solvable, if it admits a polynomial time so-
lution algorithm. If P admits a polynomial time solvability test, we say that P is polynomially verifiable.

Classes P and NP. A generic problem P is said to belong to the class NP, if the corresponding
condition A, see (4.1.1), possesses the following two properties:

I. A is polynomially computable, i.e., the running time T (x, y) (measured, of course, in ele-
mentary “bit” operations) of the associated code M is bounded from above by a polynomial
of the bit length length(x) + length(y) of the input:

T (x, y) ≤ χ(length(x) + length(y))χ ∀(x, y) 1)

Thus, the first property of an NP problem states that given the data Data(p) of a problem
instance p and a candidate solution y, it is easy to check whether y is an actual solution of
(p) – to verify this fact, it suffices to compute A(Data(p), y), and this computation requires
polynomial in length(Data(p)) + length(y) time.
The second property of an NP problem makes its instances even more easier:

II. A solution to an instance (p) of a problem cannot be “too long” as compared to the data
of the instance: there exists χ such that

length(y) > χlengthχ(x) ⇒ A(x, y) = ”no”.

1)Here and in what follows, we denote by χ positive “characteristic constants” associated with the predi-
cates/problems in question. The particular values of these constants are of no importance, the only thing that
matters is their existence. Note that in different places of even the same equation χ may have different values.

4.1. COMPLEXITY OF CONVEX PROGRAMMING 203

A generic problem P is said to belong to the class P, if it belongs to the class NP and is polynomially
solvable.

NP-completeness is defined as follows:

Definition 4.1.1 (i) Let P, Q be two problems from NP. ProblemQ is called to be polynomially reducible
to P, if there exists a polynomial time algorithm M (i.e., a code for the Integer Arithmetic computer
with the running time bounded by a polynomial of the length of the input) with the following property.
Given on input the data vector Data(q) of an instance (q) ∈ Q, M converts this data vector to the data
vector Data(p[q]) of an instance of P such that (p[q]) is solvable if and only if (q) is solvable.

(ii) A generic problem P from NP is called NP-complete, if every other problem Q from NP is
polynomially reducible to P.

The importance of the notion of an NP-complete problem comes from the following fact:

If a particular NP-complete problem is polynomially verifiable (i.e., admits a polynomial
time solvability test), then every problem from NP is polynomially solvable: P = NP.

The question whether P=NP – whether NP-complete problems are or are not polynomially solvable, is
qualified as “the most important open problem in Theoretical Computer Science” and remains open for
about 30 years. One of the most basic results of Theoretical Computer Science is that NP-complete
problems do exist (the Stones problem is an example). Many of these problems are of huge practical
importance, and are therefore subject, over decades, of intensive studies of thousands excellent researchers.
However, no polynomial time algorithm for any of these problems was found. Given the huge total effort
invested in this research, we should conclude that it is “highly improbable” that NP-complete problems
are polynomially solvable. Thus, at the “practical level” the fact that certain problem is NP-complete
is sufficient to qualify the problem as “computationally intractable”, at least at our present level of
knowledge.

4.1.2 Complexity in Continuous Optimization

It is convenient to represent continuous optimization problems as Mathematical Programming problems,
i.e. programs of the following form:

min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
(p)

where

• n(p) is the design dimension of program (p);

• X(p) ⊂ Rn is the feasible domain of the program;

• p0(x) : Rn → R is the objective of (p).

Families of optimization programs. We want to speak about methods for solving optimization
programs (p) “of a given structure” (for example, Linear Programming ones). All programs (p) “of a given
structure”, like in the combinatorial case, form certain family P, and we assume that every particular
program in this family – every instance (p) of P – is specified by its particular data Data(p). However,
now the data is a finite-dimensional real vector; one may think about the entries of this data vector
as about particular values of coefficients of “generic” (specific for P) analytic expressions for p0(x) and
X(p). The dimension of the vector Data(p) will be called the size of the instance:

Size(p) = dim Data(p).

204 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

The model of computations. This is what is known as “Real Arithmetic Model of Computations”,
as opposed to ”Integer Arithmetic Model” in the CCT. We assume that the computations are carried out
by an idealized version of the usual computer which is capable to store countably many reals and can
perform with them the standard exact real arithmetic operations – the four basic arithmetic operations,
evaluating elementary functions, like cos and exp, and making comparisons.

Accuracy of approximate solutions. We assume that a generic optimization problem P is
equipped with an “infeasibility measure” InfeasP(x, p) – a real-valued function of p ∈ P and x ∈ Rn(p)

which quantifies the infeasibility of vector x as a candidate solution to (p). In our general considerations,
all we require from this measure is that

• InfeasP(x, p) ≥ 0, and InfeasP(x, p) = 0 when x is feasible for (p) (i.e., when x ∈ X(p)).

Given an infeasibility measure, we can proceed to define the notion of an ε-solution to an instance (p) ∈ P,
namely, as follows. Let

Opt(p) ∈ {−∞} ∪R ∪ {+∞}
be the optimal value of the instance (i.e., the infimum of the values of the objective on the feasible set,
if the instance is feasible, and +∞ otherwise). A point x ∈ Rn(p) is called an ε-solution to (p), if

InfeasP(x, p) ≤ ε and p0(x)−Opt(p) ≤ ε,

i.e., if x is both “ε-feasible” and “ε-optimal” for the instance.
It is convenient to define the number of accuracy digits in an ε-solution to (p) as the quantity

Digits(p, ε) = ln
(

Size(p) + ‖Data(p)‖1 + ε2

ε

)
.

Solution methods. A solution method M for a given family P of optimization programs is a code
for the idealized Real Arithmetic computer. When solving an instance (p) ∈ P, the computer first inputs
the data vector Data(p) of the instance and a real ε > 0 – the accuracy to which the instance should
be solved, and then executes the code M on this input. We assume that the execution, on every input
(Data(p), ε > 0) with (p) ∈ P, takes finitely many elementary operations of the computer, let this number
be denoted by ComplM(p, ε), and results in one of the following three possible outputs:

– an n(p)-dimensional vector ResM(p, ε) which is an ε-solution to (p),
– a correct message “(p) is infeasible”,
– a correct message “(p) is unbounded below”.
We measure the efficiency of a method by its running time ComplM(p, ε) – the number of elementary

operations performed by the method when solving instance (p) within accuracy ε. By definition, the fact
that M is “efficient” (polynomial time) on P, means that there exists a polynomial π(s, τ) such that

ComplM(p, ε) ≤ π (Size(p), Digits(p, ε))
∀(p) ∈ P ∀ε > 0.

(4.1.2)

Informally speaking, polynomiality of M means that when we increase the size of an instance and the
required number of accuracy digits by absolute constant factors, the running time increases by no more
than another absolute constant factor.
We call a family P of optimization problems polynomially solvable (or, which is the same, computationally
tractable), if it admits a polynomial time solution method.

4.1.3 Computational tractability of convex optimization problems

A generic optimization problem P is called convex, if, for every instance (p) ∈ P, both the objective p0(x)
of the instance and the infeasibility measure InfeasP(x, p) are convex functions of x ∈ Rn(p). One of the
major complexity results in Continuous Optimization is that a generic convex optimization problem,
under mild computability and regularity assumptions, is polynomially solvable (and thus “computation-
ally tractable”). To formulate the precise result, we start with specifying the aforementioned “mild
assumptions”.

4.1. COMPLEXITY OF CONVEX PROGRAMMING 205

Polynomial computability. Let P be a generic convex program, and let InfeasP(x, p) be the
corresponding measure of infeasibility of candidate solutions. We say that our family is polynomially
computable, if there exist two codes Cobj, Ccons for the Real Arithmetic computer such that

1. For every instance (p) ∈ P, the computer, when given on input the data vector of the instance
(p) and a point x ∈ Rn(p) and executing the code Cobj, outputs the value p0(x) and a subgradient
e(x) ∈ ∂p0(x) of the objective p0 of the instance at the point x, and the running time (i.e., total number
of operations) of this computation Tobj(x, p) is bounded from above by a polynomial of the size of the
instance:

∀
(
(p) ∈ P, x ∈ Rn(p)

)
: Tobj(x, p) ≤ χSizeχ(p) [Size(p) = dim Data(p)]. (4.1.3)

(recall that in our notation, χ is a common name of characteristic constants associated with P).
2. For every instance (p) ∈ P, the computer, when given on input the data vector of the instance (p),

a point x ∈ Rn(p) and an ε > 0 and executing the code Ccons, reports on output whether InfeasP(x, p) ≤ ε,
and if it is not the case, outputs a linear form a which separates the point x from all those points y where
InfeasP(y, p) ≤ ε:

∀ (y, InfeasP(y, p) ≤ ε) : aT x > aT y, (4.1.4)

the running time Tcons(x, ε, p) of the computation being bounded by a polynomial of the size of the
instance and of the “number of accuracy digits”:

∀
(
(p) ∈ P, x ∈ Rn(p), ε > 0

)
: Tcons(x, ε, p) ≤ χ (Size(p) + Digits(p, ε))χ

. (4.1.5)

Note that the vector a in (4.1.4) is not supposed to be nonzero; when it is 0, (4.1.4) simply says that
there are no points y with InfeasP(y, p) ≤ ε.

Polynomial growth. We say that a generic convex program P is with polynomial growth, if the
objectives and the infeasibility measures, as functions of x, grow polynomially with ‖x‖1, the degree of
the polynomial being a power of Size(p):

∀ (
(p) ∈ P, x ∈ Rn(p)

)
:

|p0(x)|+ InfeasP(x, p) ≤ (χ [Size(p) + ‖x‖1 + ‖Data(p)‖1])(χSizeχ
(p)) .

(4.1.6)

Polynomial boundedness of feasible sets. We say that a generic convex program P has poly-
nomially bounded feasible sets, if the feasible set X(p) of every instance (p) ∈ P is bounded, and is
contained in the Euclidean ball, centered at the origin, of “not too large” radius:

∀(p) ∈ P :

X(p) ⊂
{

x ∈ Rn(p) : ‖x‖2 ≤ (χ [Size(p) + ‖Data(p)‖1])χSizeχ
(p)

}
.

(4.1.7)

Example. Consider generic optimization problems LPb, CQPb, SDPb with instances in the conic
form

min
x∈Rn(p)

{
p0(x) ≡ cT

(p)x : x ∈ X(p) ≡ {x : A(p)x− b(p) ∈ K(p), ‖x‖2 ≤ R}
}

; (4.1.8)

where K is a cone belonging to a characteristic for the generic program family K of cones, specifically,

• the family of nonnegative orthants for LPb,

• the family of direct products of Lorentz cones for CQPb,

• the family of semidefinite cones for SDPb.

The data of and instance (p) of the type (4.1.8) is the collection

Data(p) = (n(p), c(p), A(p), b(p), R, 〈size(s) of K(p)〉),

206 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

with naturally defined size(s) of a cone K from the family K associated with the generic program under
consideration: the sizes of Rn

+ and of Sn
+ equal n, and the size of a direct product of Lorentz cones is the

sequence of the dimensions of the factors.
The generic conic programs in question are equipped with the infeasibility measure

Infeas(x, p) = min
{
t ≥ 0 : te[K(p)] + A(p)x− b(p) ∈ K(p)

}
, (4.1.9)

where e[K] is a naturally defined “central point” of K ∈ K, specifically,

• the n-dimensional vector of ones when K = Rn
+,

• the vector em = (0, ..., 0, 1)T ∈ Rm when K(p) is the Lorentz cone Lm, and the direct sum of these
vectors, when K is a direct product of Lorentz cones,

• the unit matrix of appropriate size when K is a semidefinite cone.

In the sequel, we refer to the three generic problems we have just defined as to Linear, Conic Quadratic
and Semidefinite Programming problems with ball constraints, respectively. It is immediately seen that
the generic programs LPb, CQPb and SDPb are convex and possess the properties of polynomial com-
putability, polynomial growth and polynomially bounded feasible sets (the latter property is ensured by
making the ball constraint ‖x‖2 ≤ R a part of program’s formulation).

Computational Tractability of Convex Programming. The role of the properties we have
introduced becomes clear from the following result:

Theorem 4.1.1 Let P be a family of convex optimization programs equipped with infeasibility measure
InfeasP(·, ·). Assume that the family is polynomially computable, with polynomial growth and with poly-
nomially bounded feasible sets. Then P is polynomially solvable.

In particular, the generic Linear, Conic Quadratic and Semidefinite programs with ball constraints
LPb, CQPb, SDPb are polynomially solvable.

4.1.4 “What is inside” Theorem 4.1.1: Black-box represented convex pro-
grams and the Ellipsoid method

Theorem 4.1.1 is a more or less straightforward corollary of a result related to the so called Information-
Based complexity of black-box represented convex programs. This result is interesting by its own right,
this is why we reproduce it here:

Consider a Convex Programming program

min
x
{f(x) : x ∈ X} (4.1.10)

where

• X is a convex compact set in Rn with a nonempty interior

• f is a continuous convex function on X.

Assume that our “environment” when solving (4.1.10) is as follows:

1. We have access to a Separation Oracle Sep(X) for X – a routine which, given on input a point
x ∈ Rn, reports on output whether or not x ∈ intX, and in the case of x 6∈ intX, returns a
separator – a nonzero vector e such that

eT x ≥ max
y∈X

eT y (4.1.11)

(the existence of such a separator is guaranteed by the Separation Theorem for convex sets);

4.1. COMPLEXITY OF CONVEX PROGRAMMING 207

2. We have access to a First Order oracle which, given on input a point x ∈ intX, returns the value
f(x) and a subgradient f ′(x) of f at x (Recall that a subgradient f ′(x) of f at x is a vector such
that

f(y) ≥ f(x) + (y − x)T f ′(x) (4.1.12)

for all y; convex function possesses subgradients at every relative interior point of its domain, see
Section C.6.2.);

3. We are given two positive reals R ≥ r such that X is contained in the Euclidean ball, centered at
the origin, of the radius R and contains a Euclidean ball of the radius r (not necessarily centered
at the origin).

The result we are interested in is as follows:

Theorem 4.1.2 In the outlined “working environment”, for every given ε > 0 it is possible to find an
ε-solution to (4.1.10), i.e., a point xε ∈ X with

f(xε) ≤ min
x∈X

f(x) + ε

in no more than N(ε) subsequent calls to the Separation and the First Order oracles plus no more than
O(1)n2N(ε) arithmetic operations to process the answers of the oracles, with

N(ε) = O(1)n2 ln
(

2 +
VarX(f)R

ε · r
)

. (4.1.13)

Here
VarX(f) = max

X
f −min

X
f.

Proof of Theorem 4.1.2: the Ellipsoid method

Assume that we are interested to solve the convex program (4.1.10) and we have an access to a separation
oracle Sep(X) for the feasible domain of (4.1.10) and to a first order oracle O(f) for the objective of
(4.1.10). How could we solve the problem via these “tools”? An extremely transparent way is given by
the Ellipsoid method which can be viewed as a multi-dimensional extension of the usual bisection.

Ellipsoid method: the idea. Assume that we have already found an n-dimensional ellipsoid

E = {x = c + Bu | uT u ≤ 1} [B ∈ Mn,n, DetB 6= 0]

which contains the optimal set X∗ of (4.1.10) (note that X∗ 6= ∅, since the feasible set X of (4.1.10) is
assumed to be compact, and the objective f – to be convex on the entire Rn and therefore continuous,
see Theorem C.4.1). How could we construct a smaller ellipsoid containing X∗ ?

The answer is immediate.
1) Let us call the separation oracle Sep(X), the center c of the current ellipsoid being the input.

There are two possible cases:
1.a) Sep(X) reports that c 6∈ X and returns a separator a:

a 6= 0, aT c ≥ sup
y∈X

aT y. (4.1.14)

In this case we can replace our current “localizer” E of the optimal set X∗ by a smaller one – namely, by
the “half-ellipsoid”

Ê = {x ∈ E | aT x ≤ aT c}.
Indeed, by assumption X∗ ⊂ E; when passing from E to Ê, we cut off all points x of E where aT x > aT c,
and by (4.1.14) all these points are outside of X and therefore outside of X∗ ⊂ X. Thus, X∗ ⊂ Ê.

1.b) Sep(X) reports that c ∈ X. In this case we call the first order oracle O(f), c being the input;
the oracle returns the value f(c) and a subgradient a = f ′(c) of f at c. Again, two cases are possible:

208 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

1.b.1) a = 0. In this case we are done – c is a minimizer of f on X. Indeed, c ∈ X, and (4.1.12) reads

f(y) ≥ f(c) + 0T (y − c) = f(c) ∀y ∈ Rn.

Thus, c is a minimizer of f on Rn, and since c ∈ X, c minimizes f on X as well.
1.b.2) a 6= 0. In this case (4.1.12) reads

aT (x− c) > 0 ⇒ f(x) > f(c),

so that replacing the ellipsoid E with the half-ellipsoid

Ê = {x ∈ E | aT x ≤ aT c}

we ensure the inclusion X∗ ⊂ Ê. Indeed, X∗ ⊂ E by assumption, and when passing from E to Ê, we cut
off all points of E where aT x > aT c and, consequently, where f(x) > f(c); since c ∈ X, no one of these
points can belong to the set X∗ of minimizers of f on X.

2) We have seen that as a result of operations described in 1.a-b) we either terminate with an exact
minimizer of f on X, or obtain a “half-ellipsoid”

Ê = {x ∈ E | aT x ≤ aT c} [a 6= 0]

containing X∗. It remains to use the following simple geometric fact:

(*) Let E = {x = c + Bu | uT u ≤ 1} (DetB 6= 0) be an n-dimensional ellipsoid and

Ê = {x ∈ E | aT x ≤ aT c} (a 6= 0) be a “half” of E. If n > 1, then Ê is contained in the
ellipsoid

E+ = {x = c+ + B+u | uT u ≤ 1},
c+ = c− 1

n+1Bp,

B+ = B
(

n√
n2−1

(In − ppT) + n
n+1ppT

)
= n√

n2−1
B +

(
n

n+1 − n√
n2−1

)
(Bp)pT ,

p = BT a√
aT BBT a

(4.1.15)

and if n = 1, then the set Ê is contained in the ellipsoid (which now is just a segment)

E+ = {x | c+B+u | |u| ≤ 1},
c+ = c− 1

2
Ba
|Ba| ,

B+ = 1
2B.

In all cases, the n-dimensional volume Vol(E+) of the ellipsoid E+ is less than the one of E:

Vol(E+) =
(

n√
n2 − 1

)n−1
n

n + 1
Vol(E) ≤ exp{−1/(2n)}Vol(E) (4.1.16)

(in the case of n = 1,
(

n√
n2−1

)n−1

= 1).

(*) says that there exists (and can be explicitly specified) an ellipsoid E+ ⊃ Ê with the volume constant
times less than the one of E. Since E+ covers Ê, and the latter set, as we have seen, covers X∗, E+ covers
X∗. Now we can iterate the above construction, thus obtaining a sequence of ellipsoids E,E+, (E+)+, ...
with volumes going to 0 at a linear rate (depending on the dimension n only) which “collapses” to the
set X∗ of optimal solutions of our problem – exactly as in the usual bisection!

Note that (*) is just an exercise in elementary calculus. Indeed, the ellipsoid E is given as
an image of the unit Euclidean ball W = {u | uT u ≤ 1} under the one-to-one affine mapping
u 7→ c+Bu; the half-ellipsoid Ê is then the image, under the same mapping, of the half-ball

Ŵ = {u ∈ W | pT u ≤ 0}

4.1. COMPLEXITY OF CONVEX PROGRAMMING 209

e

⇔
x=c+Bu

p

E, Ê and E+ W , Ŵ and W+

Figure 5.1.

p being the unit vector from (4.1.15); indeed, if x = c + Bu, then aT x ≤ aT c if and only if
aT Bu ≤ 0, or, which is the same, if and only if pT u ≤ 0. Now, instead of covering Ê by
a small in volume ellipsoid E+, we may cover by a small ellipsoid W+ the half-ball Ŵ and
then take E+ to be the image of W+ under our affine mapping:

E+ = {x = c + Bu | u ∈ W+}. (4.1.17)

Indeed, if W+ contains Ŵ , then the image of W+ under our affine mapping u 7→ c + Bu
contains the image of Ŵ , i.e., contains Ê. And since the ratio of volumes of two bodies
remain invariant under affine mapping (passing from a body to its image under an affine
mapping u 7→ c + Bu, we just multiply the volume by |DetB|), we have

Vol(E+)
Vol(E)

=
Vol(W+)
Vol(W)

.

Thus, the problem of finding a “small” ellipsoid E+ containing the half-ellipsoid Ê can be
reduced to the one of finding a “small” ellipsoid W+ containing the half-ball Ŵ , as shown
on Fig. 5.1. Now, the problem of finding a small ellipsoid containing Ŵ is very simple: our
“geometric data” are invariant with respect to rotations around the p-axis, so that we may
look for W+ possessing the same rotational symmetry. Such an ellipsoid W+ is given by just
3 parameters: its center should belong to our symmetry axis, i.e., should be −hp for certain
h, one of the half-axes of the ellipsoid (let its length be µ) should be directed along p, and the
remaining n− 1 half-axes should be of the same length λ and be orthogonal to p. For our 3
parameters h, µ, λ we have 2 equations expressing the fact that the boundary of W+ should
pass through the “South pole” −p of W and trough the “equator” {u | uT u = 1, pT u = 0};
indeed, W+ should contain Ŵ and thus – both the pole and the equator, and since we are
looking for W+ with the smallest possible volume, both the pole and the equator should
be on the boundary of W+. Using our 2 equations to express µ and λ via h, we end up
with a single “free” parameter h, and the volume of W+ (i.e., const(n)µλn−1) becomes an
explicit function of h; minimizing this function in h, we find the “optimal” ellipsoid W+,
check that it indeed contains Ŵ (i.e., that our geometric intuition was correct) and then
convert W+ into E+ according to (4.1.17), thus coming to the explicit formulas (4.1.15) –
(4.1.16); implementation of the outlined scheme takes from 10 to 30 minutes, depending on
how many miscalculations are made...

It should be mentioned that although the indicated scheme is quite straightforward and
elementary, the fact that it works is not evident a priori: it might happen that the smallest
volume ellipsoid containing a half-ball is just the original ball! This would be the death of
our idea – instead of a sequence of ellipsoids collapsing to the solution set X∗, we would get
a “stationary” sequence E,E, E... Fortunately, it is not happening, and this is a great favour
Nature does to Convex Optimization...

210 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Ellipsoid method: the construction. There is a small problem with implementing our idea of
“trapping” the optimal set X∗ of (4.1.10) by a “collapsing” sequence of ellipsoids. The only thing we
can ensure is that all our ellipsoids contain X∗ and that their volumes rapidly (at a linear rate) converge
to 0. However, the linear sizes of the ellipsoids should not necessarily go to 0 – it may happen that
the ellipsoids are shrinking in some directions and are not shrinking (or even become larger) in other
directions (look what happens if we apply the construction to minimizing a function of 2 variables which
in fact depends only on the first coordinate). Thus, to the moment it is unclear how to build a sequence
of points converging to X∗. This difficulty, however, can be easily resolved: as we shall see, we can form
this sequence from the best feasible solutions generated so far. Another issue which remains open to
the moment is when to terminate the method; as we shall see in a while, this issue also can be settled
satisfactory.

The precise description of the Ellipsoid method as applied to (4.1.10) is as follows (in this description,
we assume that n ≥ 2, which of course does not restrict generality):

The Ellipsoid Method.
Initialization. Recall that when formulating (4.1.10) it was assumed that the feasible set

X of the problem is contained in the ball E0 = {x | ‖x‖2 ≤ R} of a given radius R and
contains an (unknown) Euclidean ball of a known radius r > 0. The ball E0 will be our
initial ellipsoid; thus, we set

c0 = 0, B0 = RI, E0 = {x = c0 + B0u | uT u ≤ 1};

note that E0 ⊃ X.
We also set

ρ0 = R, L0 = 0.

The quantities ρt will be the “radii” of the ellipsoids Et to be built, i.e., the radii of the
Euclidean balls of the same volumes as Et’s. The quantities Lt will be our guesses for the
variation

VarR(f) = max
x∈E0

f(x)− min
x∈E0

f(x)

of the objective on the initial ellipsoid E0. We shall use these guesses in the termination
test.

Finally, we input the accuracy ε > 0 to which we want to solve the problem.
Step t, t = 1, 2, At the beginning of step t, we have the previous ellipsoid

Et−1 = {x = ct−1 + Bt−1u | uT u ≤ 1} [ct−1 ∈ Rn, Bt−1 ∈ Mn,n, DetBt−1 6= 0]

(i.e., have ct−1, Bt−1) along with the quantities Lt−1 ≥ 0 and

ρt−1 = |DetBt−1|1/n.

At step t, we act as follows (cf. the preliminary description of the method):
1) We call the separation oracle Sep(X), ct−1 being the input. It is possible that the

oracle reports that ct−1 6∈ X and provides us with a separator

a 6= 0 : aT ct−1 ≥ sup
y∈X

aT y.

In this case we call step t non-productive, set

at = a, Lt = Lt−1

and go to rule 3) below. Otherwise – i.e., when ct−1 ∈ X – we call step t productive and go
to rule 2).

2) We call the first order oracle O(f), ct−1 being the input, and get the value f(ct−1)
and a subgradient a ≡ f ′(ct−1) of f at the point ct−1. It is possible that a = 0; in this case

4.1. COMPLEXITY OF CONVEX PROGRAMMING 211

we terminate and claim that ct−1 is an optimal solution to (4.1.10). In the case of a 6= 0 we
set

at = a,

compute the quantity

`t = max
y∈E0

[aT
t y − aT

t ct−1] = R‖at‖2 − aT
t ct−1,

update L by setting
Lt = max{Lt−1, `t}

and go to rule 3).
3) We set

Êt = {x ∈ Et−1 | aT
t x ≤ aT

t ct−1}
(cf. the definition of Ê in our preliminary description of the method) and define the new
ellipsoid

Et = {x = ct + Btu | uT u ≤ 1}
by setting (see (4.1.15))

pt = BT
t−1at√

aT
t Bt−1BT

t−1at

ct = ct−1 − 1
n+1Bt−1pt,

Bt = n√
n2−1

Bt−1 +
(

n
n+1 − n√

n2−1

)
(Bt−1pt)pT

t .

(4.1.18)

We also set

ρt = |DetBt|1/n =
(

n√
n2 − 1

)(n−1)/n (
n

n + 1

)1/n

ρt−1

(see (4.1.16)) and go to rule 4).
4) [Termination test]. We check whether the inequality

ρt

r
<

ε

Lt + ε
(4.1.19)

is satisfied. If it is the case, we terminate and output, as the result of the solution process, the
best (i.e., with the smallest value of f) of the “search points” cτ−1 associated with productive
steps τ ≤ t (we shall see that these productive steps indeed exist, so that the result of the
solution process is well-defined). If (4.1.19) is not satisfied, we go to step t + 1.

Just to get some feeling how the method works, here is a 2D illustration. The problem is

min
−1≤x1,x2≤1

f(x),

f(x) = 1
2 (1.443508244x1 + 0.623233851x2 − 7.957418455)2

+5(−0.350974738x1 + 0.799048618x2 + 2.877831823)4,

the optimal solution is x∗1 = 1, x∗2 = −1, and the exact optimal value is 70.030152768...
The values of f at the best (i.e., with the smallest value of the objective) feasible solutions found in

course of first t steps of the method, t = 1, 2, ..., 256, are shown in the following table:

t best value t best value
1 374.61091739 16 76.838253451
2 216.53084103
3 146.74723394 32 70.901344815
4 112.42945457
5 93.84206347 64 70.031633483
6 82.90928589
7 82.90928589 128 70.030154192
8 82.90928589
... ... 256 70.030152768

212 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

0

0

1

1

2

2

3

3

15
15

Figure 5.2. Ellipses Et−1 and search points ct−1, t = 1, 2, 3, 4, 16
Arrows: gradients of the objective f(x)
Unmarked segments: tangents to the level lines of f(x)

The initial phase of the process looks as shown on Fig. 5.2.

Ellipsoid method: complexity analysis. We are about to establish our key result (which, in
particular, immediately implies Theorem 4.1.2):

Theorem 4.1.3 Let the Ellipsoid method be applied to convex program (4.1.10) of dimension n ≥ 2 such
that the feasible set X of the problem contains a Euclidean ball of a given radius r > 0 and is contained
in the ball E0 = {‖x‖2 ≤ R} of a given radius R. For every input accuracy ε > 0, the Ellipsoid method
terminates after no more than

N(ε) = Ceil
(

2n2

[
ln

(
R

r

)
+ ln

(
ε + VarR(f)

ε

)])
+ 1 (4.1.20)

steps, where
VarR(f) = max

E0
f −min

E0
f,

and Ceil(a) is the smallest integer ≥ a. Moreover, the result x̂ generated by the method is a feasible
ε-solution to (4.1.10):

x̂ ∈ X and f(x)−min
X

f ≤ ε. (4.1.21)

Proof. We should prove the following pair of statements:
(i) The method terminates in course of the first N(ε) steps
(ii) The result x̂ is a feasible ε-solution to the problem.
10. Comparing the preliminary and the final description of the Ellipsoid method and taking into

account the initialization rule, we see that if the method does not terminate before step t or terminates
at this step according to rule 4), then

(a) E0 ⊃ X;
(b) Eτ ⊃ Êτ =

{
x ∈ Eτ−1 | aT

τ x ≤ aT
τ cτ−1

}
, τ = 1, ..., t;

(c) Vol(Eτ) = ρn
τ Vol(E0) =

(
n√

n2−1

)n−1
n

n+1Vol(Eτ−1)
≤ exp{−1/(2n)}vol(Eτ−1), τ = 1, ..., t.

(4.1.22)

4.1. COMPLEXITY OF CONVEX PROGRAMMING 213

Note that from (c) it follows that

ρτ ≤ exp{−τ/(2n2)}R, τ = 1, ..., t. (4.1.23)

20. We claim that

If the Ellipsoids method terminates at certain step t, then the result x̂ is well-defined and
is a feasible ε-solution to (4.1.10).

Indeed, there are only two possible reasons for termination. First, it may happen that ct−1 ∈ X and
f ′(ct−1) = 0 (see rule 2)). From our preliminary considerations we know that in this case ct−1 is an
optimal solution to (4.1.10), which is even more than what we have claimed. Second, it may happen that
at step t relation (4.1.19) is satisfied. Let us prove that the claim of 20 takes place in this case as well.

20.a) Let us set
ν =

ε

ε + Lt
∈ (0, 1].

By (4.1.19), we have ρt/r < ν, so that there exists ν′ such that

ρt

r
< ν′ < ν [≤ 1]. (4.1.24)

Let x∗ be an optimal solution to (4.1.10), and X+ be the “ν′-shrinkage” of X to x∗:

X+ = x∗ + ν′(X − x∗) = {x = (1− ν′)x∗ + ν′z | z ∈ X}. (4.1.25)

We have

Vol(X+) = (ν′)nVol(X) ≥
(

rν′

R

)n

Vol(E0) (4.1.26)

(the last inequality is given by the fact that X contains a Euclidean ball of the radius r), while

Vol(Et) =
(ρt

R

)n

Vol(E0) (4.1.27)

by definition of ρt. Comparing (4.1.26), (4.1.27) and taking into account that ρt < rν′ by (4.1.24), we
conclude that Vol(Et) < Vol(X+) and, consequently, X+ cannot be contained in Et. Thus, there exists
a point y which belongs to X+:

y = (1− ν′)x∗ + ν′z [z ∈ X], (4.1.28)

and does not belong to Et.
20.b) Since y does not belong to Et and at the same time belongs to X ⊂ E0 along with x∗ and z (X

is convex!), we see that there exists a τ ≤ t such that y ∈ Eτ−1 and y 6∈ Eτ . By (4.1.22.b), every point x
from the complement of Eτ in Eτ−1 satisfies the relation aT

τ x > aT
τ cτ−1. Thus, we have

aT
τ y > aT

τ cτ−1 (4.1.29)

20.c) Observe that the step τ is surely productive. Indeed, otherwise, by construction of the method,
at would separate X from cτ−1, and (4.1.29) would be impossible (we know that y ∈ X !). Notice that
in particular we have just proved that if the method terminates at a step t, then at least one of the steps
1, ..., t is productive, so that the result is well-defined.

Since step τ is productive, aτ is a subgradient of f at cτ−1 (description of the method!), so that

f(u) ≥ f(cτ−1) + aT
τ (u− cτ−1)

for all u ∈ X, and in particular for u = x∗. On the other hand, z ∈ X ⊂ E0, so that by the definition of
`τ and Lτ we have

aT
τ (z − cτ−1) ≤ `τ ≤ Lτ .

214 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Thus,

f(x∗) ≥ f(cτ−1) + aT
τ (x∗ − cτ−1)

Lτ ≥ aT
τ (z − cτ−1)

Multiplying the first inequality by (1− ν′), the second – by ν′ and adding the results, we get

(1− ν′)f(x∗) + ν′Lτ ≥ (1− ν′)f(cτ−1) + aT
τ ([(1− ν′)x∗ + ν′z]− cτ−1)

= (1− ν′)f(cτ−1) + aT
τ (y − cτ−1)

[see (4.1.28)]
≥ (1− ν′)f(cτ−1)

[see (4.1.29)]

and we come to
f(cτ−1) ≤ f(x∗) + ν′Lτ

1−ν′

≤ f(x∗) + ν′Lt

1−ν′

[since Lτ ≤ Lt in view of τ ≤ t]
≤ f(x∗) + ε

[by definition of ν and since ν′ < ν]
= Opt(C) + ε.

We see that there exists a productive (i.e., with feasible cτ−1) step τ ≤ t such that the corresponding
search point cτ−1 is ε-optimal. Since we are in the situation where the result x̂ is the best of the feasible
search points generated in course of the first t steps, x̂ is also feasible and ε-optimal, as claimed in 20.

30 It remains to verify that the method does terminate in course of the first N = N(ε) steps. Assume,
on the contrary, that it is not the case, and let us lead this assumption to a contradiction.

First, observe that for every productive step t we have

ct−1 ∈ X and at = f ′(ct−1),

whence, by the definition of a subgradient and the variation VarR(f),

u ∈ E0 ⇒ VarR(f) ≥ f(u)− f(ct−1) ≥ aT
t (u− ct−1),

whence

`t ≡ max
u∈E0

aT
t (u− ct−1) ≤ VarR(f).

Looking at the description of the method, we conclude that

Lt ≤ VarR(f) ∀t. (4.1.30)

Since we have assumed that the method does not terminate in course of the first N steps, we have

ρN

r
≥ ε

ε + LN
. (4.1.31)

The right hand side in this inequality is ≥ ε/(ε + VarR(f)) by (4.1.30), while the left hand side is
≤ exp{−N/(2n2)}R by (4.1.23). We get

exp{−N/(2n2)}R/r ≥ ε

ε + VarR(f)
⇒ N ≤ 2n2

[
ln

(
R

r

)
+ ln

(
ε + VarR(f)

ε

)]
,

which is the desired contradiction (see the definition of N = N(ε) in (4.1.20)).

4.2. INTERIOR POINT POLYNOMIAL TIME METHODS FOR LP, CQP AND SDP 215

4.1.5 Difficult continuous optimization problems

Real Arithmetic Complexity Theory can borrow from the Combinatorial Complexity Theory techniques
for detecting “computationally intractable” problems. Consider the situation as follows: we are given
a family P of optimization programs and want to understand whether the family is computationally
tractable. An affirmative answer can be obtained from Theorem 4.1.1; but how could we justify that
the family is intractable? A natural course of action here is to demonstrate that certain difficult (NP-
complete) combinatorial problem Q can be reduced to P in such a way that the possibility to solve P in
polynomial time would imply similar possibility for Q. Assume that the objectives of the instances of P
are polynomially computable, and that we can point out a generic combinatorial problem Q known to
be NP-complete which can be reduced to P in the following sense:

There exists a CCT-polynomial time algorithm M which, given on input the data vector
Data(q) of an instance (q) ∈ Q, converts it into a triple Data(p[q]), ε(q), µ(q) comprised of
the data vector of an instance (p[q]) ∈ P, positive rational ε(q) and rational µ(q) such that
(p[q]) is solvable and

— if (q) is unsolvable, then the value of the objective of (p[q]) at every ε(q)-solution to this
problem is ≤ µ(q)− ε(q);
— if (q) is solvable, then the value of the objective of (p[q]) at every ε(q)-solution to this
problem is ≥ µ(q) + ε(q).

We claim that in the case in question we have all reasons to qualify P as a “computationally intractable”
problem. Assume, on contrary, that P admits a polynomial time solution method S, and let us look
what happens if we apply this algorithm to solve (p[q]) within accuracy ε(q). Since (p[q]) is solvable,
the method must produce an ε(q)-solution x̂ to (p[q]). With additional “polynomial time effort” we
may compute the value of the objective of (p[q]) at x̂ (recall that the objectives of instances from P are
assumed to be polynomially computable). Now we can compare the resulting value of the objective with
µ(q); by definition of reducibility, if this value is ≤ µ(q), q is unsolvable, otherwise q is solvable. Thus,
we get a correct “Real Arithmetic” solvability test for Q. By definition of a Real Arithmetic polynomial
time algorithm, the running time of the test is bounded by a polynomial of s(q) = Size(p[q]) and of the
quantity

d(q) = Digits((p[q]), ε(q)) = ln
(

Size(p[q]) + ‖Data(p[q])‖1 + ε2(q)
ε(q)

)
.

Now note that if ` = length(Data(q)), then the total number of bits in Data(p[q]) and in ε(q) is bounded
by a polynomial of ` (since the transformation Data(q) 7→ (Data(p[q]), ε(q), µ(q)) takes CCT-polynomial
time). It follows that both s(q) and d(q) are bounded by polynomials in `, so that our “Real Arithmetic”
solvability test for Q takes polynomial in length(Data(q)) number of arithmetic operations.

Recall that Q was assumed to be an NP-complete generic problem, so that it would be “highly
improbable” to find a polynomial time solvability test for this problem, while we have managed to build
such a test. We conclude that the polynomial solvability of P is highly improbable as well.

4.2 Interior Point Polynomial Time Methods for LP, CQP and
SDP

4.2.1 Motivation

Theorem 4.1.1 states that generic convex programs, under mild computability and boundedness assump-
tions, are polynomially solvable. This result is extremely important theoretically; however, from the
practical viewpoint it is, essentially, no more than “an existence theorem”. Indeed, the “universal” com-
plexity bounds coming from Theorem 4.1.2, although polynomial, are not that attractive: by Theorem
4.1.1, when solving problem (4.1.10) with n design variables, the “price” of an accuracy digit (what it
costs to reduce current inaccuracy ε by factor 2) is O(n2) calls to the first order and the separation
oracles plus O(n4) arithmetic operations to process the answers of the oracles. Thus, even for simplest

216 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

objectives to be minimized over simplest feasible sets, the arithmetic price of an accuracy digit is O(n4);
think how long will it take to solve a problem with, say, 1,000 variables (which is still a “small” size for
many applications). The good news about the methods underlying Theorem 4.1.2 is their universality:
all they need is a Separation oracle for the feasible set and the possibility to compute the objective and its
subgradient at a given point, which is not that much. The bad news about these methods has the same
source as the good news: the methods are “oracle-oriented” and capable to use only local information
on the program they are solving, in contrast to the fact that when solving instances of well-structured
programs, like LP, we from the very beginning have in our disposal complete global description of the
instance. And of course it is ridiculous to use a complete global knowledge of the instance just to mimic
the local in their nature first order and separation oracles. What we would like to have is an optimization
technique capable to “utilize efficiently” our global knowledge of the instance and thus allowing to get a
solution much faster than it is possible for “nearly blind” oracle-oriented algorithms. The major event
in the “recent history” of Convex Optimization, called sometimes “Interior Point revolution”, was the
invention of these “smart” techniques.

4.2.2 Interior Point methods

The Interior Point revolution was started by the seminal work of N. Karmarkar (1984) where the first
interior point method for LP was proposed; in 18 years since then, interior point (IP) polynomial time
methods have become an extremely deep and rich theoretically and highly promising computationally
area of Convex Optimization. A somehow detailed overview of the history and the recent state of this
area is beyond the scope of this course; an interested reader is referred to [17, 19, 13] and references
therein. All we intend to do is to give an idea of what are the IP methods, skipping nearly all (sometimes
highly instructive and nontrivial) technicalities.

The simplest way to get a proper impression of the (most of) IP methods is to start with a quite
traditional interior penalty scheme for solving optimization problems.

The Newton method and the Interior penalty scheme

Unconstrained minimization and the Newton method. Seemingly the simplest convex
optimization problem is the one of unconstrained minimization of a smooth strongly convex objective:

min
x
{f(x) : x ∈ Rn} ; (UC)

a “smooth strongly convex” in this context means a 3 times continuously differentiable convex function
f such that f(x) → ∞, ‖x‖2 → ∞, and such that the Hessian matrix f ′′(x) =

[
∂2f(x)
∂xi∂xj

]
of f is positive

definite at every point x. Among numerous techniques for solving (UC), the most remarkable one is the
Newton method. In its pure form, the Newton method is extremely transparent and natural: given a
current iterate x, we approximate our objective f by its second-order Taylor expansion at the iterate –
by the quadratic function

fx(y) = f(x) + (y − x)T f ′(x) +
1
2
(y − x)T f ′′(x)(y − x)

– and choose as the next iterate x+ the minimizer of this quadratic approximation. Thus, the Newton
method merely iterates the updating

x 7→ x+ = x− [f ′′(x)]−1f ′(x). (Nwt)

In the case of a (strongly convex) quadratic objective, the approximation coincides with the objective
itself, so that the method reaches the exact solution in one step. It is natural to guess (and indeed is true)
that in the case when the objective is smooth and strongly convex (although not necessary quadratic)
and the current iterate x is close enough to the minimizer x∗ of f , the next iterate x+, although not

4.2. INTERIOR POINT POLYNOMIAL TIME METHODS FOR LP, CQP AND SDP 217

being x∗ exactly, will be “much closer” to the exact minimizer than x. The precise (and easy) result is
that the Newton method converges locally quadratically, i.e., that

‖x+ − x∗‖2 ≤ C‖x− x∗‖22,

provided that ‖x − x∗‖2 ≤ r with small enough value of r > 0 (both this value and C depend on f).
Quadratic convergence means essentially that eventually every new step of the process increases by a
constant factor the number of accuracy digits in the approximate solution.

When started not “close enough” to the minimizer, the “pure” Newton method (Nwt) can demon-
strate weird behaviour (look, e.g., what happens when the method is applied to the univariate function
f(x) =

√
1 + x2). The simplest way to overcome this drawback is to pass from the pure Newton method

to its damped version
x 7→ x+ = x− γ(x)[f ′′(x)]−1f ′(x), (NwtD)

where the stepsize γ(x) > 0 is chosen in a way which, on one hand, ensures global convergence of the
method and, on the other hand, enforces γ(x) → 1 as x → x∗, thus ensuring fast (essentially the same as
for the pure Newton method) asymptotic convergence of the process2).

Practitioners thought the (properly modified) Newton method to be the fastest, in terms of the itera-
tion count, routine for smooth (not necessarily convex) unconstrained minimization, although sometimes
“too heavy” for practical use: the practical drawbacks of the method are both the necessity to invert the
Hessian matrix at each step, which is computationally costly in the large-scale case, and especially the
necessity to compute this matrix (think how difficult it is to write a code computing 5,050 second order
derivatives of a messy function of 100 variables).

Classical interior penalty scheme: the construction. Now consider a constrained convex
optimization program. As we remember, one can w.l.o.g. make its objective linear, moving, if necessary,
the actual objective to the list of constraints. Thus, let the problem be

min
x

{
cT x : x ∈ X ⊂ Rn

}
, (C)

where X is a closed convex set, which we assume to possess a nonempty interior. How could we solve the
problem?

Traditionally it was thought that the problems of smooth convex unconstrained minimization are
“easy”; thus, a quite natural desire was to reduce the constrained problem (C) to a series of smooth
unconstrained optimization programs. To this end, let us choose somehow a barrier (another name – “an
interior penalty function”) F (x) for the feasible set X – a function which is well-defined (and is smooth
and strongly convex) on the interior of X and “blows up” as a point from intX approaches a boundary
point of X :

xi ∈ intX , x ≡ lim
i→∞

xi ∈ ∂X ⇒ F (xi) →∞, i →∞,

and let us look at the one-parametric family of functions generated by our objective and the barrier:

Ft(x) = tcT x + F (x) : intX → R.

Here the penalty parameter t is assumed to be nonnegative.
It is easily seen that under mild regularity assumptions (e.g., in the case of bounded X , which we

assume from now on)

• Every function Ft(·) attains its minimum over the interior of X , the minimizer x∗(t) being unique;

2) There are many ways to provide the required behaviour of γ(x), e.g., to choose γ(x) by a linesearch in the
direction e(x) = −[f ′′(x)]−1f ′(x) of the Newton step:

γ(x) = argmin
t

f(x + te(x)).

218 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

• The central path x∗(t) is a smooth curve, and all its limiting, t → ∞, points belong to the set of
optimal solutions of (C).
This fact is quite clear intuitively. To minimize Ft(·) for large t is the same as to minimize the
function fρ(x) = cT x + ρF (x) for small ρ = 1

t . When ρ is small, the function fρ is very close to
cT x everywhere in X , except a narrow stripe along the boundary of X , the stripe becoming thinner
and thinner as ρ → 0. Therefore we have all reasons to believe that the minimizer of Ft for large t
(i.e., the minimizer of fρ for small ρ) must be close to the set of minimizers of cT x on X .

We see that the central path x∗(t) is a kind of Ariadne’s thread which leads to the solution set of (C).
On the other hand, to reach, given a value t ≥ 0 of the penalty parameter, the point x∗(t) on this path
is the same as to minimize a smooth strongly convex function Ft(·) which attains its minimum at an
interior point of X . The latter problem is “nearly unconstrained one”, up to the fact that its objective
is not everywhere defined. However, we can easily adapt the methods of unconstrained minimization,
including the Newton one, to handle “nearly unconstrained” problems. We see that constrained convex
optimization in a sense can be reduced to the “easy” unconstrained one. The conceptually simplest way
to make use of this observation would be to choose a “very large” value t̄ of the penalty parameter, like
t̄ = 106 or t̄ = 1010, and to run an unconstrained minimization routine, say, the Newton method, on
the function Ft̄, thus getting a good approximate solution to (C) “in one shot”. This policy, however, is
impractical: since we have no idea where x∗(t̄) is, we normally will start our process of minimizing Ft̄

very far from the minimizer of this function, and thus for a long time will be unable to exploit fast local
convergence of the method for unconstrained minimization we have chosen. A smarter way to use our
Ariadne’s thread is exactly the one used by Theseus: to follow the thread. Assume, e.g., that we know in
advance the minimizer of F0 ≡ F , i.e., the point x∗(0)3). Thus, we know where the central path starts.
Now let us follow this path: at i-th step, standing at a point xi “close enough” to some point x∗(ti) of
the path, we

• first, increase a bit the current value ti of the penalty parameter, thus getting a new “target point”
x∗(ti+1) on the path,
and

• second, approach our new target point x∗(ti+1) by running, say, the Newton method, started at our
current iterate xi, on the function Fti+1 , until a new iterate xi+1 “close enough” to x∗(ti+1) is generated.

As a result of such a step, we restore the initial situation – we again stand at a point which is close to a
point on the central path, but this latter point has been moved along the central path towards the optimal
set of (C). Iterating this updating and strengthening appropriately our “close enough” requirements as
the process goes on, we, same as the central path, approach the optimal set. A conceptual advantage of
this “path-following” policy as compared to the “brute force” attempt to reach a target point x∗(t̄) with
large t̄ is that now we have a hope to exploit all the time the strongest feature of our “working horse” (the
Newton method) – its fast local convergence. Indeed, assuming that xi is close to x∗(ti) and that we do
not increase the penalty parameter too rapidly, so that x∗(ti+1) is close to x∗(ti) (recall that the central
path is smooth!), we conclude that xi is close to our new target point x∗(ti). If all our “close enough”
and “not too rapidly” are properly controlled, we may ensure xi to be in the domain of the quadratic
convergence of the Newton method as applied to Fti+1 , and then it will take a quite small number of
steps of the method to recover closeness to our new target point.

Classical interior penalty scheme: the drawbacks. At a qualitative “common sense” level,
the interior penalty scheme looks quite attractive and extremely flexible: for the majority of optimization
problems treated by the classical optimization, there is a plenty of ways to build a relatively simple barrier
meeting all the requirements imposed by the scheme, there is a huge room to play with the policies for
increasing the penalty parameter and controlling closeness to the central path, etc. And the theory says
that under quite mild and general assumptions on the choice of the numerous “free parameters” of our

3) There is no difficulty to ensure thus assumption: given an arbitrary barrier F and an arbitrary starting
point x̄ ∈ intX , we can pass from F to a new barrier F̄ = F (x) − (x − x̄)T F ′(x̄) which attains its minimum
exactly at x̄, and then use the new barrier F̄ instead of our original barrier F ; and for the traditional approach
we are following for the time being, F has absolutely no advantages as compared to F̄ .

4.2. INTERIOR POINT POLYNOMIAL TIME METHODS FOR LP, CQP AND SDP 219

construction, it still is guaranteed to converge to the optimal set of the problem we have to solve. All looks
wonderful, until we realize that the convergence ensured by the theory is completely “unqualified”, it is a
purely asymptotical phenomenon: we are promised to reach eventually a solution of a whatever accuracy
we wish, but how long it will take for a given accuracy – this is the question the “classical” optimization
theory, with its “convergence” – “asymptotic linear/superlinear/quadratic convergence” neither posed
nor answered. And since our life in this world is finite (moreover, usually more finite than we would like
it to be), “asymptotical promises” are perhaps better than nothing, but definitely are not all we would
like to know. What is vitally important for us in theory (and to some extent – also in practice) is the issue
of complexity: given an instance of such and such generic optimization problem and a desired accuracy
ε, how large is the computational effort (# of arithmetic operations) needed to get an ε-solution of the
instance? And we would like the answer to be a kind of a polynomial time complexity bound, and not
a quantity depending on “unobservable and uncontrollable” properties of the instance, like the “level of
regularity” of the boundary of X at the (unknown!) optimal solution of the instance.

It turns out that the intuitively nice classical theory we have outlined is unable to say a single word
on the complexity issues (it is how it should be: a reasoning in purely qualitative terms like “smooth”,
“strongly convex”, etc., definitely cannot yield a quantitative result...) Moreover, from the complexity
viewpoint just the very philosophy of the classical convex optimization turns out to be wrong:

• As far as the complexity is concerned, for nearly all “black box represented” classes of unconstrained
convex optimization problems (those where all we know is that the objective is called f(x), is (strongly)
convex and 2 (3,4,5...) times continuously differentiable, and can be computed, along with its derivatives
up to order ... at every given point), there is no such phenomenon as “local quadratic convergence”,
the Newton method (which uses the second derivatives) has no advantages as compared to the methods
which use only the first order derivatives, etc.;

• The very idea to reduce “black-box-represented” constrained convex problems to unconstrained
ones – from the complexity viewpoint, the unconstrained problems are not easier than the constrained
ones...

4.2.3 But...

Luckily, the pessimistic analysis of the classical interior penalty scheme is not the “final truth”. It
turned out that what prevents this scheme to yield a polynomial time method is not the structure of the
scheme, but the huge amount of freedom it allows for its elements (too much freedom is another word for
anarchy...). After some order is added, the scheme becomes a polynomial time one! Specifically, it was
understood that

1. There is a (completely non-traditional) class of “good” (self-concordant4)) barriers. Every barrier
F of this type is associated with a “self-concordance parameter” θ(F), which is a real ≥ 1;

2. Whenever a barrier F underlying the interior penalty scheme is self-concordant, one can specify
the notion of “closeness to the central path” and the policy for updating the penalty parameter in
such a way that a single Newton step

xi 7→ xi+1 = xi − [∇2Fti+1(xi)]−1∇Fti+1(xi) (4.2.1)

suffices to update a “close to x∗(ti)” iterate xi into a new iterate xi+1 which is close, in the same
sense, to x∗(ti+1). All “close to the central path” points belong to intX , so that the scheme keeps
all the iterates strictly feasible.

3. The penalty updating policy mentioned in the previous item is quite simple:

ti 7→ ti+1 =

(
1 +

0.1√
θ(F)

)
ti;

4) We do not intend to explain here what is a “self-concordant barrier”; for our purposes it suffices to say that
this is a three times continuously differentiable convex barrier F satisfying a pair of specific differential inequalities
linking the first, the second and the third directional derivatives of F .

220 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

in particular, it does not “slow down” as ti grows and ensures linear, with the ratio
(

1 + 0.1√
θ(F)

)
,

growth of the penalty. This is vitally important due to the following fact:

4. The inaccuracy of a point x, which is close to some point x∗(t) of the central path, as an approximate
solution to (C) is inverse proportional to t:

cT x−min
y∈X

cT y ≤ 2θ(F)
t

.

It follows that

(!) After we have managed once to get close to the central path – have built a point x0

which is close to a point x(t0), t0 > 0, on the path, every O(
√

θ(F)) steps of the scheme
improve the quality of approximate solutions generated by the scheme by an absolute
constant factor. In particular, it takes no more than

O(1)
√

θ(F) ln
(

2 +
θ(F)
t0ε

)

steps to generate a strictly feasible ε-solution to (C).

Note that with our simple penalty updating policy all needed to perform a step of the interior
penalty scheme is to compute the gradient and the Hessian of the underlying barrier at a single
point and to invert the resulting Hessian.

Items 3, 4 say that essentially all we need to derive from the just listed general results a polynomial time
method for a generic convex optimization problem is to be able to equip every instance of the problem
with a “good” barrier in such a way that both the parameter of self-concordance of the barrier θ(F) and
the arithmetic cost at which we can compute the gradient and the Hessian of this barrier at a given point
are polynomial in the size of the instance5). And it turns out that we can meet the latter requirement for
all interesting “well-structured” generic convex programs, in particular, for Linear, Conic Quadratic, and
Semidefinite Programming. Moreover, “the heroes” of our course – LP, CQP and SDP – are especially
nice application fields of the general theory of interior point polynomial time methods; in these particular
applications, the theory can be simplified, on one hand, and strengthened, on another.

4.3 Interior point methods for LP, CQP, and SDP: building
blocks

We are about to explain what the interior point methods for LP, CQP, SDP look like.

4.3.1 Canonical cones and canonical barriers

We will be interested in a generic conic problem

min
x

{
cT x : Ax−B ∈ K

}
(CP)

associated with a cone K given as a direct product of m “basic” cones, each of them being either a
second-order, or a semidefinite cone:

K = Sk1
+ × ...× Skp

+ × Lkp+1 × ...× Lkm ⊂ E = Sk1 × ...× Skp ×Rkp+1 × ...×Rkm . (Cone)

5) Another requirement is to be able once get close to a point x∗(t0) on the central path with a not “disastrously
small” value of t0 – we should initialize somehow our path-following method! It turns out that such an initialization
is a minor problem – it can be carried out via the same path-following technique, provided we are given in advance
a strictly feasible solution to our problem.

4.3. INTERIOR POINT METHODS FOR LP, CQP, AND SDP: BUILDING BLOCKS 221

Of course, the generic problem in question covers LP (no Lorentz factors, all semidefinite factors are of
dimension 1), CQP (no semidefinite factors) and SDP (no Lorentz factors).

Now, we shall equip the semidefinite and the Lorentz cones with “canonical barriers”:
• The canonical barrier for a semidefinite cone Sn

+ is

Sk(X) = − lnDet(X) : intSk
+ → R;

the parameter of this barrier, by definition, is θ(Sk) = k 6).

• the canonical barrier for a Lorentz cone Lk = {x ∈ Rk | xk ≥
√

x2
1 + ... + x2

k−1} is

Lk(x) = − ln(x2
k − x2

1 − ...− x2
k−1) = − ln(xT Jkx), Jk =

(−Ik−1

1

)
;

the parameter of this barrier is θ(Lk) = 2.

• The canonical barrier K for the cone K given by (Cone), by definition, is the direct sum of the
canonical barriers of the factors:

K(X) = Sk1(X1) + ... + Skp
(Xp) + Lkp+1(Xp+1) + ... + Lkm

(Xm), Xi ∈
{

intSki
+ , i ≤ p

intLki , p < i ≤ m
;

from now on, we use upper case Latin letters, like X, Y, Z, to denote elements of the space E; for such
an element X, Xi denotes the projection of X onto i-th factor in the direct product representation of E
as shown in (Cone).

The parameter of the barrier K, again by definition, is the sum of parameters of the basic barriers
involved:

θ(K) = θ(Sk1) + ... + θ(Skp) + θ(Lkp+1) + ... + θ(Lkm) =
p∑

i=1

ki + 2(m− p).

Recall that all direct factors in the direct product representation (Cone) of our “universe” E are Euclidean
spaces; the matrix factors Ski are endowed with the Frobenius inner product

〈Xi, Yi〉Ski = Tr(XiYi),

while the “arithmetic factors” Rki are endowed with the usual inner product

〈Xi, Yi〉Rki = XT
i Yi;

E itself will be regarded as a Euclidean space endowed with the direct sum of inner products on the
factors:

〈X, Y 〉E =
p∑

i=1

Tr(XiYi) +
m∑

i=p+1

XT
i Yi.

It is clearly seen that our basic barriers, same as their direct sum K, indeed are barriers for the cor-
responding cones: they are C∞-smooth on the interiors of their domains, blow up to ∞ along every
sequence of points from these interiors converging to a boundary point of the corresponding domain and
are strongly convex. To verify the latter property, it makes sense to compute explicitly the first and
the second directional derivatives of these barriers (we need the corresponding formulae in any case); to
simplify notation, we write down the derivatives of the basic functions Sk, Lk at a point x from their

6) The barrier Sk, same as the canonical barrier Lk for the Lorentz cone Lk, indeed are self-concordant
(whatever it means), and the parameters they are assigned here by definition are exactly their parameters of
self-concordance.

222 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

domain along a direction h (you should remember that in the case of Sk both the point and the direction,
in spite of their lower-case denotation, are k × k symmetric matrices):

DSk(x)[h] ≡ d
dt

∣∣∣∣
t=0

Sk(x + th) = −Tr(x−1h) = −〈x−1, h〉Sk ,

i.e.
∇Sk(x) = −x−1;

D2Sk(x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

Sk(x + th) = Tr(x−1hx−1h) = 〈x−1hx−1, h〉Sk ,

i.e.
[∇2Sk(x)]h = x−1hx−1;

DLk(x)[h] ≡ d
dt

∣∣∣∣
t=0

Lk(x + th) = −2hT Jkx
xT Jkx

,

i.e.
∇Lk(x) = − 2

xT Jkx
Jkx;

D2Lk(x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

Lk(x + th) = 4 [hT Jkx]2

[xT Jkx]2
− 2hT Jkh

xT Jx
,

i.e.
∇2Lk(x) = 4

[xT Jkx]2
JkxxT Jk − 2

xT Jkx
Jk.

(4.3.1)

From the expression for D2Sk(x)[h, h] we see that

D2Sk(x)[h, h] = Tr(x−1hx−1h) = Tr([x−1/2hx−1/2]2),

so that D2Sk(x)[h, h] is positive whenever h 6= 0. It is not difficult to prove that the same is true for
D2Lk(x)[h, h]. Thus, the canonical barriers for semidefinite and Lorentz cones are strongly convex, and
so is their direct sum K(·).

It makes sense to illustrate relatively general concepts and results to follow by how they look in
a particular case when K is the semidefinite cone Sk

+; we shall refer to this situation as to the “SDP
case”. The essence of the matter in our general case is exactly the same as in this particular one, but
“straightforward computations” which are easy in the SDP case become nearly impossible in the general
case; and we have no possibility to explain here how it is possible (it is!) to get the desired results with
minimum amount of computations.

Due to the role played by the SDP case in our exposition, we use for this case special notation, along
with the just introduced “general” one. Specifically, we denote the standard – the Frobenius – inner
product on E = Sk as 〈·, ·〉F , although feel free, if necessary, to use our “general” notation 〈·, ·〉E as well;
the associated norm is denoted by ‖ · ‖2, so that ‖X‖2 =

√
Tr(X2), X being a symmetric matrix.

4.3.2 Elementary properties of canonical barriers

Let us establish a number of simple and useful properties of canonical barriers.

Proposition 4.3.1 A canonical barrier, let it be denoted F (F can be either Sk, or Lk, or the direct
sum K of several copies of these “elementary” barriers), possesses the following properties:

(i) F is logarithmically homogeneous, the parameter of logarithmic homogeneity being −θ(F), i.e.,
the following identity holds:

t > 0, x ∈ Dom F ⇒ F (tx) = F (x)− θ(F) ln t.

• In the SDP case, i.e., when F = Sk = − lnDet(x) and x is k × k positive definite matrix,
(i) claims that

− lnDet(tx) = − lnDet(x)− k ln t,

which of course is true.

4.3. INTERIOR POINT METHODS FOR LP, CQP, AND SDP: BUILDING BLOCKS 223

(ii) Consequently, the following two equalities hold identically in x ∈ Dom F :

(a) 〈∇F (x), x〉 = −θ(F);
(b) [∇2F (x)]x = −∇F (x).

• In the SDP case, ∇F (x) = ∇Sk(x) = −x−1 and [∇2F (x)]h = ∇2Sk(x)h = x−1hx−1 (see
(4.3.1)). Here (a) becomes the identity 〈x−1, x〉F ≡ Tr(x−1x) = k, and (b) kindly informs us
that x−1xx−1 = x−1.

(iii) Consequently, k-th differential DkF (x) of F , k ≥ 1, is homogeneous, of degree −k, in x ∈ Dom F :

∀(x ∈ Dom F, t > 0, h1, ..., hk) :

DkF (tx)[h1, ..., hk] ≡ ∂kF (tx+s1h1+...+skhk)
∂s1∂s2...∂sk

∣∣∣∣
s1=...=sk=0

= t−kDkF (x)[h1, ..., hk]. (4.3.2)

Proof. (i): it is immediately seen that Sk and Lk are logarithmically homogeneous with parameters of
logarithmic homogeneity −θ(Sk), −θ(Lk), respectively; and of course the property of logarithmic homo-
geneity is stable with respect to taking direct sums of functions: if Dom Φ(u) and DomΨ(v) are closed
w.r.t. the operation of multiplying a vector by a positive scalar, and both Φ and Ψ are logarithmi-
cally homogeneous with parameters α, β, respectively, then the function Φ(u) + Ψ(v) is logarithmically
homogeneous with the parameter α + β.

(ii): To get (ii.a), it suffices to differentiate the identity

F (tx) = F (x)− θ(F) ln t

in t at t = 1:
F (tx) = F (x)− θ(F) ln t ⇒ 〈∇F (tx), x〉 =

d

dt
F (tx) = −θ(F)t−2,

and it remains to set t = 1 in the concluding identity.
Similarly, to get (ii.b), it suffices to differentiate the identity

〈∇F (x + th), x + th〉 = −θ(F)

(which is just (ii.a)) in t at t = 0, thus arriving at

〈[∇2F (x)]h, x〉+ 〈∇F (x), h〉 = 0;

since 〈[∇2F (x)]h, x〉 = 〈[∇2F (x)]x, h〉 (symmetry of partial derivatives!) and since the resulting equality

〈[∇2F (x)]x, h〉+ 〈∇F (x), h〉 = 0

holds true identically in h, we come to [∇2F (x)]x = −∇F (x).
(iii): Differentiating k times the identity

F (tx) = F (x)− θ ln t

in x, we get
tkDkF (tx)[h1, ..., hk] = DkF (x)[h1, ..., hk].

An especially nice specific feature of the barriers Sk, Lk and K is their self-duality:

Proposition 4.3.2 A canonical barrier, let it be denoted F (F can be either Sk, or Lk, or the direct
sum K of several copies of these “elementary” barriers), possesses the following property: for every
x ∈ Dom F , −∇F (x) belongs to Dom F as well, and the mapping x 7→ −∇F (x) : Dom F → Dom F is
self-inverse:

−∇F (−∇F (x)) = x ∀x ∈ Dom F. (4.3.3)

Besides this, the mapping x 7→ −∇F (x) is homogeneous of degree -1:

t > 0, x ∈ int domF ⇒ −∇F (tx) = −t−1∇F (x). (4.3.4)

224 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

• In the SDP case, i.e., when F = Sk and x is k×k semidefinite matrix, ∇F (x) = ∇Sk(x) =
−x−1, see (4.3.1), so that the above statements merely say that the mapping x 7→ x−1 is a
self-inverse one-to-one mapping of the interior of the semidefinite cone onto itself, and that
−(tx)−1 = −t−1x−1, both claims being trivially true.

4.4 Primal-dual pair of problems and primal-dual central path

4.4.1 The problem(s)

It makes sense to consider simultaneously the “problem of interest” (CP) and its conic dual; since K is
a direct product of self-dual cones, this dual is a conic problem on the same cone K. As we remember
from Lecture 1, the primal-dual pair associated with (CP) is

min
x

{
cT x : Ax−B ∈ K

}
(CP)

max
S
{〈B, S〉E : A∗S = c, S ∈ K} (CD)

Assuming that the linear mapping x 7→ Ax is an embedding (i.e., that KerA = {0} – this is Assumption
A from Lecture 1), we can write down our primal-dual pair in a symmetric geometric form (Lecture 1,
Section 1.6.1):

min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P)

max
S

{〈B, S〉E : S ∈ (L⊥ + C) ∩K
}

(D)

where L is a linear subspace in E (the image space of the linear mapping x 7→ Ax), L⊥ is the orthogonal
complement to L in E, and C ∈ E satisfies A∗C = c, i.e., 〈C,Ax〉E ≡ cT x.

To simplify things, from now on we assume that both problems (CP) and (CD) are strictly feasible.
In terms of (P) and (D) this assumption means that both the primal feasible plane L − B and the dual
feasible plane L⊥ + C intersect the interior of the cone K.

Remark 4.4.1 By the Conic Duality Theorem (Lecture 1), both (CP) and (D) are solvable with equal
optimal values:

Opt(CP) = Opt(D)

(recall that we have assumed strict primal-dual feasibility). Since (P) is equivalent to (CP), (P) is solvable
as well, and the optimal value of (P) differs from the one of (P) by 〈C, B〉E 7). It follows that the optimal
values of (P) and (D) are linked by the relation

Opt(P)−Opt(D) + 〈C, B〉E = 0. (4.4.1)

4.4.2 The central path(s)

The canonical barrier K of K induces a barrier for the feasible set X = {x | Ax−B ∈ K} of the problem
(CP) written down in the form of (C), i.e., as

min
x

{
cT x : x ∈ X}

;

this barrier is
K̂(x) = K(Ax−B) : intX → R (4.4.2)

7) Indeed, the values of the respective objectives cT x and 〈C,Ax − B〉E at the corresponding to each other
feasible solutions x of (CP) and X = Ax−B of (P) differ from each other by exactly 〈C, B〉E :

cT x− 〈C, X〉E = cT x− 〈C,Ax−B〉E = cT x− 〈A∗C, x〉E︸ ︷︷ ︸
=0 due to A∗C=c

+〈C, B〉E .

4.4. PRIMAL-DUAL PAIR OF PROBLEMS AND PRIMAL-DUAL CENTRAL PATH 225

and is indeed a barrier. Now we can apply the interior penalty scheme to trace the central path x∗(t)
associated with the resulting barrier; with some effort it can be derived from the primal-dual strict
feasibility that this central path is well-defined (i.e., that the minimizer of

K̂t(x) = tcT x + K̂(x)

on intX exists for every t ≥ 0 and is unique)8). What is important for us for the moment, is the central
path itself, not how to trace it. Moreover, it is highly instructive to pass from the central path x∗(t) in
the space of design variables to its image

X∗(t) = Ax∗(t)−B

in E. The resulting curve has a name – it is called the primal central path of the primal-dual pair (P),
(D); by its origin, it is a curve comprised of strictly feasible solutions of (P) (since it is the same – to say
that x belongs to the (interior of) the set X and to say that X = Ax−B is a (strictly) feasible solution of
(P)). A simple and very useful observation is that the primal central path can be defined solely in terms
of (P), (D) and thus is a “geometric entity” – it is independent of a particular parameterization of the
primal feasible plane L −B by the design vector x:

(*) A point X∗(t) of the primal central path is the minimizer of the aggregate

Pt(X) = t〈C,X〉E + K(X)

on the set (L −B) ∩ intK of strictly feasible solutions of (P).

This observation is just a tautology: x∗(t) is the minimizer on intX of the aggregate

K̂t(x) ≡ tcT x + K̂(x) = t〈C,Ax〉E + K(Ax−B) = Pt(Ax−B) + t〈C, B〉E ;

we see that the function P̂t(x) = Pt(Ax − B) of x ∈ intX differs from the function K̂t(x)
by a constant (depending on t) and has therefore the same minimizer x∗(t) as the function
K̂t(x). Now, when x runs through intX , the point X = Ax − B runs exactly through the
set of strictly feasible solutions of (P), so that the minimizer X∗ of Pt on the latter set and
the minimizer x∗(t) of the function P̂t(x) = Pt(Ax− B) on intX are linked by the relation
X∗ = Ax∗(t)−B.

The “analytic translation” of the above observation is as follows:

(*′) A point X∗(t) of the primal central path is exactly the strictly feasible solution X to
(P) such that the vector tC +∇K(X) ∈ E is orthogonal to L (i.e., belongs to L⊥).

Indeed, we know that X∗(t) is the unique minimizer of the smooth convex function Pt(X) =
t〈C, X〉E +K(X) on the intersection of the primal feasible plane L−B and the interior of the
cone K; a necessary and sufficient condition for a point X of this intersection to minimize
Pt over the intersection is that ∇Pt must be orthogonal to L.

• In the SDP case, a point X∗(t), t > 0, of the primal central path is uniquely defined by
the following two requirements: (1) X∗(t) Â 0 should be feasible for (P), and (2) the k × k
matrix

tC −X−1
∗ (t) = tC +∇Sk(X∗(t))

(see (4.3.1)) should belong to L⊥, i.e., should be orthogonal, w.r.t. the Frobenius inner
product, to every matrix of the form Ax.

8) In Section 4.2.1, there was no problem with the existence of the central path, since there X was assumed to
be bounded; in our now context, X not necessarily is bounded.

226 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

The dual problem (D) is in no sense “worse” than the primal problem (P) and thus also possesses the
central path, now called the dual central path S∗(t), t ≥ 0, of the primal-dual pair (P), (D). Similarly to
(*), (*′), the dual central path can be characterized as follows:

(**′) A point S∗(t), t ≥ 0, of the dual central path is the unique minimizer of the aggregate

Dt(S) = −t〈B,S〉E + K(S)

on the set of strictly feasible solutions of (D) 9). S∗(t) is exactly the strictly feasible solution
S to (D) such that the vector −tB +∇F (S) is orthogonal to L⊥ (i.e., belongs to L).

• In the SDP case, a point S∗(t), t > 0, of the dual central path is uniquely defined by the
following two requirements: (1) S∗(t) Â 0 should be feasible for (D), and (2) the k×k matrix

−tB − S−1
∗ (t) = −tB +∇Sk(S∗(t))

(see (4.3.1)) should belong to L, i.e., should be representable in the form Ax for some x.

From Proposition 4.3.2 we can derive a wonderful connection between the primal and the dual central
paths:

Theorem 4.4.1 For t > 0, the primal and the dual central paths X∗(t), S∗(t) of a (strictly feasible)
primal-dual pair (P), (D) are linked by the relations

S∗(t) = −t−1∇K(X∗(t))
X∗(t) = −t−1∇K(S∗(t))

(4.4.3)

Proof. By (*′), the vector tC+∇K(X∗(t)) belongs to L⊥, so that the vector S = −t−1∇K(X∗(t)) belongs
to the dual feasible plane L⊥+C. On the other hand, by Proposition 4.4.3 the vector−∇K(X∗(t)) belongs
to Dom K, i.e., to the interior of K; since K is a cone and t > 0, the vector S = −t−1∇F (X∗(t)) belongs
to the interior of K as well. Thus, S is a strictly feasible solution of (D). Now let us compute the gradient
of the aggregate Dt at the point S:

∇Dt(S) = −tB +∇K(−t−1∇K(X∗(t)))
= −tB + t∇K(−∇K(X∗(t)))

[we have used (4.3.4)]
= −tB − tX∗(t)

[we have used (4.3.3)]
= −t(B + X∗(t))
∈ L

[since X∗(t) is primal feasible]

Thus, S is strictly feasible for (D) and ∇Dt(S) ∈ L. But by (**′) these properties characterize S∗(t);
thus, S∗(t) = S ≡ −t−1∇K(X∗(t)). This relation, in view of Proposition 4.3.2, implies that X∗(t) =
−t−1∇K(S∗(t)). Another way to get the latter relation from the one S∗(t) = −t−1∇K(X∗(t)) is just to
refer to the primal-dual symmetry.
In fact, the connection between the primal and the dual central paths stated by Theorem 4.4.1 can be
used to characterize both the paths:

Theorem 4.4.2 Let (P), (D) be a strictly feasible primal-dual pair.
For every t > 0, there exists a unique strictly feasible solution X of (P) such that −t−1∇K(X) is a

feasible solution to (D), and this solution X is exactly X∗(t).
Similarly, for every t > 0, there exists a unique strictly feasible solution S of (D) such that

−t−1∇K(S) is a feasible solution of (P), and this solution S is exactly S∗(t).

9) Note the slight asymmetry between the definitions of the primal aggregate Pt and the dual aggregate Dt:
in the former, the linear term is t〈C, X〉E , while in the latter it is −t〈B, S〉E . This asymmetry is in complete
accordance with the fact that we write (P) as a minimization, and (D) – as a maximization problem; to write
(D) in exactly the same form as (P), we were supposed to replace B with −B, thus getting the formula for Dt

completely similar to the one for Pt.

4.4. PRIMAL-DUAL PAIR OF PROBLEMS AND PRIMAL-DUAL CENTRAL PATH 227

Proof. By primal-dual symmetry, it suffices to prove the first claim. We already know (Theorem 4.4.1)
that X = X∗(t) is a strictly feasible solution of (P) such that −t−1∇K(X) is feasible for (D); all we
need to prove is that X∗(t) is the only point with these properties, which is immediate: if X is a strictly
feasible solution of (P) such that −t−1∇K(X) is dual feasible, then −t−1∇K(X) ∈ L⊥ + C, or, which
is the same, ∇K(X) ∈ L⊥ − tC, or, which again is the same, ∇Pt(X) = tC + ∇K(X) ∈ L⊥. And
we already know from (*′) that the latter property, taken together with the strict primal feasibility, is
characteristic for X∗(t).

On the central path

As we have seen, the primal and the dual central paths are intrinsically linked one to another, and it
makes sense to think of them as of a unique entity – the primal-dual central path of the primal-dual pair
(P), (D). The primal-dual central path is just a curve (X∗(t), S∗(t)) in E × E such that the projection
of the curve on the primal space is the primal central path, and the projection of it on the dual space is
the dual central path.
To save words, from now on we refer to the primal-dual central path simply as to the central path.

The central path possesses a number of extremely nice properties; let us list some of them.

Characterization of the central path. By Theorem 4.4.2, the points (X∗(t), S∗(t)) of the central
path possess the following properties:

(CentralPath):

1. [Primal feasibility] The point X∗(t) is strictly primal feasible.

2. [Dual feasibility] The point S∗(t) is dual feasible.

3. [“Augmented complementary slackness”] The points X∗(t) and S∗(t) are linked by the
relation

S∗(t) = −t−1∇K(X∗(t)) [⇔ X∗(t) = −t−1∇K(S∗(t))].

• In the SDP case, ∇K(U) = ∇Sk(U) = −U−1 (see (4.3.1)), and the aug-
mented complementary slackness relation takes the nice form

X∗(t)S∗(t) = t−1I, (4.4.4)

where I, as usual, is the unit matrix.

In fact, the indicated properties fully characterize the central path: whenever two points X,S possess
the properties 1) - 3) with respect to some t > 0, X is nothing but X∗(t), and S is nothing but S∗(t)
(this again is said by Theorem 4.4.2).

Duality gap along the central path. Recall that for an arbitrary primal-dual feasible pair (X, S)
of the (strictly feasible!) primal-dual pair of problems (P), (D), the duality gap

DualityGap(X, S) ≡ [〈C, X〉E −Opt(P)] + [Opt(D)− 〈B,S〉E] = 〈C,X〉E − 〈B,S〉E + 〈C, B〉E
(see (4.4.1)) which measures the “total inaccuracy” of X, S as approximate solutions of the respective
problems, can be written down equivalently as 〈S,X〉E (see statement (!) in Section 1.7). Now, what is
the duality gap along the central path? The answer is immediate:

DualityGap(X∗(t), S∗(t)) = 〈S∗(t), X∗(t)〉E
= 〈−t−1∇K(X∗(t)), X∗(t)〉E

[see (4.4.3)]
= t−1θ(K)

[see Proposition 4.3.1.(ii)]

228 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

We have arrived at a wonderful result10):

Proposition 4.4.1 Under assumption of primal-dual strict feasibility, the duality gap along the central
path is inverse proportional to the penalty parameter, the proportionality coefficient being the parameter
of the canonical barrier K:

DualityGap(X∗(t), S∗(t)) =
θ(K)

t
.

In particular, both X∗(t) and S∗(t) are strictly feasible
(

θ(K)
t

)
-approximate solutions to their respective

problems:
〈C,X∗(t)〉E −Opt(P) ≤ θ(K)

t ,

Opt(D)− 〈B,S∗(t)〉E ≤ θ(K)
t .

• In the SDP case, K = Sk
+ and θ(K) = θ(Sk) = k.

We see that

All we need in order to get “quickly” good primal and dual approximate solutions, is to trace
fast the central path; if we were interested to solve only one of the problems (P), (D), it
would be sufficient to trace fast the associated – primal or dual – component of this path.
The quality guarantees we get in such a process depend – in a completely universal fashion!
– solely on the value t of the penalty parameter we have managed to achieve and on the
value of the parameter of the canonical barrier K and are completely independent of other
elements of the data.

Near the central path

The conclusion we have just made is a bit too optimistic: well, our life when moving along the central
path would be just fine (at the very least, we would know how good are the solutions we already have),
but how could we move exactly along the path? Among the relations (CentralPath.1-3) defining the path
the first two are “simple” – just linear, but the third is in fact a system of nonlinear equations, and we
have no hope to satisfy these equations exactly. Thus, we arrive at the crucial question which, a bit
informally, sounds as follows:

How close (and in what sense close) should we be to the path in order for our life to be
essentially as nice as if we were exactly on the path?

There are several ways to answer this question; we will present the simplest one.

A distance to the central path. Our canonical barrier K(·) is a strongly convex smooth function
on intK; in particular, its Hessian matrix ∇2K(Y), taken at a point Y ∈ intK, is positive definite. We
can use the inverse of this matrix to measure the distances between points of E, thus arriving at the
norm

‖H‖Y =
√
〈[∇2K(Y)]−1H, H〉E .

It turns out that

A good measure of proximity of a strictly feasible primal-dual pair Z = (X, S) to a point
Z∗(t) = (X∗(t), S∗(t)) from the primal-dual central path is the quantity

dist(Z,Z∗(t)) ≡ ‖tS +∇K(X)‖X ≡
√
〈[∇2K(X)]−1(tS +∇K(X)), tS +∇K(X)〉E

10) Which, among other, much more important consequences, explains the name “augmented complementary
slackness” of the property 10.3): at the primal-dual pair of optimal solutions X∗, S∗ the duality gap should be
zero: 〈S∗, X∗〉E = 0. Property 10.3, as we just have seen, implies that the duality gap at a primal-dual pair

(X∗(t), S∗(t)) from the central path, although nonzero, is “controllable” – θ(K)
t

– and becomes small as t grows.

4.4. PRIMAL-DUAL PAIR OF PROBLEMS AND PRIMAL-DUAL CENTRAL PATH 229

Although written in a non-symmetric w.r.t. X, S form, this quantity is in fact symmetric in
X, S: it turns out that

‖tS +∇K(X)‖X = ‖tX +∇K(S)‖S (4.4.5)

for all t > 0 and S, X ∈ intK.

Observe that dist(Z, Z∗(t)) ≥ 0, and dist(Z, Z∗(t)) = 0 if and only if S = −t−1∇K(X), which, for
a strictly primal-dual feasible pair Z = (X, S), means that Z = Z∗(t) (see the characterization of the
primal-dual central path); thus, dist(Z,Z∗(t)) indeed can be viewed as a kind of distance from Z to Z∗(t).

In the SDP case X, S are k × k symmetric matrices, and

dist2(Z,Z∗(t)) = ‖tS +∇Sk(X)‖2X = 〈[∇2Sk(X)]−1(tS +∇Sk(X)), tS +∇Sk(X)〉F
= Tr

(
X(tS −X−1)X(tS −X−1)

)
[see (4.3.1)]

= Tr([tX1/2SX1/2 − I]2),

so that

dist2(Z,Z∗(t)) = Tr
(
X(tS −X−1)X(tS −X−1)

)
= ‖tX1/2SX1/2 − I‖22. (4.4.6)

Besides this,

‖tX1/2SX1/2 − I‖22 = Tr
(
[tX1/2SX1/2 − I]2

)
= Tr

(
t2X1/2SX1/2X1/2SX1/2 − 2tX1/2SX1/2 + I

)
= Tr(t2X1/2SXSX1/2)− 2tTr(X1/2SX1/2) + Tr(I)
= Tr(t2XSXS − 2tXS + I)
= Tr(t2SXSX − 2tSX + I)
= Tr(t2S1/2XS1/2S1/2XS1/2 − 2tS1/2XS1/2 + I)
= Tr([tS1/2XS1/2 − I]2),

i.e., (4.4.5) indeed is true.

In a moderate dist(·, Z∗(·))-neighbourhood of the central path. It turns out that in such
a neighbourhood all is essentially as fine as at the central path itself:

A. Whenever Z = (X,S) is a pair of primal-dual strictly feasible solutions to (P), (D) such
that

dist(Z, Z∗(t)) ≤ 1, (Close)

Z is “essentially as good as Z∗(t)”, namely, the duality gap at (X,S) is essentially as small
as at the point Z∗(t):

DualityGap(X, S) = 〈S,X〉E ≤ 2DualityGap(Z∗(t)) =
2θ(K)

t
. (4.4.7)

Let us check A in the SDP case. Let (t, X, S) satisfy the premise of A. The duality gap
at the pair (X, S) of strictly primal-dual feasible solutions is

DualityGap(X, S) = 〈X, S〉F = Tr(XS),

while by (4.4.6) the relation dist((S, X), Z∗(t)) ≤ 1 means that

‖tX1/2SX1/2 − I‖2 ≤ 1,

whence

‖X1/2SX1/2 − t−1I‖2 ≤ 1

t
.

230 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Denoting by δ the vector of eigenvalues of the symmetric matrix X1/2SX1/2, we conclude

that
k∑

i=1

(δi − t−1)2 ≤ t−2, whence

DualityGap(X, S) = Tr(XS) = Tr(X1/2SX1/2) =
k∑

i=1

δi

≤ kt−1 +
k∑

i=1

|δi − t−1| ≤ kt−1 +
√

k

√
k∑

i=1

(δi − t−1)2

≤ kt−1 +
√

kt−1,

and (4.4.7) follows.

It follows from A that

For our purposes, it is essentially the same – to move along the primal-dual central path, or
to trace this path, staying in its “time-space” neighbourhood

Nκ = {(t,X, S) | X ∈ L −B, S ∈ L⊥ + C, t > 0, dist((X, S), (X∗(t), S∗(t))) ≤ κ} (4.4.8)

with certain κ ≤ 1.

Most of the interior point methods for LP, CQP, and SDP, including those most powerful in practice,
solve the primal-dual pair (P), (D) by tracing the central path11), although not all of them keep the
iterates in NO(1); some of the methods work in much wider neighbourhoods of the central path, in order
to avoid slowing down when passing “highly curved” segments of the path. At the level of ideas, these
“long step path following methods” essentially do not differ from the “short step” ones – those keeping
the iterates in NO(1); this is why in the analysis part of our forthcoming presentation we restrict ourselves
with the short-step methods. It should be added that as far as the theoretical efficiency estimates are
concerned, the short-step methods yield the best known so far complexity bounds for LP, CQP and SDP,
and are essentially better than the long-step methods (although in practice the long-step methods usually
outperform their short-step counterparts).

4.5 Tracing the central path

4.5.1 The path-following scheme

Assume we are solving a strictly feasible primal-dual pair of problems (P), (D) and intend to trace the
associated central path. Essentially all we need is a mechanism for updating a current iterate (t̄, X̄, S̄)
such that t̄ > 0, X̄ is strictly primal feasible, S̄ is strictly dual feasible, and (X̄, S̄) is “good”, in certain
precise sense, approximation of the point Z∗(t̄) = (X∗(t̄), S∗(t̄)) on the central path, into a new iterate
(t+, X+, S+) with similar properties and a larger value t+ > t̄ of the penalty parameter. Given such an
updating and iterating it, we indeed shall trace the central path, with all the benefits (see above) coming
from the latter fact12) How could we construct the required updating? Recalling the description of the
central path, we see that our question is:

11) There exist also potential reduction interior point methods which do not take explicit care of tracing the
central path; an example is the very first IP method for LP – the method of Karmarkar. The potential reduction
IP methods are beyond the scope of our course, which is not a big loss for a practically oriented reader, since, as
a practical tool, these methods are thought of to be obsolete.

12) Of course, besides knowing how to trace the central path, we should also know how to initialize this process
– how to come close to the path to be able to start its tracing. There are different techniques to resolve this
“initialization difficulty”, and basically all of them achieve the goal by using the same path-tracing technique,
now applied to an appropriate auxiliary problem where the “initialization difficulty” does not arise at all. Thus,
at the level of ideas the initialization techniques do not add something essentially new, which allows us to skip in
our presentation all initialization-related issues.

4.5. TRACING THE CENTRAL PATH 231

Given a triple (t̄, X̄, S̄) which satisfies the relations

X ∈ L −B,
S ∈ L⊥ + C

(4.5.1)

(which is in fact a system of linear equations) and approximately satisfies the system of
nonlinear equations

Gt(X,S) ≡ S + t−1∇K(X) = 0, (4.5.2)

update it into a new triple (t+, X+, S+) with the same properties and t+ > t̄.

Since the left hand side G(·) in our system of nonlinear equations is smooth around (t̄, X̄, S̄) (recall that
X̄ was assumed to be strictly primal feasible), the most natural, from the viewpoint of Computational
Mathematics, way to achieve our target is as follows:

1. We choose somehow a desired new value t+ > t̄ of the penalty parameter;

2. We linearize the left hand side Gt+(X,S) of the system of nonlinear equations (4.5.2) at the point
(X̄, S̄), and replace (4.5.2) with the linearized system of equations

Gt+(X̄, S̄) +
∂Gt+(X̄, S̄)

∂X
(X − X̄) +

∂Gt+(X̄, S̄)
∂S

(S − S̄) = 0 (4.5.3)

3. We define the corrections ∆X, ∆S from the requirement that the updated pair X+ = X̄ + ∆X,
S+ = S̄ + ∆S must satisfy (4.5.1) and the linearized version (4.5.3) of (4.5.2). In other words, the
corrections should solve the system

∆X ∈ L,
∆S ∈ L⊥,

Gt+(X̄, S̄) +
∂Gt+ (X̄,S̄)

∂X ∆X +
∂Gt+ (X̄,S̄)

∂S ∆S = 0
(4.5.4)

4. Finally, we define X+ and S+ as
X+ = X̄ + ∆X,
S+ = S̄ + ∆S.

(4.5.5)

The primal-dual IP methods we are describing basically fit the outlined scheme, up to the following two
important points:

• If the current iterate (X̄, S̄) is not enough close to Z∗(t̄), and/or if the desired improvement t+− t̄ is
too large, the corrections given by the outlined scheme may be too large; as a result, the updating
(4.5.5) as it is may be inappropriate, e.g., X+, or S+, or both, may be kicked out of the cone
K. (Why not: linearized system (4.5.3) approximates well the “true” system (4.5.2) only locally,
and we have no reasons to trust in corrections coming from the linearized system, when these
corrections are large.)
There is a standard way to overcome the outlined difficulty – to use the corrections in a damped
fashion, namely, to replace the updating (4.5.5) with

X+ = X̄ + α∆X,
S+ = S̄ + β∆S,

(4.5.6)

and to choose the stepsizes α > 0, β > 0 from additional “safety” considerations, like ensuring
the updated pair (X+, S+) to reside in the interior of K, or enforcing it to stay in a desired
neighbourhood of the central path, or whatever else. In IP methods, the solution (∆X, ∆S) of
(4.5.4) plays the role of search direction (and this is how it is called), and the actual corrections
are proportional to the search ones rather than to be exactly the same. In this sense the situation
is completely similar to the one with the Newton method from Section 4.2.2 (which is natural: the
latter method is exactly the linearization method for solving the Fermat equation ∇f(x) = 0).

232 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

• The “augmented complementary slackness” system (4.5.2) can be written down in many different
forms which are equivalent to each other in the sense that they share a common solution set. E.g.,
we have the same reasons to express the augmented complementary slackness requirement by the
nonlinear system (4.5.2) as to express it by the system

Ĝt(X, S) ≡ X + t−1∇K(S) = 0,

not speaking about other possibilities. And although all systems of nonlinear equations

Ht(X, S) = 0

expressing the augmented complementary slackness are “equivalent” in the sense that they share a
common solution set, their linearizations are different and thus – lead to different search directions
and finally to different path-following methods. Choosing appropriate (in general even varying
from iteration to iteration) analytic representation of the augmented complementary slackness
requirement, one can gain a lot in the performance of the resulting path-following method, and the
IP machinery facilitates this flexibility (see “SDP case examples” below).

4.5.2 Speed of path-tracing

In the LP-CQP-SDP situation, the speed at which the best, from the theoretical viewpoint, path-following
methods manage to trace the path, is inverse proportional to the square root of the parameter θ(K)
of the underlying canonical barrier. It means the following. Started at a point (t0, X0, S0) from the
neighbourhood N0.1 of the central path, the method after O(1)

√
θ(K) steps reaches the point (t1 =

2t0, X1, S1) from the same neighbourhood, after the same O(1)
√

θ(K) steps more reaches the point
(t2 = 22t0, X2, S2) from the neighbourhood, and so on – it takes the method a fixed number O(1)

√
θ(K)

steps to increase by factor 2 the current value of the penalty parameter, staying all the time in N0.1. By
(4.4.7) it means that every O(1)

√
θ(K) steps of the method reduce the (upper bound on the) inaccuracy

of current approximate solutions by factor 2, or, which is the same, add a fixed number of accuracy
digits to these solutions. Thus, “the cost of an accuracy digit” for the (best) path-following methods is
O(1)

√
θ(K) steps. To realize what this indeed mean, we should, of course, know how “heavy” a step is

– what is its arithmetic cost. Well, the arithmetic cost of a step for the “cheapest among the fastest” IP
methods as applied to (CP) is as if all operations carried out at a step were those required by

1. Assembling, given a point X ∈ intK, the symmetric n× n matrix (n = dim x)

H = A∗[∇2K(X)]A;

2. Subsequent Choleski factorization of the matrix H (which, due to its origin, is symmetric positive
definite and thus admits Choleski decomposition H = DDT with lower triangular D).

Looking at (Cone), (CP) and (4.3.1), we immediately conclude that the arithmetic cost of assembling
and factorizing H is polynomial in the size dim Data(·) of the data defining (CP), and that the parameter
θ(K) also is polynomial in this size. Thus, the cost of an accuracy digit for the methods in question is
polynomial in the size of the data, as is required from polynomial time methods13). Explicit complexity
bounds for LPb, CQPb, SDPb are given in Sections 4.6.1, 4.6.2, 4.6.3, respectively.

4.5.3 The primal and the dual path-following methods

The simplest way to implement the path-following scheme from Section 4.5.1 is to linearize the augmented
complementary slackness equations (4.5.2) as they are, ignoring the option to rewrite these equations

13) Strictly speaking, the outlined complexity considerations are applicable to the “highway” phase of the
solution process, after we once have reached the neighbourhood N0.1 of the central path. However, the results of
our considerations remain unchanged after the initialization expenses are taken into account, see Section 4.6.

4.5. TRACING THE CENTRAL PATH 233

equivalently before linearization. Let us look at the resulting method in more details. Linearizing (4.5.2)
at a current iterate X̄, S̄, we get the vector equation

t+(S̄ + ∆S) +∇K(X̄) + [∇2K(X̄)]∆X = 0,

where t+ is the target value of the penalty parameter. The system (4.5.4) now becomes

(a) ∆X ∈ L
m

(a′) ∆X = A∆x [∆x ∈ Rn]
(b) ∆S ∈ L⊥

m
(b′) A∗∆S = 0
(c) t+[S̄ + ∆S] +∇K(X̄) + [∇2K(X̄)]∆X = 0;

(4.5.7)

the unknowns here are ∆X, ∆S and ∆x. To process the system, we eliminate ∆X via (a′) and multiply
both sides of (c) by A∗, thus getting the equation

A∗[∇2K(X̄)]A︸ ︷︷ ︸
H

∆x + [t+A∗[S̄ + ∆S] +A∗∇K(X̄)] = 0. (4.5.8)

Note that A∗[S̄ + ∆S] = c is the objective of (CP) (indeed, S̄ ∈ L⊥ + C, i.e., A∗S̄ = c, while A∗∆S = 0
by (b′)). Consequently, (4.5.8) becomes the primal Newton system

H∆x = −[t+c +A∗∇K(X̄)]. (4.5.9)

Solving this system (which is possible – it is easily seen that the n× n matrix H is positive definite), we
get ∆x and then set

∆X = A∆x,
∆S = −t−1

+ [∇K(X̄) + [∇2K(X̄)∆X]− S̄,
(4.5.10)

thus getting a solution to (4.5.7). Restricting ourselves with the stepsizes α = β = 1 (see (4.5.6)), we
come to the “closed form” description of the method:

(a) t 7→ t+ > t
(b) x 7→ x+ = x +

(−[A∗(∇2K(X))A]−1[t+c +A∗∇K(X)]
)

︸ ︷︷ ︸
∆x

,

(c) S 7→ S+ = −t−1
+ [∇K(X) + [∇2K(X)]A∆x],

(4.5.11)

where x is the current iterate in the space Rn of design variables and X = Ax − B is its image in the
space E.

The resulting scheme admits a quite natural explanation. Consider the function

F (x) = K(Ax−B);

you can immediately verify that this function is a barrier for the feasible set of (CP). Let also

Ft(x) = tcT x + F (x)

be the associated barrier-generated family of penalized objectives. Relation (4.5.11.b) says that the
iterates in the space of design variables are updated according to

x 7→ x+ = x− [∇2Ft+(x)]−1∇Ft+(x),

i.e., the process in the space of design variables is exactly the process (4.2.1) from Section 4.2.3.
Note that (4.5.11) is, essentially, a purely primal process (this is where the name of the method comes

from). Indeed, the dual iterates S, S+ just do not appear in formulas for x+, X+, and in fact the dual
solutions are no more than “shadows” of the primal ones.

234 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Remark 4.5.1 When constructing the primal path-following method, we have started with the augmented
slackness equations in form (4.5.2). Needless to say, we could start our developments with the same
conditions written down in the “swapped” form

X + t−1∇K(S) = 0

as well, thus coming to what is called “dual path-following method”. Of course, as applied to a given pair
(P), (D), the dual path-following method differs from the primal one. However, the constructions and
results related to the dual path-following method require no special care – they can be obtained from their
“primal counterparts” just by swapping “primal” and “dual” entities.

The complexity analysis of the primal path-following method can be summarized in the following

Theorem 4.5.1 Let 0 < χ ≤ κ ≤ 0.1. Assume that we are given a starting point (t0, x0, S0) such that
t0 > 0 and the point

(X0 = Ax0 −B, S0)

is κ-close to Z∗(t0):

dist((X0, S0), Z∗(t0)) ≤ κ.

Starting with (t0, x0, X0, S0), let us iterate process (4.5.11) equipped with the penalty updating policy

t+ =

(
1 +

χ√
θ(K)

)
t (4.5.12)

i.e., let us build the iterates (ti, xi, Xi, Si) according to

ti =
(

1 + χ√
θ(K)

)
ti−1,

xi = xi−1 − [A∗(∇2K(Xi−1))A]−1[tic +A∗∇K(Xi−1)]︸ ︷︷ ︸
∆xi

,

Xi = Axi −B,
Si = −t−1

i [∇K(Xi−1) + [∇2K(Xi−1)]A∆xi]

The resulting process is well-defined and generates strictly primal-dual feasible pairs (Xi, Si) such that
(ti, Xi, Si) stay in the neighbourhood Nκ of the primal-dual central path.

The theorem says that with properly chosen κ, χ (e.g., κ = χ = 0.1) we can, getting once close to
the primal-dual central path, trace it by the primal path-following method, keeping the iterates in Nκ-
neighbourhood of the path and increasing the penalty parameter by an absolute constant factor every
O(

√
θ(K)) steps – exactly as it was claimed in sections 4.2.3, 4.5.2. This fact is extremely important

theoretically; in particular, it underlies the polynomial time complexity bounds for LP, CQP and SDP
from Section 4.6 below. As a practical tool, the primal and the dual path-following methods, at least in
their short-step form presented above, are not that attractive. The computational power of the methods
can be improved by passing to appropriate large-step versions of the algorithms, but even these versions
are thought of to be inferior as compared to “true” primal-dual path-following methods (those which
“indeed work with both (P) and (D)”, see below). There are, however, cases when the primal or the dual
path-following scheme seems to be unavoidable; these are, essentially, the situations where the pair (P),
(D) is “highly asymmetric”, e.g., (P) and (D) have different by order of magnitudes design dimensions
dimL, dimL⊥. Here it becomes too expensive computationally to treat (P), (D) in a “nearly symmetric
way”, and it is better to focus solely on the problem with smaller design dimension.

4.5. TRACING THE CENTRAL PATH 235

To get an impression of how the primal path-following method works, here is a picture:

What you see is the 2D feasible set of a toy SDP (K = S3
+). “Continuous curve” is the primal central

path; dots are iterates xi of the algorithm. We cannot draw the dual solutions, since they “live” in 4-

dimensional space (dimL⊥ = dimS3 − dimL = 6− 2 = 4)

Here are the corresponding numbers:

Itr# Objective Duality Gap Itr# Objective Duality Gap
1 -0.100000 2.96 7 -1.359870 8.4e-4
2 -0.906963 0.51 8 -1.360259 2.1e-4
3 -1.212689 0.19 9 -1.360374 5.3e-5
4 -1.301082 6.9e-2 10 -1.360397 1.4e-5
5 -1.349584 2.1e-2 11 -1.360404 3.8e-6
6 -1.356463 4.7e-3 12 -1.360406 9.5e-7

4.5.4 The SDP case

In what follows, we specialize the primal-dual path-following scheme in the SDP case and carry out its
complexity analysis.

The path-following scheme in SDP

Let us look at the outlined scheme in the SDP case. Here the system of nonlinear equations (4.5.2)
becomes (see (4.3.1))

Gt(X, S) ≡ S − t−1X−1 = 0, (4.5.13)

X, S being positive definite k × k symmetric matrices.
Recall that our generic scheme of a path-following IP method suggests, given a current triple (t̄, X̄, S̄)

with positive t̄ and strictly primal, respectively, dual feasible X̄ and S̄, to update the this triple into a
new triple (t+, X+, S+) of the same type as follows:

236 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

(i) First, we somehow rewrite the system (4.5.13) as an equivalent system

Ḡt(X, S) = 0; (4.5.14)

(ii) Second, we choose somehow a new value t+ > t̄ of the penalty parameter and linearize system
(4.5.14) (with t set to t+) at the point (X̄, S̄), thus coming to the system of linear equations

∂Ḡt+(X̄, S̄)
∂X

∆X +
∂Ḡt+(X̄, S̄)

∂S
∆S = −Ḡt+(X̄, S̄), (4.5.15)

for the “corrections” (∆X, ∆S);
We add to (4.5.15) the system of linear equations on ∆X, ∆S expressing the requirement that a shift

of (X̄, S̄) in the direction (∆X, ∆S) should preserve the validity of the linear constraints in (P), (D), i.e.,
the equations saying that ∆X ∈ L, ∆S ∈ L⊥. These linear equations can be written down as

∆X = A∆x [⇔ ∆X ∈ L]
A∗∆S = 0 [⇔ ∆S ∈ L⊥] (4.5.16)

(iii) We solve the system of linear equations (4.5.15), (4.5.16), thus obtaining a primal-dual search
direction (∆X, ∆S), and update current iterates according to

X+ = X̄ + α∆x, S+ = S̄ + β∆S

where the primal and the dual stepsizes α, β are given by certain “side requirements”.

The major “degree of freedom” of the construction comes from (i) – from how we construct the system
(4.5.14). A very popular way to handle (i), the way which indeed leads to primal-dual methods, starts
from rewriting (4.5.13) in a form symmetric w.r.t. X and S. To this end we first observe that (4.5.13) is
equivalent to every one of the following two matrix equations:

XS = t−1I; SX = t−1I.

Adding these equations, we get a “symmetric” w.r.t. X, S matrix equation

XS + SX = 2t−1I, (4.5.17)

which, by its origin, is a consequence of (4.5.13). On a closest inspection, it turns out that (4.5.17),
regarded as a matrix equation with positive definite symmetric matrices, is equivalent to (4.5.13). It is
possible to use in the role of (4.5.14) the matrix equation (4.5.17) as it is; this policy leads to the so
called AHO (Alizadeh-Overton-Haeberly) search direction and the “XS+SX” primal-dual path-following
method.

It is also possible to use a “scaled” version of (4.5.17). Namely, let us choose somehow a positive
definite scaling matrix Q and observe that our original matrix equation (4.5.13) says that S = t−1X−1,
which is exactly the same as to say that Q−1SQ−1 = t−1(QXQ)−1; the latter, in turn, is equivalent to
every one of the matrix equations

QXSQ−1 = t−1I; Q−1SXQ = t−1I;

Adding these equations, we get the scaled version of (4.5.17):

QXSQ−1 + Q−1SXQ = 2t−1I, (4.5.18)

which, same as (4.5.17) itself, is equivalent to (4.5.13).
With (4.5.18) playing the role of (4.5.14), we get a quite flexible scheme with a huge freedom for choosing
the scaling matrix Q, which in particular can be varied from iteration to iteration. As we shall see
in a while, this freedom reflects the intrinsic (and extremely important in the interior-point context)
symmetries of the semidefinite cone.

4.5. TRACING THE CENTRAL PATH 237

Analysis of the path-following methods based on search directions coming from (4.5.18) (“Zhang’s
family of search directions”) simplifies a lot when at every iteration we choose its own scaling matrix and
ensure that the matrices

S̃ = Q−1S̄Q−1, X̂ = QX̄Q

commute (X̄, S̄ are the iterates to be updated); we call such a policy a “commutative scaling”. Popular
commutative scalings are:

1. Q = S̄1/2 (S̃ = I, X̂ = S̄1/2X̄S̄1/2) (the “XS” method);

2. Q = X̄−1/2 (S̃ = X̄1/2S̄X̄1/2, X̂ = I) (the “SX” method);

3. Q is such that S̃ = X̂ (the NT (Nesterov-Todd) method, extremely attractive and deep)

If X̄ and S̄ were just positive reals, the formula for Q would be simple: Q =
(

S̄
X̄

)1/4

.
In the matrix case this simple formula becomes a bit more complicated (to make our
life easier, below we write X instead of X̄ and S instead of S̄):

Q = P 1/2, P = X−1/2(X1/2SX1/2)−1/2X1/2S.

We should verify that (a) P is symmetric positive definite, so that Q is well-defined,
and that (b) Q−1SQ−1 = QXQ.
(a): Let us first verify that P is symmetric:

P ? =? PT

m
X−1/2(X1/2SX1/2)−1/2X1/2S ? =? SX1/2(X1/2SX1/2)−1/2X−1/2

m(
X−1/2(X1/2SX1/2)−1/2X1/2S

) (
X1/2(X1/2SX1/2)1/2X−1/2S−1

)
? =? I

m
X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)1/2X−1/2S−1 ? =? I

m
X−1/2(X1/2SX1/2)X−1/2S−1 ? =? I

and the concluding ? =? indeed is =.
Now let us verify that P is positive definite. Recall that the spectrum of the product of
two square matrices, symmetric or not, remains unchanged when swapping the factors.
Therefore, denoting σ(A) the spectrum of A, we have

σ(P) = σ
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= σ

(
(X1/2SX1/2)−1/2X1/2SX−1/2

)
= σ

(
(X1/2SX1/2)−1/2(X1/2SX1/2)X−1

)
= σ

(
(X1/2SX1/2)1/2X−1

)
= σ

(
X−1/2(X1/2SX1/2)1/2X−1/2

)
,

and the argument of the concluding σ(·) clearly is a positive definite symmetric matrix.
Thus, the spectrum of symmetric matrix P is positive, i.e., P is positive definite.
(b): To verify that QXQ = Q−1SQ−1, i.e., that P 1/2XP 1/2 = P−1/2SP−1/2, is the
same as to verify that PXP = S. The latter equality is given by the following compu-
tation:

PXP =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
X

(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)−1/2X1/2S
= X−1/2X1/2S
= S.

238 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

You should not think that Nesterov and Todd guessed the formula for this scaling ma-
trix. They did much more: they have developed an extremely deep theory (covering the
general LP-CQP-SDP case, not just the SDP one!) which, among other things, guar-
antees that the desired scaling matrix exists (and even is unique). After the existence
is established, it becomes much easier (although still not that easy) to find an explicit
formula for Q.

Complexity analysis

We are about to carry out the complexity analysis of the primal-dual path-following methods based
on “commutative” Zhang’s scalings. This analysis, although not that difficult, is more technical than
whatever else in our course, and a non-interested reader may skip it without any harm.

Scalings. We already have mentioned what a scaling of Sk
+ is: this is the linear one-to-one transfor-

mation of Sk given by the formula
H 7→ QHQT , (Scl)

where Q is a nonsingular scaling matrix. It is immediately seen that (Scl) is a symmetry of the semidefinite
cone Sk

+ – it maps the cone onto itself. This family of symmetries is quite rich: for every pair of points
A,B from the interior of the cone, there exists a scaling which maps A onto B, e.g., the scaling

H 7→ (B1/2A−1/2︸ ︷︷ ︸
Q

)H(A−1/2B1/2︸ ︷︷ ︸
QT

).

Essentially, this is exactly the existence of that rich family of symmetries of the underlying cones which
makes SDP (same as LP and CQP, where the cones also are “perfectly symmetric”) especially well suited
for IP methods.

In what follows we will be interested in scalings associated with positive definite scaling matrices.
The scaling given by such a matrix Q (X,S,...) will be denoted by Q (resp., X ,S,...):

Q[H] = QHQ.

Given a problem of interest (CP) (where K = Sk
+) and a scaling matrix Q Â 0, we can scale the problem,

i.e., pass from it to the problem
min

x

{
cT x : Q [Ax−B] º 0

} Q(CP)

which, of course, is equivalent to (CP) (since Q[H] is positive semidefinite iff H is so). In terms of
“geometric reformulation” (P) of (CP), this transformation is nothing but the substitution of variables

QXQ = Y ⇔ X = Q−1Y Q−1;

with respect to Y -variables, (P) is the problem

min
Y

{
Tr(C[Q−1Y Q−1]) : Y ∈ Q(L)−Q[B], Y º 0

}
,

i.e., the problem
min

Y

{
Tr(C̃Y) : Y ∈ L̂ − B̂, Y º 0

}
[
C̃ = Q−1CQ−1, B̂ = QBQ, L̂ = Im(QA) = Q(L)

] (P̂)

The problem dual to (P̂) is
max

Z

{
Tr(B̂Z) : Z ∈ L̂⊥ + Ĉ, Z º 0

}
. (D̃)

It is immediate to realize what is L̂⊥:

〈Z, QXQ〉F = Tr(ZQXQ) = Tr(QZQX) = 〈QZQ, X〉F ;

4.5. TRACING THE CENTRAL PATH 239

thus, Z is orthogonal to every matrix from L̂, i.e., to every matrix of the form QXQ with X ∈ L iff the
matrix QZQ is orthogonal to every matrix from L, i.e., iff QZQ ∈ L⊥. It follows that

L̂⊥ = Q−1(L⊥).

Thus, when acting on the primal-dual pair (P), (D) of SDP’s, a scaling, given by a matrix Q Â 0, converts
it into another primal-dual pair of problems, and this new pair is as follows:

• The “primal” geometric data – the subspace L and the primal shift B (which has a part-time job
to be the dual objective as well) – are replaced with their images under the mapping Q;

• The “dual” geometric data – the subspace L⊥ and the dual shift C (it is the primal objective as
well) – are replaced with their images under the mapping Q−1 inverse to Q; this inverse mapping again
is a scaling, the scaling matrix being Q−1.

We see that it makes sense to speak about primal-dual scaling which acts on both the primal and
the dual variables and maps a primal variable X onto QXQ, and a dual variable S onto Q−1SQ−1.
Formally speaking, the primal-dual scaling associated with a matrix Q Â 0 is the linear transformation
(X,S) 7→ (QXQ, Q−1SQ−1) of the direct product of two copies of Sk (the “primal” and the “dual” ones).
A primal-dual scaling acts naturally on different entities associated with a primal-dual pair (P), (S), in
particular, at:

• the pair (P), (D) itself – it is converted into another primal-dual pair of problems (P̂), (D̃);

• a primal-dual feasible pair (X,S) of solutions to (P), (D) – it is converted to the pair (X̂ =
QXQ, S̃ = Q−1SQ−1), which, as it is immediately seen, is a pair of feasible solutions to (P̂), (D̃).
Note that the primal-dual scaling preserves strict feasibility and the duality gap:

DualityGapP,D(X,S) = Tr(XS) = Tr(QXSQ−1) = Tr(X̂S̃) = DualityGap
P̂,D̃

(X̂, S̃);

• the primal-dual central path (X∗(·), S∗(·)) of (P), (D); it is converted into the curve (X̂∗(t) =
QX∗(t)Q, S̃∗(t) = Q−1S∗(t)Q−1), which is nothing but the primal-dual central path Z(t) of the
primal-dual pair (P̂), (D̃).
The latter fact can be easily derived from the characterization of the primal-dual central path; a
more instructive derivation is based on the fact that our “hero” – the barrier Sk(·) – is “semi-
invariant” w.r.t. scaling:

Sk(Q(X)) = − lnDet(QXQ) = − lnDet(X)− 2 ln Det(Q) = Sk(X) + const(Q).

Now, a point on the primal central path of the problem (P̂) associated with penalty parameter t,
let this point be temporarily denoted by Y (t), is the unique minimizer of the aggregate

St
k(Y) = t〈Q−1CQ−1, Y 〉F + Sk(Y) ≡ tTr(Q−1CQ−1Y) + Sk(Y)

over the set of strictly feasible solutions of (P̂). The latter set is exactly the image of the set of
strictly feasible solutions of (P) under the transformation Q, so that Y (t) is the image, under the
same transformation, of the point, let it be called X(t), which minimizes the aggregate

St
k(QXQ) = tTr((Q−1CQ−1)(QXQ)) + Sk(QXQ) = tTr(CX) + Sk(X) + const(Q)

over the set of strictly feasible solutions to (P). We see that X(t) is exactly the point X∗(t) on
the primal central path associated with problem (P). Thus, the point Y (t) of the primal central
path associated with (P̂) is nothing but X̂∗(t) = QX∗(t)Q. Similarly, the point of the central path
associated with the problem (D̃) is exactly S̃∗(t) = Q−1S∗(t)Q−1.

• the neighbourhood Nκ of the primal-dual central path Z(·) associated with the pair of problems
(P), (D) (see (4.4.8)). As you can guess, the image of Nκ is exactly the neighbourhood N κ, given
by (4.4.8), of the primal-dual central path Z(·) of (P̂), (D̃).

240 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

The latter fact is immediate: for a pair (X, S) of strictly feasible primal and dual solutions to (P),
(D) and a t > 0 we have (see (4.4.6)):

dist2((X̂, S̃), Z∗(t)) = Tr
(
[QXQ](tQ−1SQ−1 − [QXQ]−1)[QXQ](tQ−1SQ−1 − [QXQ]−1)

)
= Tr

(
QX(tS −X−1)X(tS −X−1)Q−1

)
= Tr

(
X(tS −X−1)X(tS −X−1)

)
= dist2((X,S), Z∗(t)).

Primal-dual short-step path-following methods based on commutative scalings.
Path-following methods we are about to consider trace the primal-dual central path of (P), (D), staying
in Nκ-neighbourhood of the path; here κ ≤ 0.1 is fixed. The path is traced by iterating the following
updating:

(U): Given a current pair of strictly feasible primal and dual solutions (X̄, S̄) such that the
triple (

t̄ =
k

Tr(X̄S̄)
, X̄, S̄

)
(4.5.19)

belongs to Nκ, i.e. (see (4.4.6))

‖t̄X̄1/2S̄X̄1/2 − I‖2 ≤ κ, (4.5.20)

we

1. Choose the new value t+ of the penalty parameter according to

t+ =
(

1− χ√
k

)−1

t̄, (4.5.21)

where χ ∈ (0, 1) is a parameter of the method;

2. Choose somehow the scaling matrix Q Â 0 such that the matrices X̂ = QX̄Q and
S̃ = Q−1S̄Q−1 commute with each other;

3. Linearize the equation

QXSQ−1 + Q−1SXQ =
2
t+

I

at the point (X̄, S̄), thus coming to the equation

Q[∆XS+X∆S]Q−1+Q−1[∆SX +S∆X]Q =
2
t+

I− [QX̄S̄Q−1+Q−1S̄X̄Q]; (4.5.22)

4. Add to (4.5.22) the linear equations

∆X ∈ L,
∆S ∈ L⊥; (4.5.23)

5. Solve system (4.5.22), (4.5.23), thus getting “primal-dual search direction” (∆X, ∆S);

6. Update current primal-dual solutions (X̄, S̄) into a new pair (X+, S+) according to

X+ = X̄ + ∆X, S+ = S̄ + ∆S.

We already have explained the ideas underlying (U), up to the fact that in our previous explanations we
dealt with three “independent” entities t̄ (current value of the penalty parameter), X̄, S̄ (current primal
and dual solutions), while in (U) t̄ is a function of X̄, S̄:

t̄ =
k

Tr(X̄S̄)
. (4.5.24)

4.5. TRACING THE CENTRAL PATH 241

The reason for establishing this dependence is very simple: if (t,X, S) were on the primal-dual central
path: XS = t−1I, then, taking traces, we indeed would get t = k

Tr(XS)
. Thus, (4.5.24) is a reasonable

way to reduce the number of “independent entities” we deal with.
Note also that (U) is a “pure Newton scheme” – here the primal and the dual stepsizes are equal to

1 (cf. (4.5.6)).
The major element of the complexity analysis of path-following polynomial time methods for SDP is

as follows:

Theorem 4.5.2 Let the parameters κ, χ of (U) satisfy the relations

0 < χ ≤ κ ≤ 0.1. (4.5.25)

Let, further, (X̄, S̄) be a pair of strictly feasible primal and dual solutions to (P), (D) such that the triple
(4.5.19) satisfies (4.5.20). Then the updated pair (X+, S+) is well-defined (i.e., system (4.5.22), (4.5.23)
is solvable with a unique solution), X+, S+ are strictly feasible solutions to (P), (D), respectively,

t+ =
k

Tr(X+S+)

and the triple (t+, X+, S+) belongs to Nκ.

The theorem says that with properly chosen κ, χ (say, κ = χ = 0.1), updating (U) converts a close to
the primal-dual central path, in the sense of (4.5.20), strictly primal-dual feasible iterate (X̄, S̄) into
a new strictly primal-dual feasible iterate with the same closeness-to-the-path property and larger, by
factor (1 + O(1)k−1/2), value of the penalty parameter. Thus, after we get close to the path – reach
its 0.1-neighbourhood N0.1 – we are able to trace this path, staying in N0.1 and increasing the penalty
parameter by absolute constant factor in O(

√
k) = O(

√
θ(K)) steps, exactly as announced in Section

4.5.2.

Proof of Theorem 4.5.2. 10. Observe, first (this observation is crucial!) that it suffices to prove our
Theorem in the particular case when X̄, S̄ commute with each other and Q = I. Indeed, it is immediately
seen that the updating (U) can be represented as follows:

1. We first scale by Q the “input data” of (U) – the primal-dual pair of problems (P), (D) and the
strictly feasible pair X̄, S̄ of primal and dual solutions to these problems, as explained in sect.
“Scaling”. Note that the resulting entities – a pair of primal-dual problems and a strictly feasible
pair of primal-dual solutions to these problems – are linked with each other exactly in the same
fashion as the original entities, due to scaling invariance of the duality gap and the neighbourhood
Nκ. In addition, the scaled primal and dual solutions commute;

2. We apply to the “scaled input data” yielded by the previous step the updating (Û) completely
similar to (U), but using the unit matrix in the role of Q;

3. We “scale back” the result of the previous step, i.e., subject this result to the scaling associated
with Q−1, thus obtaining the updated iterate (X+, S+).

Given that the second step of this procedure preserves primal-dual strict feasibility, w.r.t. the scaled
primal-dual pair of problems, of the iterate and keeps the iterate in the κ-neighbourhood Nκ of the
corresponding central path, we could use once again the “scaling invariance” reasoning to assert that the
result (X+, S+) of (U) is well-defined, is strictly feasible for (P), (D) and is close to the original central
path, as claimed in the Theorem. Thus, all we need is to justify the above “Given”, and this is exactly
the same as to prove the theorem in the particular case of Q = I and commuting X̄, S̄. In the rest of
the proof we assume that Q = I and that the matrices X̄, S̄ commute with each other. Due to the latter
property, X̄, S̄ are diagonal in a properly chosen orthonormal basis; representing all matrices from Sk in
this basis, we can reduce the situation to the case when X̄ and S̄ are diagonal. Thus, we may (and do)
assume in the sequel that X̄ and S̄ are diagonal, with diagonal entries xi,si, i = 1, ..., k, respectively, and
that Q = I. Finally, to simplify notation, we write t, X, S instead of t̄, X̄, S̄, respectively.

242 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

20. Our situation and goals now are as follows. We are given orthogonal to each other affine planes
L − B, L⊥ + C in Sk and two positive definite diagonal matrices X = Diag({xi}) ∈ L − B, S =
Diag({si}) ∈ L⊥ + C. We set

µ =
1
t

=
Tr(XS)

k

and know that
‖tX1/2SX1/2 − I‖2 ≤ κ.

We further set
µ+ =

1
t+

= (1− χk−1/2)µ (4.5.26)

and consider the system of equations w.r.t. unknown symmetric matrices ∆X, ∆S:

(a) ∆X ∈ L
(b) ∆S ∈ L⊥
(c) ∆XS + X∆S + ∆SX + S∆X = 2µ+I − 2XS

(4.5.27)

We should prove that the system has a unique solution such that the matrices

X+ = X + ∆X, S+ = S + ∆S

are
(i) positive definite,
(ii) belong, respectively, to L −B, L⊥ + C and satisfy the relation

Tr(X+S+) = µ+k; (4.5.28)

(iii) satisfy the relation
Ω ≡ ‖µ−1

+ X
1/2
+ S+X

1/2
+ − I‖2 ≤ κ. (4.5.29)

Observe that the situation can be reduced to the one with µ = 1. Indeed, let us pass from the matrices
X, S, ∆X, ∆S, X+, S+ to X, S′ = µ−1S, ∆X, ∆S′ = µ−1∆S, X+, S′+ = µ−1S+. Now the “we are given”
part of our situation becomes as follows: we are given two diagonal positive definite matrices X, S′ such
that X ∈ L −B, S′ ∈ L⊥ + C ′, C ′ = µ−1C,

Tr(XS′) = k × 1

and
‖X1/2S′X1/2 − I‖2 = ‖µ−1X1/2SX1/2 − I‖2 ≤ κ.

The “we should prove” part becomes: to verify that the system of equations

(a) ∆X ∈ L
(b) ∆S′ ∈ L⊥
(c) ∆XS′ + X∆S′ + ∆S′X + S′∆X = 2(1− χk−1/2)I − 2XS′

has a unique solution and that the matrices X+ = X + ∆X, S′+ = S′ + ∆S′+ are positive definite, are
contained in L −B, respectively, L⊥ + C ′ and satisfy the relations

Tr(X+S′+) =
µ+

µ
= 1− χk−1/2

and
‖(1− χk−1/2)−1X

1/2
+ S′+X

1/2
+ − I‖2 ≤ κ.

Thus, the general situation indeed can be reduced to the one with µ = 1, µ+ = 1−χk−1/2, and we loose
nothing assuming, in addition to what was already postulated, that

µ ≡ t−1 ≡ Tr(XS)
k

= 1, µ+ = 1− χk−1/2,

4.5. TRACING THE CENTRAL PATH 243

whence

[Tr(XS) =]
k∑

i=1

xisi = k (4.5.30)

and

[‖tX1/2SX1/2 − I‖22 ≡]
n∑

i=1

(xisi − 1)2 ≤ κ2. (4.5.31)

30. We start with proving that (4.5.27) indeed has a unique solution. It is convenient to pass in
(4.5.27) from the unknowns ∆X, ∆S to the unknowns

δX = X−1/2∆XX−1/2 ⇔ ∆X = X1/2δXX1/2,
δS = X1/2∆SX1/2 ⇔ ∆S = X−1/2δSX−1/2.

(4.5.32)

With respect to the new unknowns, (4.5.27) becomes

(a) X1/2δXX1/2 ∈ L,
(b) X−1/2δSX−1/2 ∈ L⊥,
(c) X1/2δXX1/2S + X1/2δSX−1/2 + X−1/2δSX1/2 + SX1/2δXX1/2 = 2µ+I − 2XS

m

(d) L(δX, δS) ≡



√

xixj(si + sj)︸ ︷︷ ︸
φij

(δX)ij +
(√

xi

xj
+

√
xj

xi︸ ︷︷ ︸
ψij

)
(δS)ij




k

i,j=1

= 2 [(µ+ − xisi)δij]
k
i,j=1 ,

(4.5.33)

where δij =
{

0, i 6= j
1, i = j

are the Kronecker symbols.

We first claim that (4.5.33), regarded as a system with unknown symmetric matrices δX, δS has a
unique solution. Observe that (4.5.33) is a system with 2dimSk ≡ 2N scalar unknowns and 2N scalar
linear equations. Indeed, (4.5.33.a) is a system of N ′ ≡ N −dimL linear equations, (4.5.33.b) is a system
of N ′′ = N − dimL⊥ = dimL linear equations, and (4.5.33.c) has N equations, so that the total #
of linear equations in our system is N ′ + N ′′ + N = (N − dimL) + dimL + N = 2N . Now, to verify
that the square system of linear equations (4.5.33) has exactly one solution, it suffices to prove that the
homogeneous system

X1/2δXX1/2 ∈ L, X−1/2δSX−1/2 ∈ L⊥, L(δX, δS) = 0

has only trivial solution. Let (δX, δS) be a solution to the homogeneous system. Relation L(δX,∆S) = 0
means that

(δX)ij = −ψij

φij
(δS)ij , (4.5.34)

whence

Tr(δXδS) = −
∑

i,j

ψij

φij
(∆S)2ij . (4.5.35)

Representing δX, δS via ∆X, ∆S according to (4.5.32), we get

Tr(δXδS) = Tr(X−1/2∆XX−1/2X1/2∆SX1/2) = Tr(X−1/2∆X∆SX1/2) = Tr(∆X∆S),

and the latter quantity is 0 due to ∆X = X1/2δXX1/2 ∈ L and ∆S = X−1/2δSX−1/2 ∈ L⊥. Thus, the
left hand side in (4.5.35) is 0; since φij > 0, ψij > 0, (4.5.35) implies that δS = 0. But then δX = 0 in
view of (4.5.34). Thus, the homogeneous version of (4.5.33) has the trivial solution only, so that (4.5.33)
is solvable with a unique solution.

244 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

40. Let δX, δS be the unique solution to (4.5.33), and let ∆X, ∆S be linked to δX, δS according to
(4.5.32). Our local goal is to bound from above the Frobenius norms of δX and δS.

From (4.5.33.c) it follows (cf. derivation of (4.5.35)) that

(a) (δX)ij = −ψij

φij
(δS)ij + 2µ+−xisi

φii
δij , i, j = 1, ..., k;

(b) (δS)ij = −φij

ψij
(δX)ij + 2µ+−xisi

ψii
δij , i, j = 1, ..., k.

(4.5.36)

Same as in the concluding part of 30, relations (4.5.33.a− b) imply that

Tr(∆X∆S) = Tr(δXδS) =
∑

i,j

(δX)ij(δS)ij = 0. (4.5.37)

Multiplying (4.5.36.a) by (δS)ij and taking sum over i, j, we get, in view of (4.5.37), the relation

∑

i,j

ψij

φij
(δS)2ij = 2

∑

i

µ+ − xisi

φii
(δS)ii; (4.5.38)

by “symmetric” reasoning, we get

∑

i,j

φij

ψij
(δX)2ij = 2

∑

i

µ+ − xisi

ψii
(δX)ii. (4.5.39)

Now let

θi = xisi, (4.5.40)

so that in view of (4.5.30) and (4.5.31) one has

(a)
∑
i

θi = k,

(b)
∑
i

(θi − 1)2 ≤ κ2.
(4.5.41)

Observe that

φij =
√

xixj(si + sj) =
√

xixj

(
θi

xi
+

θj

xj

)
= θj

√
xi

xj
+ θi

√
xj

xi
.

Thus,

φij = θj

√
xi

xj
+ θi

√
xj

xi
,

ψij =
√

xi

xj
+

√
xj

xi
;

(4.5.42)

since 1− κ ≤ θi ≤ 1 + κ by (4.5.41.b), we get

1− κ ≤ φij

ψij
≤ 1 + κ. (4.5.43)

By the geometric-arithmetic mean inequality we have ψij ≥ 2, whence in view of (4.5.43)

φij ≥ (1− κ)ψij ≥ 2(1− κ) ∀i, j. (4.5.44)

4.5. TRACING THE CENTRAL PATH 245

We now have

(1− κ)
∑
i,j

(δX)2ij ≤ ∑
i,j

φij

ψij
(δX)2ij

[see (4.5.43)]
≤ 2

∑
i

µ+−xisi

ψii
(δX)ii

[see (4.5.39)]

≤ 2
√∑

i

(µ+ − xisi)2
√∑

i

ψ−2
ij (δX)2ii

≤
√∑

i

((1− θi)2 − 2χk−1/2(1− θi) + χ2k−1)
√∑

i,j

(δX)2ij

[see (4.5.44)]

≤
√

χ2 +
∑
i

(1− θi)2
√∑

i,j

(δX)2ij

[since
∑
i

(1− θi) = 0 by (4.5.41.a)]

≤
√

χ2 + κ2
√∑

i,j

(δX)2ij

[see (4.5.41.b)]

and from the resulting inequality it follows that

‖δX‖2 ≤ ρ ≡
√

χ2 + κ2

1− κ
. (4.5.45)

Similarly,
(1 + κ)−1

∑
i,j

(δS)2ij ≤ ∑
i,j

ψij

φij
(δS)2ij

[see (4.5.43)]
≤ 2

∑
i

µ+−xisi

φii
(δS)ii

[see (4.5.38)]

≤ 2
√∑

i

(µ+ − xisi)2
√∑

i

φ−2
ij (δS)2ii

≤ (1− κ)−1
√∑

i

(µ+ − θi)2
√∑

i,j

(δS)2ij

[see (4.5.44)]
≤ (1− κ)−1

√
χ2 + κ2

√∑
i,j

(δS)2ij

[same as above]

and from the resulting inequality it follows that

‖δS‖2 ≤ (1 + κ)
√

χ2 + κ2

1− κ
= (1 + κ)ρ. (4.5.46)

50. We are ready to prove 20.(i-ii). We have

X+ = X + ∆X = X1/2(I + δX)X1/2,

and the matrix I + δX is positive definite due to (4.5.45) (indeed, the right hand side in (4.5.45) is ρ ≤ 1,
whence the Frobenius norm (and therefore - the maximum of modulae of eigenvalues) of δX is less than
1). Note that by the just indicated reasons I + δX ¹ (1 + ρ)I, whence

X+ ¹ (1 + ρ)X. (4.5.47)

Similarly, the matrix
S+ = S + ∆S = X−1/2(X1/2SX1/2 + δS)X−1/2

246 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

is positive definite. Indeed, the eigenvalues of the matrix X1/2SX1/2 are ≥ min
i

θi ≥ 1 − κ, while

the modulae of eigenvalues of δS, by (4.5.46), do not exceed (1+κ)
√

χ2+κ2

1−κ < 1 − κ. Thus, the matrix
X1/2SX1/2 + δS is positive definite, whence S+ also is so. We have proved 20.(i).

20.(ii) is easy to verify. First, by (4.5.33), we have ∆X ∈ L, ∆S ∈ L⊥, and since X ∈ L − B,
S ∈ L⊥ + C, we have X+ ∈ L −B, S+ ∈ L⊥ + C. Second, we have

Tr(X+S+) = Tr(XS + X∆S + ∆XS + ∆X∆S)
= Tr(XS + X∆S + ∆XS)

[since Tr(∆X∆S) = 0 due to ∆X ∈ L, ∆S ∈ L⊥]
= µ+k

[take the trace of both sides in (4.5.27.c)]

20.(ii) is proved.
60. It remains to verify 20.(iii). We should bound from above the quantity

Ω = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖2 = ‖X1/2

+ (µ−1
+ S+ −X−1

+)X1/2
+ ‖2,

and our plan is first to bound from above the “close” quantity

Ω̂ = ‖X1/2(µ−1
+ S+ −X−1

+)X1/2‖2 = µ−1
+ ‖Z‖2,

Z = X1/2(S+ − µ+X−1
+)X1/2,

(4.5.48)

and then to bound Ω in terms of Ω̂.
60.1. Bounding Ω̂. We have

Z = X1/2(S+ − µ+X−1
+)X1/2

= X1/2(S + ∆S)X1/2 − µ+X1/2[X + ∆X]−1X1/2

= XS + δS − µ+X1/2[X1/2(I + δX)X1/2]−1X1/2

[see (4.5.32)]
= XS + δS − µ+(I + δX)−1

= XS + δS − µ+(I − δX)− µ+[(I + δX)−1 − I + δX]
= XS + δS + δX − µ+I︸ ︷︷ ︸

Z1

+(µ+ − 1)δX︸ ︷︷ ︸
Z2

+ µ+[I − δX − (I + δX)−1]︸ ︷︷ ︸
Z3

,

so that
‖Z‖2 ≤ ‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2. (4.5.49)

We are about to bound separately all 3 terms in the right hand side of the latter inequality.
Bounding ‖Z2‖2: We have

‖Z2‖2 = |µ+ − 1|‖δX‖2 ≤ χk−1/2ρ (4.5.50)

(see (4.5.45) and take into account that µ+ − 1 = −χk−1/2).
Bounding ‖Z3‖2: Let λi be the eigenvalues of δX. We have

‖Z3‖2 = ‖µ+[(I + δX)−1 − I + δX]‖2
≤ ‖(I + δX)−1 − I + δX‖2

[since |µ+| ≤ 1]

=

√
∑
i

(
1

1+λi
− 1 + λi

)2

[pass to the orthonormal eigenbasis of δX]

=
√∑

i

λ4
i

(1+λi)2

≤
√∑

i

ρ2λ2
i

(1−ρ)2

[see (4.5.45) and note that
∑
i

λ2
i = ‖δX‖22 ≤ ρ2]

≤ ρ2

1−ρ

(4.5.51)

4.5. TRACING THE CENTRAL PATH 247

Bounding ‖Z1‖2: This is a bit more involving. We have

Z1
ij = (XS)ij + (δS)ij + (δX)ij − µ+δij

= (δX)ij + (δS)ij + (xisi − µ+)δij

= (δX)ij

[
1− φij

ψij

]
+

[
2µ+−xisi

ψii
+ xisi − µ+

]
δij

[we have used (4.5.36.b)]
= (δX)ij

[
1− φij

ψij

]

[since ψii = 2, see (4.5.42)]

whence, in view of (4.5.43),

|Z1
ij | ≤

∣∣∣∣1−
1

1− κ

∣∣∣∣ |(δX)ij | = κ

1− κ
|(δX)ij |,

so that
‖Z1‖2 ≤ κ

1− κ
‖δX‖2 ≤ κ

1− κ
ρ (4.5.52)

(the concluding inequality is given by (4.5.45)).
Assembling (4.5.50), (4.5.51), (4.5.52) and (4.5.49), we come to

‖Z‖2 ≤ ρ

[
χ√
k

+
ρ

1− ρ
+

κ

1− κ

]
,

whence, by (4.5.48),

Ω̂ ≤ ρ

1− χk−1/2

[
χ√
k

+
ρ

1− ρ
+

κ

1− κ

]
. (4.5.53)

60.2. Bounding Ω. We have

Ω2 = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖22

= ‖X1/2
+ [µ−1

+ S+ −X−1
+]︸ ︷︷ ︸

Θ=ΘT

X
1/2
+ ‖22

= Tr
(
X

1/2
+ ΘX+ΘX

1/2
+

)

≤ (1 + ρ)Tr
(
X

1/2
+ ΘXΘX

1/2
+

)

[see (4.5.47)]
= (1 + ρ)Tr

(
X

1/2
+ ΘX1/2X1/2ΘX

1/2
+

)

= (1 + ρ)Tr
(
X1/2ΘX

1/2
+ X

1/2
+ ΘX1/2

)

= (1 + ρ)Tr
(
X1/2ΘX+ΘX1/2

)
≤ (1 + ρ)2Tr

(
X1/2ΘXΘX1/2

)
[the same (4.5.47)]

= (1 + ρ)2‖X1/2ΘX1/2‖22
= (1 + ρ)2‖X1/2[µ−1

+ S+ −X−1
+]X1/2‖22

= (1 + ρ)2Ω̂2

[see (4.5.48)]

so that
Ω ≤ (1 + ρ)Ω̂ = ρ(1+ρ)

1−χk−1/2

[
χ√
k

+ ρ
1−ρ + κ

1−κ

]
,

ρ =
√

χ2+κ2

1−κ .
(4.5.54)

(see (4.5.53) and (4.5.45)).
It is immediately seen that if 0 < χ ≤ κ ≤ 0.1, the right hand side in the resulting bound for Ω is

≤ κ, as required in 20.(iii).

248 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Remark 4.5.2 We have carried out the complexity analysis for a large group of primal-dual path-
following methods for SDP (i.e., for the case of K = Sk

+). In fact, the constructions and the analysis we
have presented can be word by word extended to the case when K is a direct product of semidefinite cones
– you just should bear in mind that all symmetric matrices we deal with, like the primal and the dual
solutions X, S, the scaling matrices Q, the primal-dual search directions ∆X, ∆S, etc., are block-diagonal
with common block-diagonal structure. In particular, our constructions and analysis work for the case
of LP – this is the case when K is a direct product of one-dimensional semidefinite cones. Note that in
the case of LP Zhang’s family of primal-dual search directions reduces to a single direction: since now
X, S, Q are diagonal matrices, the scaling (4.5.17) 7→ (4.5.18) does not vary the equations of augmented
complementary slackness.
The recipe to translate all we have presented for the case of SDP to the case of LP is very simple: in
the above text, you should assume all matrices like X, S,... to be diagonal and look what the operations
with these matrices required by the description of the method do with their diagonals. By the way, one
of the very first approaches to the design and the analysis of IP methods for SDP was exactly opposite:
you take an IP scheme for LP, replace in its description the words “nonnegative vectors” with “positive
semidefinite diagonal matrices” and then erase the adjective “diagonal”.

4.6 Complexity bounds for LP, CQP, SDP

In what follows we list the best known so far complexity bounds for LP, CQP and SDP. These bounds
are yielded by IP methods and, essentially, say that the Newton complexity of finding ε-solution to an
instance – the total # of steps of a “good” IP algorithm before an ε-solution is found – is O(1)

√
θ(K) ln 1

ε .
This is what should be expected in view of discussion in Section 4.5.2; note, however, that the complexity
bounds to follow take into account the necessity to “reach the highway” – to come close to the central
path before tracing it, while in Section 4.5.2 we were focusing on how fast could we reduce the duality
gap after the central path (“the highway”) is reached.

Along with complexity bounds expressed in terms of the Newton complexity, we present the bounds
on the number of operations of Real Arithmetic required to build an ε-solution. Note that these latter
bounds typically are conservative – when deriving them, we assume the data of an instance “completely
unstructured”, which is usually not the case (cf. Warning in Section 4.5.2); exploiting structure of the
data, one usually can reduce significantly computational effort per step of an IP method and consequently
– the arithmetic cost of ε-solution.

4.6.1 Complexity of LPb

Family of problems:

Problem instance: a program

min
x

{
cT x : aT

i x ≤ bi, i = 1, ...,m; ‖x‖2 ≤ R
}

[x ∈ Rn]; (p)

Data:
Data(p) = [m; n; c; a1, b1; ...; am, bm; R],

Size(p) ≡ dim Data(p) = (m + 1)(n + 1) + 2.

ε-solution: an x ∈ Rn such that

‖x‖∞ ≤ R,

aT
i x ≤ bi + ε, i = 1, ...,m,

cT x ≤ Opt(p) + ε

(as always, the optimal value of an infeasible problem is +∞).

4.6. COMPLEXITY BOUNDS FOR LP, CQP, SDP 249

Newton complexity of ε-solution: 14)

ComplNwt(p, ε) = O(1)
√

m + nDigits(p, ε),

where

Digits(p, ε) = ln
(

Size(p) + ‖Data(p)‖1 + ε2

ε

)

is the number of accuracy digits in ε-solution, see Section 4.1.2.

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)(m + n)3/2n2Digits(p, ε).

4.6.2 Complexity of CQPb

Family of problems:

Problem instance: a program

min
x

{
cT x : ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, ...,m; ‖x‖2 ≤ R
} [

x ∈ Rn

bi ∈ Rki

]
(p)

Data:
Data(P) = [m; n; k1, ..., km; c; A1, b1, c1, d1; ...; Am, bm, cm, dm;R],

Size(p) ≡ dimData(p) = (m +
m∑

i=1

ki)(n + 1) + m + n + 3.

ε-solution: an x ∈ Rn such that

‖x‖2 ≤ R,
‖Aix + bi‖2 ≤ cT

i x + di + ε, i = 1, ...,m,
cT x ≤ Opt(p) + ε.

Newton complexity of ε-solution:

ComplNwt(p, ε) = O(1)
√

m + 1Digits(p, ε).

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)(m + 1)1/2n(n2 + m +
m∑

i=0

k2
i)Digits(p, ε).

4.6.3 Complexity of SDPb

Family of problems:

14)In what follows, the precise meaning of a statement “the Newton/arithmetic complexity of finding ε-solution
of an instance (p) does not exceed N” is as follows: as applied to the input (Data(p), ε), the method underlying our
bound terminates in no more than N steps (respectively, N arithmetic operations) and outputs either a vector,
which is an ε-solution to the instance, or the correct conclusion “(p) is infeasible”.

250 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Problem instance: a program

min
x



cT x : A0 +

n∑

j=1

xjAj º 0, ‖x‖2 ≤ R



 [x ∈ Rn], (p)

where Aj , j = 0, 1, ..., n, are symmetric block-diagonal matrices with m diagonal blocks A
(i)
j of sizes

ki × ki, i = 1, ..., m.

Data:
Data(p) = [m; n; k1, ...km; c;A(1)

0 , ..., A
(m)
0 ; ...;A(1)

n , ..., A
(m)
n ; R],

Size(p) ≡ dimData(P) =
(

m∑
i=1

ki(ki+1)
2

)
(n + 1) + m + n + 3.

ε-solution: an x such that

‖x‖2 ≤ R,

A0 +
n∑

j=1

xjAj º −εI,

cT x ≤ Opt(p) + ε.

Newton complexity of ε-solution:

ComplNwt(p, ε) = O(1)(1 +
m∑

i=1

ki)1/2Digits(p, ε).

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)(1 +
m∑

i=1

ki)1/2n(n2 + n

m∑

i=1

k2
i +

m∑

i=1

k3
i)Digits(p, ε).

4.7 Concluding remarks

We have discussed IP methods for LP, CQP and SDP as “mathematical animals”, with emphasis on
the ideas underlying the algorithms and on the theoretical complexity bounds ensured by the methods.
Now it is time to say a couple of words on software implementations of IP algorithms and on practical
performance of the resulting codes.

As far as the performance of recent IP software is concerned, the situation heavily depends on whether
we are speaking about codes for LP, or those for CQP and SDP.

• There exists extremely powerful commercial IP software for LP, capable to handle reliably really
large-scale LP’s and quite competitive with the best Simplex-type codes for Linear Programming. E.g.,
one of the best modern LP solvers – CPLEX – allows user to choose between a Simplex-type and IP modes
of execution, and in many cases the second option reduces the running time by orders of magnitudes.
With a state-of-the-art computer, CPLEX is capable to solve routinely real-world LP’s with tens and
hundreds thousands of variables and constraints; in the case of favourable structured constraint matrices,
the numbers of variables and constraints can become as large as few millions.

• There already exists a very powerful commercial software for CQP – MOSEK (Erling Andersen,
http://www.mosek.com). I would say that as far as LP (and even mixed integer programming) are
concerned, MOSEK compares favourable to CPLEX, and it allows to solve really large CQP’s of favourable
structure.

• For the time being, IP software for SDP’s is not as well-polished, reliable and powerful as the LP
one. I would say that the codes available for the moment are capable to solve SDP’s with no more than
1,000 – 1,500 design variables.

4.7. CONCLUDING REMARKS 251

There are two groups of reasons making the power of SDP software available for the moment that
inferior as compared to the capabilities of interior point LP and CQP solvers – the “historical” and the
“intrinsic” ones. The “historical” aspect is simple: the development of IP software for LP, on one hand,
and for SDP, on the other, has started, respectively, in the mid-eighties and the mid-nineties; for the
time being (2002), this is definitely a difference. Well, being too young is the only shortcoming which for
sure passes away... Unfortunately, there are intrinsic problems with IP algorithms for large-scale (many
thousands of variables) SDP’s. Recall that the influence of the size of an SDP/CQP program on the
complexity of its solving by an IP method is twofold:

– first, the size affects the Newton complexity of the process. Theoretically, the number of steps
required to reduce the duality gap by a constant factor, say, factor 2, is proportional to

√
θ(K) (θ(K) is

twice the total # of conic quadratic inequalities for CQP and the total row size of LMI’s for SDP). Thus,
we could expect an unpleasant growth of the iteration count with θ(K). Fortunately, the iteration count
for good IP methods usually is much less than the one given by the worst-case complexity analysis and
is typically about few tens, independently of θ(K).

– second, the larger is the instance, the larger is the system of linear equations one should solve to
generate new primal (or primal-dual) search direction, and, consequently, the larger is the computational
effort per step (this effort is dominated by the necessity to assemble and to solve the linear system).
Now, the system to be solved depends, of course, on what is the IP method we are speaking about, but it
newer is simpler (and for most of the methods, is not more complicated as well) than the system (4.5.8)
arising in the primal path-following method:

A∗[∇2K(X̄)]A︸ ︷︷ ︸
H

∆x = −[t+c +A∗∇K(X̄)]︸ ︷︷ ︸
h

. (Nwt)

The size n of this system is exactly the design dimension of problem (CP).
In order to process (Nwt), one should assemble the system (compute H and h) and then solve it.

Whatever is the cost of assembling (Nwt), you should be able to store the resulting matrix H in memory
and to factorize the matrix in order to get the solution. Both these problems – storing and factorizing H
– become prohibitively expensive when H is a large dense15) matrix. (Think how happy you will be with
the necessity to store 5000×5001

2 = 12, 502, 500 reals representing a dense 5000 × 5000 symmetric matrix
H and with the necessity to perform ≈ 50003

6 ≈ 2.08 × 1010 arithmetic operations to find its Choleski
factor).

The necessity to assemble and to solve large-scale systems of linear equations is intrinsic for IP
methods as applied to large-scale optimization programs, and in this respect there is no difference between
LP and CQP, on one hand, and SDP, on the other hand. The difference is in how difficult is to handle these
large-scale linear systems. In real life LP’s-CQP’s-SDP’s, the structure of the data allows to assemble
(Nwt) at a cost negligibly small as compared to the cost of factorizing H, which is a good news. Another
good news is that in typical real world LP’s, and to some extent for real-world CQP’s, H turns out to be
“very well-structured”, which reduces dramatically the expenses required by factorizing the matrix and
storing the Choleski factor. All practical IP solvers for LP and CQP utilize these favourable properties
of real life problems, and this is where their ability to solve problems with tens/hundreds thousands of
variables and constraints comes from. Spoil the structure of the problem – and an IP method will be
unable to solve an LP with just few thousands of variables. Now, in contrast to real life LP’s and CQP’s,
real life SDP’s typically result in dense matrices H, and this is where severe limitations on the sizes of
“tractable in practice” SDP’s come from. In this respect, real life CQP’s are somewhere in-between LP’s
and SDP’s, so that the sizes of “tractable in practice” CQP’s could be significantly larger than in the
case of SDP’s.

It should be mentioned that assembling matrices of the linear systems we are interested in and solving
these systems by the standard Linear Algebra techniques is not the only possible way to implement an
IP method. Another option is to solve these linear systems by iterative methods. With this approach,
all we need to solve a system like (Nwt) is a possibility to multiply a given vector by the matrix of the
system, and this does not require assembling and storing in memory the matrix itself. E.g., to multiply a

15)I.e., with O(n2) nonzero entries.

252 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

vector ∆x by H, we can use the multiplicative representation of H as presented in (Nwt). Theoretically,
the outlined iterative schemes, as applied to real life SDP’s, allow to reduce by orders of magnitudes
the arithmetic cost of building search directions and to avoid the necessity to assemble and store huge
dense matrices, which is an extremely attractive opportunity. The difficulty, however, is that the iterative
schemes are much more affected by rounding errors that the usual Linear Algebra techniques; as a result,
for the time being “iterative-Linear-Algebra-based” implementation of IP methods is no more than a
challenging goal.

Although the sizes of SDP’s which can be solved with the existing codes are not that impressive as
those of LP’s, the possibilities offered to a practitioner by SDP IP methods could hardly be overestimated.
Just ten years ago we could not even dream of solving an SDP with more than few tens of variables,
while today we can solve routinely 20-25 times larger SDP’s, and we have all reasons to believe in further
significant progress in this direction.

4.8 Exercises: Around the Ellipsoid method

There are two natural ways to define an ellipsoid W in Rn. The first is to represent W as the set defined
by a convex quadratic constraint, namely, as

W = {x ∈ Rn | (x− c)T A(x− c) ≤ 1} (4.8.1)

A being a symmetric positive definite n×n matrix and c being a point in Rn (the center of the ellipsoid).
The second way is to represent W as the image of the unit Euclidean ball under an affine invertible

mapping, i.e., as
W = {x = Bu + c | uT u ≤ 1}, (4.8.2)

where B is an n× n nonsingular matrix and c is a point from Rn.

Exercise 4.1 Prove that the above definitions are equivalent: if W ⊂ Rn is given by (4.8.1), then W
can be represented by (4.8.2) with B chosen according to

A = (B−1)T B−1

(e.g., with B chosen as A−1/2). Vice versa, if W is represented by (4.8.2), then W can be represented by
(4.8.1), where one should set

A = (B−1)T B−1.

Note that the (positive definite symmetric) matrix A involved into (4.8.1) is uniquely defined by W
(why?); in contrast to this, a nonsingular matrix B involved into (4.8.2) is defined by W up to a right
orthogonal factor: the matrices B and B′ define the same ellipsoid if and only if B′ = BU with an
orthogonal n× n matrix U (why?)

From the second description of an ellipsoid it immediately follows that

if
W = {x = Bu + c | u ∈ Rn, uT u ≤ 1}

is an ellipsoid and
x 7→ p + B′x

is an invertible affine transformation of Rn (so that B′ is a nonsingular n× n matrix), then
the image of W under the transformation also is an ellipsoid.

Indeed, the image is nothing but

W ′ = {x = B′Bu + (p + B′c) | u ∈ Rn, uT u ≤ 1},

the matrix B′B being nonsingular along with B and B′. It is also worthy of note that

4.8. EXERCISES: AROUND THE ELLIPSOID METHOD 253

for any ellipsoid
W = {x = Bu + c | u ∈ Rn, uT u ≤ 1}

there exists an invertible affine transformation of Rn, e.g., the transformation

x 7→ B−1x−B−1c,

which transforms the ellipsoid exactly into the unit Euclidean ball

V = {u ∈ Rn | uT u ≤ 1}.

In what follows we mainly focus on various volume-related issues; to avoid complicated constant
factors, it is convenient to take, as the volume unit, the volume of the unit Euclidean ball V in Rn rather
than the volume of the unit cube. The volume of a body16) Q measured in this unit, i.e., the ratio

Voln(Q)
Voln(V)

,

Voln being the usual Lebesque volume in Rn, will be denoted voln(Q) (we omit the subscript n if the
value of n is clear from the context).

Exercise 4.2 Prove that if W is an ellipsoid in Rn given by (4.8.2), then

vol(W) = |DetB|, (4.8.3)

and if W is given by (4.8.1), then
vol(W) = |DetA|−1/2. (4.8.4)

Our local goal is to prove the following statement:
Let Q be a convex body in Rn (i.e., a closed and bounded convex set with a nonempty interior).

Then there exist ellipsoids containing Q, and among these ellipsoids there is one with the smallest volume.
This ellipsoid is unique; it is called the outer extremal ellipsoid associated with Q. Similarly, there exist
ellipsoids contained in Q, and among these ellipsoids there is one with the largest volume. This ellipsoid
is unique; it is called the inner extremal ellipsoid associated with Q.

In fact we are not too interested in the uniqueness of the extremal ellipsoids (and you may try to
prove the uniqueness yourself); what actually is of interest is the existence and some important properties
of the extremal ellipsoids.

Exercise 4.3 Prove that if Q is a closed and bounded convex body in Rn, then there exist ellipsoids
containing Q and among these ellipsoids there is (at least) one with the smallest volume.

Exercise 4.4 Prove that if Q is a closed and bounded convex body in Rn, then there exist ellipsoids
contained in Q and among these ellipsoids there is (at least) one with the largest volume.

Note that extremal ellipsoids associated with a closed and bounded convex body Q ”accompany Q
under affine transformations”: if x 7→ Ax + b is an invertible affine transformation and Q′ is the image
of Q under this transformation, then the image W ′ of an extremal outer ellipsoid W associated with Q
(note the article: we has not proved the uniqueness!) is an extremal outer ellipsoid associated with Q′,
and similarly for (an) extremal inner ellipsoid.
The indicated property is, of course, an immediate consequence of the facts that affine images of ellipsoids
are again ellipsoids and that the ratio of volumes remains invariant under an affine transformation of the
space.

In what follows we focus on outer extremal ellipsoids. Useful information can be obtained from
investigating these ellipsoids for ”simple parts” of an Euclidean ball.

16)in what follows ”body” means a set with a nonempty interior

254 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

Exercise 4.5 Let n > 1,

V = {x ∈ Rn | |x|2 ≡
(

n∑

i=1

x2
i

)1/2

≤ 1}

be the unit Euclidean ball, let e be a unit vector in Rn and let

Vα = {x ∈ V | eT x ≥ α}, α ∈ [−1, 1]

(Vα is what is called a ”spherical hat”).
Prove that if

− 1
n

< α < 1,

then the set Vα can be covered by an ellipsoid W of the volume

voln(W) ≤ { n2

n2 − 1
}n/2

√
n− 1
n + 1

(1− α2)(n−1)/2(1− α) < 1 = voln(V);

W is defined as

W = {x =
1 + nα

n + 1
e + Bu | uT u ≤ 1},

where

B =
{

(1− α2)
n2

n2 − 1

}1/2 (
I − βeeT

)
, β = 1−

√
(1− α)(n− 1)
(1 + α)(n + 1)

In fact the ellipsoid given by the latter exercise is the extremal outer ellipsoid associated with Vα.
Looking at the result stated by the latter exercise, one may make a number of useful conclusions.

1. When α = 0, i.e., when the spherical hat Vα is a half-ball, we have

voln(W) =
{

1 +
1

n2 − 1

}n/2 √
1− 2

n− 1
≤

≤ {
exp{1/(n2 − 1)}}n/2

exp{−1/(n− 1)} =

= exp{− n + 2
2(n2 − 1)

} < exp{− 1
2n− 2

} = exp{− 1
2n− 2

}voln(V);

thus, for the case of α = 0 (and, of course, for the case of α > 0) we may cover Vα by
an ellipsoid with the volume 1 − O(1/n) times less than that one of V . In fact the same
conclusion (with another absolute constant factor O(1)) holds true when α is negative (so
that the spherical hat is greater than half-ball), but ”not too negative”, say, when α ≥ − 1

2n .
2. In order to cover Vα by an ellipsoid of absolute constant times less volume than that one
of V we need α to be positive of order O(n−1/2) or greater. In this case, “small” covering
of Vα is already given by the Euclidean ball of the radius

√
1− α2 centered at the point αe

(which, anyhow, is not the optimal covering presented in exercise 4.5).

Exercise 4.6 Let V be the unit Euclidean ball in Rn, e be a unit vector and let α ∈ (0, 1). Consider the
”symmetric spherical stripe”

V α = {x ∈ V | −α ≤ eT x ≤ α}.
Prove that if 0 < α < 1/

√
n then V α can be covered by an ellipsoid W with the volume

voln(W) ≤ α
√

n

{
n(1− α2)

n− 1

}(n−1)/2

< 1 = voln(V).

Find an explicit representation of the ellipsoid.

4.8. EXERCISES: AROUND THE ELLIPSOID METHOD 255

We see that in order to cover a symmetric spherical stripe of the unit Euclidean ball V by an ellipsoid of
volume less than that one of V , it suffices to have the ”half-thickness” α of the stripe to be < 1/

√
n, which

again fits our observation (exercise 1.9) that basically all volume of the unit n-dimensional Euclidean ball
is concentrated in the O(1/

√
n) neighbourhood of its ”equator” - the cross-section of the ball and a

hyperplane passing through the center of the ball. A useful exercise is to realize when a non-symmetric
spherical stripe

V α,β = {x ∈ V | −α ≤ eT x ≤ β}
of the (centered at the origin) unit Euclidean ball V can be covered by an ellipsoid of volume less than
that one of V .

The results of exercises 4.5 and 4.6 imply a number of important geometrical consequences.

Exercise 4.7 Prove the following theorem of Fritz John:
Let Q be a closed and bounded convex body in Rn. Then
(i) Q can be covered by an ellipsoid W in such a way that the concentric to W n times smaller

ellipsoid

W ′ = (1− 1
n

)c +
1
n

W

(c is the center of W) is contained in Q. One can choose as W the extremal outer ellipsoid associated
with Q.

(ii) If, in addition, Q is central-symmetric with respect to certain point c, then the above result can
be improved: Q can be covered by an ellipsoid W centered at c in such a way that the concentric to W√

n times smaller ellipsoid

W ′′ = (1− 1√
n

)c +
1√
n

W

is contained in Q.

Note that the constants n and
√

n in the Fritz John Theorem are sharp; an extremal example for (i) is
a simplex, and for (ii) - a cube.

Here are several nice geometrical consequences of the Fritz John Theorem:

Let Q be a closed and bounded convex body in Rn. Then
1. There exist a pair of concentric homothetic with respect to their common center paral-
lelotopes p, P with homothety coefficient equal to n−3/2 such that p ⊂ Q ⊂ P ; in other
words, there exists an invertible affine transformation of the space such that the image Q′

of Q under this transformation satisfies the inclusions

{x ∈ Rn | ‖x‖∞ ≤ 1
n3/2

} ⊂ Q′ ⊂ {x ∈ Rn | ‖x‖∞ ≤ 1};

here
‖x‖∞ = max

1≤i≤n
|xi|

is the uniform norm of x.

Indeed, from the Fritz John Theorem it follows that there exists an invertible affine trans-
formation resulting in

{x | |x|2 ≤ 1/n} ⊂ Q′ ⊂ {x | |x|2 ≤ 1},

Q′ being the image of Q under the transformation (it suffices to transform the outer extremal
ellipsoid associated with Q into the unit Euclidean ball centered at the origin). It remains
to note that the smaller Euclidean ball in the above chain of inclusions contains the cube
{x | ‖x‖∞ ≤ n−3/2} and the larger one is contained in the unit cube.
2. If Q is central-symmetric, then the parallelotopes mentioned in 1. can be chosen to have
the same center, and the homothety coefficient can be improved to 1/n; in other words, there

256 LECTURE 4. POLYNOMIAL TIME INTERIOR POINT METHODS

exists an invertible affine transformation of the space which makes the image Q′ of Q central
symmetric with respect to the origin and ensures the inclusions

{x | ‖x‖∞ ≤ 1
n
} ⊂ Q′ ⊂ {x | ‖x‖∞ ≤ 1}.

The statement is given by the reasoning completely similar to that one used for 1., up to the
fact that now we should refer to item (ii) of the Fritz John Theorem.
3. Any norm ‖·‖ on Rn can be approximated, within factor

√
n, by a Euclidean norm: given

‖ · ‖, one can find a Euclidean norm

|x|A = (xT Ax)1/2,

A being a symmetric positive definite n× n matrix, in such a way that

1√
n
|x|A ≤ ‖x‖ ≤ |x|A

for any x ∈ Rn.

Indeed, let B = {x | ‖x‖ ≤ 1} be the unit ball with respect to the norm ‖ · ‖; this is a closed
and bounded convex body, which is central symmetric with respect to the origin. By item
(ii) of the Fritz John Theorem, there exists a centered at the origin ellipsoid

W = {x | xT Ax ≤ n}

(A is an n× n symmetric positive definite matrix) which contains B, while the ellipsoid

{x | xT Ax ≤ 1}

is contained in B; this latter inclusion means exactly that

|x|A ≤ 1 ⇒ x ∈ B ⇔ ‖x‖ ≤ 1,

i.e., means that |x|A ≥ ‖x‖. The inclusion B ⊂ W , by similar reasons, implies that ‖x‖ ≥
n−1/2|x|A.

Remark 4.8.1 The third of the indicated consequences says that any norm on Rn can be approximated,
within constant factor

√
n, by an appropriately chosen Euclidean norm. It turns out that the quality

of approximation can be done much better, if we would be satisfied by approximating the norm not at
the whole space, but at a properly chosen subspace. Namely, there exists a marvelous and important
theorem of Dvoretski which is as follows:

there exists a function m(n, ε) of positive integer n and positive real ε with the following properties:
first,

lim
n→∞

m(n, ε) = +∞
and,

second, whenever ‖ · ‖ is a norm on Rn, one can indicate a m(n, ε)-dimensional subspace E ⊂ Rn

and a Euclidean norm | · |A on Rn such that | · |A approximates ‖ · ‖ on E within factor 1 + ε:

(1− ε)|x|A ≤ ‖x‖ ≤ (1 + ε)|x|A, x ∈ E.

In other words, the Euclidean norm is ”marked by God”: for any given integer k an arbitrary normed
linear space contains an ”almost Euclidean” k-dimensional subspace, provided that the dimension of the
space is large enough.

Lecture 5

Simple methods for extremely
large-scale problems

5.1 Motivation

The polynomial time Interior Point methods, same as all other polynomial time methods for Convex
Programming known so far, have a not that pleasant common feature: the arithmetic cost C of an
iteration in such a method grows nonlinearly with the design dimension n of the problem, unless the
latter possesses a very favourable structure. E.g., in IP methods, an iteration requires solving a system
of linear equations with (at least) n unknowns. To solve this auxiliary problem, it costs at least O(n2)
operations (with the traditional Linear Algebra – even O(n3) operations), except for the cases when the
matrix of the system is very sparse and, moreover, possesses a well-structured sparsity pattern. The
latter indeed is the case when solving most of LPs of real-world origin, but nearly never is the case for,
e.g., SDPs. For other known polynomial time methods, the situation is similar – the arithmetic cost of
an iteration, even in the case of extremely simple objectives and feasible sets, is at least O(n2). With
n of order of tens and hundreds of thousands, the computational effort of O(n2), not speaking about
O(n3), operations per iteration becomes prohibitively large – basically, you never will finish the very first
iteration of your method... On the other hand, the design dimensions of tens and hundreds of thousands
is exactly what is met in many applications, like SDP relaxations of combinatorial problems involving
large graphs or Structural Design (especially for 3D structures). As another important application of this
type, consider 3D Medical Imaging problem arising in Positron Emission Tomography.

Positron Emission Tomography (PET) is a powerful, non-invasive, medical diagnostic imaging
technique for measuring the metabolic activity of cells in the human body. It has been in clinical use
since the early 1990s. PET imaging is unique in that it shows the chemical functioning of organs and
tissues, while other imaging techniques - such as X-ray, computerized tomography (CT) and magnetic
resonance imaging (MRI) - show anatomic structures.

A PET scan involves the use of a radioactive tracer – a fluid with a small amount of a radioactive
material which has the property of emitting positrons. When the tracer is administered to a patient,
either by injection or inhalation of gas, it distributes within the body. For a properly chosen tracer, this
distribution “concentrates” in desired locations, e.g., in the areas of high metabolic activity where cancer
tumors can be expected.

The radioactive component of the tracer disintegrates, emitting positrons. Such a positron nearly
immediately annihilates with a near-by electron, giving rise to two photons flying at the speed of light off
the point of annihilation in nearly opposite directions along a line with a completely random orientation
(i.e., uniformly distributed in space). They penetrate the surrounding tissue and are registered outside
the patient by a PET scanner consisting of circular arrays (rings) of gamma radiation detectors. Since
the two gamma rays are emitted simultaneously and travel in almost exactly opposite directions, we can

257

258 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

say a lot on the location of their source: when a pair of opposing detectors register high-energy photons
within a short (∼ 10−8sec) timing window (“a coincidence event”), we know that the photons came
from a disintegration act, and that the act took place on the line (“line of response” (LOR)) linking the
detectors. The measured data set is the collection of numbers of coincidences counted by different pairs of
detectors (“bins”), and the problem is to recover from these measurements the 3D density of the tracer.

The mathematical model of the process, after appropriate discretization, is

y = Pλ + ξ,

where

• λ ≥ 0 is the vector representing the (discretized) density of the tracer; the entries of λ are indexed
by voxels – small cubes into which we partition the field of view, and λj is the mean density of
the tracer in voxel j. Typically, the number n of voxels is in the range from 3 × 105 to 3 × 106,
depending on the resolution of the discretization grid;

• y are the measurements; the entries in y are indexed by bins – pairs of detectors, and yi is the
number of coincidences counted by i-th pair of detectors. Typically, the dimension m of y – the
total number of bins – is millions (at least 3× 106);

• P is the projection matrix; its entries pij are the probabilities for a LOR originating in voxel j to
be registered by bin i. These probabilities are readily given by the geometry of the scanner;

• ξ is the measurement noise coming mainly from the fact that all physical processes underlying PET
are random. The standard statistical model for PET implies that yi, i = 1, ...,m, are independent
Poisson random variables with the expectations (Pλ)i.

The problem we are interested in is to recover tracer’s density λ given measurements y. As far as the
quality of the result is concerned, the most attractive reconstruction scheme is given by the standard in
Statistics Likelihood Ratio maximization: denoting p(·|λ) the density of the probability distribution of
the measurements, coming from λ, w.r.t. certain dominating distribution, the estimate of the unknown
true value λ∗ of λ is

λ̂ = argmin
λ≥0

p(y|λ),

where y is the vector of measurements.
For the aforementioned Poisson model of PET, building the Maximum Likelihood estimate is equiv-

alent to solving the optimization problem

min
λ

{∑n
j=1 λjpj −

∑m
i=1 yi ln(

∑n
j=1 λjpij) : λ ≥ 0

}
[
pj =

∑
i

pij

] . (PET)

This is a nicely structured convex program (by the way, polynomially reducible to CQP and even LP).
The only difficulty – and a severe one – is in huge sizes of the problem: as it was already explained, the
number n of decision variables is at least 300, 000, while the number m of log-terms in the objective is in
the range from 3× 106 to 25× 106.

At the present level of our knowledge, the design dimension n of order of tens and hundreds of
thousands rules out the possibility to solve a nonlinear convex program, even a well-structured one, by
polynomial time methods because of at least quadratic in n “blowing up” the arithmetic cost of an
iteration. When n is really large, all we can use are simple methods with linear in n cost of an iteration.
As a byproduct of this restriction, we cannot utilize anymore our knowledge of the analytic structure of
the problem, since all known for the time being ways of doing so are too expensive, provided that n is
large. As a result, we are enforced to restrict ourselves with black-box-oriented optimization techniques
– those which use solely the possibility to compute the values and the (sub)gradients of the objective and
the constraints at a point. In Convex Optimization, two types of “cheap” black-box-oriented optimization
techniques are known:

5.2. INFORMATION-BASED COMPLEXITY OF CONVEX PROGRAMMING 259

• techniques for unconstrained minimization of smooth convex functions (Gradient Descent, Conju-
gate Gradients, quasi-Newton methods with restricted memory, etc.);

• subgradient-type techniques for nonsmooth convex programs, including constrained ones.

Since the majority of applications are constrained, we restrict our exposition to the techniques of the
second type. We start with investigating of what, in principle, can be expected of black-box-oriented
optimization techniques.

5.2 Information-based complexity of Convex Programming

Black-box-oriented methods and Information-based complexity. Consider a Convex
Programming program in the form

min
x
{f(x) : x ∈ X} , (CP)

where X is a convex compact set in Rn and the objective f is a continuous convex function on Rn. Let us
fix a family P(X) of convex programs (CP) with X common for all programs from the family, so that such
a program can be identified with the corresponding objective, and the family itself is nothing but certain
family of convex functions on Rn. We intend to explain what is the Information-based complexity of
P(X) – informally, complexity of the family w.r.t. “black-box-oriented” methods. We start with defining
such a method as a routine B as follows:

1. When starting to solve (CP), B is given an accuracy ε > 0 to which the problem should be solved
and knows that the problem belongs to a given family P(X). However, B does not know what is
the particular problem it deals with.

2. In course of solving the problem, B has an access to the First Order oracle for f . This oracle
is capable, given on input a point x ∈ Rn, to report on output what is the value f(x) and a
subgradient f ′(x) of f at x.
B generates somehow a sequence of search points x1, x2, ... and calls the First Order oracle to
get the values and the subgradients of f at these points. The rules for building xt can be ar-
bitrary, except for the fact that they should be casual: xt can depend only on the information
f(x1), f ′(x1), ..., f(xt−1), f ′(xt−1) on f accumulated by B at the first t− 1 steps.

3. After certain number T = TB(f, ε) of calls to the oracle, B terminates and outputs the result
zB(f, ε). This result again should depend solely on the information on f accumulated by B at the
T search steps, and must be an ε-solution to (CP), i.e.,

zB(f, ε) ∈ X & f(zB(f, ε))−min
X

f ≤ ε.

We measure the complexity of P(X) w.r.t. a solution method B by the function

ComplB(ε) = max
f∈P(X)

TB(f, ε)

– by the minimal number of steps in which B is capable to solve within accuracy ε every instance of
P(X). Finally, the Information-based complexity of the family P(X) of problems is defined as

Compl(ε) = min
B

ComplB(ε),

the minimum being taken over all solution methods. Thus, the relation Compl(ε) = N means, first, that
there exists a solution method B capable to solve within accuracy ε every instance of P(X) in no more
than N calls to the First Order oracle, and, second, that for every solution method B there exists an
instance of P(X) such that B solves the instance within the accuracy ε in at least N steps.

Note that as far as black-box-oriented optimization methods are concerned, the information-based
complexity Compl(ε) of a family P(X) is a lower bound on “actual” computational effort, whatever it
means, sufficient to find ε-solution to every instance of the family.

260 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Main results on Information-based complexity of Convex Programming can be sum-
marized as follows. Let X be a solid in Rn (a convex compact set with a nonempty interior), and let
P(X) be the family of all convex functions on Rn normalized by the condition

max
X

f −min
X

f ≤ 1. (5.2.1)

For this family,

I. Complexity of finding high-accuracy solutions in fixed dimension is independent of the geometry
of X. Specifically,

∀(ε ≤ ε(X)) : O(1)n ln
(
2 + 1

ε

) ≤ Compl(ε);
∀(ε > 0) : Compl(ε) ≤ O(1)n ln

(
2 + 1

ε

)
,

(5.2.2)

where

• O(1) are appropriately chosen positive absolute constants,

• ε(X) depends on the geometry of X, but never is less than 1
n2 , where n is the dimension of

X.

II. Complexity of finding solutions of fixed accuracy in high dimensions does depend on the geometry
of X. Here are 3 typical results:

(a) Let X be an n-dimensional box: X = {x ∈ Rn : ‖x‖∞ ≤ 1}. Then

ε ≤ 1
2
⇒ O(1)n ln(

1
ε
) ≤ Compl(ε) ≤ O(1)n ln(

1
ε
). (5.2.3)

The bounds remain intact when the family is shrunk to include convex Lipschitz continuous,
with constant 1/2 w.r.t. the ‖ · ‖∞-norm, objectives only.

(b) Let X be an n-dimensional ball: X = {x ∈ Rn : ‖x‖2 ≤ 1}. Then

n ≥ 1
ε2
⇒ O(1)

ε2
≤ Compl(ε) ≤ O(1)

ε2
. (5.2.4)

The bounds remain intact when the family is shrunk to include convex Lipschitz continuous,
with constant 1/2 w.r.t. the ‖ · ‖2-norm, objectives only.

(c) Let X be an n-dimensional hyperoctahedron: X = {x ∈ Rn : ‖x‖1 ≤ 1}. Then

n ≥ 1
ε2
⇒ O(1)

ε2
≤ Compl(ε) ≤ O(lnn)

ε2
(5.2.5)

(in fact, O(1) in the lower bound can be replaced with O(ln n), provided that n >> 1
ε2). The

bounds remain intact when the family is shrunk to include convex Lipschitz continuous, with
constant 1/2 w.r.t. the ‖ · ‖1-norm, objectives only.

Since we are interested in extremely large-scale problems, the moral which we can extract from the
outlined results is as follows:

• I is discouraging: it says that we have no hope to guarantee high accuracy, like ε = 10−6, when
solving large-scale problems with black-box-oriented methods; indeed, with O(n) steps per accuracy digit
and at least O(n) operations per step (this many operations are required already to input a search point
to the oracle), the arithmetic cost per accuracy digit is at least O(n2), which is prohibitively large for
really large n.

• II is partly discouraging, partly encouraging. A bad news reported by II is that when X is a
box, which is the most typical situation in applications, we have no hope to solve extremely large-scale
problems, in a reasonable time, to guaranteed, even low, accuracy, since the required number of steps
should be at least of order of n. A good news reported by II is that there exist situations where the
complexity of minimizing a convex function to a fixed accuracy is independent, or nearly independent,

5.2. INFORMATION-BASED COMPLEXITY OF CONVEX PROGRAMMING 261

of the design dimension. Of course, the dependence of the complexity bounds in (5.2.4) and (5.2.5) on
ε is very bad and has nothing in common with being polynomial in ln(1/ε); however, this drawback is
tolerable when we do not intend to get high accuracy. Another drawback is that there are not that many
applications where the feasible set is a ball or a hyperoctahedron. Note, however, that in fact we can save
the most important for us upper complexity bounds in (5.2.4) and (5.2.5) when requiring from X to be
a subset of a ball, respectively, of a hyperoctahedron, rather than to be the entire ball/hyperoctahedron.
This extension is not costless: we should simultaneously strengthen the normalization condition (5.2.1).
Specifically, we shall see that

B. The upper complexity bound in (5.2.4) remains valid when X ⊂ {x : ‖x‖2 ≤ 1} and

P(X) = {f : f is convex and |f(x)− f(y)| ≤ ‖x− y‖2 ∀x, y ∈ X};

S. The upper complexity bound in (5.2.5) remains valid when X ⊂ {x : ‖x‖1 ≤ 1} and

P(X) = {f : f is convex and |f(x)− f(y)| ≤ ‖x− y‖1 ∀x, y ∈ X}.

Note that the “ball-like” case mentioned in B seems to be rather artificial: the Euclidean norm associated
with this case is a very natural mathematical entity, but this is all we can say in its favour. For example,
the normalization of the objective in B is that the Lipschitz constant of f w.r.t. ‖·‖2 is ≤ 1, or, which is the
same, that the vector of the first order partial derivatives of f should, at every point, be of ‖·‖2-norm not
exceeding 1. In order words, “typical” magnitudes of the partial derivatives of f should become smaller
and smaller as the number of variables grows; what could be the reasons for such a strange behaviour?
In contrast to this, the normalization condition imposed on f in S is that the Lipschitz constant of f
w.r.t. ‖ · ‖1 is ≤ 1, or, which is the same, that the ‖ · ‖∞-norm of the vector of partial derivatives of
f is ≤ 1. In other words, the normalization is that the magnitudes of the first order partial derivatives
of f should be ≤ 1, and this normalization is “dimension-independent”. Of course, in B we deal with
minimization over subsets of the unit ball, while in S we deal with minimization over the subsets of the
unit hyperoctahedron, which is much smaller than the unit ball. However, there do exist problems in
reality where we should minimize over the standard simplex

∆n(1) = {x ∈ Rn : x ≥ 0,
∑

i

xi = 1},

which indeed is a subset of the unit hyperoctahedron. For example, it turns out that the PET Image
Reconstruction problem (PET) is in fact the problem of minimization over the standard simplex. Indeed,
the optimality condition for (PET) reads

λj


pj −

∑

i

yi
pij∑

`

pi`λ`


 = 0, j = 1, ..., n;

summing up these equalities, we get ∑

j

pjλj = B ≡
∑

i

yi.

It follows that the optimal solution to (PET) remains unchanged when we add to the nonnegativity
constraints λj ≥ 0 also the constraint

∑
j

pjλj = B. Passing to the new variables xj = B−1pjλj , we

further convert (PET) to the equivalent form

min
x

{
f(x) ≡ −∑

i

yi ln(
∑
j

qijxj) : x ∈ ∆n

}

[
qij = Bpij

pj

] , (PET′)

which is a problem of minimizing a convex function over the standard simplex.

262 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Intermediate conclusion. The discussion above says that this perhaps is a good idea to look for
simple convex minimization techniques which, as applied to convex programs (CP) with feasible sets
of appropriate geometry, exhibit dimension-independent (or nearly dimension-independent) and nearly
optimal information-based complexity. We are about to present a family of techniques of this type.

5.3 Methods with Euclidean geometry: Subgradient Descent
and Bundle-Level

5.3.1 The simplest of the cheapest – Subgradient Descent

The Subgradient Descent method (SD) (N. Shor, 1967) is aimed at solving a convex program

f∗ = min
x∈X

f(x) (5.3.1)

where X is a convex compact set in Rn and f is a Lipschitz continuous on X convex function, is the
recurrence

xt+1 = ΠX(xt − γtf
′(xt)) [x1 ∈ X] (5.3.2)

where

• γt > 0 are stepsizes

• ΠX(x) = argmin
y∈X

‖x− y‖22 is the standard projector on X,

• f ′(x) is a subgradient of f at x:

f(y) ≥ f(x) + (y − x)T f ′(x) ∀y ∈ X.

Note: We always assume that intX 6= ∅ and that the subgradients f ′(x) reported by the First
Order oracle at points x ∈ X satisfy the requirement

f ′(x) ∈ cl {f ′(y) : y ∈ intX}.

With this assumption, for every norm ‖ · ‖ on Rn and for every x ∈ X one has

‖f ′(x)‖∗ ≡ max
ξ:‖ξ‖≤1

ξT f ′(x) ≤ L‖·‖(f) ≡ sup
x6=y,

x,y∈X

|f(x)− f(y)|
‖x− y‖ , (5.3.3)

where
‖ξ‖∗ = max

x:‖x‖≤1
ξT x (5.3.4)

is the norm conjugate to the norm ‖ · ‖.

When, why and how SD converges?

We start with a simple geometric fact:

Proposition 5.3.1 Let X ⊂ Rn be a closed convex set and x ∈ Rn. Then the vector e = x − ΠX(x)
forms an acute angle with every vector of the form y −ΠX(x), y ∈ X:

(x−ΠX(x))T (y −ΠX(x) ≤ 0 ∀y ∈ X. (5.3.5)

In particular,
y ∈ X ⇒ ‖y −ΠX(x)‖22 ≤ ‖y − x‖22 − ‖x−ΠX(x)‖22. (5.3.6)

METHODS WITH EUCLIDEAN GEOMETRY 263

Proof. Indeed, when y ∈ X and 0 ≤ t ≤ 1, one has

φ(t) = ‖ [ΠX(x) + t(y −ΠX(x))]︸ ︷︷ ︸
yt∈X

−x‖22 ≥ ‖ΠX(x)− x‖22 = φ(0),

whence
0 ≤ φ′(0) = 2(ΠX(x)− x)T (y −ΠX(x)).

Consequently,
‖y − x‖22 = ‖y −ΠX(x)‖22 + ‖ΠX(x)− x‖22

+2(y −ΠX(x))T (ΠX(x)− x)
≥ ‖y −ΠX(x)‖22 + ‖ΠX(x)− x‖22.

Corollary 5.3.1 Let problem (5.3.1) be solved by SD. Then for every u ∈ X one has

γt(xt − u)T f ′(xt) ≤ 1
2
‖xt − u‖22

︸ ︷︷ ︸
dt

− 1
2
‖xt+1 − u‖22

︸ ︷︷ ︸
dt+1

+
1
2
γ2

t ‖f ′(xt)‖22. (5.3.7)

Proof. Indeed, by Proposition 5.3.1 we have

dt+1 ≤ 1
2
‖[xt − u]− γtf

′(xt)‖22 = dt − γt(xt − u)T f ′(xt) +
1
2
γ2

t ‖f ′(xt)‖22.

Summing up inequalities (5.3.1) over t = T0, T0 + 1, ..., T , we get

T∑

t=T0

γt(f(xt)− f(u)) ≤ dT0 − dT+1︸ ︷︷ ︸
≤Θ

+
T∑

t=T0

1
2
γ2

t ‖f ′(xt)‖22, (5.3.8)

where
Θ = max

x,y∈X

1
2
‖x− y‖22 (5.3.9)

Setting u = x∗ ≡ argmin
X

f , we arrive at the bound

∀(T, T0, T ≥ T0 ≥ 1) : εT ≡ min
t≤T

f(xt)− f∗ ≤
Θ+ 1

2

T∑
t=T0

γ2
t ‖f ′(xt)‖22

T∑
t=T0

γt

(5.3.10)

Relation (5.3.10) allows to arrive at various convergence results.

Example 1: “Divergent Series”.

Proposition 5.3.2 Let γt → 0 as t →∞, while
∑
t

γt = ∞. Then

lim
T→∞

εT = 0.

Proof. Set T0 = 1 and note that

T∑
t=1

γ2
t ‖f ′(xt)‖22
T∑

t=1
γt

≤ L2
‖·‖2(f)

T∑
t=1

γ2
t

T∑
t=1

γt

→ 0, T →∞.

264 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Example 2: “Optimal stepsizes”.

Proposition 5.3.3 With the stepsizes

γt =
√

2Θ
‖f ′(xt)‖

√
t

(5.3.11)

one has

εT ≡ min
t≤T

f(xt)− f∗ ≤ O(1)
L‖·‖2 (f) max

x,y∈X
‖x−y‖2

√
T

, T ≥ 1 (5.3.12)

Proof. Setting T0 = bT/2c, we get

εT ≤
Θ + Θ

T∑
t=T0

1
t

T∑
t=T0

√
Θ√

t‖f ′(xt)‖2

≤
Θ + Θ

T∑
t=T0

1
t

T∑
t=T0

√
Θ√

tL‖·‖2 (f)

≤ L‖·‖2(f)
√

Θ
1 + O(1)
O(1)

√
T

= O(1)
L‖·‖2(f)

√
Θ√

T
.

Recalling the definition (5.3.9) of Θ, we can rewrite the efficiency estimate (5.3.12) as

εT ≡ min
1≤t≤T

f(xt)− f∗ ≤ O(1)

Var‖·‖2,X(f)︷ ︸︸ ︷
L‖·‖2(f) max

x,y∈X
‖x− y‖2

√
T

(5.3.13)

We have arrived at efficiency estimate which is dimension-independent, provided that the “‖·‖2-variation”
of the objective on the feasible domain

Var‖·‖2,X(f) = L‖·‖2(f) max
x,y∈X

‖x− y‖2

is fixed. Moreover, when X is a Euclidean ball in Rn, this efficiency estimate “is as good as an efficiency
estimate of a black-box-oriented method can be”, provided that the dimension is large:

n ≥
(

Var‖·‖2,X(f)
ε

)2

(see (5.2.4)). Note, however, that our “dimension independent” efficiency estimate

• is pretty slow

METHODS WITH EUCLIDEAN GEOMETRY 265

• is indeed dimension-independent only for problems with “Euclidean geometry” – those with mod-
erate ‖ · ‖2-variation. As a matter of fact, in applications problems of this type are pretty rare.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

SD as applied to min
‖x‖2≤1

‖Ax− b‖1, A : 50× 50

[red: efficiency estimate; blue: actual error]

5.3.2 From SD to Bundle-Level: Adding memory

An evident drawback of SD is that all information on the objective accumulated so far is “summarized”
in the current iterate, and this “summary” is very incomplete. With better usage of past information,
one arrives at bundle methods which outperform SD significantly in practice, while preserving the most
attractive theoretical property of SD – dimension-independent and optimal, in favourable circumstances,
rate of convergence.

Bundle-Level method: Description

As applied to problem (5.3.1), BL works as follows.

1. At the beginning of step t of BL, we have in our disposal

• the first-order information {f(xτ), f ′(xτ)}1≤τ<t on f along the previous search points xτ ∈ X,
τ < t;

• current iterate xt ∈ X.

2. At step t we

(a) compute f(xt), f ′(xt); this information, along with the past first-order information on f ,
provides is with the current model of the objective

ft(x) = max
τ≤t

[f(xτ) + (x− xτ)T f ′(xτ)]

This model underestimates the objective and is exact at the points x1, ..., xt;

(b) define the best found so far value of the objective f t = min
τ≤t

f(xτ)

266 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

(c) define the current lower bound ft on f∗ by solving the auxiliary problem

ft = min
x∈X

ft(x) (LPt)

Note that the current gap ∆t = f t−ft is an upper bound on the inaccuracy of the best found
so far approximate solution to the problem;

(d) compute the current level `t = ft + λ∆t (λ ∈ (0, 1) is a parameter)
(e) build a new search point by solving the auxiliary problem

xt+1 = argmin
x

{‖x− xt‖22 : x ∈ X, ft(x) ≤ `t} (QPt)

and loop to step t + 1.

Why and how BL converges?

Preliminary observations: A. The models ft(x) = max
τ≤t

[f(xτ) + (x− xτ)T f ′(xτ)] grow with t and

underestimate f , while the best found so far values of the objective decrease with t and overestimate f∗.
Thus,

f1 ≤ f2 ≤ f3 ≤ ... ≤ f∗
f1 ≥ f2 ≥ f3 ≤ ... ≥ f∗

∆1 ≥ ∆2 ≥ ... ≥ 0

B. Let us say that a group of subsequent iterations J = {s, s+1, ..., r} form a segment, if ∆r ≥ (1−λ)∆s.
We claim that

(!) If J = {s, s + 1, ..., r} is a segment, then
(i) All the sets Lt = {x ∈ X : ft(x) ≤ `t}, t ∈ J , have a point in common, specifically, (any)
minimizer u of fr(·) over X;

(ii) For t ∈ J , one has ‖xt − xt+1‖2 ≥ (1−λ)∆r

L‖·‖2(f)
.

Indeed, (i): for t ∈ J we have

ft(u) ≤ fr(u) = fr = fr −∆r ≤ f t −∆r ≤ f t − (1− λ)∆s

≤ f t − (1− λ)∆t = `t.

(ii): We have ft(xt) = f(xt) ≥ f t, and ft(xt+1) ≤ `t = f t − (1 − λ)∆t. Thus, when passing from xt to
xt+1, t-th model decreases by at least (1 − λ)∆t ≥ (1 − λ)∆r. It remains to note that ft(·) is Lipschitz
continuous w.r.t. ‖ · ‖2 with constant L‖·‖2(f).
C. Main observation:

(!!) The cardinality of a segment J = {s, s+1, ..., r} of iterations can be bounded as follows:

Card(J) ≤ Var2‖·‖2,X(f)
(1− λ)2∆2

r

. (5.3.14)

Indeed, when t ∈ J , the sets Lt = {x ∈ X : ft(x) ≤ `t} have a point u in common, and xt+1 is the
projection of xt onto Lt. It follows that

‖xt+1 − u‖22 ≤ ‖xt − u‖22 − ‖xt − xt+1‖22 ∀t ∈ J

⇒
∑

t∈J

‖xt − xt+1‖22 ≤ ‖xs − u‖22 ≤ max
x,y∈X

‖x− y‖22

⇒ Card(J) ≤
max

x,y∈X
‖x− y‖22

min
t∈J

‖xt − xt+1‖22

⇒ Card(J) ≤
L2
‖·‖2(f) max

x,y∈X
‖x− y‖22

(1− λ)2∆2
r

[by (!.ii)]

We have arrived at the following

METHODS WITH EUCLIDEAN GEOMETRY 267

Theorem 5.3.1 For every ε, 0 < ε < ∆1, the number N of steps of BL before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
Var2‖·‖2,X(f)

λ(1− λ)2(2− λ)ε2
. (5.3.15)

Proof. Assume that N is such that ∆N > ε, and let us bound N from above.
10. Let us split the set of iterations I = {1, ..., N} into segments J1, ..., Jm as follows:

• J1 is the maximal segment which ends with iteration N :

J1 = {t : t ≤ N, (1− λ)∆t ≤ ∆N}

• J1 is certain group of subsequent iterations {s1, s1 + 1, ..., N}. If J1 differs from I, that is,
if s1 > 1, we define J2 as the maximal segment which ends with iteration s1 − 1:

J2 = {t : t ≤ s1 − 1, (1− λ)∆t ≤ ∆s1−1} = {s2, s2 + 1, ..., s1 − 1}

• If J1∪J2 differs from I, that is, if s2 > 1, we define J3 as the maximal segment which ends
with iteration s2 − 1:

J3 = {t : t ≤ s2 − 1, (1− λ)∆t ≤ ∆s2−1} = {s3, s3 + 1, ..., s2 − 1}

and so on.

20. As a result of 10, I will be partitioned “from the end to the beginning” into segments of iterations
J1, J2,...,Jm. Let d` be the gap corresponding to the last iteration from J`. By maximality of segments
J`, we have

d1 ≥ ∆N > ε
d`+1 > (1− λ)−1d`, ` = 1, 2, ..., m− 1

whence
d` > ε(1− λ)−(`−1).

We now have

N =
m∑

`=1

Card(J`) ≤
m∑

`=1

Var2
‖·‖2,X(f)

(1−λ)2d2
`

≤ Var2
‖·‖2,X(f)

(1−λ)2

m∑
`=1

(1− λ)2(`−1)ε−2

≤ Var2
‖·‖2,X(f)

(1−λ)2ε2

∞∑
`=1

(1− λ)2(`−1) =
Var2

‖·‖2,X(f)

(1−λ)2[1−(1−λ)2]ε2 = N(ε).

Comments. We have seen that the Bundle-Level method shares the dimension-independent (and
optimal in a “favourable geometry” large-scale case) theoretical complexity bound:

Provable fact: For every ε > 0, the number of steps before an ε-solution to convex program

min
x∈X

f(x) is found, does not exceed O(1)
(

Var‖·‖2,X(f)

ε

)2

.

At the same time, there exists quite convincing experimental evidence that the Bundle-Level method
obeys the optimal in fixed dimension “polynomial time” complexity bound:

Experimental fact: For every ε ∈ (0,VarX(f) ≡ max
X

f − min
X

f), the number of steps of

BL before an ε-solution to convex program min
x∈X

f(x) with X ⊂ Rn is found, does not exceed

n ln
(

VarX(f)
ε

)
+ 1

or, equivalently,

When solving convex program with n variables by BL, every n steps add new accuracy digit.

268 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Illustration: Consider a randomly generated problem min
x:‖x‖2≤1

f(x) ≡ ‖Ax− b‖1, dim x = 50 (f(0) =

2.61, f∗ = 0). Here is what happens with SD and BL:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

SD, accuracy vs. iteration count

(blue: errors; red: efficiency estimate 3Var‖·‖2,X(f)√
t

)
ε10000 = 0.084

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BL, accuracy vs. iteration count
(blue: errors; red: efficiency estimate e−

t
n VarX(f))

ε233 < 1.e− 4

Bundle-Level vs. Subgradient Descent

5.3.3 Restricted Memory Bundle-Level

In BL, the number of linear constraints in the auxiliary problems

ft = min
x∈X

ft(x) (LPt)

xt+1 = argmin
x

{‖xt − x‖22 : x ∈ X, ft(x) ≤ `t

}
(QPt)

is equal to the size t of the current bundle – the collection of affine forms gτ (x) = f(xτ)+(x−xτ)T f ′(xτ)
participating in the model ft(·). Thus, the complexity of an iteration in BL grows with the iteration

METHODS WITH EUCLIDEAN GEOMETRY 269

number. In order to suppress this phenomenon, one needs a mechanism for shrinking the bundle (and
thus – simplifying the models of f).

Simple bundle-shrinking policy

The simplest way of shrinking the bundle is to initialize d as ∆1 and to run plain BL until an iteration t
with ∆t ≤ d/2 is met. At such an iteration, we

• shrink the current bundle, keeping in it the minimum number of the forms gτ sufficient to ensure
that

ft ≡ min
x∈X

max 1 ≤ τ ≤ tgτ (x) = min
x∈X

max
selected τ

gτ (x)

(this number is at most n), and
• reset d as ∆t,

and proceed with plain BL until the gap is again reduced by factor 2, etc.
Computational experience demonstrates that the outlined approach does not slow BL down, while

keeping the size of the bundle below the level of about 2n.

Truncated Proximal Bundle-Level

In Truncated Proximal Bundle-Level method, the size of bundle is kept below a given desired level m
(which, independently of the dimension of the problem of interest, can be as small as 1 or 2).

Phases of TPBL. Execution of TPBL is split into phases. Phase s is associated with

1. prox-center cs ∈ X,

2. s-th upper bound fs on f∗, which is the best value of the objective observed before the phase
begins,

3. • s-th lower bound fs on f∗, which is the best lower bound on f∗ observed before the phase begins.
Bounds fs and fs define

• s-th optimality gap ∆s = fs − fs;
• s-th level `s = fs + λ∆s, where λ ∈ (0, 1) is parameter of the method.

4. current model f̃s(·) ≤ f(·) of f(·), which is the maximum of ≤ m affine forms.

To initialize the first phase, we choose c1 ∈ X, compute f(c1), f ′(c1) and set

f̃1(x) = f(c1) + (x− c1)T f ′(c1), f1 = f(c1), f1 = min
x∈X

f̃1(x).

Steps of a phase. At the beginning of step t = 1, 2, ... of phase s, we have in our disposal

• upper bound fs,t−1 ≤ fs on f∗, which is the best found so far value of the objective,

• lower bound fs,t−1 ≥ fs on f∗,

• model f̃s,t−1(·) ≤ f(·) of the objective which is the maximum of ≤ m affine forms,

• • iterate xt ∈ X and set Ht−1 = {x : αT
t−1x ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argmin

x

{‖x− cs‖22 : x ∈ Ht−1

}
(bt) (5.3.16)

To initialize the first step of phase s, we set

fs,0 = fs, fs,0 = fs, f̃s,0(·) = f̃s(·), α0 = 0, β0 = 0 [⇒ H0 = Rn]

thus ensuring (5.3.16.a1), and set x1 = cs, thus ensuring (5.3.16.b1).

270 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Step t of phase s is as follows. Given

• bounds fs,t−1 ≥ f∗, fs,t−1 ≤ f∗,

• model f̃s,t−1(·) ≤ f(·),

• xt and Ht−1 = {x : αT
t−1x ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argmin

x

{‖x− cs‖22 : x ∈ Ht−1

}
(bt)

we

1. compute f(xt), f ′(xt) and set gt(x) = f(xt) + (x− xt)T f ′(xt);

2. define f̃s,t(·) as the maximum of gt(·) and affine forms associated with f̃s,t−1 (dropping, if necessary,
one of the latter forms to make f̃ t,s the maximum of at most m forms). If f(xt) ≤ `s +0.5(fs− `s)
(“significant progress in the upper bound”), we terminate phase s and set

fs+1 = fs,t, fs+1 = fs,t−1, f̃s+1(·) = f̃s,t(·),

otherwise we proceed as follows:

3. Compute ft = min
x

{
f̃s,t(x) : x ∈ Ht−1 ∩X

}
. Since f(x) ≥ `s in X\Ht−1, we have f∗ ≥ min[`s, ft],

so that

fs,t ≡ max {fs,t−1,min[`s, ft]} ≤ f∗.

If fs,t ≥ `s− 0.5(`s− fs) (“significant progress in the lower bound”), we terminate phase s and set

fs+1 = fs,t, fs+1 = fs,t, f̃s+1(·) = f̃s,t(·)

otherwise we set

xt+1 = argmin
x

{
‖x− cs‖22 : x ∈ X ∩Ht−1, f̃

s,t(x) ≤ `s

}

Ht = {x : (xt+1 − cs)T (x− xt+1) ≥ 0}

and loop to step t + 1 of phase s.

METHODS WITH EUCLIDEAN GEOMETRY 271

Step of TPBL
Black: X
Blue: dot – prox-center; star – xt; half-plane – Ht−1

Cyan: true level set f(·) ≤ `s

Magenta: model level set f̃s,t(·) ≤ `s

Red: star: xt+1, half-space – Ht.

Note: If phase s is not terminated at step t, then, by construction,

xt+1 = argmin
x

{
‖x− cs‖22 : x ∈ X ∩Ht−1, f̃

s,t(x) ≤ `s

}
(a)

Ht = {x : (xt+1 − cs)T (x− xt+1) ≥ 0} (b)
(5.3.17)

It follows that when passing to step t + 1, we have ensured the relations

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht (at+1)
xt+1 = argmin

x

{
‖x− cs‖22 : x ∈ X ∩Ht, f̃

s,t(x) ≤ `
}

(bt+1)

Indeed, xt+1 is the minimizer of ωs(x) ≡ 1
2‖x− cs‖22 on the set

Yt = X ∩Ht−1 ∩ {x : f̃ t,s(x) ≤ `s}

272 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

whence

[

xt+1−cs︷ ︸︸ ︷
ω′s(xt+1)]T (x− xt+1) ≥ 0 ∀x ∈ Yt

⇓
Yt ⊂ Ht = {x : [ω′s(xt+1)]T (x− xt+1) ≥ 0} (∗)

Thus,
(x ∈ X, f(x) ≤ `s) ⇒︸︷︷︸

(at)

(x ∈ X ∩Ht−1, f(x) ≤ `s)

⇒ (x ∈ X ∩Ht−1, f̃
s,t(x) ≤ `s) ⇒︸︷︷︸

(∗)
x ∈ Ht

as required in (at+1). (bt+1) readily follows from the definition of Ht.

Convergence Analysis of TPBL

Preliminary observations: A. When passing from phase s to phase s + 1, the optimality gap is
decreased at least by the factor

θ(λ) =
min[1 + λ, 2− λ]

2
.

Indeed, phase s can be terminated at step t due to significant progress either in the upper bound on f∗:
fs+1 = fs,t ≤ `s + 1

2 (fs − `s)

⇒ ∆s+1 = fs+1 − fs+1 ≤ 1
2
`s +

1
2
fs − fs =

1 + λ

2
∆s

or in the lower bound: fs+1 = fs,t ≥ `s − 0.5(`s − fs)

⇒ ∆s+1 = fs+1 − fs+1 ≤ fs − 1
2
fs − 1

2
`s =

2− λ

2
∆s

B. Let xt, xt+1 be two subsequent search points of phase s. Then

‖xt − xt+1‖2 >
(1− λ)∆s

2L‖·‖2(f)
.

Indeed, we have f(xt) = gt(xt) = f̃s,t(xt) ≥ `s + 1
2 (fs− `s), since otherwise phase s would be terminated

at step t. At the same time, gt(xt+1)) ≤ mf̃s,t(xt+1) ≤ `s. Thus, passing from xt to xt+1, we decrease
Lipschitz continuous, with constant L‖·‖2(f) w.r.t. ‖ · ‖2, function gt(·) by at least 1

2 (fs − `s) = 1−λ
2 ∆s.

Main observation: The number of steps at phase s does not exceed

Ns =
4V 2
‖·‖2,X(f)

(1− λ)2∆2
s

+ 1. (5.3.18)

Indeed, let the number of steps of the phase be > N . By construction, xt+1 ∈ Ht−1 and xt is the
minimizer of ωs(x) = 1

2‖x− cs‖22 on Ht−1, whence

1 ≤ t ≤ N ⇒ ωs(xt+1) = ωs(xt) + (xt+1 − xt)T ω′s(xt)︸ ︷︷ ︸
≥0

+ 1
2‖xt − xt+1‖22

≥ ωs(xt) + 1
2‖xt − xt+1‖22.

It follows that
N∑

t=1

1
2
‖xt − xt+1‖22

︸ ︷︷ ︸
≥ (1−λ)2∆2

s
8L2
‖·‖2

(f)

≤ 1
2

max
x,y∈X

‖y − x‖22,

5.4. THE BUNDLE-MIRROR SCHEME 273

whence

N ≤
4V 2
‖·‖2,X(f)

(1− λ)2∆2
s

.

Same as in the case of BL, (5.3.18) combines with the relation ∆s+1 ≤ θ(λ)∆s to yield the following

Theorem 5.3.2 For every ε, 0 < ε < ∆1, the total number of TPBL steps before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) = c(λ)
Var2‖·‖2,X(f)

ε2
.

Theorem says that when passing from BL to TPBL, we, essentially, preserve the efficiency estimate,
while allowing for full control on bundle cardinality, and, consequently, on the complexity of the auxiliary
problems.

5.4 The Bundle-Mirror scheme

Subgradient Descent method and its bundle versions are “intrinsically adjusted” to problems with Eu-
clidean geometry; this is where the role of the ‖ · ‖2-variation of the objective

Var‖·‖2,X(f) = L‖·‖2(f) max
x,x′∈X

‖x− x′‖2

in the efficiency estimate

min
t≤T

f(xt)− f∗ ≤ O(1)
Var‖·‖2,X(f)√

T

comes from. The Mirror Descent scheme extends SD and its bundle versions onto problems with “nice
non-Euclidean geometry”.

5.4.1 Mirror Descent – Building Blocks

Building block #1: Distance-Generating Function. A SD step

x 7→ x+ = ΠX(x− γf ′(x))

can be viewed as follows: given an iterate x ∈ X, we

1) Form a ”local distance” term
[
1
2
‖y − x‖22 ≡

]
ωx(y) = ω(y)− ω(x)− 〈∇ω(x), y − x〉

where
ω(u) =

1
2
‖u‖22 (2)

is a specific “distance-generating function”;

2) Augment the linear model of f , built at x:

fx(y) = f(x) + 〈f ′(x), y − x〉

by 1
γ times the distance term, thus getting the “augmented model”

gγ
x(y) = fx(y) +

1
γ

ωx(y) =
1
γ

(〈γf ′(x)−∇ω(x), y〉+ ω(y)) + c(x, γ)

274 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

3) Minimize the augmented model over y ∈ X, thus getting the new iterate x+:

argmin
y∈X

gγ
x(y) = argmin

y∈X
(〈γf ′(x)−∇ω(x), y〉+ ω(y))

= argmin
y∈X

(−〈[x− γf ′(x)], y〉+ 1
2 〈y, y〉)

= argmin
y∈X

[
1
2‖y − [x− γf ′(x)]‖22 − 1

2‖x− γf ′(x)‖22
]

= ΠX(x− γf ′(x)).

Thus,

Subgradient Descent step
x 7→ x+ = ΠX(x− γf ′(x))

is the step
x 7→ x+ = argmin

y∈X
[〈γf ′(x)−∇ω(x), y〉+ ω(y)] (5.4.1)

associated with the specific distance-generating function

ω(u) =
1
2
uT u (5.4.2)

Note that the distance-generating function (5.4.2) is continuously differentiable and strongly convex on
X, the latter meaning that

〈∇ω(u)−∇ω(v), u− v〉 ≥ α‖u− v‖22 ∀u, v ∈ X [α > 0] (5.4.3)

(from ow on, 〈·, ·〉 is the standard inner product in Rn ⊃ X). Indeed, in the case of (5.4.2) we have

〈∇ω(u)−∇ω(v), u− v〉 = 〈u− v, u− v〉 = ‖u− v‖22.eqno

Building block #2: the potential. Convergence analysis of SD was based on the inequality

∀u ∈ X :

γ 〈f ′(x), x− u〉︸ ︷︷ ︸
≥f(x)−f(u)

− 1
2‖γf ′(x)‖22 ≤

1
2
‖x− u‖22 − 1

2
‖x+ − u‖22

︸ ︷︷ ︸
= [12xT x− xT u]− [12xT

+x+ − xT
+u]

= [〈∇ω(x), x− u〉 − ω(x)]− [〈∇ω(x+), x+ − u〉 − ω(x+)][
ω(u) = 1

2uT u
]

(5.4.4)

ensured by SD step. This inequality states that Hu(x) = 〈∇ω(x), x−u〉−ω(x) is a kind of “potential” for
SD: when u is such that f(x) > f(u), a SD step reduces this potential at least by γ[f(x)− f(u)]−O(γ2).

Now let us make the following
Observation: When ω(·) is continuously differentiable and strongly convex on X:

〈∇ω(u)−∇ω(v), u− v〉 ≥ α‖u− v‖2 ∀u, v ∈ X [α > 0]

step (5.4.1) ensures inequality similar to (5.4.4):

γ〈f ′(x), x− u〉 ≤ Hu(x)−Hu(x+) + 1
2αγ2‖f ′(x)‖2∗[

‖ξ‖∗ = max
u
{〈ξ, u〉 : ‖u‖ ≤ 1}

] (5.4.5)

Indeed, optimality condition for (5.4.1) reads

〈γf ′(x)−∇ω(x) +∇ω(x+), u− x+〉 ≥ 0 ∀u ∈ X,

5.4. THE BUNDLE-MIRROR SCHEME 275

whence
γ〈f ′(x), u− x+〉 ≥ 〈∇ω(x)−∇ω(x+), u− x+〉︸ ︷︷ ︸

Hu(x+)−Hu(x)−[ω(x+)−ω(x)−〈∇ω(x),x+−x〉]

∀u ∈ X

⇓
γ〈f ′(x), x+ − u〉 ≤ Hu(x)−Hu(x+)

+[ω(x)− 〈∇ω(x), x− x+〉 − ω(x+)]
⇓

γ〈f ′(x), x− u〉 ≤ Hu(x)−Hu(x+)
+ [ω(x)− 〈∇ω(x), x− x+〉 − ω(x+)]︸ ︷︷ ︸

≤−α
2 ‖x−x+‖2

+ γ〈f ′(x), x− x+〉︸ ︷︷ ︸
≤γ‖f ′(x)‖∗‖x−x+‖

⇓
∀u ∈ X : γ〈f ′(x), x− u〉 ≤ Hu(x)−Hu(x+)

+max
r

{
γ‖f ′(x)‖∗r − α

2 r2
}

= Hu(x)−Hu(x+) + 1
2αγ2‖f ′(x)‖2∗

as stated in (5.4.5).
Note: With ω(u) = 1

2‖u‖22, ‖ · ‖ = ‖ · ‖2 one has α = 1, ‖ · ‖∗ ≡ ‖ · ‖2, and (5.4.5) becomes (5.4.4).

5.4.2 Non-Euclidean SD – Mirror Descent

Same as before, we focus on convex problem (5.3.7) with convex compact domain X ⊂ E = Rn and
Lipschitz continuous on this domain convex objective f .

The Setup for MD as applied to (5.3.7) is given by

1. continuously differentiable strongly convex function ω(u) on X

2. a norm ‖ · ‖ on E.

ω(·) and ‖ · ‖ define two important parameters:

• modulus of strong convexity of ω w.r.t ‖ · ‖:
α = max

{
α′ > 0 : 〈∇ω(u)−∇ω(v), u− v〉 ≥ α′‖u− v‖2 ∀u, v ∈ X

}
(5.4.6)

• ω-size of X
Θ = max

u,v∈X
[ω(u)− ω(v)− 〈∇ω(v), u− v〉] .

Note: With “Ball setup” ω(u) = 1
2 〈u, u〉, ‖u‖ ≡ ‖u‖2 =

√
〈u, u〉 one has α = 1, Θ = 1

2 max
u,v∈X

‖u− v‖22.

MD: the construction

As applied to (5.3.7), MD generates search points xt according to the recurrence

xt+1 = argmin
y∈X

[〈γtf
′(xt)−∇ω(xt), y〉+ ω(y)] (5.4.7)

where γt > 0 are stepsizes.
Note:

• With Ball setup, (MD) becomes exactly the SD recurrence xt+1 = ΠX(xt − γtf
′(xt))

• In order for (MD) to be practical, a step should be easy to implement. This means that X and
ω(·) should fit each other in the sense that auxiliary problems

min
y∈X

[〈ζ, y〉+ ω(y)]

should be easy to solve.

276 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Why and how MD converges?

By (5.4.5), a MD step ensures the inequality

∀u ∈ γt〈f ′(xt), xt − u〉 ≤ Hu(xt)−Hu(xt+1) + 1
2αγ2

t ‖f ′(xt)‖2∗
[Hu(x) = 〈∇ω(x), x− u〉 − ω(x)]

Summing up these inequalities, we conclude that for positive integers T0 ≤ T one has

T∑

t=T0

γt〈f ′(xt), xt − u〉 ≤ Hu(xT0)−Hu(xT) +
1
2α

T∑

t=T0

γ2
t ‖f ′(xt)‖2∗. (5.4.8)

Lemma 5.4.1 One has Hu(x)−Hu(y) ≤ Θ for all x, y, u ∈ X.

Proof. Indeed,

Hu(x)−Hu(y) = 〈∇ω(x), x− u〉 − ω(x)− 〈∇ω(y), y − u〉+ ω(y)
= [ω(u)− ω(x)− 〈∇ω(x), u− x〉]︸ ︷︷ ︸

≤Θ

+ [ω(y) + 〈∇ω(y), u− y〉 − ω(u)]︸ ︷︷ ︸
≤0

Applying Lemma, we conclude from (5.4.8) that

T∑

t=T0

γt〈f ′(xt), xt − u〉 ≤ Θ +
1
2α

T∑

t=T0

γ2
t ‖f ′(xt)‖2∗. (5.4.9)

For MD, relation (5.4.9) plays the same crucial role that the inequality (5.3.8) played for SD. Same as in
the latter case, it implies that for all positive integers T ≥ T0 it holds

εT ≡ min
t≤T

f(xt)− f∗ ≤
Θ + 1

2α

T∑
t=T0

γ2
t ‖f ′(xt)‖2∗

T∑
t=T0

γt

(5.4.10)

and we arrive at the following two results (cf. Propositions 5.3.2, 5.3.3):

Proposition 5.4.1 [“Divergent series”] Whenever 0 < γt → 0 as t →∞ in such a way that
∑
t

γt = ∞,

one has εT → 0 as T →∞.

Proposition 5.4.2 [Optimal stepsize policy] With stepsizes

γt =
√

Θα

‖f ′(xt)‖∗
√

t
, (5.4.11)

one has

εT ≡ min
t≤T

f(xt)− f∗ ≤ O(1)

√
ΘL‖·‖(f)√

α
√

T
(5.4.12)

where L‖·‖(f) is the Lipschitz constant of f w.r.t. the norm ‖ · ‖.

5.4. THE BUNDLE-MIRROR SCHEME 277

Standard Setups and associated efficiency estimates

To get SD as a particular case of MD, one uses
Ball Setup: ω(u) = 1

2‖u‖22, ‖ · ‖ = ‖ · ‖2. For this setup, one has

α = 1, Θ =
1
2

max
x,y∈X

‖x− y‖22,

and the associated efficiency estimate (5.4.12) becomes

εT ≤ O(1)
L‖·‖2(f) max

x,y∈X
‖x− y‖2

√
T

(5.4.13)

(cf. (5.3.13)).
There are at least two important setups more:

Simplex setup: X is a closed convex subset of the simplex ∆+
n (R) = {x ∈ E = Rn : x ≥ 0,

∑
i

xi ≤ R},
‖ · ‖ = ‖ · ‖1,

ω(x) =
∑

i

(R−1xi + n−1δ) ln(R−1xi + n−1δ) [δ = 1.e− 16].

Spectahedron Setup: X is a closed convex subset of the spectahedron Ξn(R) = {x ∈ E = Sn : x º
0, Tr(x) ≤ R}, ‖x‖ = |x|1 ≡ ‖λ(x)‖1,

ω(x) =
∑

i

(R−1λi(x) + n−1δ) ln(R−1λi(x) + n−1δ).

For these setups, one has (see Appendix to Lecture 5)

α = O(1)R−2, Θ ≤ O(1) ln n. (5.4.14)

and the associated efficiency estimate (5.4.12) becomes nearly-dimension-independent bound

εT ≡ min
t≤T

f(xt)− f∗ ≤ O(1)

√
ln nL‖·‖(f)R√

T
. (5.4.15)

Discussion: MD vs. SD. Let us compare the convergence properties of MD with Simplex setup
and SD (i.e., MD with Ball setup).

The efficiency estimate for the MD with Simplex Setup reads

εT [
Simplex
setup

] = min
t≤T

f(xt)− f∗ ≤ O(1)
ln1/2(n)

Var‖·‖1,X(f)︷ ︸︸ ︷
max

x,y∈X
‖x− y‖1L‖·‖1(f)
√

T
(S)

while for SD the efficiency estimate is

εT [
Ball
setup

] = min
t≤T

f(xt)− f∗ ≤ O(1)

Var‖·‖2,X(f)︷ ︸︸ ︷
max

x,y∈X
‖x− y‖2L‖·‖2(f)

√
T

(B)

The ratio of the estimates is

χ =
εT [

Simplex
setup

]

εT [
Ball
setup

]

= O(
√

ln n) ·
max

x,y∈X
‖x− y‖1

max
x,y∈X

‖x− y‖2
︸ ︷︷ ︸

A

· L‖·‖1(f)
L‖·‖2(f)︸ ︷︷ ︸

B

Observe that

278 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

• the factor O(
√

ln n) is “against” Simplex setup; however, in practice this factor is just a moderate
absolute constant.

• the ratio ‖u‖1
‖u‖2 is always ≥ 1 and, depending on x, can be as large as

√
n. It follows that

– factor A is always ≥ 1 (i.e., is “against” Simplex setup) and can be as large as
√

n

– factor B is always ≤ 1 (i.e., is “in favour” of Simplex setup) and can be as small as 1√
n
. The

actual value of B is
L‖·‖1(f)
L‖·‖2(f)

=
max
x∈X

‖f ′(x)‖∞
max
x∈X

‖f ′(x)‖2

and it depends on the “geometry” of f . For example,

∗ In the case when all first order partial derivatives of f in X are of the same order (“f is
nearly equally sensitive to all variables”), we have

B = O

(‖(a, ..., a)T ‖∞
‖(a, ..., a)T ‖2

)
= O(n−1/2)

∗ In the case when just O(1) first order derivatives of f ‘in X are of the same order, and
the remaining derivatives are negligible small (“f is sensitive to just O(1) variables”),
we have

B = O

(‖(a, 0, ..., 0)T ‖∞
‖(a, 0, ..., 0)T ‖2

)
= O(1)

It follows that the resulting performance ratio χ depends on the geometry of X and f .
• Extreme example I: X is the standard Euclidean ball. In this case, A =

√
n, and since B ≥ 1√

n
, we

have χ ≥ 1 – method with Ball setup (i.e., the classical SD) outperforms the method with Simplex setup
by factor which varies from O(

√
ln n) (f is nearly equally sensitive to all variables) to O(

√
n ln n) (f is

sensitive to just O(1) variables).
• Extreme example II: X is the standard simplex ∆n(R) = {x ∈ Rn : x ≥ 0,

∑
i

xi = 1}. In this case, A =

O(1), and since B ≤ 1 and O(
√

ln n) in practice a moderate absolute constant, we have χ ≤ O(1) –
method with Simplex setup outperforms the classical SD by factor which varies from O

(√
n

ln n

)
(f is

nearly equally sensitive to all variables) to O
(√

1
ln n

)
(f is sensitive to just O(1) variables).

The conclusion is that there is no once for ever “optimal” MD; which version of the method to choose,
it depends on the geometry of the problem. Flexibility of MD as compared to SD to adjust MD, to some
extent, to the geometry of the problem of interest.

Optimality of standard setups

Ball setup and optimization over the ball. As we remember, in the case of the ball setup the
number of steps to solve problem (5.3.1) within accuracy ε by SD does not exceed

N(ε) = O(1)
(

D‖·‖2(X)L‖·‖2(f)
ε

)2

, (5.4.16)

where D‖·‖2 is the ‖ · ‖2-diameter of X and L‖·‖2(f) is the Lipschitz constant of f w.r.t. ‖ · ‖2.
On the other hand, let L > 0, and let P‖·‖2,L(X) be the family of all convex problems (5.3.1) with

convex Lipschitz continuous, with constant L w.r.t. ‖ · ‖2, objectives. It is known that if X is an n-

dimensional Euclidean ball and n ≥ D2
‖·‖2 (X)L2

ε2 , then the information-based complexity of the family

P‖·‖2,L(X) is at least O(1)
D2
‖·‖2 (X)L2

ε2 (cf. (5.2.4)). Comparing this result with (5.4.16), we conclude that

5.4. THE BUNDLE-MIRROR SCHEME 279

If X is an n-dimensional Euclidean ball, then the complexity of the family P‖·‖2,L(X) w.r.t.

the MD algorithm with the ball setup in the “large-scale case” n ≥ D2
‖·‖2 (X)L2

ε2 coincides
(within a factor depending solely on θ, λ) with the information-based complexity of the
family.

Simplex setup and minimization over the simplex. As we remember (cf. (5.4.15)), in the
case of the simplex setup the number of steps to solve problem (5.3.1) within accuracy ε by MD does not
exceed

N(ε) = O(1) ln n




L‖·‖1(f) max
x,y∈X

‖x− y‖1
ε




2

, (5.4.17)

provided 0 ∈ X. On the other hand, let L > 0, and let P‖·‖1,L(X) be the family of all convex problems
(CP) with convex Lipschitz continuous, with constant L w.r.t. ‖ · ‖1, objectives. It is known that if X

is the n-dimensional simplex ∆n(R) (or the full-dimensional simplex ∆+
n (R)) and n ≥ L2R2

ε2 , then the

information-based complexity of the family P‖·‖1,L(X) is at least O(1)L2R2

ε2 (cf. (5.2.5)). Comparing this
result with (5.4.17), we conclude that

If X is the n-dimensional simplex ∆n(R) (or the full-dimensional simplex ∆+
n (R)), then the

complexity of the family P‖·‖1,L(X) w.r.t. the MD algorithm with the simplex setup in the

“large-scale case” n ≥ L2R2

ε2 coincides, within a factor of order of ln n, with the information-
based complexity of the family.

Spectahedron setup and large-scale semidefinite optimization. All the conclusions we
have made when speaking about the case of the simplex setup and X = ∆+

n (R) (or X = ∆n(R)) remain
valid in the case of the spectahedron setup and X defined as the set of all block-diagonal matrices of
a given block-diagonal structure contained in Ξ+

n (R) = {x ∈ Sn : x º 0, Tr(x) ≤ R} (or contained in
Ξn(R) = {x ∈ Ξ+

n (R) : Tr(x) = R}).
We see that with every one of our standard setups, the MD algorithm under appropriate conditions

possesses dimension independent (or nearly dimension independent) complexity bound and, moreover, is
nearly optimal in the sense of Information-based complexity theory, provided that the dimension is large.

Why the standard setups? “The contribution” of ω(·) to the performance estimate (5.4.12) is in
the factor Θ = Ω

κ ; the less it is, the better. In principle, given X and ‖ · ‖, we could play with ω(·) to
minimize Θ. The standard setups are given by a kind of such optimization for the cases when X is the
ball and ‖ · ‖ = ‖ · ‖2 (“the ball case”), when X is the simplex and ‖ · ‖ = ‖ · ‖1 (“the simplex case”),
and when X is the spectahedron and ‖ · ‖ = | · |1 (“the spectahedron case”), respectively. We did not
try to solve the arising variational problems exactly; however, it can be proved in all three cases that the
value of Θ we have reached (i.e., O(1) in the ball case and O(ln n) in the simplex and the spectahedron
cases) cannot be reduced by more than an absolute constant factor. Note that in the simplex case the
(regularized) entropy is not the only reasonable choice; similar complexity results can be obtained for,
say, ω(x) =

∑
i

x
p(n)
i or ω(x) = ‖x‖2p(n) with p(n) = 1 + O

(
1

ln n

)
.

Application example: Positron Emission Tomography Image Reconstruction. The
Maximum Likelihood estimate of tracer’s density in PET is

λ∗ = argmaxλ≥0

{
n∑

j=1

pjλj −
m∑

i=1

yi ln(
n∑

j=1

pijλj)

}

[
yi ≥ 0 are observations, pij ≥ 0, pj =

∑
i

pij

]

280 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

For this convex optimization program, the KKT optimality conditions read

λj


pj −

∑

i

yi
pij∑

`

pi`λ`


 = 0 ∀j,

whence, taking sum over j,
∑

j

pjλj = B ≡
∑

i

yi.

Thus, in fact (PET) is the problem of minimizing over a simplex. Passing to the variables xj = pjB
−1λj ,

we end up with the problem

min
x

{
f(x) = −∑

i

yi ln(
∑
j

qijxj) : x ∈ ∆n

}

[
qij = Bpijp

−1
j

] (PET)

Illustration: “Hot Spheres” phantom (n = 515, 871).

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −4.295 −4.767 −5.079 −5.189 −5.168 −5.230 −5.181 −5.227 −5.189 −5.225

[f∗ ≥ −5.283]
Simplex setup. Progress in accuracy in 10 iterations by factor 21.4

5.4. THE BUNDLE-MIRROR SCHEME 281

Simplex setup (left) vs. Ball setup (right). Progress in accuracy 21.4 vs. 5.26

Illustration: Brain clinical data (n = 2, 763, 635)

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −1.463 −1.848 −2.001 −2.012 −2.015 −2.015 −2.016 −2.016 −2.016 −2.016

[f∗ ≥ −2.050]
Simplex setup. Progress in accuracy in 10 iterations by factor 17.5

5.4.3 Mirror-Level Algorithm

Same as SD, the general Mirror Descent admits a version with memory – Mirror Level (ML) algorithm.
The setup for ML is similar to the one for MD and is given by a strongly convex C1 function ω(·) on X

282 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

and a norm ‖ · ‖ on E.

A step of ML. At step t of ML, we

1. compute f(xt), f ′(xt) and build the current model of f

ft(x) = max
τ≤t

[f(xτ) + 〈f ′(xτ), x− xτ 〉]

which underestimates the objective and is exact at the points x1, ..., xt;

2. define the best found so far value of the objective f t = min
τ≤t

f(xτ)

3. define the current lower bound ft on f∗ by solving the auxiliary problem

ft = min
x∈X

ft(x)

The current gap ∆t = f t − ft is an upper bound on the inaccuracy of the best found so far
approximate solution;

4. compute the current level `t = ft + λ∆t (λ ∈ (0, 1) is a parameter)

5. We solve the optimization problem

dt = min
x
{‖x− xt‖ : x ∈ X, ft(x) ≤ `t}

find et, ‖et‖∗ = 1, such that

〈et, xt − x〉 ≥ dt ∀(x ∈ X, ft(x) ≤ `t),

set
xt+1 = argmin

x∈X

[〈αdt︸︷︷︸
γt

et −∇ω(xt), x〉 − ω(x)
]

and loop to step t + 1.

Observe that with Ball setup,

• γt = ‖xt − zt‖2, where zt = ΠLt(xt) and

Lt = {x ∈ X : ft(x) ≤ `t};

• consequently, et = xt−zt

γt
;

• consequently,

xt+1 = ΠX(xt − γtet) = ΠX(xt − [xt − zt]) = ΠX(zt) = zt = ΠLt(xt),

i.e., the method becomes exactly the BL algorithm.

Why and how ML converges?

Recall that convergence analysis of BL was based on the following fact:

Let J = {s, s + 1, ..., r} be a segment of iterations of BL, that is, let

∆r ≥ (1− λ)∆s.

Then the cardinality of J can be bounded from above as

Card(J) ≤

(
max

x,y∈X
‖x− y‖2L‖·‖2(f)

)2

(1− λ)2∆2
r

.

5.4. THE BUNDLE-MIRROR SCHEME 283

Similar fact for ML reads:

(!) Let J = {s, s + 1, ..., r} be a segment of iterations of ML, that is, let

∆r ≥ (1− λ)∆s.

Then the cardinality of J can be bounded from above as

Card(J) ≤
(Θ/α)L2

‖·‖(f)

(1− λ)2∆2
r

. (5.4.18)

From (!), exactly as in the case of BL, one derives

Theorem 5.4.1 For every ε, 0 < ε < ∆1, the number N of steps of ML before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
2(Θ/α)L2

‖·‖(f)

λ(1− λ)2(2− λ)ε2
.

In particular, for Simplex/Spectahedron setup one has

N(ε) = O(lnn)

(
max

x,y∈X
‖x− y‖L‖·‖(f)

)2

λ(1− λ)2(2− λ)ε2
.

All we need is to verify (!), and here is the verification: Same as in the case of BL, we observe that

1. For t running through a segment of iterations J , the level sets Lt = {x ∈ X : ft(x) ≤ `t} have a
point in common, namely, v ∈ Argmin

x∈X
fr(x);

2. For t ∈ J , the distances dt = min
x∈Lt

‖xt − x‖ are not too small:

dt ≥ (1− λ)∆r

L‖·‖(f)
.

When deriving (5.4.5), we have seen that when ξ ∈ E, the updating x 7→ x+ = argminy∈X [〈ξ −∇ω(x), y〉+ ω(y)]
ensures that

∀u ∈ X : 〈ξ, x− u〉 ≤ Hu(x)−Hu(x+) +
1
2α
‖ξ‖2∗.

Applying this relation to x = xt, ξ = γtet, u = v, we get

〈γtet, xt − v〉︸ ︷︷ ︸
≥γtdt=

γ2
t

α

≤ Hv(xt)−Hv(xt+1) +
1
2α

γ2
t ,

whence Hv(xt)−Hv(xt+1) ≥ 1
2αγ2

t = α
2 d2

t . Thus,

α

2

r∑
t=s

d2
t

︸ ︷︷ ︸
≥α(1−λ)2∆2

r
2L2
‖·‖(f)

Card(J)

≤ Hv(xs)−Hv(xr+1) ≤ Θ,

and (5.4.18) follows.

284 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

5.4.4 NERML – Non-Euclidean Restricted Memory Level algorithm

The algorithm we are about to present is in the same relation to Mirror Level as Truncated Proximal
Bundle-Level is to Bundle-Level - in both cases, we want to get full control on bundle cardinality (and
thus – on the complexity of auxiliary problems) while not losing in the theoretical efficiency estimate.
Specifically, NERML is a version of ML where the bundle size is kept below a given desired level m. The
construction of NERML is very similar to the one of TPBL.

The setup for NERML, same as those for MD and ML, is given by a continuously differentiable
and strongly convex on X function ω(·) and a norm ‖ · ‖ on the Euclidean space E where X lives.

Execution of NERML is split into phases. Phase s is associated with

1. prox-center cs ∈ X

2. s-th upper bound fs on f∗, which is the best value of the objective observed before the phase
begins,

3. s-th lower bound fs on f∗, which is the best lower bound on f∗ observed before the phase begins.

fs and fs define

• s-th optimality gap ∆s = fs − fs;
• s-th level `s = fs + λ∆s, where λ ∈ (0, 1) is parameter of the method;
• s-th local distance

ωs(x) = ω(x)− 〈∇ω(cs), x〉 − ω(cs)

4. current model f̃s(·) ≤ f(·) of f(·), which is the maximum of ≤ m affine forms.

To initialize the first phase, we choose c1 ∈ X, compute f(c1), f ′(c1) and set

f̃1(x) = f(c1) + 〈f ′(c1), x− c1〉, f1 = f(c1), f1 = min
x∈X

f̃1(x).

Steps of a phase. At the beginning of step t = 1, 2, ... of phase s, we have

• upper bound fs,t−1 ≤ fs on f∗, which is the best found so far value of the objective,

• lower bound fs,t−1 ≥ fs on f∗,

• model f̃s,t−1(·) ≤ f(·) of the objective which is the maximum of ≤ m affine forms

• iterate xt ∈ X and set Ht−1 = {x : 〈αt−1, x〉 ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argmin

x
{ωs(x) : x ∈ Ht−1 ∩X} (bt) (5.4.19)

To initialize the first step of phase s, we set

fs,0 = fs, fs,0 = fs, f̃s,0(·) = f̃s(·), α0 = 0, β0 = 0 [⇒ H0 = E]

thus ensuring (5.4.19.a1), and set x1 = cs, thus ensuring (5.4.19.b1).

5.4. THE BUNDLE-MIRROR SCHEME 285

Step t phase s. Given

• bounds fs,t−1 ≥ f∗, fs,t−1 ≤ f∗,

• model f̃s,t−1(·) ≤ f(·),
• xt and Ht−1 = {x : 〈αt−1, x〉 ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argmin

x
{ωs(x) : x ∈ Ht−1 ∩X} (bt)

we act as follows:

1. compute f(xt), f ′(xt) and set gt(x) = f(xt) + 〈f ′(xt), x− xt〉;
2. Define f̃s,t(·) as the maximum of gt(·) and affine forms associated with f̃s,t−1 (dropping, if neces-

sary, one of the latter forms to make f̃s,t the maximum of at most m forms).
If f(xt) ≤ `s + 0.5(fs − `s) (“significant progress in the upper bound”), we terminate phase s and
set

fs+1 = fs,t, fs+1 = fs,t−1, f̃s+1(·) = f̃s,t(·),
otherwise

3. Compute ft = min
x

{
f̃s,t(x) : x ∈ Ht−1 ∩X

}
. Since f(x) ≥ `s in X\Ht−1, we have f∗ ≥ min[`s, ft],

so that
fs,t ≡ max {fs,t−1,min[`s, ft]} ≤ f∗.

If fs,t ≥ `s− 0.5(`s− fs) (“significant progress in the lower bound”), we terminate phase s and set

fs+1 = fs,t, fs+1 = fs,t, f̃s+1(·) = f̃s,t(·)
otherwise we set

xt+1 = argmin
x

{
ωs(x) : x ∈ X ∩Ht−1, f̃

s,t(x) ≤ `s

}

Ht = {x : 〈∇ωs(xt+1), x− xt+1〉 ≥ 0}
and loop to step t + 1 of phase s.

Note: When passing to step t + 1, we ensure the relations

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht (at+1)
xt+1 = argmin

x

{
ωs(x) : x ∈ X ∩Ht, f̃

s,t(x) ≤ `
}

(bt+1)

Indeed, xt+1 is the minimizer of ωs(x) on the set

Yt = X ∩Ht−1 ∩ {x : f̃ t,s(x) ≤ `s}
whence

〈∇ωs(x), x− xt+1〉 ≥ 0 ∀x ∈ Yt

⇓
Yt ⊂ Ht = {x : 〈∇ωs(xt+1), x− xt+1〉 ≥ 0} (∗)

Thus,
(x ∈ X, f(x) ≤ `s) ⇒︸︷︷︸

(at)

(x ∈ X ∩Ht−1, f(x) ≤ `s)

⇒ (x ∈ X ∩Ht−1, f̃
s,t(x) ≤ `s) ⇒︸︷︷︸

(∗)
x ∈ Ht

as required in (at+1). (bt+1) readily follows from the definition of Ht.

286 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Convergence of NERML

Recall that the efficiency estimate for TPBL was a nearly straightforward consequence of the following
fact:

(*) The number of steps of TPBL at a phase s does not exceed

Ns =
4

(
max
x,y

‖x− y‖2L‖·‖2(f)
)2

(1− λ)2∆2
s

+ 1.

For NERML, a similar fact is valid:

(!) The number of steps of NERML at a phase s does not exceed

Ns =
8(Θ/α)L2

‖·‖(f)

(1− λ)2∆2
s

+ 1.

The same reasoning as in the case of TPBL, with (!) playing the role of (*), yields

Theorem 5.4.2 For every ε, 0 < ε < ∆1, the total number of NERML steps before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) = c(λ)
(Θ/α)L2

‖·‖(f)

ε2
.

All we need is to verify (!), and here is the verification:
Assume that phase s was not terminated in course of N steps. By construction, for 1 ≤ t ≤ N we

have
xt+1 ∈ Ht−1 ∩X & xt = argmin

x
{ωs(x) : x ∈ Ht−1 ∩X}

⇓
ωs(xt+1) ≥ ωs(xt) + 〈∇ω(xt), xt+1 − xt〉︸ ︷︷ ︸

≥0

+α
2 ‖xt+1 − xt‖2

≥ ωs(xt) + α
2 ‖xt+1 − xt‖2

(5.4.20)

Further, when passing from xt to

xt+1 = argmin
x

{
ωs(x) : x ∈ Ht−1 ∩X, f̃s,t(x) ≤ `s

}
,

the function gt(x) ≡ f(xt) + 〈f ′(xt), x − xt〉 ≤ f̃s,t varies from the value f(xt) ≥ fs,t to a value ≤ `s

and thus decreases by at least 0.5(1 − λ)∆s (otherwise phase s would be terminated at step t due to
significant progress in the best found so far value of the objective). Since gt(·) is Lipschitz continuous,
with constant L‖·‖(f) w.r.t. ‖ · ‖, we conclude that

0.5(1− λ)∆s ≤ ‖xt − xt+1‖L‖·‖(f) ⇒ ‖xt − xt+1‖ ≥ 0.5(1− λ)∆s

L‖·‖(f)
.

Applying the resulting inequality in (5.4.20), we arrive at

ωs(xt+1) ≥ ωs(xt) +
α(1− λ)2

8L2
‖·‖(f)

∆2
s, 1 ≤ t ≤ N. (5.4.21)

On the other hand, the function ωs(x) = ω(x)− 〈∇ω(cs), x− cS〉+ ω(cs) on the set X varies between 0
and Θ, and (!) follows from (5.4.21).

5.5. IMPLEMENTATION ISSUES AND ILLUSTRATIONS 287

5.5 Implementation issues and illustrations

5.5.1 Implementing SD and MD

Recall that our Implementability assumption on the setup of MD and related methods is that one can
easily solve auxiliary problems of the form

min
x∈X

{〈ξ, x〉+ ω(x)} . (5.5.1)

Under this assumption, there is no difficulty to implement SD and MD – both methods require at every
step solving a single auxiliary problem of the outlined type.

Implementing NERML

The situation with methods with memory is more complicated, since here auxiliary problems are of a
more general form. For the sake of definiteness, let us restrict ourselves with the case of NERML (a reader
can think of how the subsequent recommendations should be modified in the case of the ML algorithm).
Note that in NERML we have to handle two types of auxiliary problems:

(a) min
x

{
max

i
φ(x) : 〈α, x〉 ≤ 0, x ∈ X

}

(b) min
x

{
〈a, x〉+ ω(x) : max

j
ψj(x) ≤ 0, x ∈ X

} (5.5.2)

where φ(·) and ψ(·) are maxima of given affine functions. Problems (a) arise when updating current lower
bounds on the optimal value, while problems (b) are responsible for updating the iterates. In principle,
there are to ways to solve these problems.

A. Straightforward approach. Depending on the structure and the sizes of X and ω, we can solve the
auxiliary problems “as they are” by dedicated high-performance optimization techniques. For example,
when X is given by a list of linear constraints and the ball setup is used, the auxiliary problems are
those of minimizing linear (or convex quadratic) objectives under linear inequality constraints, and to
solve these problems, one could use well-developed pivoting or interior point methods fir convex quadratic
optimization under linear constraints. This is how all standard BL/TPBL methods are implemented.

B. Exploiting duality. A severe disadvantage of the straightforward approach is that when the problem
of interest is an extremely large-scale one (which is the major case we are interested in), so are the auxiliary
problems, which can make their solution by traditional routines too time-consuming. An attractive
alternative is offered by Lagrange Duality. Specifically, it is easily seen that in the NERML context
all auxiliary problems to be solved are strictly feasible in the sense that their feasible sets intersect the
relative interior of X. this, combined with the fact that the functional constraints φ(x) ≤ 0 in these
problems are linear, combines with the standard Lagrange duality to imply that the optimal values in
(a), (b) are equal to those in their (solvable!) Lagrange dual problems

(a∗) max
λ≥0,µi≥0,

∑
i

µi=1
H(λ, µ), H(λ, µ) = min

x∈X

[∑
i

µiφ(x) + λ(〈α, x〉 − β)
]

(b∗) max
λj≥0

F (λ), F (λ) = min
x∈X

[
〈a, x〉+ ω(x) +

∑
j

λjψj(x)

] (5.5.3)

Besides this, since ω(·) is strongly convex, a high-accuracy solution λ̄ to (5.5.3.b) implies a high-accuracy
solution

x̄ = argmin
x∈X


〈a, x〉+ ω(x) +

∑

j

λ̄jψj(x)


 .

Now observe that by our initial assumption on the easiness of (5.5.1), both H(λ, µ) and F (λ) are easily
computable, along with their supergradients, at any given point. For example, to compute H(λ, µ) and

288 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

H ′
λ(λ, µ), H ′

µ(µ, λ), one should compute the point x̄ = argminx∈X

[∑
i

µiφ(x) + λ(〈α, x〉 − β)
]

(which is

assumed to be easy) and to set

H(λ, µ) =
∑

i

µiφ(x̄) + λ(〈α, x̄x〉 − β), H ′
λ(λ, µ) = φ(x̄), H ′

mu(λ, µ) = (〈α, x̄〉 − β).

Now, since the design dimension of the dual problems is under full our control and thus can be enforced
to be reasonably small, we can solve the dual problems rapidly by low dimensional black-box oriented
convex optimization techniques (Ellipsoid method, Bundle-Level with straightforward implementation,
etc.). thus getting the required optimal values of the “actual” auxiliary problems and a high-accuracy
solution to the second of them (for the first of them, only the optimal value is needed).

When the Implementability assumption is satisfied?

The bottom line of the above considerations is that essentially what we need to make the outlined methods
practical is the Implementability assumption. The latter takes place, e.g., in the case of

• Ball setup and simple X (ball, box, positive part of ball, standard simplex,...),

• Simplex setup and simple X (the simplexes ∆+
n (R), ∆n(R), the intersection of ∆n(R) and a box,...)

• Spectahedron setup with X comprised of block-diagonal matrices with diagonal blocks of size O(1).

It is easily seen that in all these cases, problem (5.5.1) can be solved within accuracy ε in O(1)n ln n ln(1/ε)
arithmetic operations, that is, it takes O(1)n ln n a.o. to solve (5.5.1) within machine precision. We are
about to support this claim.

Ball setup. Here problem (5.5.1) becomes

min
x∈X

[
1
2
xT x− pT x

]
,

or, which is the same,

min
s∈X

[
1
2
‖x− p‖22

]
.

We see that to solve (5.5.1) is the same as to project on X - to find the point in X which is as close as
possible, in the usual ‖ · ‖2-norm, to a given point p. This problem is easy to solve for several simple
solids X, e.g.,

• a ball {x : ‖x− a‖2 ≤ r},
• a box {x : a ≤ x ≤ b},
• the simplex ∆n(R) = {x : x ≥ 0,

∑
i

xi = R}.

In the first two cases, it takes O(n) operations to compute the solution – it is given by evident explicit
formulas. In the third case, to project is a bit more involving: you can easily demonstrate that the
projection is given by the relations xi = xi(λ∗), where xi(λ) = max[0, pi − λ] and λ∗ is the unique root
of the equation ∑

i

xi(λ) = R.

The left hand side of this equation is nonincreasing and continuous in λ and, as it is immediately seen,
its value varies from something ≥ R when λ = max

i
pi −R to 0 when λ = max

i
pi. It follows that one can

easily approximate λ∗ by Bisection, and that it takes a moderate absolute constant of bisection steps to
compute λ∗ (and thus – the projection) within the machine precision. The arithmetic cost of a Bisection
step clearly is O(n), and the overall arithmetic complexity of finding the projection becomes O(n).

5.5. IMPLEMENTATION ISSUES AND ILLUSTRATIONS 289

Simplex setup. Let us restrict ourselves with the two simplest cases:
S.A: X is the standard simplex ∆n(R) = {x ∈ Rn : x ≥ 0,

∑
i

xi = R};
S.B: X is the standard full-dimensional simplex ∆+

n (R) = {x ∈ Rn : x ≥ 0,
∑
i

xi ≤ R}.
By evident scaling arguments, we lose nothing when setting R = 1.
Case S.A. When X = ∆n(1), the problem (5.5.1) becomes

min

{∑

i

(xi + σ) ln(xi + σ)− pT x : x ≥ 0,
∑

i

xi = 1

}
[σ = δn−1] (5.5.4)

The solution to this optimization problem, as it is immediately seen, is given by xi = xi(λ∗), where

xi(λ) = max[exp{p̂i − λ} − σ, 0] [p̂i = pi −max
j

pj] (5.5.5)

and λ∗ is the solution to the equation ∑

i

xi(λ) = 1.

Here again the left hand side of the equation is nonincreasing and continuous in λ and, as it is immediately
seen, its value varies from something which is ≥ 1 when λ = −σ to something which is < 1 when λ = ln n,
so that we again can compute λ∗ (and thus – x(λ∗)) within machine precision, in a realistic range of
values of n, in a moderate absolute constant of bisection steps. As a result, the arithmetic cost of solving
(5.5.4) is again O(n).

Note that “numerically speaking”, we should not bother about Bisection at all. Indeed, let us set δ
to something really small, say, δ = 1.e-16. Then σ = δn−1 << 1.e-16, while (at least some of) xi(λ∗)
should be of order of 1/n (since their sum should be 1). It follows that with actual (i.e., finite precision)
computations, the quantity σ in (5.5.5) is negligible. Omitting σ in (5.5.4) (i.e., replacing in (5.5.1) the
regularized entropy by the usual one), we can explicitly write down the solution x∗ to (5.5.4):

xi =
exp{−p̂i}∑

j

exp{−p̂j} , i = 1, ..., n.

Case S.B. The case of X = ∆+
n (1) is very close to the one of X = ∆n(1). The only difference is that now

we first should check whether
∑

i

max
[
exp{−1− pi} − δn−1, 0

] ≤ 1;

if it is the case, then the optimal solution to (5.5.1) is given by

xi = max
[
exp{−1− pi} − δn−1, 0

]
, i = 1, ..., n,

otherwise the optimal solution to (5.5.1) is exactly the optimal solution to (5.5.4).

Spectahedron setup. Consider the case of the spectahedron setup, and assume that either
Sp.A: X is comprised of all block-diagonal matrices, of a given block-diagonal structure, belonging to

Ξn(R),
or

Sp.B: X is comprised of all block-diagonal matrices, of a given block-diagonal structure, belonging to
Ξ+

n (R).
As above, we lose nothing by assuming R = 1.
Case Sp.A. Here the problem (5.5.1) becomes

min
x∈X

{Tr((x + σIn) ln(x + σIn)) + Tr(px)} [σ = δn−1]

290 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

We lose nothing by assuming that p is a symmetric block-diagonal matrix of the same block-diagonal
structure as the one of matrices from X. Let p = UπUT be the singular value decomposition of p with
orthogonal U and diagonal π of the same block-diagonal structure as that one of p. Passing from x to
the new matrix variable ξ according to x = UξUT , we convert our problem to the problem

min
ξ∈X

{Tr((ξ + σIn) ln(ξ + σIn)) + Tr(πξ)} (5.5.6)

We claim that the unique (due to strong convexity of ω) optimal solution ξ∗ to the latter problem is a
diagonal matrix. Indeed, for every diagonal matrix D with diagonal entries ±1 and for every feasible
solution ξ to our problem, the matrix DξD clearly is again a feasible solution with the same value of
the objective (recall that π is diagonal). It follows that the optimal set {ξ∗} of our problem should be
invariant w.r.t. the aforementioned transformations ξ 7→ DξD, which is possible if and only if ξ∗ is a
diagonal matrix. Thus, when solving (5.5.6), we may from the very beginning restrict ourselves with
diagonal ξ, and with this restriction the problem becomes

min
ξ∈Rn

{∑

i

(ξi + σ) ln(ξi + σ) + πT ξ : ξ ≥ 0,
∑

i

ξi = 1

}
, (5.5.7)

which is exactly the problem we have considered in the case of the simplex setup and X = ∆n. We see
that the only elaboration in the case of the spectahedron setup as compared to the simplex one is in the
necessity to find the singular value decomposition of p. The latter task is easy, provided that the diagonal
blocks in the matrices in question are of small sizes. Note that this favourable situation does occur in
several important applications, e.g., in Structural Design.
Case Sp.B. This case is completely similar to the previous one; the only difference is that the role of
(5.5.6) is now played by the problem

min
ξ∈Rn

{∑

i

(ξi + σ) ln(ξi + σ) + πT ξ : ξ ≥ 0,
∑

i

ξi ≤ 1

}
,

which we have already considered when speaking about the simplex setup.

Updating prox-centers

The complexity results stated in Theorem 5.4.2 are absolutely independent of how we update the prox-
centers, so that in this respect we, in principle, are completely free. The common sense, however, says
that the most natural policy here is to use as the prox-center at every stage the best (with the smallest
value of f) solution among those we have at our disposal at the beginning of the stage.

5.5.2 Illustration: PET Image Reconstruction problem

To get an impression of the practical performance of the NERML algorithm, let us look at numerical
results related to the 2D version of the PET Image Reconstruction problem.

The model. We process simulated measurements as if they were registered by a ring of 360 detectors,
the inner radius of the ring being 1 (Fig. 5.1). The field of view is a concentric circle of the radius 0.9,
and it is covered by the 129 × 129 rectangular grid. The grid partitions the field of view into 10, 471
pixels, and we act as if tracer’s density was constant in every pixel. Thus, the design dimension of the
problem (PET′) we are interested to solve is “just” n = 10471.

The number of bins (i.e., number m of log-terms in the objective of (PET′)) is 39784, while the
number of nonzeros among qij is 3,746,832.

The true image is “black and white” (the density in every pixel is either 1 or 0). The measurement
time (which is responsible for the level of noise in the measurements) is mimicked as follows: we model
the measurements according to the Poisson model as if during the period of measurements the expected
number of positrons emitted by a single pixel with unit density was a given number M .

5.5. IMPLEMENTATION ISSUES AND ILLUSTRATIONS 291

Figure 5.1. Ring with 360 detectors, field of view and a line of response

The algorithm we are using to solve (PET′) is the plain NERML method with the simplex setup.
The parameters λ, θ of the algorithm were chosen as

λ = 0.95, θ = 0.5.

The approximate solution reported by the algorithm at a step is the best found so far search point (the
one with the best value of the objective we have seen to the moment).

The results of two sample runs we are about to present are not that bad.

Experiment 1: Noiseless measurements. The evolution of the best, in terms of the objec-
tive, solutions xt found in course of the first t calls to the oracle is displayed at Fig. 5.2 (on pictures,
brighter areas correspond to higher density of the tracer). The numbers are as follows. With the noiseless
measurements, we know in advance the optimal value in (PET′) – it is easily seen that without noises,
the true image (which in our simulated experiment we do know) is an optimal solution. In our problem,
this optimal value equals to 2.8167; the best value of the objective found in 111 oracle calls is 2.8171
(optimality gap 4.e-4). The progress in accuracy is plotted on Fig. 5.3. We have built totally 111 search
points, and the entire computation took 18′51′′ on a 350 MHz Pentium II laptop with 96 MB RAM.

Experiment 2: Noisy measurements (40 LOR’s per pixel with unit density, to-
tally 63,092 LOR’s registered). The pictures are presented at Fig. 5.4. Here are the numbers.
With noisy measurements, we have no a priori knowledge of the true optimal value in (PET′); in simu-
lated experiments, a kind of orientation is given by the value of the objective at the true image (which is
hopefully a close to f∗ upper bound on f∗). In our experiment, this bound equals to -0.8827. The best
value of the objective found in 115 oracle calls is -0.8976 (which is less that the objective at the true
image in fact, the algorithm went below the value of f at the true image already after 35 oracle calls).
The upper bound on the optimality gap at termination is 9.7e-4. The progress in accuracy is plotted on
Fig. 5.5. We have built totally 115 search points; the entire computation took 20′41′′.

292 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

True image: 10 “hot spots”
f = 2.817

x1 = n−1(1, ..., 1)T

f = 3.247
x2 – some traces of 8 spots

f = 3.185

x3 – traces of 8 spots
f = 3.126

x5 – some trace of 9-th spot
f = 3.016

x8 – 10-th spot still missing...
f = 2.869

x24 – trace of 10-th spot
f = 2.828

x27 – all 10 spots in place
f = 2.823

x31 – that is it...
f = 2.818

Figure 5.2. Reconstruction from noiseless measurements

5.5. IMPLEMENTATION ISSUES AND ILLUSTRATIONS 293

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

Figure 5.3. Progress in accuracy, noiseless measurements.
solid line: Relative gap Gap(t)

Gap(1)
vs. step number t; Gap(t) is the difference between the

best found so far value f(xt) of f and the current lower bound on f∗.
In 111 steps, the gap was reduced by factor > 1600

dashed line: Progress in accuracy f(xt)−f∗
f(x1)−f∗

vs. step number t

In 111 steps, the accuracy was improved by factor > 1080

294 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

True image: 10 “hot spots”
f = −0.883

x1 = n−1(1, ..., 1)T

f = −0.452
x2 – light traces of 5 spots

f = −0.520

x3 – traces of 8 spots
f = −0.585

x5 – 8 spots in place
f = −0.707

x8 – 10th spot still missing...
f = −0.865

x12 – all 10 spots in place
f = −0.872

x35 – all 10 spots in place
f = −0.886

x43 – ...
f = −0.896

Figure 5.4. Reconstruction from noisy measurements

5.5. IMPLEMENTATION ISSUES AND ILLUSTRATIONS 295

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

Figure 5.5. Progress in accuracy, noisy measurements.
solid line: Relative gap Gap(t)

Gap(1)
vs. step number t

In 115 steps, the gap was reduced by factor 1580

dashed line: Progress in accuracy
f(xt)−f

f(x1)−f vs. step number t

(f is the last lower bound on f∗ built in the run)
In 115 steps, the accuracy was improved by factor > 460

296 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

5.6 Appendix: strong convexity of ω(·) for standard setups

The case of the ball setup is trivial.

The case of the simplex setup: W.l.o.g., we may assume that R = 1. For a C2 function ω(·), a
sufficient condition for (5.4.6) is the relation

hT ω′′(x)h ≥ α‖h‖2 ∀(x, h : x, x + h ∈ X) (5.6.1)

(why?) For the simplex setup, we have

‖h‖21 =
[∑

i

|hi|
]2

=
[∑

i

|hi|√
xi+δn−1

√
xi + δn−1

]2

≤
[∑

i

(xi + δn−1)
] [∑

i

h2
i

xi+δn−1

]
≤ (1 + δ)hT ω′′(x)h,

and (5.6.1) indeed is satisfied with α = (1 + δ)−1.
To prove (5.4.14), note that for all x, y ∈ ∆+

n ⊃ X, setting x̄ = x + δn−1(1, ..., 1)T , ȳ = y +
δn−1(1, ..., 1)T , one has

ω(y)− ω(x)− (y − x)T∇ω(x)
=

∑
i

[ȳi ln(ȳi)− x̄i ln(x̄i)− (ȳi − x̄i)(1 + ln(x̄i))] ≤ −∑
i

(ȳi − x̄i) +
∑
i

ȳi ln(ȳi

x̄i
)

≤ 1 + δ +
∑
i

ȳi ln(ȳi

x̄i
)

[since ȳi ≥ 0 and
∑
i

x̄i ≤ 1 + δ]

≤ 1 + δ +
∑
i

ȳi ln(ȳi

δn−1)

[since x̄i ≥ δn−1]

≤ 1 + δ + max
z

{∑
i

zi ln(nzi/δ) : z ≥ 0,
∑
i

zi ≤ 1 + δ

}

[since
∑
i

ȳi ≤ 1 + δ]

= (1 + δ)
[
1 + ln

(
n(1+δ)

δ

)]

,

and (5.4.14) follows.

The case of the spectahedron setup: We again assume w.l.o.g. that R = 1 and again intend to
use the sufficient condition (5.6.1) for strong convexity, but now it is a bit more involving. First of all,
let us compute the second derivative of the regularized matrix entropy

ω(x) = Tr((x + σIn) ln(x + σIn)) : Ξ+
n (1) → R [σ = δm−1]

Setting y[x] = x + σIn,
f(z) = z ln z

(z is complex variable restricted to belong to the open right hand half-plane, and ln z is the principal
branch of the logarithm in this half-plane), in a neighbourhood of a given point x̄ ∈ Ξ+

n (1) we have, by
Cauchy’s integral formula,

Y (x) ≡ y[x] ln(y[x]) =
1

2πi

∮

γ

f(z)(zIn − y[x])−1dz, (5.6.2)

where γ is a closed contour in the right half-plane with all the eigenvalues of y[x̄] inside the contour.
Consequently,

DY (x)[h] = 1
2πi

∮
γ

f(z)(zIn − y[x])−1h(zIn − y[x])−1dz,

D2Y (x)[h, h] = 1
πi

∮
γ

f(z)(zIn − y[x])−1h(zIn − y[x])−1h(zIn − y[x])−1dz,
(5.6.3)

5.6. APPENDIX: STRONG CONVEXITY OF ω(·) FOR STANDARD SETUPS 297

whence

D2ω(x̄)[h, h] = Tr


 1

πi

∮

γ

f(z)(zIn − y[x])−1h(zIn − y[x])−1h(zIn − y[x])−1dz


 .

Passing to the eigenbasis of y[x̄], we may assume that y[x̄] is diagonal with positive diagonal entries
µ1 ≤ µ2 ≤ ... ≤ µn. In this case the formula above reads

D2ω(x̄)[h, h] =
1
πi

n∑
p,q=1

∮

γ

h2
pq

f(z)
(z − µp)2(z − µq)

dz. (5.6.4)

Computing the residuals of the integrands at their poles, we get

D2ω(x̄)[h, h] =
n∑

p,q=1

ln(µp)− ln(µq)
µp − µq

h2
pq, (5.6.5)

where, by convention, the expression ln(µp)−ln(µq)
µp−µq

with µp = µq is assigned the value 1
µp

. Since ln(·) is

concave, we have ln(µp)−ln(µq)
µp−µq

≥ 1
max[µp,µq] , so that

D2ω(x̄)[h, h] ≥
n∑

p,q=1

1
max[µp,µq]h

2
pq =

n∑
p=1

1
µp

[
h2

pp + 2
p−1∑
q=1

h2
pq

]
. (5.6.6)

It follows that

(
n∑

p=1

√
h2

pp + 2
p−1∑
q=1

h2
pq

)2

=




n∑
p=1

√
h2

pp+2

p−1∑
q=1

h2
pq

√
µp

√
µp




2

≤




n∑
p=1

h2
pp+2

p−1∑
q=1

h2
pq

µp




(
n∑

p=1
µp

)

≤ D2ω(x̄)[h, h]Tr(y[x̄])
[see (5.6.6)]

≤ (1 + δ)D2ω(x̄)[h, h].

(5.6.7)

Note that we have

h =
n∑

p=1

hp, (hp)rs =





0, r 6= p & s 6= p
hrp, s = p
hps, r = p

.

Every matrix hp is of the form hppepe
T
p + rpe

T
p + epr

T
p , where rp = (h1p, ..., hp−1,p, 0, ..., 0)T and ep are

the standard basic orths. From this representation it is immediately seen that

|hp|1 =
√

h2
pp + 4‖rp‖22 ≤

√
2

√√√√h2
pp + 2

p−1∑
q=1

h2
pq,

whence

|h|1 ≤
n∑

p=1

|hp|1 ≤
√

2
n∑

p=1

√√√√h2
pp + 2

p−1∑
q=1

h2
pq.

298 LECTURE 5. SIMPLE METHODS FOR EXTREMELY LARGE-SCALE PROBLEMS

Combining this relation with (5.6.7), we get

D2ω(x̄)[h, h] ≥ 1
2(1 + δ)

|h|21,

so that (5.6.1) is satisfied with α = 0.5(1 + δ)−1.
Now let us bound Θ. Let x, y ∈ Ξ+

n (1), let x̄ = x + σIn, ȳ = y + σIn, σ = δn−1, and let ξp, ηp be
the eigenvalues of x̄ and ȳ, respectively. For a contour γ in the open right half-plane such that all ξp are
inside γ we have (cf. (5.6.2) – (5.6.3)):

Dω(x)[h] = Tr


 1

2πi

∮

γ

f(z)(zIn − x̄)−1h(zIn − x̄)−1dz


 .

We lose nothing by assuming that x̄ is a diagonal matrix; in this case, the latter equality implies that

Dω(x)[h] =
n∑

p=1

1
2πi

∮

γ

f(z)(z − ξp)−2hppdz,

whence, computing the residuals of the integrands,

Dω(x)[h] =
∑

p

(1 + ln(ξp))hpp.

It follows that

ω(y)− ω(x)−Dω(x)[y − x]
= ω(y)−∑

p
ξp ln ξp −

∑
p

(1 + ln(ξp))(ȳpp − ξp)

= ω(y)−∑
p

ȳpp ln(ξp) +
∑
p

(ξp − ȳpp)

≤ 1 + δ + ω(y)−∑
p

ȳpp ln(ξp)

[since Tr(x̄) ≤ 1 + δ.Tr(Ȳ) ≥ 0]
= 1 + δ +

∑
p

ηp ln(ηp) +
∑
p

ȳpp ln(1/ξp)

≤ 1 + δ + (1 + δ) ln(1 + δ) + ln(1/σ)
∑
p

ȳpp

[since η ≥ 0 and
∑
p

ηp = Tr(ȳ) ≤ 1 + δ and 1/ξp ≤ 1/σ]

= 1 + δ + (1 + δ) ln(1 + δ) + (1 + δ) ln(n/δ) = (1 + δ)
[
1 + ln

(
n(1+δ)

δ

)]
.

The resulting inequality implies (5.4.14).

Bibliography

[1] Ben-Tal, A., and Nemirovski, A., “Robust Solutions of Uncertain Linear Programs” – OR Letters
v. 25 (1999), 1–13.

[2] Ben-Tal, A., Margalit, T., and Nemirovski, A., “The Ordered Subsets Mirror Descent Optimization
Method with Applications to Tomography” – SIAM Journal on Optimization v. 12 (2001), 79–108.

[3] Ben-Tal, A., and Nemirovski, A., Lectures on Modern Convex Optimization: Analysis, Algorithms,
Engineering Applications – MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2001.

[4] Ben-Tal, A., Nemirovski, A., and Roos, C. (2001), “Robust solutions of uncertain quadratic and
conic-quadratic problems” – to appear in SIAM J. on Optimization.

[5] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System
and Control Theory – volume 15 of Studies in Applied Mathematics, SIAM, Philadelphia, 1994.

[6] Vanderberghe, L., Boyd, S., El Gamal, A.,“Optimizing dominant time constant in RC circuits”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems v. 17 (1998),
110–125.

[7] Goemans, M.X., and Williamson, D.P., “Improved approximation algorithms for Maximum Cut
and Satisfiability problems using semidefinite programming” – Journal of ACM 42 (1995), 1115–
1145.

[8] Grotschel, M., Lovasz, L., and Schrijver, A., The Ellipsoid Method and Combinatorial Optimiza-
tion, Springer, Heidelberg, 1988.

[9] Kiwiel, K., “Proximal level bundle method for convex nondifferentable optimization, saddle point
problems and variational inequalities”, Mathematical Programming Series B v. 69 (1995), 89-109.

[10] Lemarechal, C., Nemirovski, A., and Nesterov, Yu., “New variants of bundle methods”, Mathe-
matical Programming Series B v. 69 (1995), 111-148.

[11] Lobo, M.S., Vanderbeghe, L., Boyd, S., and Lebret, H., “Second-Order Cone Programming” –
Linear Algebra and Applications v. 284 (1998), 193–228.

[12] Nemirovski, A. “Polynomial time methods in Convex Programming” – in: J. Renegar, M. Shub
and S. Smale, Eds., The Mathematics of Numerical Analysis, 1995 AMS-SIAM Summer Seminar
on Mathematics in Applied Mathematics, July 17 – August 11, 1995, Park City, Utah. – Lectures
in Applied Mathematics, v. 32 (1996), AMS, Providence, 543–589.

[13] Nesterov, Yu., and Nemirovski, A. Interior point polynomial time methods in Convex Programming,
SIAM, Philadelphia, 1994.

[14] Nesterov, Yu. “Squared functional systems and optimization problems”, in: H. Frenk, K. Roos,
T. Terlaky, S. Zhang, Eds., High Performance Optimization, Kluwer Academic Publishers, 2000,
405–440.

[15] Nesterov, Yu. “Semidefinite relaxation and non-convex quadratic optimization” – Optimization
Methods and Software v. 12 (1997), 1–20.

299

300 BIBLIOGRAPHY

[16] Nesterov, Yu. “Nonconvex quadratic optimization via conic relaxation”, in: R. Saigal, H. Wolkow-
icz, L. Vandenberghe, Eds. Handbook on Semidefinite Programming, Kluwer Academis Publishers,
2000, 363-387.

[17] Roos. C., Terlaky, T., and Vial, J.-P. Theory and Algorithms for Linear Optimization: An Interior
Point Approach, J. Wiley & Sons, 1997.

[18] Wu S.-P., Boyd, S., and Vandenberghe, L. (1997), “FIR Filter Design via Spectral Factorization
and Convex Optimization” – Biswa Datta, Ed., Applied and Computational Control, Signal and
Circuits, Birkhauser, 1997, 51–81.

[19] Ye, Y. Interior Point Algorithms: Theory and Analysis, J. Wiley & Sons, 1997.

Appendix A

Prerequisites from Linear Algebra
and Analysis

Regarded as mathematical entities, the objective and the constraints in a Mathematical Programming
problem are functions of several real variables; therefore before entering the Optimization Theory and
Methods, we need to recall several basic notions and facts about the spaces Rn where these functions
live, same as about the functions themselves. The reader is supposed to know most of the facts to follow,
so he/she should not be surprised by a “cooking book” style which we intend to use in this Lecture.

A.1 Space Rn: algebraic structure

Basically all events and constructions to be considered will take place in the space Rn of n-dimensional
real vectors. This space can be described as follows.

A.1.1 A point in Rn

A point in Rn (called also an n-dimensional vector) is an ordered collection x = (x1, ..., xn) of n reals,
called the coordinates, or components, or entries of vector x; the space Rn itself is the set of all collections
of this type.

A.1.2 Linear operations

Rn is equipped with two basic operations:

• Addition of vectors. This operation takes on input two vectors x = (x1, ..., xn) and y = (y1, ..., yn)
and produces from them a new vector

x + y = (x1 + y1, ..., xn + yn)

with entries which are sums of the corresponding entries in x and in y.

• Multiplication of vectors by reals. This operation takes on input a real λ and an n-dimensional
vector x = (x1, ..., xn) and produces from them a new vector

λx = (λx1, ..., λxn)

with entries which are λ times the entries of x.

The as far as addition and multiplication by reals are concerned, the arithmetic of Rn inherits most of
the common rules of Real Arithmetic, like x + y = y + x, (x + y) + z = x + (y + z), (λ + µ)(x + y) =
λx + µx + λy + µy, λ(µx) = (λµ)x, etc.

301

302 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

A.1.3 Linear subspaces

Linear subspaces in Rn are, by definition, nonempty subsets of Rn which are closed with respect to
addition of vectors and multiplication of vectors by reals:

L ⊂ Rn is a linear subspace ⇔




L 6= ∅;
x, y ∈ L ⇒ x + y ∈ L;

x ∈ L, λ ∈ R ⇒ λx ∈ L.

A.1.3.A. Examples of linear subspaces:

1. The entire Rn;

2. The trivial subspace containing the single zero vector 0 = (0, ..., 0) 1); (this vector/point is called
also the origin)

3. The set {x ∈ Rn : x1 = 0} of all vectors x with the first coordinate equal to zero.

The latter example admits a natural extension:

4. The set of all solutions to a homogeneous (i.e., with zero right hand side) system of linear equations




x ∈ Rn :

a11x1 + ... + a1nxn = 0
a21x1 + ... + a2nxn = 0

...
am1x1 + ... + amnxn = 0





(A.1.1)

always is a linear subspace in Rn. This example is “generic”, that is, every linear subspace in Rn is
the solution set of a (finite) system of homogeneous linear equations, see Proposition A.3.6 below.

5. Linear span of a set of vectors. Given a nonempty set X of vectors, one can form a linear subspace
Lin(X), called the linear span of X; this subspace consists of all vectors x which can be represented

as linear combinations
N∑

i=1

λixi of vectors from X (in
N∑

i=1

λixi, N is an arbitrary positive integer,

λi are reals and xi belong to X). Note that

Lin(X) is the smallest linear subspace which contains X: if L is a linear subspace such
that L ⊃ X, then L ⊃ L(X) (why?).

The “linear span” example also is generic:

Every linear subspace in Rn is the linear span of an appropriately chosen finite set of
vectors from Rn.

(see Theorem A.1.2.(i) below).

A.1.3.B. Sums and intersections of linear subspaces. Let {Lα}α∈I be a family (finite or
infinite) of linear subspaces of Rn. From this family, one can build two sets:

1. The sum
∑
α

Lα of the subspaces Lα which consists of all vectors which can be represented as finite

sums of vectors taken each from its own subspace of the family;

2. The intersection
⋂
α

Lα of the subspaces from the family.

1)Pay attention to the notation: we use the same symbol 0 to denote the real zero and the n-dimensional
vector with all coordinates equal to zero; these two zeros are not the same, and one should understand from the
context (it always is very easy) which zero is meant.

A.1. SPACE RN : ALGEBRAIC STRUCTURE 303

Theorem A.1.1 Let {Lα}α∈I be a family of linear subspaces of Rn. Then
(i) The sum

∑
α

Lα of the subspaces from the family is itself a linear subspace of Rn; it is the smallest

of those subspaces of Rn which contain every subspace from the family;
(ii) The intersection

⋂
α

Lα of the subspaces from the family is itself a linear subspace of Rn; it is the

largest of those subspaces of Rn which are contained in every subspace from the family.

A.1.4 Linear independence, bases, dimensions

A collection X = {x1, ..., xN} of vectors from Rn is called linearly independent, if no nontrivial (i.e., with
at least one nonzero coefficient) linear combination of vectors from X is zero.

Example of linearly independent set: the collection of n standard basic orths e1 = (1, 0, ..., 0),
e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1).
Examples of linearly dependent sets: (1) X = {0}; (2) X = {e1, e1}; (3) X = {e1, e2, e1+e2}.

A collection of vectors f1, ..., fm is called a basis in Rn, if

1. The collection is linearly independent;

2. Every vector from Rn is a linear combination of vectors from the collection (i.e., Lin{f1, ..., fm} =
Rn).

Example of a basis: The collection of standard basic orths e1, ..., en is a basis in Rn.
Examples of non-bases: (1) The collection {e2, ..., en}. This collection is linearly indepen-
dent, but not every vector is a linear combination of the vectors from the collection; (2)
The collection {e1, e1, e2, ..., en}. Every vector is a linear combination of vectors form the
collection, but the collection is not linearly independent.

Besides the bases of the entire Rn, one can speak about the bases of linear subspaces:
A collection {f1, ..., fm} of vectors is called a basis of a linear subspace L, if

1. The collection is linearly independent,

2. L = Lin{f1, ..., fm}, i.e., all vectors f i belong to L, and every vector from L is a linear combination
of the vectors f1, ..., fm.

In order to avoid trivial remarks, it makes sense to agree once for ever that

An empty set of vectors is linearly independent, and an empty linear combination of vectors∑
i∈∅

λixi equals to zero.

With this convention, the trivial linear subspace L = {0} also has a basis, specifically, an empty set of
vectors.

Theorem A.1.2 (i) Let L be a linear subspace of Rn. Then L admits a (finite) basis, and all bases of
L are comprised of the same number of vectors; this number is called the dimension of L and is denoted
by dim (L).

We have seen that Rn admits a basis comprised of n elements (the standard basic orths).
From (i) it follows that every basis of Rn contains exactly n vectors, and the dimension of
Rn is n.

(ii) The larger is a linear subspace of Rn, the larger is its dimension: if L ⊂ L′ are linear subspaces
of Rn, then dim (L) ≤ dim (L′), and the equality takes place if and only if L = L′.

We have seen that the dimension of Rn is n; according to the above convention, the trivial
linear subspace {0} of Rn admits an empty basis, so that its dimension is 0. Since {0} ⊂
L ⊂ Rn for every linear subspace L of Rn, it follows from (ii) that the dimension of a linear
subspace in Rn is an integer between 0 and n.

304 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

(iii) Let L be a linear subspace in Rn. Then
(iii.1) Every linearly independent subset of vectors from L can be extended to a basis of L;
(iii.2) From every spanning subset X for L – i.e., a set X such that Lin(X) = L – one can extract

a basis of L.

It follows from (iii) that
– every linearly independent subset of L contains at most dim (L) vectors, and if it contains
exactly dim (L) vectors, it is a basis of L;
– every spanning set for L contains at least dim (L) vectors, and if it contains exactly dim (L)
vectors, it is a basis of L.

(iv) Let L be a linear subspace in Rn, and f1, ..., fm be a basis in L. Then every vector x ∈ L admits
exactly one representation

x =
m∑

i=1

λi(x)f i

as a linear combination of vectors from the basis, and the mapping

x 7→ (λ1(x), ..., λm(x)) : L → Rm

is a one-to-one mapping of L onto Rm which is linear, i.e. for every i = 1, ..., m one has

λi(x + y) = λi(x) + λi(y) ∀(x, y ∈ L);
λi(νx) = νλi(x) ∀(x ∈ L, ν ∈ R). (A.1.2)

The reals λi(x), i = 1, ..., m, are called the coordinates of x ∈ L in the basis f1, ..., fm.

E.g., the coordinates of a vector x ∈ Rn in the standard basis e1, ..., en of Rn – the one
comprised of the standard basic orths – are exactly the entries of x.

(v) [Dimension formula] Let L1, L2 be linear subspaces of Rn. Then

dim (L1 ∩ L2) + dim (L1 + L2) = dim (L1) + dim (L2).

A.1.5 Linear mappings and matrices

A function A(x) (another name – mapping) defined on Rn and taking values in Rm is called linear, if it
preserves linear operations:

A(x + y) = A(x) +A(y) ∀(x, y ∈ Rn); A(λx) = λA(x) ∀(x ∈ Rn, λ ∈ R).

It is immediately seen that a linear mapping from Rn to Rm can be represented as multiplication by an
m× n matrix:

A(x) = Ax,

and this matrix is uniquely defined by the mapping: the columns Aj of A are just the images of the
standard basic orths ej under the mapping A:

Aj = A(ej).

Linear mappings from Rn into Rm can be added to each other:

(A+ B)(x) = A(x) + B(x)

and multiplied by reals:
(λA)(x) = λA(x),

and the results of these operations again are linear mappings from Rn to Rm. The addition of linear
mappings and multiplication of these mappings by reals correspond to the same operations with the

A.1. SPACE RN : ALGEBRAIC STRUCTURE 305

matrices representing the mappings: adding/multiplying by reals mappings, we add, respectively, multiply
by reals the corresponding matrices.

Given two linear mappings A(x) : Rn → Rm and B(y) : Rm → Rk, we can build their superposition

C(x) ≡ B(A(x)) : Rn → Rk,

which is again a linear mapping, now from Rn to Rk. In the language of matrices representing the
mappings, the superposition corresponds to matrix multiplication: the k × n matrix C representing the
mapping C is the product of the matrices representing A and B:

A(x) = Ax, B(y) = By ⇒ C(x) ≡ B(A(x)) = B · (Ax) = (BA)x.

Important convention. When speaking about adding n-dimensional vectors and multiplying them
by reals, it is absolutely unimportant whether we treat the vectors as the column ones, or the row ones,
or write down the entries in rectangular tables, or something else. However, when matrix operations
(matrix-vector multiplication, transposition, etc.) become involved, it is important whether we treat
our vectors as columns, as rows, or as something else. For the sake of definiteness, from now on we
treat all vectors as column ones, independently of how we refer to them in the text. For example, when
saying for the first time what a vector is, we wrote x = (x1, ..., xn), which might suggest that we were
speaking about row vectors. We stress that it is not the case, and the only reason for using the notation

x = (x1, ..., xn) instead of the “correct” one x =




x1

...
xn


 is to save space and to avoid ugly formulas like

f(




x1

...
xn


) when speaking about functions with vector arguments. After we have agreed that there is no

such thing as a row vector in this Lecture course, we can use (and do use) without any harm whatever
notation we want.

Exercise A.1 1. Mark in the list below those subsets of Rn which are linear subspaces, find out their
dimensions and point out their bases:

(a) Rn

(b) {0}
(c) ∅

(d) {x ∈ Rn :
n∑

i=1

ixi = 0}

(e) {x ∈ Rn :
n∑

i=1

ix2
i = 0}

(f) {x ∈ Rn :
n∑

i=1

ixi = 1}

(g) {x ∈ Rn :
n∑

i=1

ix2
i = 1}

2. It is known that L is a subspace of Rn with exactly one basis. What is L?

3. Consider the space Rm×n of m × n matrices with real entries. As far as linear operations –
addition of matrices and multiplication of matrices by reals – are concerned, this space can be
treated as certain RN .

(a) Find the dimension of Rm×n and point out a basis in this space

306 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

(b) In the space Rn×n of square n × n matrices, there are two interesting subsets: the set Sn

of symmetric matrices {A = [Aij] : Aij = Aij} and the set Jn of skew-symmetric matrices
{A = [Aij] : Aij = −Aji}.

i. Verify that both Sn and Jn are linear subspaces of Rn×n

ii. Find the dimension and point out a basis in Sn

iii. Find the dimension and point out a basis in Jn

iv. What is the sum of Sn and Jn? What is the intersection of Sn and Jn?

A.2 Space Rn: Euclidean structure

So far, we were interested solely in the algebraic structure of Rn, or, which is the same, in the properties
of the linear operations (addition of vectors and multiplication of vectors by scalars) the space is endowed
with. Now let us consider another structure on Rn – the standard Euclidean structure – which allows to
speak about distances, angles, convergence, etc., and thus makes the space Rn a much richer mathematical
entity.

A.2.1 Euclidean structure

The standard Euclidean structure on Rn is given by the standard inner product – an operation which
takes on input two vectors x, y and produces from them a real, specifically, the real

〈x, y〉 ≡ xT y =
n∑

i=1

xiyi

The basic properties of the inner product are as follows:

1. [bi-linearity]: The real-valued function 〈x, y〉 of two vector arguments x, y ∈ Rn is linear with
respect to every one of the arguments, the other argument being fixed:

〈λu + µv, y〉 = λ〈u, y〉+ µ〈v, y〉 ∀(u, v, y ∈ Rn, λ, µ ∈ R)
〈x, λu + µv〉 = λ〈x, u〉+ µ〈x, v〉 ∀(x, u, v ∈ Rn, λ, µ ∈ R)

2. [symmetry]: The function 〈x, y〉 is symmetric:

〈x, y〉 = 〈y, x〉 ∀(x, y ∈ Rn).

3. [positive definiteness]: The quantity 〈x, x〉 always is nonnegative, and it is zero if and only if x is
zero.

Remark A.2.1 The outlined 3 properties – bi-linearity, symmetry and positive definiteness – form a
definition of an Euclidean inner product, and there are infinitely many different from each other ways to
satisfy these properties; in other words, there are infinitely many different Euclidean inner products on
Rn. The standard inner product 〈x, y〉 = xT y is just a particular case of this general notion. Although
in the sequel we normally work with the standard inner product, the reader should remember that the
facts we are about to recall are valid for all Euclidean inner products, and not only for the standard one.

The notion of an inner product underlies a number of purely algebraic constructions, in particular, those
of inner product representation of linear forms and of orthogonal complement.

A.2. SPACE RN : EUCLIDEAN STRUCTURE 307

A.2.2 Inner product representation of linear forms on Rn

A linear form on Rn is a real-valued function f(x) on Rn which is additive (f(x + y) = f(x) + f(y)) and
homogeneous (f(λx) = λf(x))

Example of linear form: f(x) =
n∑

i=1

ixi

Examples of non-linear functions: (1) f(x) = x1 + 1; (2) f(x) = x2
1 − x2

2; (3) f(x) = sin(x1).

When adding/multiplying by reals linear forms, we again get linear forms (scientifically speaking: “linear
forms on Rn form a linear space”). Euclidean structure allows to identify linear forms on Rn with vectors
from Rn:

Theorem A.2.1 Let 〈·, ·〉 be a Euclidean inner product on Rn.
(i) Let f(x) be a linear form on Rn. Then there exists a uniquely defined vector f ∈ Rn such that

the form is just the inner product with f :

f(x) = 〈f, x〉 ∀x
(ii) Vice versa, every vector f ∈ Rn defines, via the formula

f(x) ≡ 〈f, x〉,
a linear form on Rn;

(iii) The above one-to-one correspondence between the linear forms and vectors on Rn is linear:
adding linear forms (or multiplying a linear form by a real), we add (respectively, multiply by the real)
the vector(s) representing the form(s).

A.2.3 Orthogonal complement

An Euclidean structure allows to associate with a linear subspace L ⊂ Rn another linear subspace L⊥

– the orthogonal complement (or the annulator) of L; by definition, L⊥ consists of all vectors which are
orthogonal to every vector from L:

L⊥ = {f : 〈f, x〉 = 0 ∀x ∈ L}.
Theorem A.2.2 (i) Twice taken, orthogonal complement recovers the original subspace: whenever L is
a linear subspace of Rn, one has

(L⊥)⊥ = L;

(ii) The larger is a linear subspace L, the smaller is its orthogonal complement: if L1 ⊂ L2 are linear
subspaces of Rn, then L⊥1 ⊃ L⊥2

(iii) The intersection of a subspace and its orthogonal complement is trivial, and the sum of these
subspaces is the entire Rn:

L ∩ L⊥ = {0}, L + L⊥ = Rn.

Remark A.2.2 From Theorem A.2.2.(iii) and the Dimension formula (Theorem A.1.2.(v)) it follows,
first, that for every subspace L in Rn one has

dim (L) + dim (L⊥) = n.

Second, every vector x ∈ Rn admits a unique decomposition

x = xL + xL⊥

into a sum of two vectors: the first of them, xL, belongs to L, and the second, xL⊥ , belongs to L⊥.
This decomposition is called the orthogonal decomposition of x taken with respect to L,L⊥; xL is called
the orthogonal projection of x onto L, and xL⊥ – the orthogonal projection of x onto the orthogonal
complement of L. Both projections depend on x linearly, for example,

(x + y)L = xL + yL, (λx)L = λxL.

The mapping x 7→ xL is called the orthogonal projector onto L.

308 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

A.2.4 Orthonormal bases

A collection of vectors f1, ..., fm is called orthonormal w.r.t. Euclidean inner product 〈·, ·〉, if distinct
vector from the collection are orthogonal to each other:

i 6= j ⇒ 〈f i, f j〉 = 0

and inner product of every vector f i with itself is unit:

〈f i, f i〉 = 1, i = 1, ...,m.

Theorem A.2.3 (i) An orthonormal collection f1, ..., fm always is linearly independent and is therefore
a basis of its linear span L = Lin(f1, ..., fm) (such a basis in a linear subspace is called orthonormal). The
coordinates of a vector x ∈ L w.r.t. an orthonormal basis f1, ..., fm of L are given by explicit formulas:

x =
m∑

i=1

λi(x)f i ⇔ λi(x) = 〈x, f i〉.

Example of an orthonormal basis in Rn: The standard basis {e1, ..., en} is orthonormal with

respect to the standard inner product 〈x, y〉 = xT y on Rn (but is not orthonormal w.r.t.
other Euclidean inner products on Rn).

Proof of (i): Taking inner product of both sides in the equality

x =
∑

j

λj(x)f j

with f i, we get

〈x, fi〉 = 〈∑
j

λj(x)f j , f i〉
=

∑
j

λj(x)〈f j , f i〉 [bilinearity of inner product]

= λi(x) [orthonormality of {f i}]

Similar computation demonstrates that if 0 is represented as a linear combination of f i with
certain coefficients λi, then λi = 〈0, f i〉 = 0, i.e., all the coefficients are zero; this means that
an orthonormal system is linearly independent.

(ii) If f1, ..., fm is an orthonormal basis in a linear subspace L, then the inner product of two vectors
x, y ∈ L in the coordinates λi(·) w.r.t. this basis is given by the standard formula

〈x, y〉 =
m∑

i=1

λi(x)λi(y).

Proof:

x =
∑
i

λi(x)f i, y =
∑
i

λi(y)f i

⇒ 〈x, y〉 = 〈∑
i

λi(x)f i,
∑
i

λi(y)f i〉
=

∑
i,j

λi(x)λj(y)〈f i, f j〉 [bilinearity of inner product]

=
∑
i

λi(x)λi(y) [orthonormality of {f i}]

(iii) Every linear subspace L of Rn admits an orthonormal basis; moreover, every orthonormal system
f1, ..., fm of vectors from L can be extended to an orthonormal basis in L.

A.2. SPACE RN : EUCLIDEAN STRUCTURE 309

Important corollary: All Euclidean spaces of the same dimension are “the same”. Specifi-
cally, if L is an m-dimensional space in a space Rn equipped with an Euclidean inner product
〈·, ·〉, then there exists a one-to-one mapping x 7→ A(x) of L onto Rm such that

• The mapping preserves linear operations:

A(x + y) = A(x) + A(y) ∀(x, y ∈ L); A(λx) = λA(x) ∀(x ∈ L, λ ∈ R);

• The mapping converts the 〈·, ·〉 inner product on L into the standard inner product on
Rm:

〈x, y〉 = (A(x))T A(y) ∀x, y ∈ L.

Indeed, by (iii) L admits an orthonormal basis f1, ..., fm; using (ii), one can immediately
check that the mapping

x 7→ A(x) = (λ1(x), ..., λm(x))

which maps x ∈ L into the m-dimensional vector comprised of the coordinates of x in the
basis f1, ..., fm, meets all the requirements.

Proof of (iii) is given by important by its own right Gram-Schmidt orthogonalization process

as follows. We start with an arbitrary basis h1, ..., hm in L and step by step convert it into
an orthonormal basis f1, ..., fm. At the beginning of a step t of the construction, we already
have an orthonormal collection f1, ..., f t−1 such that Lin{f1, ..., f t−1} = Lin{h1, ..., ht−1}.
At a step t we

1. Build the vector

gt = ht −
t−1∑

j=1

〈ht, f j〉f j .

It is easily seen (check it!) that

(a) One has
Lin{f1, ..., f t−1, gt} = Lin{h1, ..., ht}; (A.2.1)

(b) gt 6= 0 (derive this fact from (A.2.1) and the linear independence of the collection
h1, ..., hm);

(c) gt is orthogonal to f1, ..., f t−1

2. Since gt 6= 0, the quantity 〈gt, gt〉 is positive (positive definiteness of the inner product),
so that the vector

f t =
1√

〈gt, gt〉g
t

is well defined. It is immediately seen (check it!) that the collection f1, ..., f t is or-
thonormal and

Lin{f1, ..., f t} = Lin{f1, ..., f t−1, gt} = Lin{h1, ..., ht}.

Step t of the orthogonalization process is completed.

After m steps of the optimization process, we end up with an orthonormal system f1, ..., fm

of vectors from L such that

Lin{f1, ..., fm} = Lin{h1, ..., hm} = L,

so that f1, ..., fm is an orthonormal basis in L.
The construction can be easily modified (do it!) to extend a given orthonormal system of
vectors from L to an orthonormal basis of L.

310 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Exercise A.2 1. What is the orthogonal complement (w.r.t. the standard inner product) of the sub-

space {x ∈ Rn :
n∑

i=1

xi = 0} in Rn?

2. Find an orthonormal basis (w.r.t. the standard inner product) in the linear subspace {x ∈ Rn :
x1 = 0} of Rn

3. Let L be a linear subspace of Rn, and f1, ..., fm be an orthonormal basis in L. Prove that for every
x ∈ Rn, the orhoprojection xL of x onto L is given by the formula

xL =
m∑

i=1

(xT f i)f i.

4. Let L1, L2 be linear subspaces in Rn. Verify the formulas

(L1 + L2)⊥ = L⊥1 ∩ L⊥2 ; (L1 ∩ L2)⊥ = L⊥1 + L⊥2 .

5. Consider the space of m×n matrices Rm×n, and let us equip it with the “standard inner product”
(called the Frobenius inner product)

〈A,B〉 =
∑

i,j

AijBij

(as if we were treating m×n matrices as mn-dimensional vectors, writing the entries of the matrices
column by column, and then taking the standard inner product of the resulting long vectors).

(a) Verify that in terms of matrix multiplication the Frobenius inner product can be written as

〈A, B〉 = Tr(ABT),

where Tr(C) is the trace (the sum of diagonal elements) of a square matrix C.
(b) Build an orthonormal basis in the linear subspace Sn of symmetric n× n matrices
(c) What is the orthogonal complement of the subspace Sn of symmetric n × n matrices in the

space Rn×n of square n× n matrices?

(d) Find the orthogonal decomposition, w.r.t. S2, of the matrix
[

1 2
3 4

]

A.3 Affine subspaces in Rn

Many of events to come will take place not in the entire Rn, but in its affine subspaces which, geometri-
cally, are planes of different dimensions in Rn. Let us become acquainted with these subspaces.

A.3.1 Affine subspaces and affine hulls

Definition of an affine subspace. Geometrically, a linear subspace L of Rn is a special plane –
the one passing through the origin of the space (i.e., containing the zero vector). To get an arbitrary
plane M , it suffices to subject an appropriate special plane L to a translation – to add to all points from
L a fixed shifting vector a. This geometric intuition leads to the following

Definition A.3.1 [Affine subspace] An affine subspace (a plane) in Rn is a set of the form

M = a + L = {y = a + x | x ∈ L}, (A.3.1)

where L is a linear subspace in Rn and a is a vector from Rn 2).

2)according to our convention on arithmetic of sets, I was supposed to write in (A.3.1) {a} + L instead of
a + L – we did not define arithmetic sum of a vector and a set. Usually people ignore this difference and omit
the brackets when writing down singleton sets in similar expressions: we shall write a + L instead of {a}+ L, Rd
instead of R{d}, etc.

A.3. AFFINE SUBSPACES IN RN 311

E.g., shifting the linear subspace L comprised of vectors with zero first entry by a vector a = (a1, ..., an),
we get the set M = a + L of all vectors x with x1 = a1; according to our terminology, this is an affine
subspace.

Immediate question about the notion of an affine subspace is: what are the “degrees of freedom” in
decomposition (A.3.1) – how “strict” M determines a and L? The answer is as follows:

Proposition A.3.1 The linear subspace L in decomposition (A.3.1) is uniquely defined by M and is the
set of all differences of the vectors from M :

L = M −M = {x− y | x, y ∈ M}. (A.3.2)

The shifting vector a is not uniquely defined by M and can be chosen as an arbitrary vector from M .

A.3.2 Intersections of affine subspaces, affine combinations and affine hulls

An immediate conclusion of Proposition A.3.1 is as follows:

Corollary A.3.1 Let {Mα} be an arbitrary family of affine subspaces in Rn, and assume that the set
M = ∩αMα is nonempty. Then Mα is an affine subspace.

From Corollary A.3.1 it immediately follows that for every nonempty subset Y of Rn there exists the
smallest affine subspace containing Y – the intersection of all affine subspaces containing Y . This smallest
affine subspace containing Y is called the affine hull of Y (notation: Aff(Y)).

All this resembles a lot the story about linear spans. Can we further extend this analogy and to get
a description of the affine hull Aff(Y) in terms of elements of Y similar to the one of the linear span
(“linear span of X is the set of all linear combinations of vectors from X”)? Sure we can!

Let us choose somehow a point y0 ∈ Y , and consider the set

X = Y − y0.

All affine subspaces containing Y should contain also y0 and therefore, by Proposition A.3.1, can be
represented as M = y0 + L, L being a linear subspace. It is absolutely evident that an affine subspace
M = y0 + L contains Y if and only if the subspace L contains X, and that the larger is L, the larger is
M :

L ⊂ L′ ⇒ M = y0 + L ⊂ M ′ = y0 + L′.

Thus, to find the smallest among affine subspaces containing Y , it suffices to find the smallest among the
linear subspaces containing X and to translate the latter space by y0:

Aff(Y) = y0 + Lin(X) = y0 + Lin(Y − y0). (A.3.3)

Now, we know what is Lin(Y − y0) – this is a set of all linear combinations of vectors from Y − y0, so
that a generic element of Lin(Y − y0) is

x =
k∑

i=1

µi(yi − y0) [k may depend of x]

with yi ∈ Y and real coefficients µi. It follows that the generic element of Aff(Y) is

y = y0 +
k∑

i=1

µi(yi − y0) =
k∑

i=0

λiyi,

where
λ0 = 1−

∑

i

µi, λi = µi, i ≥ 1.

312 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

We see that a generic element of Aff(Y) is a linear combination of vectors from Y . Note, however, that
the coefficients λi in this combination are not completely arbitrary: their sum is equal to 1. Linear
combinations of this type – with the unit sum of coefficients – have a special name – they are called
affine combinations.

We have seen that every vector from Aff(Y) is an affine combination of vectors of Y . Whether the
inverse is true, i.e., whether Aff(Y) contains all affine combinations of vectors from Y ? The answer is
positive. Indeed, if

y =
k∑

i=1

λiyi

is an affine combination of vectors from Y , then, using the equality
∑

i λi = 1, we can write it also as

y = y0 +
k∑

i=1

λi(yi − y0),

y0 being the “marked” vector we used in our previous reasoning, and the vector of this form, as we
already know, belongs to Aff(Y). Thus, we come to the following

Proposition A.3.2 [Structure of affine hull]

Aff(Y) = {the set of all affine combinations of vectors from Y }.

When Y itself is an affine subspace, it, of course, coincides with its affine hull, and the above Proposition
leads to the following

Corollary A.3.2 An affine subspace M is closed with respect to taking affine combinations of its mem-
bers – every combination of this type is a vector from M . Vice versa, a nonempty set which is closed with
respect to taking affine combinations of its members is an affine subspace.

A.3.3 Affinely spanning sets, affinely independent sets, affine dimension

Affine subspaces are closely related to linear subspaces, and the basic notions associated with linear
subspaces have natural and useful affine analogies. Here we introduce these notions and discuss their
basic properties.

Affinely spanning sets. Let M = a + L be an affine subspace. We say that a subset Y of M is
affinely spanning for M (we say also that Y spans M affinely, or that M is affinely spanned by Y), if
M = Aff(Y), or, which is the same due to Proposition A.3.2, if every point of M is an affine combination
of points from Y . An immediate consequence of the reasoning of the previous Section is as follows:

Proposition A.3.3 Let M = a + L be an affine subspace and Y be a subset of M , and let y0 ∈ Y . The
set Y affinely spans M – M = Aff(Y) – if and only if the set

X = Y − y0

spans the linear subspace L: L = Lin(X).

Affinely independent sets. A linearly independent set x1, ..., xk is a set such that no nontrivial
linear combination of x1, ..., xk equals to zero. An equivalent definition is given by Theorem A.1.2.(iv):
x1, ..., xk are linearly independent, if the coefficients in a linear combination

x =
k∑

i=1

λixi

A.3. AFFINE SUBSPACES IN RN 313

are uniquely defined by the value x of the combination. This equivalent form reflects the essence of
the matter – what we indeed need, is the uniqueness of the coefficients in expansions. Accordingly, this
equivalent form is the prototype for the notion of an affinely independent set: we want to introduce this
notion in such a way that the coefficients λi in an affine combination

y =
k∑

i=0

λiyi

of “affinely independent” set of vectors y0, ..., yk would be uniquely defined by y. Non-uniqueness would
mean that

k∑

i=0

λiyi =
k∑

i=0

λ′iyi

for two different collections of coefficients λi and λ′i with unit sums of coefficients; if it is the case, then
m∑

i=0

(λi − λ′i)yi = 0,

so that yi’s are linearly dependent and, moreover, there exists a nontrivial zero combination of then with
zero sum of coefficients (since

∑
i(λi − λ′i) =

∑
i λi −

∑
i λ′i = 1− 1 = 0). Our reasoning can be inverted

– if there exists a nontrivial linear combination of yi’s with zero sum of coefficients which is zero, then
the coefficients in the representation of a vector as an affine combination of yi’s are not uniquely defined.
Thus, in order to get uniqueness we should for sure forbid relations

k∑

i=0

µiyi = 0

with nontrivial zero sum coefficients µi. Thus, we have motivated the following

Definition A.3.2 [Affinely independent set] A collection y0, ..., yk of n-dimensional vectors is called
affinely independent, if no nontrivial linear combination of the vectors with zero sum of coefficients is
zero:

k∑

i=1

λiyi = 0,

k∑

i=0

λi = 0 ⇒ λ0 = λ1 = ... = λk = 0.

With this definition, we get the result completely similar to the one of Theorem A.1.2.(iv):

Corollary A.3.3 Let y0, ..., yk be affinely independent. Then the coefficients λi in an affine combination

y =
k∑

i=0

λiyi [
∑

i

λi = 1]

of the vectors y0, ..., yk are uniquely defined by the value y of the combination.

Verification of affine independence of a collection can be immediately reduced to verification of linear
independence of closely related collection:

Proposition A.3.4 k + 1 vectors y0, ..., yk are affinely independent if and only if the k vectors (y1 −
y0), (y2 − y0), ..., (yk − y0) are linearly independent.

From the latter Proposition it follows, e.g., that the collection 0, e1, ..., en comprised of the origin and
the standard basic orths is affinely independent. Note that this collection is linearly dependent (as
every collection containing zero). You should definitely know the difference between the two notions of
independence we deal with: linear independence means that no nontrivial linear combination of the vectors
can be zero, while affine independence means that no nontrivial linear combination from certain restricted
class of them (with zero sum of coefficients) can be zero. Therefore, there are more affinely independent
sets than the linearly independent ones: a linearly independent set is for sure affinely independent, but
not vice versa.

314 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Affine bases and affine dimension. Propositions A.3.2 and A.3.3 reduce the notions of affine
spanning/affine independent sets to the notions of spanning/linearly independent ones. Combined with
Theorem A.1.2, they result in the following analogies of the latter two statements:

Proposition A.3.5 [Affine dimension] Let M = a + L be an affine subspace in Rn. Then the following
two quantities are finite integers which are equal to each other:

(i) minimal # of elements in the subsets of M which affinely span M ;
(ii) maximal # of elements in affine independent subsets of M .

The common value of these two integers is by 1 more than the dimension dim L of L.

By definition, the affine dimension of an affine subspace M = a+L is the dimension dim L of L. Thus, if
M is of affine dimension k, then the minimal cardinality of sets affinely spanning M , same as the maximal
cardinality of affine independent subsets of M , is k + 1.

Theorem A.3.1 [Affine bases] Let M = a + L be an affine subspace in Rn.

A. Let Y ⊂ M . The following three properties of X are equivalent:
(i) Y is an affine independent set which affinely spans M ;
(ii) Y is affine independent and contains 1 + dim L elements;
(iii) Y affinely spans M and contains 1 + dim L elements.
A subset Y of M possessing the indicated equivalent to each other properties is called an affine basis of

M . Affine bases in M are exactly the collections y0, ..., ydimL such that y0 ∈ M and (y1−y0), ..., (ydimL−
y0) is a basis in L.

B. Every affinely independent collection of vectors of M either itself is an affine basis of M , or can
be extended to such a basis by adding new vectors. In particular, there exists affine basis of M .

C. Given a set Y which affinely spans M , you can always extract from this set an affine basis of M .

We already know that the standard basic orths e1, ..., en form a basis of the entire space Rn. And what
about affine bases in Rn? According to Theorem A.3.1.A, you can choose as such a basis a collection
e0, e0 + e1, ..., e0 + en, e0 being an arbitrary vector.

Barycentric coordinates. Let M be an affine subspace, and let y0, ..., yk be an affine basis of M .
Since the basis, by definition, affinely spans M , every vector y from M is an affine combination of the
vectors of the basis:

y =
k∑

i=0

λiyi [
k∑

i=0

λi = 1],

and since the vectors of the affine basis are affinely independent, the coefficients of this combination are
uniquely defined by y (Corollary A.3.3). These coefficients are called barycentric coordinates of y with
respect to the affine basis in question. In contrast to the usual coordinates with respect to a (linear)
basis, the barycentric coordinates could not be quite arbitrary: their sum should be equal to 1.

A.3.4 Dual description of linear subspaces and affine subspaces

To the moment we have introduced the notions of linear subspace and affine subspace and have pre-
sented a scheme of generating these entities: to get, e.g., a linear subspace, you start from an arbitrary
nonempty set X ⊂ Rn and add to it all linear combinations of the vectors from X. When replacing
linear combinations with the affine ones, you get a way to generate affine subspaces.

The just indicated way of generating linear subspaces/affine subspaces resembles the approach of a
worker building a house: he starts with the base and then adds to it new elements until the house is
ready. There exists, anyhow, an approach of an artist creating a sculpture: he takes something large and
then deletes extra parts of it. Is there something like “artist’s way” to represent linear subspaces and
affine subspaces? The answer is positive and very instructive.

A.3. AFFINE SUBSPACES IN RN 315

Affine subspaces and systems of linear equations

Let L be a linear subspace. According to Theorem A.2.2.(i), it is an orthogonal complement – namely,
the orthogonal complement to the linear subspace L⊥. Now let a1, ..., am be a finite spanning set in L⊥.
A vector x which is orthogonal to a1, ..., am is orthogonal to the entire L⊥ (since every vector from L⊥

is a linear combination of a1, ..., am and the inner product is bilinear); and of course vice versa, a vector
orthogonal to the entire L⊥ is orthogonal to a1, ..., am. We see that

L = (L⊥)⊥ = {x | aT
i x = 0, i = 1, ..., k}. (A.3.4)

Thus, we get a very important, although simple,

Proposition A.3.6 [“Outer” description of a linear subspace] Every linear subspace L in Rn is a set of
solutions to a homogeneous linear system of equations

aT
i x = 0, i = 1, ..., m, (A.3.5)

given by properly chosen m and vectors a1, ..., am.

Proposition A.3.6 is an “if and only if” statement: as we remember from Example A.1.3.A.4, solution set
to a homogeneous system of linear equations with n variables always is a linear subspace in Rn.

From Proposition A.3.6 and the facts we know about the dimension we can easily derive several
important consequences:

• Systems (A.3.5) which define a given linear subspace L are exactly the systems given by the vectors
a1, ..., am which span L⊥ 3)

• The smallest possible number m of equations in (A.3.5) is the dimension of L⊥, i.e., by Remark
A.2.2, is codim L ≡ n− dim L 4)

Now, an affine subspace M is, by definition, a translation of a linear subspace: M = a + L. As we know,
vectors x from L are exactly the solutions of certain homogeneous system of linear equations

aT
i x = 0, i = 1, ..., m.

It is absolutely clear that adding to these vectors a fixed vector a, we get exactly the set of solutions to
the inhomogeneous solvable linear system

aT
i x = bi ≡ aT

i a, i = 1, ..., m.

Vice versa, the set of solutions to a solvable system of linear equations

aT
i x = bi, i = 1, ...,m,

with n variables is the sum of a particular solution to the system and the solution set to the corresponding
homogeneous system (the latter set, as we already know, is a linear subspace in Rn), i.e., is an affine
subspace. Thus, we get the following

Proposition A.3.7 [“Outer” description of an affine subspace]
Every affine subspace M = a + L in Rn is a set of solutions to a solvable linear system of equations

aT
i x = bi, i = 1, ...,m, (A.3.6)

given by properly chosen m and vectors a1, ..., am.
Vice versa, the set of all solutions to a solvable system of linear equations with n variables is an affine

subspace in Rn.
The linear subspace L associated with M is exactly the set of solutions of the homogeneous (with the

right hand side set to 0) version of system (A.3.6).

We see, in particular, that an affine subspace always is closed.
3)the reasoning which led us to Proposition A.3.6 says that [a1, ..., am span L⊥] ⇒ [(A.3.5) defines L]; now we

claim that the inverse also is true
4to make this statement true also in the extreme case when L = Rn (i.e., when codim L = 0), we from now

on make a convention that an empty set of equations or inequalities defines, as the solution set, the entire space

316 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Comment. The “outer” description of a linear subspace/affine subspace – the “artist’s” one – is in
many cases much more useful than the “inner” description via linear/affine combinations (the “worker’s”
one). E.g., with the outer description it is very easy to check whether a given vector belongs or does not
belong to a given linear subspace/affine subspace, which is not that easy with the inner one5). In fact
both descriptions are “complementary” to each other and perfectly well work in parallel: what is difficult
to see with one of them, is clear with another. The idea of using “inner” and “outer” descriptions of
the entities we meet with – linear subspaces, affine subspaces, convex sets, optimization problems – the
general idea of duality – is, I would say, the main driving force of Convex Analysis and Optimization,
and in the sequel we would all the time meet with different implementations of this fundamental idea.

A.3.5 Structure of the simplest affine subspaces

This small subsection deals mainly with terminology. According to their dimension, affine subspaces in
Rn are named as follows:

• Subspaces of dimension 0 are translations of the only 0-dimensional linear subspace {0}, i.e., are
singleton sets – vectors from Rn. These subspaces are called points; a point is a solution to a
square system of linear equations with nonsingular matrix.

• Subspaces of dimension 1 (lines). These subspaces are translations of one-dimensional linear sub-
spaces of Rn. A one-dimensional linear subspace has a single-element basis given by a nonzero
vector d and is comprised of all multiples of this vector. Consequently, line is a set of the form

{y = a + td | t ∈ R}

given by a pair of vectors a (the origin of the line) and d (the direction of the line), d 6= 0. The
origin of the line and its direction are not uniquely defined by the line; you can choose as origin
any point on the line and multiply a particular direction by nonzero reals.

In the barycentric coordinates a line is described as follows:

l = {λ0y0 + λ1y1 | λ0 + λ1 = 1} = {λy0 + (1− λ)y1 | λ ∈ R},

where y0, y1 is an affine basis of l; you can choose as such a basis any pair of distinct points on the
line.

The “outer” description a line is as follows: it is the set of solutions to a linear system with n
variables and n− 1 linearly independent equations.

• Subspaces of dimension > 2 and < n − 1 have no special names; sometimes they are called affine
planes of such and such dimension.

• Affine subspaces of dimension n − 1, due to important role they play in Convex Analysis, have
a special name – they are called hyperplanes. The outer description of a hyperplane is that a
hyperplane is the solution set of a single linear equation

aT x = b

with nontrivial left hand side (a 6= 0). In other words, a hyperplane is the level set a(x) = const of
a nonconstant linear form a(x) = aT x.

• The “largest possible” affine subspace – the one of dimension n – is unique and is the entire Rn.
This subspace is given by an empty system of linear equations.

5)in principle it is not difficult to certify that a given point belongs to, say, a linear subspace given as the linear
span of some set – it suffices to point out a representation of the point as a linear combination of vectors from
the set. But how could you certify that the point does not belong to the subspace?

A.4. SPACE RN : METRIC STRUCTURE AND TOPOLOGY 317

A.4 Space Rn: metric structure and topology

Euclidean structure on the space Rn gives rise to a number of extremely important metric notions –
distances, convergence, etc. For the sake of definiteness, we associate these notions with the standard
inner product xT y.

A.4.1 Euclidean norm and distances

By positive definiteness, the quantity xT x always is nonnegative, so that the quantity

|x| ≡ ‖x‖2 =
√

xT x =
√

x2
1 + x2

2 + ... + x2
n

is well-defined; this quantity is called the (standard) Euclidean norm of vector x (or simply the norm
of x) and is treated as the distance from the origin to x. The distance between two arbitrary points
x, y ∈ Rn is, by definition, the norm |x− y| of the difference x− y. The notions we have defined satisfy
all basic requirements on the general notions of a norm and distance, specifically:

1. Positivity of norm: The norm of a vector always is nonnegative; it is zero if and only is the vector
is zero:

|x| ≥ 0 ∀x; |x| = 0 ⇔ x = 0.

2. Homogeneity of norm: When a vector is multiplied by a real, its norm is multiplied by the absolute
value of the real:

|λx| = |λ| · |x| ∀(x ∈ Rn, λ ∈ R).

3. Triangle inequality: Norm of the sum of two vectors is ≤ the sum of their norms:

|x + y| ≤ |x|+ |y| ∀(x, y ∈ Rn).

In contrast to the properties of positivity and homogeneity, which are absolutely evident,
the Triangle inequality is not trivial and definitely requires a proof. The proof goes
through a fact which is extremely important by its own right – the Cauchy Inequality,
which perhaps is the most frequently used inequality in Mathematics:

Theorem A.4.1 [Cauchy’s Inequality] The absolute value of the inner product of two
vectors does not exceed the product of their norms:

|xT y| ≤ |x||y| ∀(x, y ∈ Rn)

and is equal to the product of the norms if and only if one of the vectors is proportional
to the other one:

|xT y| = |x||y| ⇔ {∃α : x = αy or ∃β : y = βx}

Proof is immediate: we may assume that both x and y are nonzero (otherwise the
Cauchy inequality clearly is equality, and one of the vectors is constant times (specifi-
cally, zero times) the other one, as announced in Theorem). Assuming x, y 6= 0, consider
the function

f(λ) = (x− λy)T (x− λy) = xT x− 2λxT y + λ2yT y.

By positive definiteness of the inner product, this function – which is a second order
polynomial – is nonnegative on the entire axis, whence the discriminant of the polyno-
mial

(xT y)2 − (xT x)(yT y)

is nonpositive:
(xT y)2 ≤ (xT x)(yT y).

318 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Taking square roots of both sides, we arrive at the Cauchy Inequality. We also see that
the inequality is equality if and only if the discriminant of the second order polynomial
f(λ) is zero, i.e., if and only if the polynomial has a (multiple) real root; but due to
positive definiteness of inner product, f(·) has a root λ if and only if x = λy, which
proves the second part of Theorem.

From Cauchy’s Inequality to the Triangle Inequality: Let x, y ∈ Rn. Then

|x + y|2 = (x + y)T (x + y) [definition of norm]
= xT x + yT y + 2xT y [opening parentheses]
≤ xT x︸︷︷︸

|x|2
+ yT y︸︷︷︸

|y|2
+2|x||y| [Cauchy’s Inequality]

= (|x|+ |y|)2
⇒ |x + y| ≤ |x|+ |y|

The properties of norm (i.e., of the distance to the origin) we have established induce properties of the
distances between pairs of arbitrary points in Rn, specifically:

1. Positivity of distances: The distance |x−y| between two points is positive, except for the case when
the points coincide (x = y), when the distance between x and y is zero;

2. Symmetry of distances: The distance from x to y is the same as the distance from y to x:

|x− y| = |y − x|;

3. Triangle inequality for distances: For every three points x, y, z, the distance from x to z does not
exceed the sum of distances between x and y and between y and z:

|z − x| ≤ |y − x|+ |z − y| ∀(x, y, z ∈ Rn)

A.4.2 Convergence

Equipped with distances, we can define the fundamental notion of convergence of a sequence of vectors.
Specifically, we say that a sequence x1, x2, ... of vectors from Rn converges to a vector x̄, or, equivalently,
that x̄ is the limit of the sequence {xi} (notation: x̄ = lim

i→∞
xi), if the distances from x̄ to xi go to 0 as

i →∞:
x̄ = lim

i→∞
xi ⇔ |x̄− xi| → 0, i →∞,

or, which is the same, for every ε > 0 there exists i = i(ε) such that the distance between every point xi,
i ≥ i(ε), and x̄ does not exceed ε:

{|x̄− xi| → 0, i →∞} ⇔ {∀ε > 0∃i(ε) : i ≥ i(ε) ⇒ |x̄− xi| ≤ ε
}

.

Exercise A.3 Verify the following facts:

1. x̄ = lim
i→∞

xi if and only if for every j = 1, ..., n the coordinates # j of the vectors xi converge, as

i →∞, to the coordinate # j of the vector x̄;

2. If a sequence converges, its limit is uniquely defined;

3. Convergence is compatible with linear operations:

— if xi → x and yi → y as i →∞, then xi + yi → x + y as i →∞;

— if xi → x and λi → λ as i →∞, then λix
i → λx as i →∞.

A.4. SPACE RN : METRIC STRUCTURE AND TOPOLOGY 319

A.4.3 Closed and open sets

After we have in our disposal distance and convergence, we can speak about closed and open sets:

• A set X ⊂ Rn is called closed, if it contains limits of all converging sequences of elements of X:
{

xi ∈ X,x = lim
i→∞

xi
}
⇒ x ∈ X

• A set X ⊂ Rn is called open, if whenever x belongs to X, all points close enough to x also belong
to X:

∀(x ∈ X)∃(δ > 0) : |x′ − x| < δ ⇒ x′ ∈ X.

An open set containing a point x is called a neighbourhood of x.

Examples of closed sets: (1) Rn; (2) ∅; (3) the sequence xi = (i, 0, ..., 0), i = 1, 2, 3, ...; (4)

{x ∈ Rn :
n∑

i=1

aijxj = 0, i = 1, ..., m} (in other words: a linear subspace in Rn always is

closed, see Proposition A.3.6);(5) {x ∈ Rn :
n∑

i=1

aijxj = bi, i = 1, ..., m} (in other words: an

affine subset of Rn always is closed, see Proposition A.3.7);; (6) Any finite subset of Rn

Examples of non-closed sets: (1) Rn\{0}; (2) the sequence xi = (1/i, 0, ..., 0), i = 1, 2, 3, ...;

(3) {x ∈ Rn : xj > 0, j = 1, ..., n}; (4) {x ∈ Rn :
n∑

i=1

xj > 5}.

Examples of open sets: (1) Rn; (2) ∅; (3) {x ∈ Rn :
n∑

j=1

aijxj > bj , i = 1, ..., m}; (4)

complement of a finite set.
Examples of non-open sets: (1) A nonempty finite set; (2) the sequence xi = (1/i, 0, ..., 0),
i = 1, 2, 3, ..., and the sequence xi = (i, 0, 0, ..., 0), i = 1, 2, 3, ...; (3) {x ∈ Rn : xj ≥ 0, j =

1, ..., n}; (4) {x ∈ Rn :
n∑

i=1

xj ≥ 5}.

Exercise A.4 Mark in the list to follows those sets which are closed and those which are open:

1. All vectors with integer coordinates

2. All vectors with rational coordinates

3. All vectors with positive coordinates

4. All vectors with nonnegative coordinates

5. {x : |x| < 1};
6. {x : |x| = 1};
7. {x : |x| ≤ 1};
8. {x : |x| ≥ 1}:
9. {x : |x| > 1};

10. {x : 1 < |x| ≤ 2}.
Verify the following facts

1. A set X ⊂ Rn is closed if and only if its complement X̄ = Rn\X is open;

2. Intersection of every family (finite or infinite) of closed sets is closed. Union of every family (finite
of infinite) of open sets is open.

3. Union of finitely many closed sets is closed. Intersection of finitely many open sets is open.

320 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

A.4.4 Local compactness of Rn

A fundamental fact about convergence in Rn, which in certain sense is characteristic for this series of
spaces, is the following

Theorem A.4.2 From every bounded sequence {xi}∞i=1 of points from Rn one can extract a converg-
ing subsequence {xij}∞j=1. Equivalently: A closed and bounded subset X of Rn is compact, i.e., a set
possessing the following two equivalent to each other properties:

(i) From every sequence of elements of X one can extract a subsequence which converges to certain
point of X;

(ii) From every open covering of X (i.e., a family {Uα}α∈A of open sets such that X ⊂ ⋃
α∈A

Uα) one

can extract a finite sub-covering, i.e., a finite subset of indices α1, ..., αN such that X ⊂
N⋃

i=1

Uαi
.

A.5 Continuous functions on Rn

A.5.1 Continuity of a function

Let X ⊂ Rn and f(x) : X → Rm be a function (another name – mapping) defined on X and taking
values in Rm.

1. f is called continuous at a point x̄ ∈ X, if for every sequence xi of points of X converging to x̄ the
sequence f(xi) converges to f(x̄). Equivalent definition:

f : X → Rm is continuous at x̄ ∈ X, if for every ε > 0 there exists δ > 0 such that

x ∈ X, |x− x̄| < δ ⇒ |f(x)− f(x̄)| < ε.

2. f is called continuous on X, if f is continuous at every point from X. Equivalent definition: f
preserves convergence: whenever a sequence of points xi ∈ X converges to a point x ∈ X, the
sequence f(xi) converges to f(x).

Examples of continuous mappings:

1. An affine mapping

f(x) =




m∑
j=1

A1jxj + b1

...
m∑

j=1

Amjxj + bm



≡ Ax + b : Rn → Rm

is continuous on the entire Rn (and thus – on every subset of Rn) (check it!).

2. The norm |x| is a continuous on Rn (and thus – on every subset of Rn) real-valued
function (check it!).

Exercise A.5 • Consider the function

f(x1, x2) =

{
x2
1−x2

2
x2
1+x2

2
, (x1, x2) 6= 0

0, x1 = x2 = 0
: R2 → R.

Check whether this function is continuous on the following sets:

1. R2;

2. R2\{0};

A.5. CONTINUOUS FUNCTIONS ON RN 321

3. {x ∈ R2 : x1 = 0};
4. {x ∈ R2 : x2 = 0};
5. {x ∈ R2 : x1 + x2 = 0};
6. {x ∈ R2 : x1 − x2 = 0};
7. {x ∈ R2 : |x1 − x2| ≤ x4

1 + x4
2};

• Let f : Rn → Rm be a continuous mapping. Mark those of the following statements which always
are true:

1. If U is an open set in Rm, then so is the set f−1(U) = {x : f(x) ∈ U};
2. If U is an open set in Rn, then so is the set f(U) = {f(x) : x ∈ U};
3. If F is a closed set in Rm, then so is the set f−1(F) = {x : f(x) ∈ F};
4. If F is an closed set in Rn, then so is the set f(F) = {f(x) : x ∈ F}.

A.5.2 Elementary continuity-preserving operations

All “elementary” operations with mappings preserve continuity. Specifically,

Theorem A.5.1 Let X be a subset in Rn.
(i) [stability of continuity w.r.t. linear operations] If f1(x), f2(x) are continuous functions on X

taking values in Rm and λ1(x), λ2(x) are continuous real-valued functions on X, then the function

f(x) = λ1(x)f1(x) + λ2(x)f2(x) : X → Rm

is continuous on X;
(ii) [stability of continuity w.r.t. superposition] Let

• X ⊂ Rn, Y ⊂ Rm;

• f : X → Rm be a continuous mapping such that f(x) ∈ Y for every x ∈ X;

• g : Y → Rk be a continuous mapping.

Then the composite mapping
h(x) = g(f(x)) : X → Rk

is continuous on X.

A.5.3 Basic properties of continuous functions on Rn

The basic properties of continuous functions on Rn can be summarized as follows:

Theorem A.5.2 Let X be a nonempty closed and bounded subset of Rn.
(i) If a mapping f : X → Rm is continuous on X, it is bounded on X: there exists C < ∞ such that

|f(x)| ≤ C for all x ∈ X.

Proof. Assume, on the contrary to what should be proved, that f is unbounded, so that
for every i there exists a point xi ∈ X such that |f(xi)| > i. By Theorem A.4.2, we can
extract from the sequence {xi} a subsequence {xij}∞j=1 which converges to a point x̄ ∈ X.
The real-valued function g(x) = |f(x)| is continuous (as the superposition of two continuous
mappings, see Theorem A.5.1.(ii)) and therefore its values at the points xij should converge,
as j →∞, to its value at x̄; on the other hand, g(xij) ≥ ij →∞ as j →∞, and we get the
desired contradiction.

(ii) If a mapping f : X → Rm is continuous on X, it is uniformly continuous: for every ε > 0 there
exists δ > 0 such that

x, y ∈ X, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

322 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Proof. Assume, on the contrary to what should be proved, that there exists ε > 0 such
that for every δ > 0 one can find a pair of points x, y in X such that |x − y| < δ and
|f(x) − f(y)| ≥ ε. In particular, for every i = 1, 2, ... we can find two points xi, yi in X
such that |xi − yi| ≤ 1/i and |f(xi) − f(yi)| ≥ ε. By Theorem A.4.2, we can extract from
the sequence {xi} a subsequence {xij}∞j=1 which converges to certain point x̄ ∈ X. Since
|yij −xij | ≤ 1/ij → 0 as j →∞, the sequence {yij}∞j=1 converges to the same point x̄ as the
sequence {xij}∞j=1 (why?) Since f is continuous, we have

lim
j→∞

f(yij) = f(x̄) = lim
j→∞

f(xij),

whence lim
j→∞

(f(xij) − f(yij)) = 0, which contradicts the fact that |f(xij) − f(yij)| ≥ ε > 0

for all j.

(iii) Let f be a real-valued continuous function on X. The f attains its minimum on X:

Argmin
X

f ≡ {x ∈ X : f(x) = inf
y∈X

f(y)} 6= ∅,

same as f attains its maximum at certain points of X:

Argmax
X

f ≡ {x ∈ X : f(x) = sup
y∈X

f(y)} 6= ∅.

Proof: Let us prove that f attains its maximum on X (the proof for minimum is completely
similar). Since f is bounded on X by (i), the quantity

f∗ = sup
x∈X

f(x)

is finite; of course, we can find a sequence {xi} of points from X such that f∗ = lim
i→∞

f(xi).

By Theorem A.4.2, we can extract from the sequence {xi} a subsequence {xij}∞j=1 which
converges to certain point x̄ ∈ X. Since f is continuous on X, we have

f(x̄) = lim
j→∞

f(xij) = lim
i→∞

f(xi) = f∗,

so that the maximum of f on X indeed is achieved (e.g., at the point x̄).

Exercise A.6 Prove that in general no one of the three statements in Theorem A.5.2 remains valid when
X is closed, but not bounded, same as when X is bounded, but not closed.

A.6 Differentiable functions on Rn

A.6.1 The derivative

The reader definitely is familiar with the notion of derivative of a real-valued function f(x) of real variable
x:

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)
∆x

This definition does not work when we pass from functions of single real variable to functions of several
real variables, or, which is the same, to functions with vector arguments. Indeed, in this case the shift in
the argument ∆x should be a vector, and we do not know what does it mean to divide by a vector...

A proper way to extend the notion of the derivative to real- and vector-valued functions of vector
argument is to realize what in fact is the meaning of the derivative in the univariate case. What f ′(x)
says to us is how to approximate f in a neighbourhood of x by a linear function. Specifically, if f ′(x)

A.6. DIFFERENTIABLE FUNCTIONS ON RN 323

exists, then the linear function f ′(x)∆x of ∆x approximates the change f(x + ∆x) − f(x) in f up to a
remainder which is of highest order as compared with ∆x as ∆x → 0:

|f(x + ∆x)− f(x)− f ′(x)∆x| ≤ ō(|∆x|) as ∆x → 0.

In the above formula, we meet with the notation ō(|∆x|), and here is the explanation of this notation:

ō(|∆x|) is a common name of all functions φ(∆x) of ∆x which are well-defined in a neigh-
bourhood of the point ∆x = 0 on the axis, vanish at the point ∆x = 0 and are such that

φ(∆x)
|∆x| → 0 as ∆x → 0.

For example,

1. (∆x)2 = ō(|∆x|), ∆x → 0,

2. |∆x|1.01 = ō(|∆x|), ∆x → 0,

3. sin2(∆x) = ō(|∆x|), ∆x → 0,

4. ∆x 6= ō(|∆x|), ∆x → 0.

Later on we shall meet with the notation “ō(|∆x|k) as ∆x → 0”, where k is a positive integer.
The definition is completely similar to the one for the case of k = 1:
ō(|∆x|k) is a common name of all functions φ(∆x) of ∆x which are well-defined in a neigh-
bourhood of the point ∆x = 0 on the axis, vanish at the point ∆x = 0 and are such that

φ(∆x)
|∆x|k → 0 as ∆x → 0.

Note that if f(·) is a function defined in a neighbourhood of a point x on the axis, then there perhaps
are many linear functions a∆x of ∆x which well approximate f(x + ∆x) − f(x), in the sense that the
remainder in the approximation

f(x + ∆x)− f(x)− a∆x

tends to 0 as ∆x → 0; among these approximations, however, there exists at most one which approximates
f(x + ∆x)− f(x) “very well” – so that the remainder is ō(|∆x|), and not merely tends to 0 as ∆x → 0.
Indeed, if

f(x + ∆x)− f(x)− a∆x = ō(|∆x|),
then, dividing both sides by ∆x, we get

f(x + ∆x)− f(x)
∆x

− a =
ō(|∆x|)

∆x
;

by definition of ō(·), the right hand side in this equality tends to 0 as ∆x → 0, whence

a = lim
∆x→0

f(x + ∆x)− f(x)
∆x

= f ′(x).

Thus, if a linear function a∆x of ∆x approximates the change f(x+∆x)−f(x) in f up to the remainder
which is ō(|∆x|) as ∆x → 0, then a is the derivative of f at x. You can easily verify that the inverse state-
ment also is true: if the derivative of f at x exists, then the linear function f ′(x)∆x of ∆x approximates
the change f(x + ∆x)− f(x) in f up to the remainder which is ō(|∆x|) as ∆x → 0.

The advantage of the “ō(|∆x|)”-definition of derivative is that it can be naturally extended onto
vector-valued functions of vector arguments (you should just replace “axis” with Rn in the definition of
ō) and enlightens the essence of the notion of derivative: when it exists, this is exactly the linear function
of ∆x which approximates the change f(x + ∆x) − f(x) in f up to a remainder which is ō(|∆x|). The
precise definition is as follows:

324 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Definition A.6.1 [Frechet differentiability] Let f be a function which is well-defined in a neighbourhood
of a point x ∈ Rn and takes values in Rm. We say that f is differentiable at x, if there exists a linear
function Df(x)[∆x] of ∆x ∈ Rn taking values in Rm which approximates the change f(x + ∆x)− f(x)
in f up to a remainder which is ō(|∆x|):

|f(x + ∆x)− f(x)−Df(x)[∆x]| ≤ ō(|∆x|). (A.6.1)

Equivalently: a function f which is well-defined in a neighbourhood of a point x ∈ Rn and takes values
in Rm is called differentiable at x, if there exists a linear function Df(x)[∆x] of ∆x ∈ Rn taking values
in Rm such that for every ε > 0 there exists δ > 0 satisfying the relation

|∆x| ≤ δ ⇒ |f(x + ∆x)− f(x)−Df(x)[∆x]| ≤ ε|∆x|.

A.6.2 Derivative and directional derivatives

We have defined what does it mean that a function f : Rn → Rm is differentiable at a point x, but
did not say yet what is the derivative. The reader could guess that the derivative is exactly the “linear
function Df(x)[∆x] of ∆x ∈ Rn taking values in Rm which approximates the change f(x + ∆x)− f(x)
in f up to a remainder which is ≤ ō(|∆x|)” participating in the definition of differentiability. The guess
is correct, but we cannot merely call the entity participating in the definition the derivative – why do we
know that this entity is unique? Perhaps there are many different linear functions of ∆x approximating
the change in f up to a remainder which is ō(|∆x|). In fact there is no more than a single linear function
with this property due to the following observation:

Let f be differentiable at x, and Df(x)[∆x] be a linear function participating in the definition
of differentiability. Then

∀∆x ∈ Rn : Df(x)[∆x] = lim
t→+0

f(x + t∆x)− f(x)
t

. (A.6.2)

In particular, the derivative Df(x)[·] is uniquely defined by f and x.

Proof. We have

|f(x + t∆x)− f(x)−Df(x)[t∆x]| ≤ ō(|t∆x|)
⇓

| f(x+t∆x)−f(x)
t − Df(x)[t∆x]

t | ≤ ō(|t∆x|)
t

m [since Df(x)[·] is linear]
| f(x+t∆x)−f(x)

t −Df(x)[∆x]| ≤ ō(|t∆x|)
t

⇓
Df(x)[∆x] = lim

t→+0

f(x+t∆x)−f(x)
t

[
passing to limit as t → +0;
note that ō(|t∆x|)

t → 0, t → +0

]

Pay attention to important remarks as follows:

1. The right hand side limit in (A.6.2) is an important entity called the directional derivative of f
taken at x along (a direction) ∆x; note that this quantity is defined in the “purely univariate”
fashion – by dividing the change in f by the magnitude of a shift in a direction ∆x and passing
to limit as the magnitude of the shift approaches 0. Relation (A.6.2) says that the derivative, if
exists, is, at every ∆x, nothing that the directional derivative of f taken at x along ∆x. Note,
however, that differentiability is much more than the existence of directional derivatives along all
directions ∆x; differentiability requires also the directional derivatives to be “well-organized” – to
depend linearly on the direction ∆x. It is easily seen that just existence of directional derivatives
does not imply their “good organization”: for example, the Euclidean norm

f(x) = |x|

A.6. DIFFERENTIABLE FUNCTIONS ON RN 325

at x = 0 possesses directional derivatives along all directions:

lim
t→+0

f(0 + t∆x)− f(0)
t

= |∆x|;

these derivatives, however, depend non-linearly on ∆x, so that the Euclidean norm is not differ-
entiable at the origin (although is differentiable everywhere outside the origin, but this is another
story).

2. It should be stressed that the derivative, if exists, is what it is: a linear function of ∆x ∈ Rn taking
values in Rm. As we shall see in a while, we can represent this function by something “tractable”,
like a vector or a matrix, and can understand how to compute such a representation; however,
an intelligent reader should bear in mind that a representation is not exactly the same as the
represented entity. Sometimes the difference between derivatives and the entities which represent
them is reflected in the terminology: what we call the derivative, is also called the differential,
while the word “derivative” is reserved for the vector/matrix representing the differential.

A.6.3 Representations of the derivative

indexderivatives!representation ofBy definition, the derivative of a mapping f : Rn → Rm at a point x
is a linear function Df(x)[∆x] taking values in Rm. How could we represent such a function?

Case of m = 1 – the gradient. Let us start with real-valued functions (i.e., with the case of
m = 1); in this case the derivative is a linear real-valued function on Rn. As we remember, the standard
Euclidean structure on Rn allows to represent every linear function on Rn as the inner product of the
argument with certain fixed vector. In particular, the derivative Df(x)[∆x] of a scalar function can be
represented as

Df(x)[∆x] = [vector]T ∆x;

what is denoted ”vector” in this relation, is called the gradient of f at x and is denoted by ∇f(x):

Df(x)[∆x] = (∇f(x))T ∆x. (A.6.3)

How to compute the gradient? The answer is given by (A.6.2). Indeed, let us look what (A.6.3) and
(A.6.2) say when ∆x is the i-th standard basic orth. According to (A.6.3), Df(x)[ei] is the i-th coordinate
of the vector ∇f(x); according to (A.6.2),

Df(x)[ei] = lim
t→+0

f(x+tei)−f(x)
t ,

Df(x)[ei] = −Df(x)[−ei] = − lim
t→+0

f(x−tei)−f(x)
t = lim

t→−0

f(x+tei)−f(x)
t



 ⇒ Df(x)[ei] =

∂f(x)
∂xi

.

Thus,

If a real-valued function f is differentiable at x, then the first order partial derivatives of f
at x exist, and the gradient of f at x is just the vector with the coordinates which are the
first order partial derivatives of f taken at x:

∇f(x) =




∂f(x)
∂x1
...

∂f(x)
∂xn


 .

The derivative of f , taken at x, is the linear function of ∆x given by

Df(x)[∆x] = (∇f(x))T ∆x =
n∑

i=1

∂f(x)
∂xi

(∆x)i.

326 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

General case – the Jacobian. Now let f : Rn → Rm with m ≥ 1. In this case, Df(x)[∆x],
regarded as a function of ∆x, is a linear mapping from Rn to Rm; as we remember, the standard way to
represent a linear mapping from Rn to Rm is to represent it as the multiplication by m× n matrix:

Df(x)[∆x] = [m× n matrix] ·∆x. (A.6.4)

What is denoted by “matrix” in (A.6.4), is called the Jacobian of f at x and is denoted by f ′(x). How
to compute the entries of the Jacobian? Here again the answer is readily given by (A.6.2). Indeed, on
one hand, we have

Df(x)[∆x] = f ′(x)∆x, (A.6.5)

whence
[Df(x)[ej]]i = (f ′(x))ij , i = 1, ...,m, j = 1, ..., n.

On the other hand, denoting

f(x) =




f1(x)
...

fm(x)


 ,

the same computation as in the case of gradient demonstrates that

[Df(x)[ej]]i =
∂fi(x)
∂xj

and we arrive at the following conclusion:

If a vector-valued function f(x) = (f1(x), ..., fm(x)) is differentiable at x, then the first order
partial derivatives of all fi at x exist, and the Jacobian of f at x is just the m × n matrix

with the entries [∂fi(x)
∂xj

]i,j (so that the rows in the Jacobian are [∇f1(x)]T ,..., [∇fm(x)]T .

The derivative of f , taken at x, is the linear vector-valued function of ∆x given by

Df(x)[∆x] = f ′(x)∆x =




[∇f1(x)]T ∆x
...

[∇fm(x)]T ∆x


 .

Remark A.6.1 Note that for a real-valued function f we have defined both the gradient ∇f(x) and the
Jacobian f ′(x). These two entities are “nearly the same”, but not exactly the same: the Jacobian is a
vector-row, and the gradient is a vector-column linked by the relation

f ′(x) = (∇f(x))T .

Of course, both these representations of the derivative of f yield the same linear approximation of the
change in f :

Df(x)[∆x] = (∇f(x))T ∆x = f ′(x)∆x.

A.6.4 Existence of the derivative

We have seen that the existence of the derivative of f at a point implies the existence of the first order
partial derivatives of the (components f1, ..., fm of) f . The inverse statement is not exactly true – the
existence of all first order partial derivatives ∂fi(x)

∂xj
not necessarily implies the existence of the derivative;

we need a bit more:

Theorem A.6.1 [Sufficient condition for differentiability] Assume that

1. The mapping f = (f1, ..., fm) : Rn → Rm is well-defined in a neighbourhood U of a point x0 ∈ Rn,

2. The first order partial derivatives of the components fi of f exist everywhere in U ,
and

3. The first order partial derivatives of the components fi of f are continuous at the point x0.

Then f is differentiable at the point x0.

A.6. DIFFERENTIABLE FUNCTIONS ON RN 327

A.6.5 Calculus of derivatives

The calculus of derivatives is given by the following result:

Theorem A.6.2 (i) [Differentiability and linear operations] Let f1(x), f2(x) be mappings defined in a
neighbourhood of x0 ∈ Rn and taking values in Rm, and λ1(x), λ2(x) be real-valued functions defined
in a neighbourhood of x0. Assume that f1, f2, λ1, λ2 are differentiable at x0. Then so is the function
f(x) = λ1(x)f1(x) + λ2(x)f2(x), with the derivative at x0 given by

Df(x0)[∆x] = [Dλ1(x0)[∆x]]f1(x0) + λ1(x0)Df1(x0)[∆x]
+[Dλ2(x0)[∆x]]f2(x0) + λ2(x0)Df2(x0)[∆x]
⇓

f ′(x0) = f1(x0)[∇λ1(x0)]T + λ1(x0)f ′1(x0)
+f2(x0)[∇λ2(x0)]T + λ2(x0)f ′2(x0).

(ii) [chain rule] Let a mapping f : Rn → Rm be differentiable at x0, and a mapping g : Rm → Rn

be differentiable at y0 = f(x0). Then the superposition h(x) = g(f(x)) is differentiable at x0, with the
derivative at x0 given by

Dh(x0)[∆x] = Dg(y0)[Df(x0)[∆x]]
⇓

h′(x0) = g′(y0)f ′(x0)

If the outer function g is real-valued, then the latter formula implies that

∇h(x0) = [f ′(x0)]T∇g(y0)

(recall that for a real-valued function φ, φ′ = (∇φ)T).

A.6.6 Computing the derivative

Representations of the derivative via first order partial derivatives normally allow to compute it by the
standard Calculus rules, in a completely mechanical fashion, not thinking at all of what we are computing.
The examples to follow (especially the third of them) demonstrate that it often makes sense to bear in
mind what is the derivative; this sometimes yield the result much faster than blind implementing Calculus
rules.

Example 1: The gradient of an affine function. An affine function

f(x) = a +
n∑

i=1

gixi ≡ a + gT x : Rn → R

is differentiable at every point (Theorem A.6.1) and its gradient, of course, equals g:

(∇f(x))T ∆x = lim
t→+0

t−1 [f(x + t∆x)− f(x)] [(A.6.2)]

= lim
t→+0

t−1[tgT ∆x] [arithmetics]

and we arrive at
∇(a + gT x) = g

Example 2: The gradient of a quadratic form. For the time being, let us define a
homogeneous quadratic form on Rn as a function

f(x) =
∑

i,j

Aijxixj = xT Ax,

328 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

where A is an n × n matrix. Note that the matrices A and AT define the same quadratic form, and
therefore the symmetric matrix B = 1

2 (A + AT) also produces the same quadratic form as A and AT .
It follows that we always may assume (and do assume from now on) that the matrix A producing the
quadratic form in question is symmetric.

A quadratic form is a simple polynomial and as such is differentiable at every point (Theorem A.6.1).
What is the gradient of f at a point x? Here is the computation:

(∇f(x))T ∆x = Df(x)[∆x]
= lim

t→+0

[
(x + t∆x)T A(x + t∆x)− xT Ax

]

[(A.6.2)]
= lim

t→+0

[
xT Ax + t(∆x)T Ax + txT A∆x + t2(∆x)T A∆x− xT Ax

]

[opening parentheses]
= lim

t→+0
t−1

[
2t(Ax)T ∆x + t2(∆x)T A∆x

]

[arithmetics + symmetry of A]
= 2(Ax)T ∆x

We conclude that
∇(xT Ax) = 2Ax

(recall that A = AT).

Example 3: The derivative of the log-det barrier. Let us compute the derivative of the
log-det barrier (playing an extremely important role in modern optimization)

F (X) = ln Det(X);

here X is an n × n matrix (or, if you prefer, n2-dimensional vector). Note that F (X) is well-defined
and differentiable in a neighbourhood of every point X̄ with positive determinant (indeed, Det(X) is a
polynomial of the entries of X and thus – is everywhere continuous and differentiable with continuous
partial derivatives, while the function ln(t) is continuous and differentiable on the positive ray; by The-
orems A.5.1.(ii), A.6.2.(ii), F is differentiable at every X such that Det(X) > 0). The reader is kindly
asked to try to find the derivative of F by the standard techniques; if the result will not be obtained in,
say, 30 minutes, please look at the 8-line computation to follow (in this computation, Det(X̄) > 0, and
G(X) = Det(X)):

DF (X̄)[∆X]
= D ln(G(X̄))[DG(X̄)[∆X]] [chain rule]
= G−1(X̄)DG(X̄)[∆X] [ln′(t) = t−1]
= Det−1(X̄) lim

t→+0
t−1

[
Det(X̄ + t∆X)−Det(X̄)

]
[definition of G and (A.6.2)]

= Det−1(X̄) lim
t→+0

t−1
[
Det(X̄(I + tX̄−1∆X))−Det(X̄)

]

= Det−1(X̄) lim
t→+0

t−1
[
Det(X̄)(Det(I + tX̄−1∆X)− 1)

]
[Det(AB) = Det(A)Det(B)]

= lim
t→+0

t−1
[
Det(I + tX̄−1∆X)− 1

]

= Tr(X̄−1∆X) =
∑
i,j

[X̄−1]ji(∆X)ij

where the concluding equality

lim
t→+0

t−1[Det(I + tA)− 1] = Tr(A) ≡
∑

i

Aii (A.6.6)

is immediately given by recalling what is the determinant of I + tA: this is a polynomial of t which is the
sum of products, taken along all diagonals of a n× n matrix and assigned certain signs, of the entries of
I+tA. At every one of these diagonals, except for the main one, there are at least two cells with the entries

A.6. DIFFERENTIABLE FUNCTIONS ON RN 329

proportional to t, so that the corresponding products do not contribute to the constant and the linear in t
terms in Det(I + tA) and thus do not affect the limit in (A.6.6). The only product which does contribute
to the linear and the constant terms in Det(I +tA) is the product (1+tA11)(1+tA22)...(1+tAnn) coming
from the main diagonal; it is clear that in this product the constant term is 1, and the linear in t term is
t(A11 + ... + Ann), and (A.6.6) follows.

A.6.7 Higher order derivatives

Let f : Rn → Rm be a mapping which is well-defined and differentiable at every point x from an open
set U . The Jacobian of this mapping J(x) is a mapping from Rn to the space Rm×n matrices, i.e., is a
mapping taking values in certain RM (M = mn). The derivative of this mapping, if it exists, is called the
second derivative of f ; it again is a mapping from Rn to certain RM and as such can be differentiable,
and so on, so that we can speak about the second, the third, ... derivatives of a vector-valued function of
vector argument. A sufficient condition for the existence of k derivatives of f in U is that f is Ck in U ,
i.e., that all partial derivatives of f of orders ≤ k exist and are continuous everywhere in U (cf. Theorem
A.6.1).

We have explained what does it mean that f has k derivatives in U ; note, however, that according to
the definition, highest order derivatives at a point x are just long vectors; say, the second order derivative
of a scalar function f of 2 variables is the Jacobian of the mapping x 7→ f ′(x) : R2 → R2, i.e., a mapping
from R2 to R2×2 = R4; the third order derivative of f is therefore the Jacobian of a mapping from R2

to R4, i.e., a mapping from R2 to R4×2 = R8, and so on. The question which should be addressed now
is: What is a natural and transparent way to represent the highest order derivatives?

The answer is as follows:

(∗) Let f : Rn → Rm be Ck on an open set U ⊂ Rn. The derivative of order ` ≤ k of f ,
taken at a point x ∈ U , can be naturally identified with a function

D`f(x)[∆x1,∆x2, ..., ∆x`]

of ` vector arguments ∆xi ∈ Rn, i = 1, ..., `, and taking values in Rm. This function is linear
in every one of the arguments ∆xi, the other arguments being fixed, and is symmetric with
respect to permutation of arguments ∆x1, ..., ∆x`.

In terms of f , the quantity D`f(x)[∆x1, ∆x2, ..., ∆x`] (full name: “the `-th derivative (or
differential) of f taken at a point x along the directions ∆x1, ..., ∆x`”) is given by

D`f(x)[∆x1,∆x2, ..., ∆x`] =
∂`

∂t`∂t`−1...∂t1

∣∣
t1=...=t`=0

f(x + t1∆x1 + t2∆x2 + ... + t`∆x`).

(A.6.7)

The explanation to our claims is as follows. Let f : Rn → Rm be Ck on an open set U ⊂ Rn.

1. When ` = 1, (∗) says to us that the first order derivative of f , taken at x, is a linear function
Df(x)[∆x1] of ∆x1 ∈ Rn, taking values in Rm, and that the value of this function at every ∆x1

is given by the relation

Df(x)[∆x1] =
∂

∂t1

∣∣
t1=0

f(x + t1∆x1) (A.6.8)

(cf. (A.6.2)), which is in complete accordance with what we already know about the derivative.

2. To understand what is the second derivative, let us take the first derivative Df(x)[∆x1], let us
temporarily fix somehow the argument ∆x1 and treat the derivative as a function of x. As a
function of x, ∆x1 being fixed, the quantity Df(x)[∆x1] is again a mapping which maps U into
Rm and is differentiable by Theorem A.6.1 (provided, of course, that k ≥ 2). The derivative of
this mapping is certain linear function of ∆x ≡ ∆x2 ∈ Rn, depending on x as on a parameter; and
of course it depends on ∆x1 as on a parameter as well. Thus, the derivative of Df(x)[∆x1] in x is
certain function

D2f(x)[∆x1,∆x2]

330 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

of x ∈ U and ∆x1, ∆x2 ∈ Rn and taking values in Rm. What we know about this function is
that it is linear in ∆x2. In fact, it is also linear in ∆x1, since it is the derivative in x of certain
function (namely, of Df(x)[∆x1]) linearly depending on the parameter ∆x1, so that the derivative
of the function in x is linear in the parameter ∆x1 as well (differentiation is a linear operation
with respect to a function we are differentiating: summing up functions and multiplying them by
real constants, we sum up, respectively, multiply by the same constants, the derivatives). Thus,
D2f(x)[∆x1, ∆x2] is linear in ∆x1 when x and ∆x2 are fixed, and is linear in ∆x2 when x and
∆x1 are fixed. Moreover, we have

D2f(x)[∆x1,∆x2] = ∂
∂t2

∣∣
t2=0

Df(x + t2∆x2)[∆x1] [cf. (A.6.8)]
= ∂

∂t2

∣∣
t2=0

∂
∂t1

∣∣
t1=0

f(x + t2∆x2 + t1∆x1) [by (A.6.8)]

= ∂2

∂t2∂t1

∣∣∣∣
t1=t2=0

f(x + t1∆x1 + t2∆x2)
(A.6.9)

as claimed in (A.6.7) for ` = 2. The only piece of information about the second derivative which
is contained in (∗) and is not justified yet is that D2f(x)[∆x1,∆x2] is symmetric in ∆x1, ∆x2;
but this fact is readily given by the representation (A.6.7), since, as they prove in Calculus, if a
function φ possesses continuous partial derivatives of orders ≤ ` in a neighbourhood of a point,
then these derivatives in this neighbourhood are independent of the order in which they are taken;
it follows that

D2f(x)[∆x1, ∆x2] = ∂2

∂t2∂t1

∣∣∣∣
t1=t2=0

f(x + t1∆x1 + t2∆x2)︸ ︷︷ ︸
φ(t1,t2)

[(A.6.9)]

= ∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

φ(t1, t2)

= ∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

f(x + t2∆x2 + t1∆x1)

= D2f(x)[∆x2, ∆x1] [the same (A.6.9)]

3. Now it is clear how to proceed: to define D3f(x)[∆x1,∆x2, ∆x3], we fix in the second order
derivative D2f(x)[∆x1, ∆x2] the arguments ∆x1, ∆x2 and treat it as a function of x only, thus
arriving at a mapping which maps U into Rm and depends on ∆x1, ∆x2 as on parameters (lin-
early in every one of them). Differentiating the resulting mapping in x, we arrive at a function
D3f(x)[∆x1, ∆x2,∆x3] which by construction is linear in every one of the arguments ∆x1, ∆x2,
∆x3 and satisfies (A.6.7); the latter relation, due to the Calculus result on the symmetry of partial
derivatives, implies that D3f(x)[∆x1,∆x2, ∆x3] is symmetric in ∆x1,∆x2, ∆x3. After we have in
our disposal the third derivative D3f , we can build from it in the already explained fashion the
fourth derivative, and so on, until k-th derivative is defined.

Remark A.6.2 Since D`f(x)[∆x1, ..., ∆x`] is linear in every one of ∆xi, we can expand the derivative
in a multiple sum:

∆xi =
n∑

j=1

∆xi
jej

⇓
D`f(x)[∆x1, ..., ∆x`] = D`f(x)[

n∑
j1=1

∆x1
j1

ej1 , ...,
n∑

j`=1

∆x`
j`

ej`
]

=
∑

1≤j1,...,j`≤n

D`f(x)[ej1 , ..., ej`
]∆x1

j1
...∆x`

j`

(A.6.10)

What is the origin of the coefficients D`f(x)[ej1 , ..., ej`
]? According to (A.6.7), one has

D`f(x)[ej1 , ..., ej`
] = ∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x + t1ej1 + t2ej2 + ... + t`ej`
)

= ∂`

∂xj`
∂xj`−1 ...∂xj1

f(x).

A.6. DIFFERENTIABLE FUNCTIONS ON RN 331

so that the coefficients in (A.6.10) are nothing but the partial derivatives, of order `, of f .

Remark A.6.3 An important particular case of relation (A.6.7) is the one when ∆x1 = ∆x2 = ... = ∆x`;
let us call the common value of these ` vectors d. According to (A.6.7), we have

D`f(x)[d, d, ..., d] =
∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x + t1d + t2d + ... + t`d).

This relation can be interpreted as follows: consider the function

φ(t) = f(x + td)

of a real variable t. Then (check it!)

φ(`)(0) =
∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x + t1d + t2d + ... + t`d) = D`f(x)[d, ..., d].

In other words, D`f(x)[d, ..., d] is what is called `-th directional derivative of f taken at x along the
direction d; to define this quantity, we pass from function f of several variables to the univariate function
φ(t) = f(x + td) – restrict f onto the line passing through x and directed by d – and then take the
“usual” derivative of order ` of the resulting function of single real variable t at the point t = 0 (which
corresponds to the point x of our line).

Representation of higher order derivatives. k-th order derivative Dkf(x)[·, ..., ·] of a Ck

function f : Rn → Rm is what it is – it is a symmetric k-linear mapping on Rn taking values in Rm

and depending on x as on a parameter. Choosing somehow coordinates in Rn, we can represent such a
mapping in the form

Dkf(x)[∆x1, ..., ∆xk] =
∑

1≤i1,...,ik≤n

∂kf(x)
∂xik

∂xik−1 ...∂xi1

(∆x1)i1 ...(∆xk)ik
.

We may say that the derivative can be represented by k-index collection of m-dimensional vectors
∂kf(x)

∂xik
∂xik−1 ...∂xi1

. This collection, however, is a difficult-to-handle entity, so that such a representation
does not help. There is, however, a case when the collection becomes an entity we know to handle; this
is the case of the second-order derivative of a scalar function (k = 2,m = 1). In this case, the collection
in question is just a symmetric matrix H(x) =

[
∂2f(x)
∂xi∂xj

]
1≤i,j≤n

. This matrix is called the Hessian of f at

x. Note that
D2f(x)[∆x1, ∆x2] = ∆xT

1 H(x)∆x2.

A.6.8 Calculus of Ck mappings

The calculus of Ck mappings can be summarized as follows:

Theorem A.6.3 (i) Let U be an open set in Rn, f1(·), f2(·) : Rn → Rm be Ck in U , and let real-valued
functions λ1(·), λ2(·) be Ck in U . Then the function

f(x) = λ1(x)f1(x) + λ2(x)f2(x)

is Ck in U .
(ii) Let U be an open set in Rn, V be an open set in Rm, let a mapping f : Rn → Rm be Ck in

U and such that f(x) ∈ V for x ∈ U , and, finally, let a mapping g : Rm → Rp be Ck in V . Then the
superposition

h(x) = g(f(x))

is Ck in U .

332 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Remark A.6.4 For higher order derivatives, in contrast to the first order ones, there is no simple
“chain rule” for computing the derivative of superposition. For example, the second-order derivative of
the superposition h(x) = g(f(x)) of two C2-mappings is given by the formula

Dh(x)[∆x1, ∆x2] = Dg(f(x))[D2f(x)[∆x1,∆x2]] + D2g(x)[Df(x)[∆x1], Df(x)[∆x2]]

(check it!). We see that both the first- and the second-order derivatives of f and g contribute to the
second-order derivative of the superposition h.

The only case when there does exist a simple formula for high order derivatives of a superposition is
the case when the inner function is affine: if f(x) = Ax + b and h(x) = g(f(x)) = g(Ax + b) with a C`

mapping g, then

D`h(x)[∆x1, ..., ∆x`] = D`g(Ax + b)[A∆x1, ..., A∆x`]. (A.6.11)

A.6.9 Examples of higher-order derivatives

Example 1: Second-order derivative of an affine function f(x) = a + bT x is, of course,
identically zero. Indeed, as we have seen,

Df(x)[∆x1] = bT ∆x1

is independent of x, and therefore the derivative of Df(x)[∆x1] in x, which should give us the second
derivative D2f(x)[∆x1,∆x2], is zero. Clearly, the third, the fourth, etc., derivatives of an affine function
are zero as well.

Example 2: Second-order derivative of a homogeneous quadratic form f(x) = xT Ax
(A is a symmetric n× n matrix). As we have seen,

Df(x)[∆x1] = 2xT A∆x1.

Differentiating in x, we get

D2f(x)[∆x1, ∆x2] = lim
t→+0

t−1
[
2(x + t∆x2)T A∆x1 − 2xT A∆x1

]
= 2(∆x2)T A∆x1,

so that

D2f(x)[∆x1, ∆x2] = 2(∆x2)T A∆x1

Note that the second derivative of a quadratic form is independent of x; consequently, the third, the
fourth, etc., derivatives of a quadratic form are identically zero.

Example 3: Second-order derivative of the log-det barrier F (X) = lnDet(X). As we
have seen, this function of an n×n matrix is well-defined and differentiable on the set U of matrices with
positive determinant (which is an open set in the space Rn×n of n × n matrices). In fact, this function
is C∞ in U . Let us compute its second-order derivative. As we remember,

DF (X)[∆X1] = Tr(X−1∆X1). (A.6.12)

A.6. DIFFERENTIABLE FUNCTIONS ON RN 333

To differentiate the right hand side in X, let us first find the derivative of the mapping G(X) = X−1

which is defined on the open set of non-degenerate n× n matrices. We have

DG(X)[∆X] = lim
t→+0

t−1
[
(X + t∆X)−1 −X−1

]

= lim
t→+0

t−1
[
(X(I + tX−1∆X))−1 −X−1

]

= lim
t→+0

t−1
[
(I + tX−1∆X︸ ︷︷ ︸

Y

)−1X−1 −X−1
]

=
[

lim
t→+0

t−1
[
(I + tY)−1 − I

]]
X−1

=
[

lim
t→+0

t−1 [I − (I + tY)] (I + tY)−1

]
X−1

=
[

lim
t→+0

[−Y (I + tY)−1]
]

X−1

= −Y X−1

= −X−1∆XX−1

and we arrive at the important by its own right relation

D(X−1)[∆X] = −X−1∆XX−1, [X ∈ Rn×n, Det(X) 6= 0]

which is the “matrix extension” of the standard relation (x−1)′ = −x−2, x ∈ R.
Now we are ready to compute the second derivative of the log-det barrier:

F (X) = lnDet(X)
⇓

DF (X)[∆X1] = Tr(X−1∆X1)
⇓

D2F (X)[∆X1,∆X2] = lim
t→+0

t−1
[
Tr((X + t∆X2)−1∆X1)− Tr(X−1∆X1)

]

= lim
t→+0

Tr
(
t−1(X + t∆X2)−1∆X1 −X−1∆X1

)

= lim
t→+0

Tr
([

t−1(X + t∆X2)−1 −X−1
]
∆X1

)

= Tr
(
[−X−1∆X2X−1]∆X1

)
,

and we arrive at the formula

D2F (X)[∆X1, ∆X2] = −Tr(X−1∆X2X−1∆X1) [X ∈ Rn×n, Det(X) > 0]

Since Tr(AB) = Tr(BA) (check it!) for all matrices A,B such that the product AB makes sense and
is square, the right hand side in the above formula is symmetric in ∆X1, ∆X2, as it should be for the
second derivative of a C2 function.

A.6.10 Taylor expansion

Assume that f : Rn → Rm is Ck in a neighbourhood U of a point x̄. The Taylor expansion of order k
of f , built at the point x̄, is the function

Fk(x) = f(x̄) + 1
1!Df(x̄)[x− x̄] + 1

2!D
2f(x̄)[x− x̄, x− x̄]

+ 1
3!D

2f(x̄)[x− x̄, x− x̄, x− x̄] + ... + 1
k!D

kf(x̄)[x− x̄, ..., x− x̄︸ ︷︷ ︸
k times

] (A.6.13)

We are already acquainted with the Taylor expansion of order 1

F1(x) = f(x̄) + Df(x̄)[x− x̄]

– this is the affine function of x which approximates “very well” f(x) in a neighbourhood of x̄, namely,
within approximation error ō(|x− x̄|). Similar fact is true for Taylor expansions of higher order:

334 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Theorem A.6.4 Let f : Rn → Rm be Ck in a neighbourhood of x̄, and let Fk(x) be the Taylor expansion
of f at x̄ of degree k. Then

(i) Fk(x) is a vector-valued polynomial of full degree ≤ k (i.e., every one of the coordinates of the
vector Fk(x) is a polynomial of x1, ..., xn, and the sum of powers of xi’s in every term of this polynomial
does not exceed k);

(ii) Fk(x) approximates f(x) in a neighbourhood of x̄ up to a remainder which is ō(|x− x̄|k) as x → x̄:

For every ε > 0, there exists δ > 0 such that

|x− x̄| ≤ δ ⇒ |Fk(x)− f(x)| ≤ ε|x− x̄|k.

Fk(·) is the unique polynomial with components of full degree ≤ k which approximates f up to a remainder
which is ō(|x− x̄|k).

(iii) The value and the derivatives of Fk of orders 1, 2, ..., k, taken at x̄, are the same as the value and
the corresponding derivatives of f taken at the same point.

As stated in Theorem, Fk(x) approximates f(x) for x close to x̄ up to a remainder which is ō(|x− x̄|k).
In many cases, it is not enough to know that the reminder is “ō(|x− x̄|k)” — we need an explicit bound
on this remainder. The standard bound of this type is as follows:

Theorem A.6.5 Let k be a positive integer, and let f : Rn → Rm be Ck+1 in a ball Br = Br(x̄) = {x ∈
Rn : |x− x̄| < r} of a radius r > 0 centered at a point x̄. Assume that the directional derivatives of order
k + 1, taken at every point of Br along every unit direction, do not exceed certain L < ∞:

|Dk+1f(x)[d, ..., d]| ≤ L ∀(x ∈ Br)∀(d, |d| = 1).

Then for the Taylor expansion Fk of order k of f taken at x̄ one has

|f(x)− Fk(x)| ≤ L|x− x̄|k+1

(k + 1)!
∀(x ∈ Br).

Thus, in a neighbourhood of x̄ the remainder of the k-th order Taylor expansion, taken at x̄, is of order
of L|x− x̄|k+1, where L is the maximal (over all unit directions and all points from the neighbourhood)
magnitude of the directional derivatives of order k + 1 of f .

A.7 Symmetric matrices

A.7.1 Spaces of matrices

Let Sm be the space of symmetric m × m matrices, and Mm,n be the space of rectangular m × n
matrices with real entries. From the viewpoint of their linear structure (i.e., the operations of addition
and multiplication by reals) Sm is just the arithmetic linear space Rm(m+1)/2 of dimension m(m+1)

2 :
by arranging the elements of a symmetric m ×m matrix X in a single column, say, in the row-by-row
order, you get a usual m2-dimensional column vector; multiplication of a matrix by a real and addition of
matrices correspond to the same operations with the “representing vector(s)”. When X runs through Sm,
the vector representing X runs through m(m + 1)/2-dimensional subspace of Rm2

consisting of vectors
satisfying the “symmetry condition” – the coordinates coming from symmetric to each other pairs of
entries in X are equal to each other. Similarly, Mm,n as a linear space is just Rmn, and it is natural to
equip Mm,n with the inner product defined as the usual inner product of the vectors representing the
matrices:

〈X, Y 〉 =
m∑

i=1

n∑

j=1

XijYij = Tr(XT Y).

Here Tr stands for the trace – the sum of diagonal elements of a (square) matrix. With this inner product
(called the Frobenius inner product), Mm,n becomes a legitimate Euclidean space, and we may use in

A.7. SYMMETRIC MATRICES 335

connection with this space all notions based upon the Euclidean structure, e.g., the (Frobenius) norm of
a matrix

‖X‖2 =
√
〈X, X〉 =

√√√√
m∑

i=1

n∑

j=1

X2
ij =

√
Tr(XT X)

and likewise the notions of orthogonality, orthogonal complement of a linear subspace, etc. The same
applies to the space Sm equipped with the Frobenius inner product; of course, the Frobenius inner product
of symmetric matrices can be written without the transposition sign:

〈X, Y 〉 = Tr(XY), X, Y ∈ Sm.

A.7.2 Main facts on symmetric matrices

Let us focus on the space Sm of symmetric matrices. The most important property of these matrices is
as follows:

Theorem A.7.1 [Eigenvalue decomposition] n × n matrix A is symmetric if and only if it admits an
orthonormal system of eigenvectors: there exist orthonormal basis {e1, ..., en} such that

Aei = λiei, i = 1, ..., n, (A.7.1)

for reals λi.

In connection with Theorem A.7.1, it is worthy to recall the following notions and facts:

A.7.2.A. Eigenvectors and eigenvalues. An eigenvector of an n×n matrix A is a nonzero vector
e (real or complex) such that Ae = λe for (real or complex) scalar λ; this scalar is called the eigenvalue
of A corresponding to the eigenvector e.

Eigenvalues of A are exactly the roots of the characteristic polynomial

π(z) = Det(zI −A) = zn + b1z
n−1 + b2z

n−2 + ... + bn

of A.
Theorem A.7.1 states, in particular, that for a symmetric matrix A, all eigenvalues are real, and the

corresponding eigenvectors can be chosen to be real and to form an orthonormal basis in Rn.

A.7.2.B. Eigenvalue decomposition of a symmetric matrix. Theorem A.7.1 admits equiv-
alent reformulation as follows (check the equivalence!):

Theorem A.7.2 An n× n matrix A is symmetric if and only if it can be represented in the form

A = UΛUT , (A.7.2)

where

• U is an orthogonal matrix: U−1 = UT (or, which is the same, UT U = I, or, which is the same,
UUT = I, or, which is the same, the columns of U form an orthonormal basis in Rn, or, which is
the same, the columns of U form an orthonormal basis in Rn).

• Λ is the diagonal matrix with the diagonal entries λ1, ..., λn.

Representation (A.7.2) with orthogonal U and diagonal Λ is called the eigenvalue decomposition of A.
In such a representation,

• The columns of U form an orthonormal system of eigenvectors of A;

• The diagonal entries in Λ are the eigenvalues of A corresponding to these eigenvectors.

336 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

A.7.2.C. Vector of eigenvalues. When speaking about eigenvalues λi(A) of a symmetric n × n
matrix A, we always arrange them in the non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A);

λ(A) ∈ Rn denotes the vector of eigenvalues of A taken in the above order.

A.7.2.D. Freedom in eigenvalue decomposition. Part of the data Λ, U in the eigenvalue de-
composition (A.7.2) is uniquely defined by A, while the other data admit certain “freedom”. Specifically,
the sequence λ1, ..., λn of eigenvalues of A (i.e., diagonal entries of Λ) is exactly the sequence of roots
of the characteristic polynomial of A (every root is repeated according to its multiplicity) and thus is
uniquely defined by A (provided that we arrange the entries of the sequence in the non-ascending order).
The columns of U are not uniquely defined by A. What is uniquely defined, are the linear spans E(λ) of
the columns of U corresponding to all eigenvalues equal to certain λ; such a linear span is nothing but
the spectral subspace {x : Ax = λx} of A corresponding to the eigenvalue λ. There are as many spec-
tral subspaces as many different eigenvalues; spectral subspaces corresponding to different eigenvalues of
symmetric matrix are orthogonal to each other, and their sum is the entire space. When building an
orthogonal matrix U in the spectral decomposition, one chooses an orthonormal eigenbasis in the spectral
subspace corresponding to the largest eigenvalue and makes the vectors of this basis the first columns
in U , then chooses an orthonormal basis in the spectral subspace corresponding to the second largest
eigenvalue and makes the vector from this basis the next columns of U , and so on.

A.7.2.E. “Simultaneous” decomposition of commuting symmetric matrices. Let
A1, ..., Ak be n × n symmetric matrices. It turns out that the matrices commute with each other
(AiAj = AjAi for all i, j) if and only if they can be “simultaneously diagonalized”, i.e., there exist
a single orthogonal matrix U and diagonal matrices Λ1,...,Λk such that

Ai = UΛiU
T , i = 1, ..., k.

You are welcome to prove this statement by yourself; to simplify your task, here are two simple and
important by their own right statements which help to reach your target:

A.7.2.E.1: Let λ be a real and A,B be two commuting n× n matrices. Then the spectral
subspace E = {x : Ax = λx} of A corresponding to λ is invariant for B (i.e., Be ∈ E for
every e ∈ E).

A.7.2.E.2: If A is an n × n matrix and L is an invariant subspace of A (i.e., L is a linear
subspace such that Ae ∈ L whenever e ∈ L), then the orthogonal complement L⊥ of L is
invariant for the matrix AT . In particular, if A is symmetric and L is invariant subspace of
A, then L⊥ is invariant subspace of A as well.

A.7.3 Variational characterization of eigenvalues

Theorem A.7.3 [VCE – Variational Characterization of Eigenvalues] Let A be a symmetric matrix.
Then

λ`(A) = min
E∈E`

max
x∈E,xT x=1

xT Ax, ` = 1, ..., n, (A.7.3)

where E` is the family of all linear subspaces in Rn of the dimension n− ` + 1.

VCE says that to get the largest eigenvalue λ1(A), you should maximize the quadratic form xT Ax over
the unit sphere S = {x ∈ Rn : xT x = 1}; the maximum is exactly λ1(A). To get the second largest
eigenvalue λ2(A), you should act as follows: you choose a linear subspace E of dimension n − 1 and
maximize the quadratic form xT Ax over the cross-section of S by this subspace; the maximum value
of the form depends on E, and you minimize this maximum over linear subspaces E of the dimension

A.7. SYMMETRIC MATRICES 337

n− 1; the result is exactly λ2(A). To get λ3(A), you replace in the latter construction subspaces of the
dimension n− 1 by those of the dimension n− 2, and so on. In particular, the smallest eigenvalue λn(A)
is just the minimum, over all linear subspaces E of the dimension n−n+1 = 1, i.e., over all lines passing
through the origin, of the quantities xT Ax, where x ∈ E is unit (xT x = 1); in other words, λn(A) is just
the minimum of the quadratic form xT Ax over the unit sphere S.

Proof of the VCE is pretty easy. Let e1, ..., en be an orthonormal eigenbasis of A: Ae` =
λ`(A)e`. For 1 ≤ ` ≤ n, let F` = Lin{e1, ..., e`}, G` = Lin{e`, e`+1, ..., en}. Finally, for
x ∈ Rn let ξ(x) be the vector of coordinates of x in the orthonormal basis e1, ..., en. Note
that

xT x = ξT (x)ξ(x),

since {e1, ..., en} is an orthonormal basis, and that

xT Ax = xT A
∑
i

ξi(x)ei) = xT
∑
i

λi(A)ξi(x)ei =
∑
i

λi(A)ξi(x) (xT ei)︸ ︷︷ ︸
ξi(x)

=
∑
i

λi(A)ξ2
i (x).

(A.7.4)

Now, given `, 1 ≤ ` ≤ n, let us set E = G`; note that E is a linear subspace of the dimension
n− `+1. In view of (A.7.4), the maximum of the quadratic form xT Ax over the intersection
of our E with the unit sphere is

max

{
n∑

i=`

λi(A)ξ2
i :

n∑

i=`

ξ2
i = 1

}
,

and the latter quantity clearly equals to max
`≤i≤n

λi(A) = λ`(A). Thus, for appropriately chosen

E ∈ E`, the inner maximum in the right hand side of (A.7.3) equals to λ`(A), whence the
right hand side of (A.7.3) is ≤ λ`(A). It remains to prove the opposite inequality. To this
end, consider a linear subspace E of the dimension n−`+1 and observe that it has nontrivial
intersection with the linear subspace F` of the dimension ` (indeed, dim E + dim F` = (n−
` + 1) + ` > n, so that dim (E ∩ F) > 0 by the Dimension formula). It follows that there
exists a unit vector y belonging to both E and F`. Since y is a unit vector from F`, we have

y =
∑̀
i=1

ηiei with
∑̀
i=1

η2
i = 1, whence, by (A.7.4),

yT Ay =
∑̀

i=1

λi(A)η2
i ≥ min

1≤i≤`
λi(A) = λ`(A).

Since y is in E, we conclude that

max
x∈E:xT x=1

xT Ax ≥ yT Ay ≥ λ`(A).

Since E is an arbitrary subspace form E`, we conclude that the right hand side in (A.7.3) is
≥ λ`(A).

A simple and useful byproduct of our reasoning is the relation (A.7.4):

Corollary A.7.1 For a symmetric matrix A, the quadratic form xT Ax is weighted sum of squares of
the coordinates ξi(x) of x taken with respect to an orthonormal eigenbasis of A; the weights in this sum
are exactly the eigenvalues of A:

xT Ax =
∑

i

λi(A)ξ2
i (x).

338 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Corollaries of the VCE

VCE admits a number of extremely important corollaries as follows:

A.7.3.A. Eigenvalue characterization of positive (semi)definite matrices. Recall that
a matrix A is called positive definite (notation: A Â 0), if it is symmetric and the quadratic form xT Ax
is positive outside the origin; A is called positive semidefinite (notation: A º 0), if A is symmetric and
the quadratic form xT Ax is nonnegative everywhere. VCE provides us with the following eigenvalue
characterization of positive (semi)definite matrices:

Proposition A.7.1 : A symmetric matrix A is positive semidefinite if and only if its eigenvalues are
nonnegative; A is positive definite if and only if all eigenvalues of A are positive

Indeed, A is positive definite, if and only if the minimum value of xT Ax over the unit sphere is positive,
and is positive semidefinite, if and only if this minimum value is nonnegative; it remains to note that by
VCE, the minimum value of xT Ax over the unit sphere is exactly the minimum eigenvalue of A.

A.7.3.B. º-Monotonicity of the vector of eigenvalues. Let us write A º B (A Â B) to
express that A,B are symmetric matrices of the same size such that A − B is positive semidefinite
(respectively, positive definite).

Proposition A.7.2 If A º B, then λ(A) ≥ λ(B), and if A Â B, then λ(A) > λ(B).

Indeed, when A º B, then, of course,

max
x∈E:xT x=1

xT Ax ≥ max
x∈E:xT x=1

xT Bx

for every linear subspace E, whence

λ`(A) = min
E∈E`

max
x∈E:xT x=1

xT Ax ≥ min
E∈E`

max
x∈E:xT x=1

xT Bx = λ`(B), ` = 1, ..., n,

i.e., λ(A) ≥ λ(B). The case of A Â B can be considered similarly.

A.7.3.C. Eigenvalue Interlacement Theorem. We shall formulate this extremely important
theorem as follows:

Theorem A.7.4 [Eigenvalue Interlacement Theorem] Let A be a symmetric n× n matrix and Ā be the
angular (n− k)× (n− k) submatrix of A. Then, for every ` ≤ n− k, the `-th eigenvalue of Ā separates
the `-th and the (` + k)-th eigenvalues of A:

λ`(A) º λ`(Ā) º λ`+k(A). (A.7.5)

Indeed, by VCE, λ`(Ā) = minE∈Ē`
maxx∈E:xT x=1 xT Ax, where Ē` is the family of all linear subspaces of

the dimension n−k− `+1 contained in the linear subspace {x ∈ Rn : xn−k+1 = xn−k+2 = ... = xn = 0}.
Since Ē` ⊂ E`+k, we have

λ`(Ā) = min
E∈Ē`

max
x∈E:xT x=1

xT Ax ≥ min
E∈E`+k

max
x∈E:xT x=1

xT Ax = λ`+k(A).

We have proved the left inequality in (A.7.5). Applying this inequality to the matrix −A, we get

−λ`(Ā) = λn−k−`(−Ā) ≥ λn−`(−A) = −λ`(A),

or, which is the same, λ`(Ā) ≤ λ`(A), which is the first inequality in (A.7.5).

A.7. SYMMETRIC MATRICES 339

A.7.4 Positive semidefinite matrices and the semidefinite cone

A.7.4.A. Positive semidefinite matrices. Recall that an n × n matrix A is called positive
semidefinite (notation: A º 0), if A is symmetric and produces nonnegative quadratic form:

A º 0 ⇔ {A = AT and xT Ax ≥ 0 ∀x}.

A is called positive definite (notation: A Â 0), if it is positive semidefinite and the corresponding quadratic
form is positive outside the origin:

A Â 0 ⇔ {A = AT and xT Ax > 00 ∀x 6= 0}.

It makes sense to list a number of equivalent definitions of a positive semidefinite matrix:

Theorem A.7.5 Let A be a symmetric n× n matrix. Then the following properties of A are equivalent
to each other:

(i) A º 0
(ii) λ(A) ≥ 0
(iii) A = DT D for certain rectangular matrix D
(iv) A = ∆T ∆ for certain upper triangular n× n matrix ∆
(v) A = B2 for certain symmetric matrix B;
(vi) A = B2 for certain B º 0.
The following properties of a symmetric matrix A also are equivalent to each other:
(i′) A Â 0
(ii′) λ(A) > 0
(iii′) A = DT D for certain rectangular matrix D of rank n
(iv′) A = ∆T ∆ for certain nondegenerate upper triangular n× n matrix ∆
(v′) A = B2 for certain nondegenerate symmetric matrix B;
(vi′) A = B2 for certain B Â 0.

Proof. (i)⇔(ii): this equivalence is stated by Proposition A.7.1.
(ii)⇔(vi): Let A = UΛUT be the eigenvalue decomposition of A, so that U is orthogonal and Λ

is diagonal with nonnegative diagonal entries λi(A) (we are in the situation of (ii) !). Let Λ1/2 be the
diagonal matrix with the diagonal entries λ

1/2
i (A); note that (Λ1/2)2 = Λ. The matrix B = UΛ1/2UT is

symmetric with nonnegative eigenvalues λ
1/2
i (A), so that B º 0 by Proposition A.7.1, and

B2 = UΛ1/2 UT U︸ ︷︷ ︸
I

Λ1/2UT = U(Λ1/2)2UT = UΛUT = A,

as required in (vi).
(vi)⇒(v): evident.
(v)⇒(iv): Let A = B2 with certain symmetric B, and let bi be i-th column of B. Applying the

Gram-Schmidt orthogonalization process (see proof of Theorem A.2.3.(iii)), we can find an orthonormal

system of vectors u1, ..., un and lower triangular matrix L such that bi =
i∑

j=1

Lijuj , or, which is the

same, BT = LU , where U is the orthogonal matrix with the rows uT
1 , ..., uT

n . We now have A = B2 =
BT (BT)T = LUUT LT = LLT . We see that A = ∆T ∆, where the matrix ∆ = LT is upper triangular.

(iv)⇒(iii): evident.
(iii)⇒(i): If A = DT D, then xT Ax = (Dx)T (Dx) ≥ 0 for all x.

We have proved the equivalence of the properties (i) – (vi). Slightly modifying the reasoning (do it
yourself!), one can prove the equivalence of the properties (i′) – (vi′).

Remark A.7.1 (i) [Checking positive semidefiniteness] Given an n × n symmetric matrix A, one can
check whether it is positive semidefinite by a purely algebraic finite algorithm (the so called Lagrange diag-
onalization of a quadratic form) which requires at most O(n3) arithmetic operations. Positive definiteness

340 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

of a matrix can be checked also by the Choleski factorization algorithm which finds the decomposition in
(iv′), if it exists, in approximately 1

6n3 arithmetic operations.
There exists another useful algebraic criterion (Sylvester’s criterion) for positive semidefiniteness of

a matrix; according to this criterion, a symmetric matrix A is positive definite if and only if its angular
minors are positive, and A is positive semidefinite if and only if all its principal minors are nonnegative.

For example, a symmetric 2× 2 matrix A =
[

a b
b c

]
is positive semidefinite if and only if a ≥ 0, c ≥ 0

and Det(A) ≡ ac− b2 ≥ 0.
(ii) [Square root of a positive semidefinite matrix] By the first chain of equivalences in Theorem A.7.5,

a symmetric matrix A is º 0 if and only if A is the square of a positive semidefinite matrix B. The latter
matrix is uniquely defined by A º 0 and is called the square root of A (notation: A1/2).

A.7.4.B. The semidefinite cone. When adding symmetric matrices and multiplying them by
reals, we add, respectively multiply by reals, the corresponding quadratic forms. It follows that

A.7.4.B.1: The sum of positive semidefinite matrices and a product of a positive semidefinite
matrix and a nonnegative real is positive semidefinite,

or, which is the same (see Section B.1.4),

A.7.4.B.2: n× n positive semidefinite matrices form a cone Sn
+ in the Euclidean space Sn

of symmetric n × n matrices, the Euclidean structure being given by the Frobenius inner
product 〈A,B〉 = Tr(AB) =

∑
i,j

AijBij .

The cone Sn
+ is called the semidefinite cone of size n. It is immediately seen that the semidefinite cone

Sn
+ is “good” (see Lecture 5), specifically,

• Sn
+ is closed: the limit of a converging sequence of positive semidefinite matrices is positive semidef-

inite;

• Sn
+ is pointed: the only n× n matrix A such that both A and −A are positive semidefinite is the

zero n× n matrix;

• Sn
+ possesses a nonempty interior which is comprised of positive definite matrices.

Note that the relation A º B means exactly that A−B ∈ Sn
+, while A Â B is equivalent to A−B ∈ intSn

+.
The “matrix inequalities” A º B (A Â B) match the standard properties of the usual scalar inequalities,
e.g.:

A º A [reflexivity]
A º B, B º A ⇒ A = B [antisymmetry]
A º B, B º C ⇒ A º C [transitivity]
A º B, C º D ⇒ A + C º B + D [compatibility with linear operations, I]
A º B, λ ≥ 0 ⇒ λA º λB [compatibility with linear operations, II]
Ai º Bi, Ai → A,Bi → B as i →∞⇒ A º B [closedness]

with evident modifications when º is replaced with Â, or

A º B, C Â D ⇒ A + C Â B + D,

etc. Along with these standard properties of inequalities, the inequality º possesses a nice additional
property:

A.7.4.B.3: In a valid º-inequality
A º B

one can multiply both sides from the left and by the right by a (rectangular) matrix and its
transpose:

A, B ∈ Sn, A º B, V ∈ Mn,m

⇓
V T AV º V T BV

A.7. SYMMETRIC MATRICES 341

Indeed, we should prove that if A−B º 0, then also V T (A−B)V º 0, which is immediate
– the quadratic form yT [V T (A−B)V]y = (V y)T (A−B)(V y) of y is nonnegative along with
the quadratic form xT (A−B)x of x.

An important additional property of the semidefinite cone is its self-duality:

Theorem A.7.6 A symmetric matrix Y has nonnegative Frobenius inner products with all positive
semidefinite matrices if and only if Y itself is positive semidefinite.

Proof. “if” part: Assume that Y º 0, and let us prove that then Tr(Y X) ≥ 0 for every X º 0. Indeed,
the eigenvalue decomposition of Y can be written as

Y =
n∑

i=1

λi(Y)eie
T
i ,

where ei are the orthonormal eigenvectors of Y . We now have

Tr(Y X) = Tr((
n∑

i=1

λi(Y)eie
T
i)X) =

n∑
i=1

λi(Y)Tr(eie
T
i X)

=
n∑

i=1

λi(Y)Tr(eT
i Xei),

(A.7.6)

where the concluding equality is given by the following well-known property of the trace:

A.7.4.B.4: Whenever matrices A,B are such that the product AB makes sense and is a
square matrix, one has

Tr(AB) = Tr(BA).

Indeed, we should verify that if A ∈ Mp,q and B ∈ Mq,p, then Tr(AB) = Tr(BA). The

left hand side quantity in our hypothetic equality is
p∑

i=1

q∑
j=1

AijBji, and the right hand side

quantity is
q∑

j=1

p∑
i=1

BjiAij ; they indeed are equal.

Looking at the concluding quantity in (A.7.6), we see that it indeed is nonnegative whenever X º 0
(since Y º 0 and thus λi(Y) ≥ 0 by P.7.5).

”only if” part: We are given Y such that Tr(Y X) ≥ 0 for all matrices X º 0, and we should prove
that Y º 0. This is immediate: for every vector x, the matrix X = xxT is positive semidefinite (Theorem
A.7.5.(iii)), so that 0 ≤ Tr(Y xxT) = Tr(xT Y x) = xT Y x. Since the resulting inequality xT Y x ≥ 0 is
valid for every x, we have Y º 0.

342 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA AND ANALYSIS

Appendix B

Convex sets in Rn

B.1 Definition and basic properties

B.1.1 A convex set

In the school geometry a figure is called convex if it contains, along with every pair of its points x, y,
also the entire segment [x, y] linking the points. This is exactly the definition of a convex set in the
multidimensional case; all we need is to say what does it mean “the segment [x, y] linking the points
x, y ∈ Rn”. This is said by the following

Definition B.1.1 [Convex set]
1) Let x, y be two points in Rn. The set

[x, y] = {z = λx + (1− λ)y | 0 ≤ λ ≤ 1}

is called a segment with the endpoints x, y.
2) A subset M of Rn is called convex, if it contains, along with every pair of its points x, y, also the

entire segment [x, y]:
x, y ∈ M, 0 ≤ λ ≤ 1 ⇒ λx + (1− λ)y ∈ M.

Note that by this definition an empty set is convex (by convention, or better to say, by the exact
sense of the definition: for the empty set, you cannot present a counterexample to show that it is not
convex).

B.1.2 Examples of convex sets

B.1.2.A. Affine subspaces

Example B.1.1 A linear/affine subspace of Rn is convex.

Convexity of affine subspaces immediately follows from the possibility to represent these sets as solution
sets of systems of linear equations (Proposition A.3.7), due to the following simple and important fact:

Proposition B.1.1 The solution set of an arbitrary (possibly, infinite) system

aT
αx ≤ bα, α ∈ A

of linear inequalities with n unknowns x – the set

S = {x ∈ Rn | aT
αx ≤ bα, α ∈ A}

is convex.

343

344 APPENDIX B. CONVEX SETS IN RN

In particular, the solution set of a finite system

Ax ≤ b

of m inequalities with n variables (A is m×n matrix) is convex; a set of this latter type is called polyhedral.

Exercise B.1 Prove Proposition B.1.1.

Remark B.1.1 Note that every set given by Proposition B.1.1 is not only convex, but also closed (why?).
In fact, from Separation Theorem (Theorem B.2.5 below) it follows that

Every closed convex set in Rn is the solution set of a (perhaps, infinite) system of nonstrict
linear inequalities.

B.1.2.B. Unit balls of norms

Let ‖ · ‖ be a norm on Rn i.e., a real-valued function on Rn satisfying the three characteristic properties
of a norm (Section A.4.1), specifically:

A. [positivity] ‖x‖ ≥ 0 for all x ∈ Rn; ‖x‖ = 0 is and only if x = 0;

B. [homogeneity] For x ∈ Rn and λ ∈ R, one has

‖λx‖ = |λ|‖x‖;

C. [triangle inequality] For all x, y ∈ Rn one has

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Example B.1.2 The unit ball of the norm ‖ · ‖ – the set

{x ∈ E | ‖x‖ ≤ 1},

same as every other ‖ · ‖-ball
{x | ‖x− a‖ ≤ r}

(a ∈ Rn and r ≥ 0 are fixed) is convex.
In particular, Euclidean balls (‖ · ‖-balls associated with the standard Euclidean norm ‖x‖2 =

√
xT x)

are convex.

The standard examples of norms on Rn are the `p-norms

‖x‖p =





(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞
max1≤i≤n |xi|, p = ∞

.

These indeed are norms (which is not clear in advance). When p = 2, we get the usual Euclidean norm;
of course, you know how the Euclidean ball looks. When p = 1, we get

‖x‖1 =
n∑

i=1

|xi|,

and the unit ball is the hyperoctahedron

V = {x ∈ Rn |
n∑

i=1

|xi| ≤ 1}

B.1. DEFINITION AND BASIC PROPERTIES 345

When p = ∞, we get
‖x‖∞ = max

1≤i≤n
|xi|,

and the unit ball is the hypercube

V = {x ∈ Rn | −1 ≤ xi ≤ 1, 1 ≤ i ≤ n}.

Exercise B.2 † Prove that unit balls of norms on Rn are exactly the same as convex sets V in Rn

satisfying the following three properties:

1. V is symmetric w.r.t. the origin: x ∈ V ⇒ −x ∈ V ;

2. V is bounded and closed;

3. V contains a neighbourhood of the origin.

A set V satisfying the outlined properties is the unit ball of the norm

‖x‖ = inf
{
t ≥ 0 : t−1x ∈ V

}
.

Hint: You could find useful to verify and to exploit the following facts:

1. A norm ‖ · ‖ on Rn is Lipschitz continuous with respect to the standard Euclidean distance: there
exists C‖·‖ < ∞ such that |‖x‖ − ‖y‖| ≤ C‖·‖‖x− y‖2 for all x, y

2. Vice versa, the Euclidean norm is Lipschitz continuous with respect to a given norm ‖ · ‖: there
exists c‖·‖ < ∞ such that |‖x‖2 − ‖y‖2| ≤ c‖·‖‖x− y‖ for all x, y

B.1.2.C. Ellipsoid

Example B.1.3 [Ellipsoid] Let Q be a n× n matrix which is symmetric (Q = QT) and positive definite
(xT Qx ≥ 0, with ≥ being = if and only if x = 0). Then, for every nonnegative r, the Q-ellipsoid of
radius r centered at a – the set

{x | (x− a)T Q(x− a) ≤ r2}
is convex.

To see that an ellipsoid {x : (x− a)T Q(x− a) ≤ r2} is convex, note that since Q is positive
definite, the matrix Q1/2 is well-defined and positive definite. Now, if ‖ · ‖ is a norm on Rn

and P is a nonsingular n × n matrix, the function ‖Px‖ is a norm along with ‖ · ‖ (why?).
Thus, the function ‖x‖Q ≡

√
xT Qx = ‖Q1/2x‖2 is a norm along with ‖ ·‖2, and the ellipsoid

in question clearly is just ‖ · ‖Q-ball of radius r centered at a.

B.1.2.C. Neighbourhood of a convex set

Example B.1.4 Let M be a convex set in Rn, and let ε > 0. Then, for every norm ‖ · ‖ on Rn, the
ε-neighbourhood of M , i.e., the set

Mε = {y ∈ Rn | dist‖·‖(y, M) ≡ inf
x∈M

‖y − x‖ ≤ ε}

is convex.

Exercise B.3 Justify the statement of Example B.1.4.

346 APPENDIX B. CONVEX SETS IN RN

B.1.3 Inner description of convex sets: Convex combinations and convex hull

B.1.3.A. Convex combinations

Recall the notion of linear combination y of vectors y1, ..., ym – this is a vector represented as

y =
m∑

i=1

λiyi,

where λi are real coefficients. Specifying this definition, we have come to the notion of an affine combi-
nation - this is a linear combination with the sum of coefficients equal to one. The last notion in this
genre is the one of convex combination.

Definition B.1.2 A convex combination of vectors y1, ..., ym is their affine combination with nonnegative
coefficients, or, which is the same, a linear combination

y =
m∑

i=1

λiyi

with nonnegative coefficients with unit sum:

λi ≥ 0,

m∑

i=1

λi = 1.

The following statement resembles those in Corollary A.3.2:

Proposition B.1.2 A set M in Rn is convex if and only if it is closed with respect to taking all convex
combinations of its elements, i.e., if and only if every convex combination of vectors from M again is a
vector from M .

Exercise B.4 Prove Proposition B.1.2.
Hint: Assuming λ1, ..., λm > 0, one has

m∑

i=1

λiyi = λ1y1 + (λ2 + λ3 + ... + λm)
m∑

i=2

µiyi, µi =
λi

λ2 + λ3 + ... + λm
.

B.1.3.B. Convex hull

Same as the property to be linear/affine subspace, the property to be convex is preserved by taking
intersections (why?):

Proposition B.1.3 Let {Mα}α be an arbitrary family of convex subsets of Rn. Then the intersection

M = ∩αMα

is convex.

As an immediate consequence, we come to the notion of convex hull Conv(M) of a nonempty subset
in Rn (cf. the notions of linear/affine hull):

Corollary B.1.1 [Convex hull]
Let M be a nonempty subset in Rn. Then among all convex sets containing M (these sets do exist, e.g.,
Rn itself) there exists the smallest one, namely, the intersection of all convex sets containing M . This
set is called the convex hull of M [notation: Conv(M)].

The linear span of M is the set of all linear combinations of vectors from M , the affine hull is the set
of all affine combinations of vectors from M . As you guess,

Proposition B.1.4 [Convex hull via convex combinations] For a nonempty M ⊂ Rn:

Conv(M) = {the set of all convex combinations of vectors from M}.
Exercise B.5 Prove Proposition B.1.4.

B.1. DEFINITION AND BASIC PROPERTIES 347

B.1.3.C. Simplex

The convex hull of m + 1 affinely independent points y0, ..., ym (Section A.3.3) is called m-dimensional
simplex with the vertices y0, .., ym. By results of Section A.3.3, every point x of an m-dimensional simplex
with vertices y0, ..., ym admits exactly one representation as a convex combination of the vertices; the
corresponding coefficients form the unique solution to the system of linear equations

m∑

i=0

λixi = x,

m∑

i=0

λi = 1.

This system is solvable if and only if x ∈ M = Aff({y0, .., ym}), and the components of the solution (the
barycentric coordinates of x) are affine functions of x ∈ Aff(M); the simplex itself is comprised of points
from M with nonnegative barycentric coordinates.

B.1.4 Cones

A nonempty subset M of Rn is called conic, if it contains, along with every point x ∈ M , the entire ray
Rx = {tx | t ≥ 0} spanned by the point:

x ∈ M ⇒ tx ∈ M ∀t ≥ 0.

A convex conic set is called a cone.

Proposition B.1.5 A nonempty subset M of Rn is a cone if and only if it possesses the following pair
of properties:

• is conic: x ∈ M, t ≥ 0 ⇒ tx ∈ M ;

• contains sums of its elements: x, y ∈ M ⇒ x + y ∈ M .

Exercise B.6 Prove Proposition B.1.5.

As an immediate consequence, we get that a cone is closed with respect to taking linear combinations
with nonnegative coefficients of the elements, and vice versa – a nonempty set closed with respect to
taking these combinations is a cone.

Example B.1.5 The solution set of an arbitrary (possibly, infinite) system

aT
αx ≤ 0, α ∈ A

of homogeneous linear inequalities with n unknowns x – the set

K = {x | aT
αx ≤ 0 ∀α ∈ A}

– is a cone.
In particular, the solution set to a homogeneous finite system of m homogeneous linear inequalities

Ax ≤ 0

(A is m× n matrix) is a cone; a cone of this latter type is called polyhedral.

Note that the cones given by systems of linear homogeneous nonstrict inequalities necessarily are closed.
From Separation Theorem B.2.5 it follows that, vice versa, every closed convex cone is the solution set
to such a system, so that Example B.1.5 is the generic example of a closed convex cone.

Cones form a very important family of convex sets, and one can develop theory of cones
absolutely similar (and in a sense, equivalent) to that one of all convex sets. E.g., introducing
the notion of conic combination of vectors x1, ..., xk as a linear combination of the vectors with
nonnegative coefficients, you can easily prove the following statements completely similar to
those for general convex sets, with conic combination playing the role of convex one:

348 APPENDIX B. CONVEX SETS IN RN

• A set is a cone if and only if it is nonempty and is closed with respect to taking all
conic combinations of its elements;

• Intersection of a family of cones is again a cone; in particular, for every nonempty set
M ⊂ Rn there exists the smallest cone containing M – its conic!hull Cone (M), and
this conic hull is comprised of all conic combinations of vectors from M .

In particular, the conic hull of a nonempty finite set M = {u1, ..., uN} of vectors in Rn is
the cone

Cone (M) = {
N∑

i=1

λiui | λi ≥ 0, i = 1, ..., N}.

B.1.5 ”Calculus” of convex sets

Proposition B.1.6 The following operations preserve convexity of sets:

1. Intersection: if Mα, α ∈ A, are convex sets, so is the set
⋂
α

Mα.

2. Direct product: if M1 ⊂ Rn1 and M2 ⊂ Rn2 are convex sets, so is the set

M1 ×M2 = {y = (y1, y2) ∈ Rn1 ×Rn2 = Rn1+n2 : y1 ∈ M1, y2 ∈ M2}.

3. Arithmetic summation and multiplication by reals: if M1, ...,Mk are convex sets in Rn and
λ1, ..., λk are arbitrary reals, then the set

λ1M1 + ... + λkMk = {
k∑

i=1

λixi | xi ∈ Mi, i = 1, ..., k}

is convex.

4. Taking the image under affine mapping: if M ⊂ Rn is convex and x 7→ A(x) ≡ Ax+ b is an affine
mapping from Rn into Rm (A is m× n matrix, b is m-dimensional vector), then the set

A(M) = {y = A(x) ≡ Ax + a | x ∈ M}

is a convex set in Rm;

5. Taking the inverse image under affine mapping: if M ⊂ Rn is convex and y 7→ Ay + b is an affine
mapping from Rm to Rn (A is n×m matrix, b is n-dimensional vector), then the set

A−1(M) = {y ∈ Rm | A(y) ∈ M}

is a convex set in Rm.

Exercise B.7 Prove Proposition B.1.6.

B.1.6 Topological properties of convex sets

Convex sets and closely related objects - convex functions - play the central role in Optimization. To
play this role properly, the convexity alone is insufficient; we need convexity plus closedness.

B.1. DEFINITION AND BASIC PROPERTIES 349

B.1.6.A. The closure

It is clear from definition of a closed set (Section A.4.3) that the intersection of a family of closed sets
in Rn is also closed. From this fact it, as always, follows that for every subset M of Rn there exists the
smallest closed set containing M ; this set is called the closure of M and is denoted cl M . In Analysis
they prove the following inner description of the closure of a set in a metric space (and, in particular, in
Rn):

The closure of a set M ⊂ Rn is exactly the set comprised of the limits of all converging sequences of
elements of M .

With this fact in mind, it is easy to prove that, e.g., the closure of the open Euclidean ball

{x | |x− a| < r} [r > 0]

is the closed ball {x | ‖x− a‖2 ≤ r}. Another useful application example is the closure of a set

M = {x | aT
αx < bα, α ∈ A}

given by strict linear inequalities: if such a set is nonempty, then its closure is given by the nonstrict
versions of the same inequalities:

clM = {x | aT
αx ≤ bα, α ∈ A}.

Nonemptiness of M in the latter example is essential: the set M given by two strict inequal-
ities

x < 0, −x < 0

in R clearly is empty, so that its closure also is empty; in contrast to this, applying formally
the above rule, we would get wrong answer

cl M = {x | x ≤ 0, x ≥ 0} = {0}.

B.1.6.B. The interior

Let M ⊂ Rn. We say that a point x ∈ M is an interior point of M , if some neighbourhood of the point
is contained in M , i.e., there exists centered at x ball of positive radius which belongs to M :

∃r > 0 Br(x) ≡ {y | ‖y − x‖2 ≤ r} ⊂ M.

The set of all interior points of M is called the interior of M [notation: intM].
E.g.,

• The interior of an open set is the set itself;

• The interior of the closed ball {x | ‖x− a‖2 ≤ r} is the open ball {x | ‖x− a‖2 < r} (why?)

• The interior of a polyhedral set {x | Ax ≤ b} with matrix A not containing zero rows is the set
{x | Ax < b} (why?)

The latter statement is not, generally speaking, valid for sets of solutions of infinite
systems of linear inequalities. E.g., the system of inequalities

x ≤ 1
n

, n = 1, 2, ...

in R has, as a solution set, the nonpositive ray R− = {x ≤ 0}; the interior of this ray
is the negative ray {x < 0}. At the same time, strict versions of our inequalities

x <
1
n

, n = 1, 2, ...

define the same nonpositive ray, not the negative one.

350 APPENDIX B. CONVEX SETS IN RN

It is also easily seen (this fact is valid for arbitrary metric spaces, not for Rn only), that

• the interior of an arbitrary set is open

The interior of a set is, of course, contained in the set, which, in turn, is contained in its closure:

intM ⊂ M ⊂ clM. (B.1.1)

The complement of the interior in the closure – the set

∂M = cl M\intM

– is called the boundary of M , and the points of the boundary are called boundary points of M (Warning:
these points not necessarily belong to M , since M can be less than cl M ; in fact, all boundary points
belong to M if and only if M = cl M , i.e., if and only if M is closed).

The boundary of a set clearly is closed (as the intersection of two closed sets cl M and Rn\intM ; the
latter set is closed as a complement to an open set). From the definition of the boundary,

M ⊂ intM ∪ ∂M [= cl M],

so that a point from M is either an interior, or a boundary point of M .

B.1.6.C. The relative interior

Many of the constructions in Optimization possess nice properties in the interior of the set the construction
is related to and may lose these nice properties at the boundary points of the set; this is why in many
cases we are especially interested in interior points of sets and want the set of these points to be “enough
massive”. What to do if it is not the case – e.g., there are no interior points at all (look at a segment in
the plane)? It turns out that in these cases we can use a good surrogate of the “normal” interior – the
relative interior defined as follows.

Definition B.1.3 [Relative interior] Let M ⊂ Rn. We say that a point x ∈ M is relative interior for
M , if M contains the intersection of a small enough ball centered at x with Aff(M):

∃r > 0 Br(x) ∩Aff(M) ≡ {y | y ∈ Aff(M), ‖y − x‖2 ≤ r} ⊂ M.

The set of all relative interior points of M is called its relative interior [notation: ri M].

E.g. the relative interior of a singleton is the singleton itself (since a point in the 0-dimensional space is
the same as a ball of a positive radius); more generally, the relative interior of an affine subspace is the
set itself. The interior of a segment [x, y] (x 6= y) in Rn is empty whenever n > 1; in contrast to this,
the relative interior is nonempty independently of n and is the interval (x, y) – the segment with deleted
endpoints. Geometrically speaking, the relative interior is the interior we get when regard M as a subset
of its affine hull (the latter, geometrically, is nothing but Rk, k being the affine dimension of Aff(M)).

Exercise B.8 Prove that the relative interior of a simplex with vertices y0, ..., ym is exactly the set

{x =
m∑

i=0

λiyi : λi > 0,
m∑

i=0

λi = 1}.

We can play with the notion of the relative interior in basically the same way as with the one of
interior, namely:

• since Aff(M), as every affine subspace, is closed and contains M , it contains also the smallest closed
sets containing M , i.e., cl M . Therefore we have the following analogies of inclusions (B.1.1):

ri M ⊂ M ⊂ clM [⊂ Aff(M)]; (B.1.2)

• we can define the relative boundary ∂riM = cl M\riM which is a closed set contained in Aff(M),
and, as for the “actual” interior and boundary, we have

riM ⊂ M ⊂ clM = ri M + ∂riM.

Of course, if Aff(M) = Rn, then the relative interior becomes the usual interior, and similarly for
boundary; this for sure is the case when intM 6= ∅ (since then M contains a ball B, and therefore the
affine hull of M is the entire Rn, which is the affine hull of B).

B.1. DEFINITION AND BASIC PROPERTIES 351

B.1.6.D. Nice topological properties of a convex set

An arbitrary set M in Rn may possess very pathological topology: both inclusions in the chain

riM ⊂ M ⊂ clM

can be very “non-tight”. E.g., let M be the set of rational numbers in the segment [0, 1] ⊂ R. Then
ri M = intM = ∅ – since every neighbourhood of every rational real contains irrational reals – while
clM = [0, 1]. Thus, ri M is “incomparably smaller” than M , cl M is “incomparably larger”, and M is
contained in its relative boundary (by the way, what is this relative boundary?).

The following proposition demonstrates that the topology of a convex set M is much better than it
might be for an arbitrary set.

Theorem B.1.1 Let M be a convex set in Rn. Then
(i) The interior intM , the closure clM and the relative interior ri M are convex;
(ii) If M is nonempty, then the relative interior ri M of M is nonempty
(iii) The closure of M is the same as the closure of its relative interior:

cl M = cl ri M

(in particular, every point of clM is the limit of a sequence of points from ri M)
(iv) The relative interior remains unchanged when we replace M with its closure:

ri M = ri cl M.

Proof. (i): prove yourself!
(ii): Let M be a nonempty convex set, and let us prove that ri M 6= ∅. By translation, we may

assume that 0 ∈ M . Further, we may assume that the linear span of M is the entire Rn. Indeed, as
far as linear operations and the Euclidean structure are concerned, the linear span L of M , as every
other linear subspace in Rn, is equivalent to certain Rk; since the notion of relative interior deals only
with linear and Euclidean structures, we lose nothing thinking of Lin(M) as of Rk and taking it as our
universe instead of the original universe Rn. Thus, in the rest of the proof of (ii) we assume that 0 ∈ M
and Lin(M) = Rn; what we should prove is that the interior of M (which in the case in question is the
same as relative interior) is nonempty. Note that since 0 ∈ M , we have Aff(M) = Lin(M) = Rn.

Since Lin(M) = Rn, we can find in M n linearly independent vectors a1, .., an. Let also a0 = 0. The
n + 1 vectors a0, ..., an belong to M , and since M is convex, the convex hull of these vectors also belongs
to M . This convex hull is the set

∆ = {x =
n∑

i=0

λiai : λ ≥ 0,
∑

i

λi = 1} = {x =
n∑

i=1

µiai : µ ≥ 0,

n∑

i=1

µi ≤ 1}.

We see that ∆ is the image of the standard full-dimensional simplex

{µ ∈ Rn : µ ≥ 0,

n∑

i=1

µi ≤ 1}

under linear transformation µ 7→ Aµ, where A is the matrix with the columns a1, ..., an. The standard
simplex clearly has a nonempty interior (comprised of all vectors µ > 0 with

∑
i

µi < 1); since A is

nonsingular (due to linear independence of a1, ..., an), multiplication by A maps open sets onto open
ones, so that ∆ has a nonempty interior. Since ∆ ⊂ M , the interior of M is nonempty.

(iii): We should prove that the closure of riM is exactly the same that the closure of M . In fact we
shall prove even more:

Lemma B.1.1 Let x ∈ ri M and y ∈ clM . Then all points from the half-segment [x, y),

[x, y) = {z = (1− λ)x + λy | 0 ≤ λ < 1}
belong to the relative interior of M .

352 APPENDIX B. CONVEX SETS IN RN

Proof of the Lemma. Let Aff(M) = a + L, L being linear subspace; then

M ⊂ Aff(M) = x + L.

Let B be the unit ball in L:
B = {h ∈ L | ‖h‖2 ≤ 1}.

Since x ∈ ri M , there exists positive radius r such that

x + rB ⊂ M. (B.1.3)

Now let λ ∈ [0, 1), and let z = (1 − λ)x + λy. Since y ∈ clM , we have y = lim
i→∞

yi for certain sequence

of points from M . Setting zi = (1 − λ)x + λyi, we get zi → z as i → ∞. Now, from (B.1.3) and the
convexity of M is follows that the sets Zi = {u = (1 − λ)x′ + λyi : x′ ∈ x + rB} are contained in M ;
clearly, Zi is exactly the set zi + r′B, where r′ = (1 − λ)r > 0. Thus, z is the limit of sequence zi, and
r′-neighbourhood (in Aff(M)) of every one of the points zi belongs to M . For every r′′ < r′ and for all i
such that zi is close enough to z, the r′-neighbourhood of zi contains the r′′-neighbourhood of z; thus, a
neighbourhood (in Aff(M)) of z belongs to M , whence z ∈ riM .

A useful byproduct of Lemma B.1.1 is as follows:

Corollary B.1.2 Let M be a convex set. Then every convex combination
∑

i

λixi

of points xi ∈ cl M where at least one term with positive coefficient corresponds to xi ∈ riM
is in fact a point from ri M .

(iv): The statement is evidently true when M is empty, so assume that M is nonempty. The inclusion
ri M ⊂ ri cl M is evident, and all we need is to prove the inverse inclusion. Thus, let z ∈ ri cl M , and let
us prove that z ∈ ri M . Let x ∈ ri M (we already know that the latter set is nonempty). Consider the
segment [x, z]; since z is in the relative interior of cl M , we can extend a little bit this segment through
the point z, not leaving cl M , i.e., there exists y ∈ clM such that z ∈ [x, y). We are done, since by
Lemma B.1.1 from z ∈ [x, y), with x ∈ ri M , y ∈ clM , it follows that z ∈ ri M .

We see from the proof of Theorem B.1.1 that to get a closure of a (nonempty) convex set,
it suffices to subject it to the “radial” closure, i.e., to take a point x ∈ ri M , take all rays in
Aff(M) starting at x and look at the intersection of such a ray l with M ; such an intersection
will be a convex set on the line which contains a one-sided neighbourhood of x, i.e., is either
a segment [x, yl], or the entire ray l, or a half-interval [x, yl). In the first two cases we should
not do anything; in the third we should add y to M . After all rays are looked through and
all ”missed” endpoints yl are added to M , we get the closure of M . To understand what
is the role of convexity here, look at the nonconvex set of rational numbers from [0, 1]; the
interior (≡ relative interior) of this ”highly percolated” set is empty, the closure is [0, 1], and
there is no way to restore the closure in terms of the interior.

B.2 Main theorems on convex sets

B.2.1 Caratheodory Theorem

Let us call the affine dimension (or simple dimension of a nonempty set M ⊂ Rn (notation: dim M) the
affine dimension of Aff(M).

Theorem B.2.1 [Caratheodory] Let M ⊂ Rn, and let dimConvM = m. Then every point x ∈ ConvM
is a convex combination of at most m + 1 points from M .

B.2. MAIN THEOREMS ON CONVEX SETS 353

Proof. Let x ∈ ConvM . By Proposition B.1.4 on the structure of convex hull, x is convex combination
of certain points x1, ..., xN from M :

x =
N∑

i=1

λixi, [λi ≥ 0,

N∑

i=1

λi = 1].

Let us choose among all these representations of x as a convex combination of points from M the one
with the smallest possible N , and let it be the above combination. I claim that N ≤ m + 1 (this claim
leads to the desired statement). Indeed, if N > m + 1, then the system of m + 1 homogeneous equations

N∑
i=1

µixi = 0

N∑
i=1

µi = 0

with N unknowns µ1, ..., µN has a nontrivial solution δ1, ..., δN :

N∑

i=1

δixi = 0,

N∑

i=1

δi = 0, (δ1, ..., δN) 6= 0.

It follows that, for every real t,

(∗)
N∑

i=1

[λi + tδi]xi = x.

What is to the left, is an affine combination of xi’s. When t = 0, this is a convex combination - all
coefficients are nonnegative. When t is large, this is not a convex combination, since some of δi’s are
negative (indeed, not all of them are zero, and the sum of δi’s is 0). There exists, of course, the largest t
for which the combination (*) has nonnegative coefficients, namely

t∗ = min
i:δi<0

λi

|δi| .

For this value of t, the combination (*) is with nonnegative coefficients, and at least one of the coefficients
is zero; thus, we have represented x as a convex combination of less than N points from M , which
contradicts the definition of N .

B.2.2 Radon Theorem

Theorem B.2.2 [Radon] Let S be a set of at least n + 2 points x1, ..., xN in Rn. Then one can split
the set into two nonempty subsets S1 and S2 with intersecting convex hulls: there exists partitioning
I ∪ J = {1, ..., N}, I ∩ J = ∅, of the index set {1, ..., N} into two nonempty sets I and J and convex
combinations of the points {xi, i ∈ I}, {xj , j ∈ J} which coincide with each other, i.e., there exist
αi, i ∈ I, and βj , j ∈ J , such that

∑

i∈I

αixi =
∑

j∈J

βjxj ;
∑

i

αi =
∑

j

βj = 1; αi, βj ≥ 0.

Proof. Since N > n + 1, the homogeneous system of n + 1 scalar equations with N unknowns µ1, ..., µN

N∑
i=1

µixi = 0

N∑
i=1

µi = 0

354 APPENDIX B. CONVEX SETS IN RN

has a nontrivial solution λ1, ..., λN :

N∑

i=1

µixi = 0,

N∑

i=1

λi = 0, [(λ1, ..., λN) 6= 0].

Let I = {i | λi ≥ 0}, J = {i | λi < 0}; then I and J are nonempty and form a partitioning of {1, ..., N}.
We have

a ≡
∑

i∈I

λi =
∑

j∈J

(−λj) > 0

(since the sum of all λ’s is zero and not all λ’s are zero). Setting

αi =
λi

a
, i ∈ I, βj =

−λj

a
, j ∈ J,

we get
αi ≥ 0, βj ≥ 0,

∑

i∈I

αi = 1,
∑

j∈J

βj = 1,

and

[
∑

i∈I

αixi]− [
∑

j∈J

βjxj] = a−1


[

∑

i∈I

λixi]− [
∑

j∈J

(−λj)xj]


 = a−1

N∑

i=1

λixi = 0.

B.2.3 Helley Theorem

Theorem B.2.3 [Helley, I] Let F be a finite family of convex sets in Rn. Assume that every n + 1 sets
from the family have a point in common. The all the sets have a point in common.

Proof. Let us prove the statement by induction on the number N of sets in the family. The case of
N ≤ n + 1 is evident. Now assume that the statement holds true for all families with certain number
N ≥ n + 1 of sets, and let S1, ..., SN , SN+1 be a family of N + 1 convex sets which satisfies the premise
of the Helley Theorem; we should prove that the intersection of the sets S1, ..., SN , SN+1 is nonempty.

Deleting from our N + 1-set family the set Si, we get N -set family which satisfies the premise of the
Helley Theorem and thus, by the inductive hypothesis, the intersection of its members is nonempty:

(∀i ≤ N + 1) : T i = S1 ∩ S2 ∩ ... ∩ Si−1 ∩ Si+1 ∩ ... ∩ SN+1 6= ∅.

Let us choose a point xi in the (nonempty) set T i. We get N + 1 ≥ n + 2 points from Rn. By Radon’s
Theorem, we can partition the index set {1, ..., N + 1} into two nonempty subsets I and J in such a way
that certain convex combination x of the points xi, i ∈ I, is a convex combination of the points xj , j ∈ J ,
as well. Let us verify that x belongs to all the sets S1, ..., SN+1, which will complete the proof. Indeed,
let i∗ be an index from our index set; let us prove that x ∈ Si∗ . We have either i∗ ∈ I, or i∗ ∈ J . In
the first case all the sets T j , j ∈ J , are contained in Si∗ (since Si∗ participates in all intersections which
give T i with i 6= i∗). Consequently, all the points xj , j ∈ J , belong to Si∗ , and therefore x, which is
a convex combination of these points, also belongs to Si∗ (all our sets are convex!), as required. In the
second case similar reasoning says that all the points xi, i ∈ I, belong to Si∗ , and therefore x, which is a
convex combination of these points, belongs to Si∗ .

Exercise B.9 Let S1, ..., SN be a family of N convex sets in Rn, and let m be the affine dimension of
Aff(S1 ∪ ...∪SN). Assume that every m + 1 sets from the family have a point in common. Prove that all
sets from the family have a point in common.

In the aforementioned version of the Helley Theorem we dealt with finite families of convex
sets. To extend the statement to the case of infinite families, we need to strengthen slightly
the assumption. The resulting statement is as follows:

B.2. MAIN THEOREMS ON CONVEX SETS 355

Theorem B.2.4 [Helley, II] Let F be an arbitrary family of convex sets in Rn. Assume
that

(a) every n + 1 sets from the family have a point in common,

and

(b) every set in the family is closed, and the intersection of the sets from certain finite
subfamily of the family is bounded (e.g., one of the sets in the family is bounded).

Then all the sets from the family have a point in common.

Proof. By the previous theorem, all finite subfamilies of F have nonempty intersections, and
these intersections are convex (since intersection of a family of convex sets is convex, Theorem
B.1.3); in view of (a) these intersections are also closed. Adding to F all intersections of
finite subfamilies of F , we get a larger family F ′ comprised of closed convex sets, and a finite
subfamily of this larger family again has a nonempty intersection. Besides this, from (b)
it follows that this new family contains a bounded set Q. Since all the sets are closed, the
family of sets

{Q ∩Q′ | Q′ ∈ F}
is a nested family of compact sets (i.e., a family of compact sets with nonempty intersection
of sets from every finite subfamily); by the well-known Analysis theorem such a family has
a nonempty intersection1).

B.2.4 Homogeneous Farkas Lemma

Let a1, ..., aN be vectors from Rn, and let a be another vector. Here we address the question: when
a belongs to the cone spanned by the vectors a1, ..., aN , i.e., when a can be represented as a linear
combination of ai with nonnegative coefficients? A necessary condition is evident: if

a =
n∑

i=1

λiai [λi ≥ 0, i = 1, ..., N]

then every vector h which has nonnegative inner products with all ai should also have nonnegative inner
product with a:

a =
∑

i

λiai & λi ≥ 0∀i & hT ai ≥ 0∀i ⇒ hT a ≥ 0.

The Homogeneous Farkas Lemma says that this evident necessary condition is also sufficient:

Lemma B.2.1 [Homogeneous Farkas Lemma] Let a, a1, ..., aN be vectors from Rn. The vector a is a
conic combination of the vectors ai (linear combination with nonnegative coefficients) if and only if every
vector h satisfying hT ai ≥ 0, i = 1, ..., N , satisfies also hT a ≥ 0.

Proof. The necessity – the “only if” part of the statement – was proved before the Farkas Lemma
was formulated. Let us prove the “if” part of the Lemma. Thus, assume that every vector h satisfying
hT ai ≥ 0 ∀i satisfies also hT a ≥ 0, and let us prove that a is a conic combination of the vectors ai.

There is nothing to prove when a = 0 – the zero vector of course is a conic combination of the vectors
ai. Thus, from now on we assume that a 6= 0.

1)here is the proof of this Analysis theorem: assume, on contrary, that the compact sets Qα, α ∈ A, have
empty intersection. Choose a set Qα∗ from the family; for every x ∈ Qα∗ there is a set Qx in the family which
does not contain x - otherwise x would be a common point of all our sets. Since Qx is closed, there is an open
ball Vx centered at x which does not intersect Qx. The balls Vx, x ∈ Qα∗ , form an open covering of the compact
set Qα∗ , and therefore there exists a finite subcovering Vx1 , ..., VxN of Qα∗ by the balls from the covering. Since
Qxi does not intersect Vxi , we conclude that the intersection of the finite subfamily Qα∗ , Q

x1 , ..., QxN is empty,
which is a contradiction

356 APPENDIX B. CONVEX SETS IN RN

10. Let
Π = {h | aT h = −1},

and let
Ai = {h ∈ Π | aT

i h ≥ 0}.
Π is a hyperplane in Rn, and every Ai is a polyhedral set contained in this hyperplane and is therefore
convex.

20. What we know is that the intersection of all the sets Ai, i = 1, ..., N , is empty (since a vector h
from the intersection would have nonnegative inner products with all ai and the inner product −1 with
a, and we are given that no such h exists). Let us choose the smallest, in the number of elements, of
those sub-families of the family of sets A1, ..., AN which still have empty intersection of their members;
without loss of generality we may assume that this is the family A1, ..., Ak. Thus, the intersection of all
k sets A1, ..., Ak is empty, but the intersection of every k− 1 sets from the family A1, ..., Ak is nonempty.

30. We claim that

(A) a ∈ Lin({a1, ..., ak});
(B) The vectors a1, ..., ak are linearly independent.

(A) is easy: assuming that a 6∈ E = Lin({a1, ..., ak}), we conclude that the orthogonal
projection f of the vector a onto the orthogonal complement E⊥ of E is nonzero. The inner
product of f and a is the same as fT f , is.e., is positive, while fT ai = 0, i = 1, ..., k. Taking
h = −(fT f)−1f , we see that hT a = −1 and hT ai = 0, i = 1, ..., k. In other words, h belongs
to every set Ai, i = 1, ..., k, by definition of these sets, and therefore the intersection of the
sets A1, ..., Ak is nonempty, which is a contradiction.
(B) is given by the Helley Theorem I. Indeed, assume that a1, ..., ak are linearly dependent,
and let us lead this assumption to a contradiction. Since a1, ..., ak are linearly dependent,
the dimension of E = Lin({a1, ..., ak}) is certain m < k. We already know from A. that
a ∈ E. Now let A′i = Ai ∩ E. We claim that every k − 1 of the sets A′i have a nonempty
intersection, while all k these sets have empty intersection. The second claim is evident –
since the sets A1, ..., Ak have empty intersection, the same is the case with their parts A′i.
The first claim also is easily supported: let us take k−1 of the dashed sets, say, A′1, ..., A

′
k−1.

By construction, the intersection of A1, ..., Ak−1 is nonempty; let h be a vector from this
intersection, i.e., a vector with nonnegative inner products with a1, ..., ak−1 and the product
−1 with a. When replacing h with its orthogonal projection h′ on E, we do not vary all
these inner products, since these are products with vectors from E; thus, h′ also is a common
point of A1, ..., Ak−1, and since this is a point from E, it is a common point of the dashed
sets A′1, ..., A

′
k−1 as well.

Now we can complete the proof of (B): the sets A′1, ..., A
′
k are convex sets belonging to

the hyperplane Π′ = Π ∩ E = {h ∈ E | aT h = −1} (Π′ indeed is a hyperplane in E,
since 0 6= a ∈ E) in the m-dimensional linear subspace E. Π′ is an affine subspace of
the affine dimension ` = dim E − 1 = m − 1 < k − 1 (recall that we are in the situation
when m = dim E < k), and every ` + 1 ≤ k − 1 subsets from the family A′1,...,A

′
k have a

nonempty intersection. From the Helley Theorem I (see Exercise B.9) it follows that all the
sets A′1, ..., A

′
k have a point in common, which, as we know, is not the case. The contradiction

we have got proves that a1, ..., ak are linearly independent.

40. With (A) and (B) in our disposal, we can easily complete the proof of the “if” part of the Farkas
Lemma. Specifically, by (A), we have

a =
k∑

i=1

λiai

B.2. MAIN THEOREMS ON CONVEX SETS 357

with some real coefficients λi, and all we need is to prove that these coefficients are nonnegative. Assume,
on the contrary, that, say, λ1 < 0. Let us extend the (linearly independent in view of (B)) system of
vectors a1, ..., ak by vectors f1, ..., fn−k to a basis in Rn, and let ξi(x) be the coordinates of a vector x in
this basis. The function ξ1(x) is a linear form of x and therefore is the inner product with certain vector:

ξ1(x) = fT x ∀x.

Now we have
fT a = ξ1(a) = λ1 < 0

and

fT ai =
{

1, i = 1
0, i = 2, ..., k

so that fT ai ≥ 0, i = 1, ..., k. We conclude that a proper normalization of f – namely, the vector |λ1|−1f
– belongs to A1, ..., Ak, which is the desired contradiction – by construction, this intersection is empty.

B.2.5 Separation Theorem

B.2.5.A. Separation: definition

Recall that a hyperplane M in Rn is, by definition, an affine subspace of the dimension n − 1. By
Proposition A.3.7, hyperplanes are exactly the same as level sets of nontrivial linear forms:

M ⊂ Rn is a hyperplane
m

∃a ∈ Rn, b ∈ R, a 6= 0 : M = {x ∈ Rn | aT x = b}

We can, consequently, associate with the hyperplane (or, better to say, with the associated linear form
a; this form is defined uniquely, up to multiplication by a nonzero real) the following sets:

• ”upper” and ”lower” open half-spaces M++ = {x ∈ Rn | aT x > b}, M−− = {x ∈ Rn | aT x < b};
these sets clearly are convex, and since a linear form is continuous, and the sets are given by strict
inequalities on the value of a continuous function, they indeed are open.

Note that since a is uniquely defined by M , up to multiplication by a nonzero real, these open
half-spaces are uniquely defined by the hyperplane, up to swapping the ”upper” and the ”lower”
ones (which half-space is ”upper”, it depends on the particular choice of a);

• ”upper” and ”lower” closed half-spaces M+ = {x ∈ Rn | aT x ≥ b}, M− = {x ∈ Rn | aT x ≤ b};
these are also convex sets, now closed (since they are given by non-strict inequalities on the value
of a continuous function). It is easily seen that the closed upper/lower half-space is the closure
of the corresponding open half-space, and M itself is the boundary (i.e., the complement of the
interior to the closure) of all four half-spaces.

It is clear that our half-spaces and M itself partition Rn:

Rn = M−− ∪M ∪M++

(partitioning by disjoint sets),
Rn = M− ∪M+

(M is the intersection of the right hand side sets).
Now we define the basic notion of separation of two convex sets T and S by a hyperplane.

Definition B.2.1 [separation] Let S, T be two nonempty convex sets in Rn.

358 APPENDIX B. CONVEX SETS IN RN

• A hyperplane
M = {x ∈ Rn | aT x = b} [a 6= 0]

is said to separate S and T , if, first,

S ⊂ {x : aT x ≤ b}, T ⊂ {x : aT x ≥ b}

(i.e., S and T belong to the opposite closed half-spaces into which M splits Rn), and, second, at
least one of the sets S, T is not contained in M itself:

S ∪ T 6⊂ M.

The separation is called strong, if there exist b′, b′′, b′ < b < b′′, such that

S ⊂ {x : aT x ≤ b′}, T ⊂ {x : aT x ≥ b′′}.

• A linear form a 6= 0 is said to separate (strongly separate) S and T , if for properly chosen b the
hyperplane {x : aT x = b} separates (strongly separates) S and T .

• We say that S and T can be (strongly) separated, if there exists a hyperplane which (strongly)
separates S and T .

E.g.,

• the hyperplane {x : aT x ≡ x2 − x1 = 1} in R2 strongly separates convex polyhedral sets T = {x ∈
R2 : 0 ≤ x1 ≤ 1, 3 ≤ x2 ≤ 5} and S = {x ∈ R2 : x2 = 0; x1 ≥ −1};

• the hyperplane {x : aT x ≡ x = 1} in R1 separates (but not strongly separates) the convex sets
S = {x ≤ 1} and T = {x ≥ 1};

• the hyperplane {x : aT x ≡ x1 = 0} in R2 separates (but not strongly separates) the sets S = {x ∈
R2 :, x1 < 0, x2 ≥ −1/x1} and T = {x ∈ R2 : x1 > 0, x2 > 1/x1};

• the hyperplane {x : aT x ≡ x2 − x1 = 1} in R2 does not separate the convex sets S = {x ∈ R2 :
x2 ≥ 1} and T = {x ∈ R2 : x2 = 0};

• the hyperplane {x : aT x ≡ x2 = 0} in R2 does not separate the sets S = {x ∈ R2 : x2 = 0, x1 ≤ −1}
and T = {x ∈ R2 : x2 = 0, x1 ≥ 1}.

The following Exercise presents an equivalent description of separation:

Exercise B.10 Let S, T be nonempty convex sets in Rn. Prove that a linear form a separates S and T
if and only if

sup
x∈S

aT x ≤ inf
y∈T

aT y

and
inf
x∈S

aT x < sup
y∈T

aT y.

This separation is strong if and only if

sup
x∈S

aT x < inf
y∈T

aT y.

Exercise B.11 Whether the sets S = {x ∈ R2 : x1 > 0, x2 ≥ 1/x1} and T = {x ∈ R2 : x1 < 0, x2 ≥
−1/x1} can be separated? Whether they can be strongly separated?

B.2. MAIN THEOREMS ON CONVEX SETS 359

B.2.5.B. Separation Theorem

Theorem B.2.5 [Separation Theorem] Let S and T be nonempty convex sets in Rn.
(i) S and T can be separated if and only if their relative interiors do not intersect: riS ∩ ri T = ∅.
(ii) S and T can be strongly separated if and only if the sets are at a positive distance from each other:

dist(S, T) ≡ inf{‖x− y‖2 : x ∈ S, y ∈ T} > 0.

In particular, if S, T are closed nonempty non-intersecting convex sets and one of these sets is compact,
S and T can be strongly separated.

Proof takes several steps.

(i), Necessity. Assume that S, T can be separated, so that for certain a 6= 0 we have

inf
x∈S

aT x ≤ inf
y∈T

aT y; inf
x∈S

aT x < sup
y∈T

aT y. (B.2.1)

We should lead to a contradiction the assumption that riS and ri T have in common certain point x̄.
Assume that it is the case; then from the first inequality in (B.2.1) it is clear that x̄ maximizes the linear
function f(x) = aT x on S and simultaneously minimizes this function on T . Now, we have the following
simple and important

Lemma B.2.2 A linear function f(x) = aT x can attain its maximum/minimum over a
convex set Q at a point x ∈ ri Q if and only if the function is constant on Q.

Proof. ”if” part is evident. To prove the ”only if” part, let x̄ ∈ riQ be, say, a minimizer
of f over Q and y be an arbitrary point of Q; we should prove that f(x̄) = f(y). There is
nothing to prove if y = x̄, so let us assume that y 6= x̄. Since x̄ ∈ ri Q, the segment [y, x̄],
which is contained in M , can be extended a little bit through the point x̄, not leaving M
(since x̄ ∈ ri Q), so that there exists z ∈ Q such that x̄ ∈ [y, z), i.e., x̄ = (1− λ)y + λz with
certain λ ∈ (0, 1]; since y 6= x̄, we have in fact λ ∈ (0, 1). Since f is linear, we have

f(x̄) = (1− λ)f(y) + λf(z);

since f(x̄) ≤ min{f(y), f(z)} and 0 < λ < 1, this relation can be satisfied only when
f(x̄) = f(y) = f(z).

By Lemma B.2.2, f(x) = f(x̄) on S and on T , so that f(·) is constant on S ∪ T , which yields the
desired contradiction with the second inequality in (B.2.1).

(i), Sufficiency. The proof of sufficiency part of the Separation Theorem is much more instructive.
There are several ways to prove it, and I choose the one which goes via the Homogeneous Farkas Lemma
B.2.1, which is extremely important in its own right.

(i), Sufficiency, Step 1: Separation of a convex polytope and a point outside the
polytope. Let us start with seemingly very particular case of the Separation Theorem – the one where
S is the convex full points x1, ..., xN , and T is a singleton T = {x} which does not belong to S. We
intend to prove that in this case there exists a linear form which separates x and S; in fact we shall prove
even the existence of strong separation.

Let us associate with n-dimensional vectors x1, ..., xN , x the (n + 1)-dimensional vectors a =
(

x
1

)

and ai =
(

xi

1

)
, i = 1, ..., N . I claim that a does not belong to the conic hull of a1, ..., aN . Indeed, if a

would be representable as a linear combination of a1, ..., aN with nonnegative coefficients, then, looking
at the last, (n+1)-st, coordinates in such a representation, we would conclude that the sum of coefficients

360 APPENDIX B. CONVEX SETS IN RN

should be 1, so that the representation, actually, represents x as a convex combination of x1, ..., xN , which
was assumed to be impossible.

Since a does not belong to the conic hull of a1, ..., aN , by the Homogeneous Farkas Lemma (Lemma

B.2.1) there exists a vector h =
(

f
α

)
∈ Rn+1 which “separates” a and a1, ..., aN in the sense that

hT a > 0, hT ai ≤ 0, i = 1, ..., N,

whence, of course,
hT a > max

i
hT ai.

Since the components in all the inner products hT a, hT ai coming from the (n + 1)-st coordinates are
equal to each other , we conclude that the n-dimensional component f of h separates x and x1, ..., xN :

fT x > max
i

fT xi.

Since for every convex combination y =
∑

i λixi of the points xi one clearly has fT y ≤ maxi fT xi, we
conclude, finally, that

fT x > max
y∈Conv({x1,...,xN})

fT y,

so that f strongly separates T = {x} and S = Conv({x1, ..., xN}).

(i), Sufficiency, Step 2: Separation of a convex set and a point outside of the set.
Now consider the case when S is an arbitrary nonempty convex set and T = {x} is a singleton outside S
(the difference with Step 1 is that now S is not assumed to be a polytope).

First of all, without loss of generality we may assume that S contains 0 (if it is not the case, we may
subject S and T to translation S 7→ p + S, T 7→ p + T with p ∈ −S). Let L be the linear span of S. If
x 6∈ L, the separation is easy: taking as f the orthogonal to L component of x, we shall get

fT x = fT f > 0 = max
y∈S

fT y,

so that f strongly separates S and T = {x}.
It remains to consider the case when x ∈ L. Since S ⊂ L, x ∈ L and x 6∈ S, L is a nonzero linear

subspace; w.l.o.g., we can assume that L = Rn.
Let Σ = {h : ‖h‖2 = 1} be the unit sphere in L = Rn. This is a closed and bounded set in Rn

(boundedness is evident, and closedness follows from the fact that ‖ · ‖2 is continuous). Consequently, Σ
is a compact set. Let us prove that there exists f ∈ Σ which separates x and S in the sense that

fT x ≥ sup
y∈S

fT y. (B.2.2)

Assume, on the contrary, that no such f exists, and let us lead this assumption to a contradiction. Under
our assumption for every h ∈ Σ there exists yh ∈ S such that

hT yh > hT x.

Since the inequality is strict, it immediately follows that there exists a neighbourhood Uh of the vector
h such that

(h′)T yh > (h′)T x ∀h′ ∈ Uh. (B.2.3)

The family of open sets {Uh}h∈Σ covers Σ; since Σ is compact, we can find a finite subfamily Uh1 , ..., UhN

of the family which still covers Σ. Let us take the corresponding points y1 = yh1 , y2 = yh2 , ..., yN = yhN

and the polytope S′ = Conv({y1, ..., yN}) spanned by the points. Due to the origin of yi, all of them are
points from S; since S is convex, the polytope S′ is contained in S and, consequently, does not contain
x. By Step 1, x can be strongly separated from S′: there exists a such that

aT x > sup
y∈S′

aT y. (B.2.4)

B.2. MAIN THEOREMS ON CONVEX SETS 361

By normalization, we may also assume that ‖a‖2 = 1, so that a ∈ Σ. Now we get a contradiction: since
a ∈ Σ and Uh1 , ..., UhN

form a covering of Σ, a belongs to certain Uhi
. By construction of Uhi

(see
(B.2.3)), we have

aT yi ≡ aT yhi
> aT x,

which contradicts (B.2.4) – recall that yi ∈ S′.
The contradiction we get proves that there exists f ∈ Σ satisfying (B.2.2). We claim that f separates

S and {x}; in view of (B.2.2), all we need to verify our claim is to show that the linear form f(y) = fT y
is non-constant on S ∪ T , which is evident: we are in the situation when 0 ∈ S and L ≡ Lin(S) = Rn

and f 6= 0, so that f(y) is non-constant already on S.

Mathematically oriented reader should take into account that the simple-looking reasoning under-
lying Step 2 in fact brings us into a completely new world. Indeed, the considerations at Step
1 and in the proof of Homogeneous Farkas Lemma are “pure arithmetic” – we never used things
like convergence, compactness, etc., and used rational arithmetic only – no square roots, etc. It
means that the Homogeneous Farkas Lemma and the result stated a Step 1 remain valid if we, e.g.,
replace our universe Rn with the space Qn of n-dimensional rational vectors (those with rational
coordinates; of course, the multiplication by reals in this space should be restricted to multiplication
by rationals). The “rational” Farkas Lemma or the possibility to separate a rational vector from a
“rational” polytope by a rational linear form, which is the “rational” version of the result of Step 1,
definitely are of interest (e.g., for Integer Programming). In contrast to these “purely arithmetic”
considerations, at Step 2 we used compactness – something heavily exploiting the fact that our
universe is Rn and not, say, Qn (in the latter space bounded and closed sets not necessary are
compact). Note also that we could not avoid things like compactness arguments at Step 2, since the
very fact we are proving is true in Rn but not in Qn. Indeed, consider the “rational plane” – the
universe comprised of all 2-dimensional vectors with rational entries, and let S be the half-plane in
this rational plane given by the linear inequality

x1 + αx2 ≤ 0,

where α is irrational. S clearly is a “convex set” in Q2; it is immediately seen that a point outside

this set cannot be separated from S by a rational linear form.

(i), Sufficiency, Step 3: Separation of two nonempty and non-intersecting convex
sets. Now we are ready to prove that two nonempty and non-intersecting convex sets S and T can be
separated. To this end consider the arithmetic difference

∆ = S − T = {x− y | x ∈ S, y ∈ T}.
By Proposition B.1.6.3, ∆ is convex (and, of course, nonempty) set; since S and T do not intersect, ∆
does not contain 0. By Step 2, we can separate ∆ and {0}: there exists f 6= 0 such that

fT 0 = 0 ≥ sup
z∈∆

fT z & fT 0 > inf
z∈∆

fT z.

In other words,
0 ≥ sup

x∈S,y∈T
[fT x− fT y] & 0 > inf

x∈S,y∈T
[fT x− fT y],

which clearly means that f separates S and T .

(i), Sufficiency, Step 4: Separation of nonempty convex sets with non-intersecting
relative interiors. Now we are able to complete the proof of the “if” part of the Separation Theorem.
Let S and T be two nonempty convex sets with non-intersecting relative interiors; we should prove that S
and T can be properly separated. This is immediate: as we know from Theorem B.1.1, the sets S′ = ri S
and T ′ = ri T are nonempty and convex; since we are given that they do not intersect, they can be
separated by Step 3: there exists f such that

inf
x∈T ′

fT x ≥ sup
y∈S′

fT x & sup
x∈T ′

fT x > inf
y∈S′

fT x. (B.2.5)

362 APPENDIX B. CONVEX SETS IN RN

It is immediately seen that in fact f separates S and T . Indeed, the quantities in the left and the right
hand sides of the first inequality in (B.2.5) clearly remain unchanged when we replace S′ with cl S′ and T ′

with cl T ′; by Theorem B.1.1, cl S′ = cl S ⊃ S and cl T ′ = cl T ⊃ T , and we get infx∈T fT x = infx∈T ′ f
T x,

and similarly supy∈S fT y = supy∈S′ f
T y. Thus, we get from (B.2.5)

inf
x∈T

fT x ≥ sup
y∈S

fT y.

It remains to note that T ′ ⊂ T , S′ ⊂ S, so that the second inequality in (B.2.5) implies that

sup
x∈T

fT x > inf
y∈S

fT x.

(ii), Necessity: prove yourself.

(ii), Sufficiency: Assuming that ρ ≡ inf{‖x − y‖2 : x ∈ S, y ∈ T} > 0, consider the sets S′ = {x :
inf
y∈S

‖x− y‖2 ≤ ρ}. Note that S′ is convex along with S (Example B.1.4) and that S′ ∩ T = ∅ (why?) By

(i), S′ and T can be separated, and if f is a linear form which separates S′ and T , then the same form
strongly separates S and T (why?). The “in particular” part of (ii) readily follows from the just proved
statement due to the fact that if two closed nonempty sets in Rn do not intersect and one of them is
compact, then the sets are at positive distance from each other (why?).

Exercise B.12 Derive the statement in Remark B.1.1 from the Separation Theorem.

Exercise B.13 Implement the following alternative approach to the proof of Separation Theorem:

1. Prove that if x is a point in Rn and S is a nonempty closed convex set in Rn, then the problem

min
y
{‖x− y‖2 : y ∈ S}

has a unique optimal solution x̄.

2. In the situation of 1), prove that if x 6∈ S, then the linear form e = x − x̄ strongly separates {x}
and S:

max
y∈S

eT y = eT x̄ = eT x− eT e < eT x,

thus getting a direct proof of the possibility to separate strongly a nonempty closed convex set and
a point outside this set.

3. Derive from 2) the Separation Theorem.

B.2.5.C. Supporting hyperplanes

By the Separation Theorem, a closed and nonempty convex set M is the intersection of all closed half-
spaces containing M . Among these half-spaces, the most interesting are the “extreme” ones – those with
the boundary hyperplane touching M . The notion makes sense for an arbitrary (not necessary closed)
convex set, but we shall use it for closed sets only, and include the requirement of closedness in the
definition:

Definition B.2.2 [Supporting plane] Let M be a convex closed set in Rn, and let x be a point from the
relative boundary of M . A hyperplane

Π = {y | aT y = aT x} [a 6= 0]

is called supporting to M at x, if it separates M and {x}, i.e., if

aT x ≥ sup
y∈M

aT y & aT x > inf
y∈M

aT y. (B.2.6)

B.2. MAIN THEOREMS ON CONVEX SETS 363

Note that since x is a point from the relative boundary of M and therefore belongs to clM = M , the
first inequality in (B.2.6) in fact is equality. Thus, an equivalent definition of a supporting plane is as
follows:

Let M be a closed convex set and x be a relative boundary point of M . The hyperplane
{y | aT y = aT x} is called supporting to M at x, if the linear form a(y) = aT y attains its
maximum on M at the point x and is nonconstant on M .

E.g., the hyperplane {x1 = 1} in Rn clearly is supporting to the unit Euclidean ball {x | |x| ≤ 1} at the
point x = e1 = (1, 0, ..., 0).

The most important property of a supporting plane is its existence:

Proposition B.2.1 [Existence of supporting hyperplane] Let M be a convex closed set in Rn and x be
a point from the relative boundary of M . Then

(i) There exists at least one hyperplane which is supporting to M at x;
(ii) If Π is supporting to M at x, then the intersection M ∩Π is of affine dimension less than the one

of M (recall that the affine dimension of a set is, by definition, the affine dimension of the affine hull of
the set).

Proof. (i) is easy: if x is a point from the relative boundary of M , then it is outside the relative interior
of M and therefore {x} and ri M can be separated by the Separation Theorem; the separating hyperplane
is exactly the desired supporting to M at x hyperplane.

To prove (ii), note that if Π = {y | aT y = aT x} is supporting to M at x ∈ ∂riM , then the set
M ′ = M ∩ Π is a nonempty (it contains x) convex set, and the linear form aT y is constant on M ′

and therefore (why?) on Aff(M ′). At the same time, the form is nonconstant on M by definition of a
supporting plane. Thus, Aff(M ′) is a proper (less than the entire Aff(M)) subset of Aff(M), and therefore
the affine dimension of Aff(M ′) (i.e., the affine dimension of M ′) is less than the affine dimension of Aff(M)
(i.e., than the affine dimension of M). 2).

B.2.6 Polar of a convex set and Milutin-Dubovitski Lemma

B.2.6.A. Polar of a convex set

Let M be a nonempty convex set in Rn. The polar Polar (M) of M is the set of all linear forms which
do not exceed 1 on M , i.e., the set of all vectors a such that aT x ≤ 1 for all x ∈ M :

Polar (M) = {a : aT x ≤ 1∀x ∈ M}.

For example, Polar (Rn) = {0}, Polar ({0}) = Rn; if L is a liner subspace in Rn, then Polar (L) = L⊥

(why?).
The following properties of the polar are evident:

1. 0 ∈ Polar (M);

2. Polar (M) is convex;

3. Polar (M) is closed.

It turns out that these properties characterize polars:

Proposition B.2.2 Every closed convex set M containing the origin is polar, specifically, it is polar of
its polar:

M is closed and convex, 0 ∈ M
m

M = Polar (Polar (M))

2) In the latter reasoning we used the following fact: if P ⊂ Q are two affine subspaces, then the affine
dimension of P is ≤ the one of Q, with ≤ being = if and only if P = Q. Please prove this fact

364 APPENDIX B. CONVEX SETS IN RN

Proof. All we need is to prove that if M is closed and convex and 0 ∈ M , then M = Polar (Polar (M)).
By definition,

y ∈ Polar (M), x ∈ M ⇒ yT x ≤ 1,

so that M ⊂ Polar (Polar (M)). To prove that this inclusion is in fact equality, assume, on the contrary,
that there exists x̄ ∈ Polar (Polar (M))\M . Since M is nonempty, convex and closed and x̄ 6∈ M , the
point x̄ can be strongly separated from M (Separation Theorem, (ii)). Thus, for appropriate b one has

bT x̄ > sup
x∈M

bT x.

Since 0 ∈ M , the left hand side quantity in this inequality is positive; passing from b to a proportional
vector a = λb with appropriately chosen positive λ, we may ensure that

aT x̄ > 1 ≥ sup
x∈M

aT x.

This is the desired contradiction, since the relation 1 ≥ sup
x∈M

aT x implies that a ∈ Polar (M), so that the

relation aT x̄ > 1 contradicts the assumption that x̄ ∈ Polar (Polar (M)).

Exercise B.14 Let M be a convex set containing the origin, and let M ′ be the polar of M . Prove the
following facts:

1. Polar (M) = Polar (clM);

2. M is bounded if and only if 0 ∈ intM ′;

3. intM 6= ∅ if and only if the only vector h ∈ M ′ such that ±h ∈ M ′ is the zero vector;

4. M is a closed cone of and only if M ′ is a closed cone. If M is a cone (not necessarily closed), then

M ′ = {a : aT x ≤ 0∀x ∈ M}. (B.2.7)

B.2.6.B. Dual cone

Let M ⊂ Rn be a cone. By Exercise B.14.4, the polar M ′ of M is a closed cone given by (B.2.7). The
set M∗ = −M ′ (which also is a closed cone), that is, the set

M∗ = {a : aT x ≥ 0∀x ∈ M}

of all vectors which have nonnegative inner products with all vectors from M , is called the cone dual to
M . By Proposition B.2.2 and Exercise B.14.4, the family of closed cones in Rn is closed with respect to
passing to a dual cone, and the duality is symmetric: for a closed cone M , M∗ also is a closed cone, and
(M∗)∗ = M .

Exercise B.15 Let M be a closed cone in Rn, and M∗ be its dual cone. Prove that

1. M is pointed (i.e., does not contain lines) if and only M∗ has a nonempty interior. Derive from
this fact that M is a closed pointed cone with a nonempty interior if and only if the dual cone has
the same properties.

2. Prove that a ∈ intM∗ if and only if aT x > 0 for all nonzero vectors x ∈ M .

B.2.6.C. Dubovitski-Milutin Lemma

Let M1, ..., Mk be cones (not necessarily closed), and M be their intersection; of course, M also is a cone.
How to compute the cone dual to M?

B.2. MAIN THEOREMS ON CONVEX SETS 365

Proposition B.2.3 Let M1, ..., Mk be cones. The cone M ′ dual to the intersection Mof the cones
M1,...,Mk contains the arithmetic sum M̃ of the cones M ′

1,...,M
′
k dual to M1,...,Mk. If all the cones

M1, ..., Mk are closed, then M ′ is equal to cl M̃ . In particular, for closed cones M1,...,Mk, M ′ coincides
with M̃ if and only if the latter set is closed.

Proof. Whenever ai ∈ M ′
i and x ∈ M , we have aT

i x ≥ 0, i = 1, ..., k, whence (a1 + ...+ ak)T x ≥ 0. Since
the latter relation is valid for all x ∈ M , we conclude that a1 + ... + ak ∈ M ′. Thus, M̃ ⊂ M ′.

Now assume that the cones M1, ...,Mk are closed, and let us prove that M = cl M̃ . Since M ′ is
closed and we have seen that M̃ ∈ M ′, all we should prove is that if a ∈ M ′, then a ∈ M̂ = cl M̃ as well.
Assume, on the contrary, that a ∈ M ′\M̂ . Since the set M̃ clearly is a cone, its closure M̂ is a closed
cone; by assumption, a does not belong to this closed cone and therefore, by Separation Theorem (ii), a

can be strongly separated from M̂ and therefore – from M̃ ⊂ M̂ . Thus, for some x one has

aT x < inf
b∈M̃

bT x = inf
ai∈M ′

i
,i=1,...,k

(a1 + ... + ak)T x =
k∑

i=1

inf
ai∈M ′

i

aT
i x. (B.2.8)

From the resulting inequality it follows that inf
ai∈M ′

i

aT
i x > −∞; since M ′

i is a cone, the latter is possible

if and only if inf
ai∈M ′

i

aT
i x = 0, i.e., if and only if for every i one has x ∈ Polar (M ′

i) = Mi (recall that the

cones Mi are closed). Thus, x ∈ Mi for all i, and the concluding quantity in (B.2.8) is 0. We see that
x ∈ M = ∪iMi, and that (B.2.8) reduces to aT x < 0. This contradicts the inclusion a ∈ M ′.
Note that in general M̃ can be non-closed even when all the cones M1, ..., Mk are closed. Indeed, take
k = 2, and let M ′

1 be the ice-cream cone {(x, y, z) ∈ R3 : z ≥
√

x2 + y2}. The orthogonal projection
of this cone on a 2D plane Π tangent to M1 at a nonzero point of the boundary of M1 clearly is non-
closed: it is an interior of an appropriate half-plane with the boundary passing through the origin plus
the origin itself (that is, in appropriate coordinates (u, v) on the plane the projection is the non-closed
cone K = {(u, v) : u > 0} ∪ {(0, 0)}). We conclude that the sum of M ′

1 and the ray M ′
2 emanating

from the origin and orthogonal to P (this ray is a closed cone) is, in appropriate coordinates, the set
K+ = {(u, v, w) ∈ R3 : u > 0, w ≥ 0} ∪ {(0, 0, w) : w ≥ 0}, which is a non-closed cone.

Dubovistki-Milutin Lemma presents a simple sufficient condition for M̃ to be closed and thus to
coincide with M ′:

Proposition B.2.4 [Dubovistki-Milutin Lemma] Let M1, ...,Mk be cones such that Mk is closed and the
set Mk ∩ intM1 ∩ intM2 ∩ ... ∩ intMk−1 is nonempty, and let M = M1 ∩ ... ∩Mk. Let also M ′

i be the
cones dual to Mi. Then

(i) cl M =
k⋂

i=1

cl Mi;

(ii) the cone M̃ = M ′
1+ ...+M ′

k is closed, and thus coincides with the cone M ′ dual to clM (or, which
is the same by Exercise B.14.1, with the cone dual to M). In other words, every linear form which is
nonnegative on M can be represented as a sum of k linear forms which are nonnegative on the respective
cones M1,...,Mk.

Proof. (i): We should prove that under the premise of the Dobovitski-Milutin Lemma, clM =
⋂
i

clMi.

The right hand side here contains M and is closed, so that all we should prove is that every point x in
k⋂

i=1

cl Mi is the limit of an appropriate sequence xt ∈ M . By premise of the Lemma, there exists a point

x̄ ∈ Mk ∩ intM1 ∩ intM2 ∩ ...∩ intMk−1; setting xt = t−1x̄+(1− t−1)x, we get a sequence converging to
x as t →∞; at the same time, xt ∈ Mk (since x, x̄ are in cl Mk, and the latter set is closed) and xt ∈ Mi

for every i < k (by Lemma B.1.1; note that for i < k one has x̄ ∈ intMi and x ∈ clMi). Thus, every

point x ∈
k⋂

i=1

cl Mi is the limit of a sequence from M .

(ii): Under the premise of the Lemma, when replacing the cones M1, ...,Mk with their closures, we
do not vary the polars M ′

i of the cones (and thus do not vary M̃) and replace the intersection of the sets

366 APPENDIX B. CONVEX SETS IN RN

M1, ..., Mk with its closure (by (i)), thus not varying the polar of the intersection. And of course when
replacing the cones M1, ..., Mk with their closures, we preserve the premise of Lemma. Thus, we lose
nothing when assuming, in addition to the premise of Lemma, that the cones M1, ..., Mk are closed. To
prove the lemma for closed cones M1,...,Mk, we use induction in k ≥ 2.

Base k = 2: Let a sequence {ft + gt}∞t=1 with ft ∈ M ′
1 and gt ∈ M ′

2 converge to certain h; we
should prove that h = f + g for appropriate f ∈ M ′

1 and g ∈ M ′
2. To achieve our goal, it suffices to verify

that for an appropriate subsequence tj of indices there exists f ≡ lim
j→∞

ftj
. Indeed, if this is the case,

then g = lim
j→∞

gtj
also exists (since ft +gt → h as t →∞ and f +g = h; besides this, f ∈ M ′

1 and g ∈ M ′
2,

since both the cones in question are closed. In order to verify the existence of the desired subsequence, it
suffices to lead to a contradiction the assumption that ‖ft‖2 →∞ as t →∞. Let the latter assumption
be true. Passing to a subsequence, we may assume that the unit vectors φt = ft/‖ft‖2 have a limit φ as
t →∞; since M ′

1 is a closed cone, φ is a unit vector from M ′
1. Now, since ft + gt → h as t →∞, we have

φ = lim
t→∞

ft/‖ft‖2 = − lim
t→∞

gt/‖ft‖2 (recall that ‖ft‖2 →∞ as t →∞, whence h/‖ft‖2 → 0 as t →∞).

We see that the vector −φ belongs to M ′
2. Now, by assumption M2 intersects the interior of the cone M1;

let x̄ be a point in this intersection. We have φT x̄ ≥ 0 (since x̄ ∈ M1 and φ ∈ M ′
1) and φT x̄ ≤ 0 (since

−φ ∈ M ′
2 and x̄ ∈ M2). We conclude that φT x̄ = 0, which is contradicts the facts that 0 6= φ ∈ M ′

1 and
x̄ ∈ intM1 (see Exercise B.15.2).

Inductive step: Assume that the statement we are proving is valid in the case of k−1 ≥ 2 cones,
and let M1,...,Mk be k cones satisfying the premise of the Dubovitski-Milutin Lemma. By this premise,
the come M1 = M1 ∪ ... ∪Mk−1 has a nonempty interior, and Mk intersects this interior. Applying to
the pair of cones M,Mk the already proved 2-cone version of the Lemma, we see that the set (M1)′+M ′

k

is closed; here (M1)′ is the cone dual to M1. Further, the cones M1, ..., Mk−1 satisfy the premise of
the (k − 1)-cone version of the Lemma; by inductive hypothesis, the set M ′

1 + ... + M ′
k−1 is closed and

therefore, by Proposition B.2.3, equals to (M1)′. Thus, M ′
1 + ... + M ′

k = (M1)′ + M ′
k, and we have seen

that the latter set is closed.

B.2.7 Extreme points and Krein-Milman Theorem

Supporting planes are useful tool to prove existence of extreme points of convex sets. Geometrically, an
extreme point of a convex set M is a point in M which cannot be obtained as a convex combination of
other points of the set; and the importance of the notion comes from the fact (which we shall prove in the
mean time) that the set of all extreme points of a “good enough” convex set M is the “shortest worker’s
instruction for building the set” – this is the smallest set of points for which M is the convex hull.

B.2.7.A. Extreme points: definition

The exact definition of an extreme point is as follows:

Definition B.2.3 [extreme points] Let M be a nonempty convex set in Rn. A point x ∈ M is called an
extreme point of M , if there is no nontrivial (of positive length) segment [u, v] ∈ M for which x is an
interior point, i.e., if the relation

x = λu + (1− λ)v

with λ ∈ (0, 1) and u, v ∈ M is valid if and only if

u = v = x.

E.g., the extreme points of a segment are exactly its endpoints; the extreme points of a triangle are
its vertices; the extreme points of a (closed) circle on the 2-dimensional plane are the points of the
circumference.

An equivalent definitions of an extreme point is as follows:

B.2. MAIN THEOREMS ON CONVEX SETS 367

Exercise B.16 Let M be a convex set and let x ∈ M . Prove that

1. x is extreme if and only if the only vector h such that x± h ∈ M is the zero vector;

2. x is extreme if and only if the set M\{x} is convex.

B.2.7.B. Krein-Milman Theorem

It is clear that a convex set M not necessarily possesses extreme points; as an example you may take the
open unit ball in Rn. This example is not interesting – the set in question is not closed; when replacing it
with its closure, we get a set (the closed unit ball) with plenty of extreme points – these are all points of
the boundary. There are, however, closed convex sets which do not possess extreme points – e.g., a line
or an affine subspace of larger dimension. A nice fact is that the absence of extreme points in a closed
convex set M always has the standard reason – the set contains a line. Thus, a closed and nonempty
convex set M which does not contain lines for sure possesses extreme points. And if M is nonempty
convex compact set, it possesses a quite representative set of extreme points – their convex hull is the
entire M .

Theorem B.2.6 Let M be a closed and nonempty convex set in Rn. Then
(i) The set Ext(M) of extreme points of M is nonempty if and only if M does not contain lines;
(ii) If M is bounded, then M is the convex hull of its extreme points:

M = Conv(Ext(M)),

so that every point of M is a convex combination of the points of Ext(M).

Part (ii) of this theorem is the finite-dimensional version of the famous Krein-Milman Theorem.
Proof. Let us start with (i). The ”only if” part is easy, due to the following simple

Lemma B.2.3 Let M be a closed convex set in Rn. Assume that for some x̄ ∈ M and
h ∈ Rn M contains the ray

{x̄ + th | t ≥ 0}
starting at x̄ with the direction h. Then M contains also all parallel rays starting at the
points of M :

(∀x ∈ M) : {x + th | t ≥ 0} ⊂ M.

In particular, if M contains certain line, then it contains also all parallel lines passing through
the points of M .

Comment. For a closed convex set M, the set of all directions h such that x + th ∈ M
for some x and all t ≥ 0 (i.e., by Lemma – such that x+ th ∈ M for all x ∈ M and all t ≥ 0)
is called the recessive cone of M [notation: Rec(M)]. With Lemma B.2.3 it is immediately
seen (prove it!) that Rec(M) indeed is a closed cone, and that

M + Rec(M) = M.

Directions from Rec(M) are called recessive for M .

Proof of the lemma is immediate: if x ∈ M and x̄ + th ∈ M for all t ≥ 0, then, due to
convexity, for any fixed τ ≥ 0 we have

ε(x̄ +
τ

ε
h) + (1− ε)x ∈ M

for all ε ∈ (0, 1). As ε → +0, the left hand side tends to x + τh, and since M is closed,
x + τh ∈ M for every τ ≥ 0.

368 APPENDIX B. CONVEX SETS IN RN

Exercise B.17 Let M be a closed nonempty convex set. Prove that Rec(M) 6= {0} if and
only if M is unbounded.

Lemma B.2.3, of course, resolves all our problems with the ”only if” part. Indeed, here we should
prove that if M possesses extreme points, then M does not contain lines, or, which is the same, that if
M contains lines, then it has no extreme points. But the latter statement is immediate: if M contains a
line, then, by Lemma, there is a line in M passing through every given point of M , so that no point can
be extreme.

Now let us prove the ”if” part of (i). Thus, from now on we assume that M does not contain lines;
our goal is to prove that then M possesses extreme points. Let us start with the following

Lemma B.2.4 Let Q be a nonempty closed convex set, x̄ be a relative boundary point of Q
and Π be a hyperplane supporting to Q at x̄. Then all extreme points of the nonempty closed
convex set Π ∩Q are extreme points of Q.
Proof of the Lemma. First, the set Π ∩ Q is closed and convex (as an intersection of
two sets with these properties); it is nonempty, since it contains x̄ (Π contains x̄ due to the
definition of a supporting plane, and Q contains x̄ due to the closedness of Q). Second, let
a be the linear form associated with Π:

Π = {y | aT y = aT x̄},

so that
inf
x∈Q

aT x < sup
x∈Q

aT x = aT x̄ (B.2.9)

(see Proposition B.2.1). Assume that y is an extreme point of Π ∩Q; what we should do is
to prove that y is an extreme point of Q, or, which is the same, to prove that

y = λu + (1− λ)v

for some u, v ∈ Q and λ ∈ (0, 1) is possible only if y = u = v. To this end it suffices to
demonstrate that under the above assumptions u, v ∈ Π∩Q (or, which is the same, to prove
that u, v ∈ Π, since the points are known to belong to Q); indeed, we know that y is an
extreme point of Π∩Q, so that the relation y = λu+(1−λ)v with λ ∈ (0, 1) and u, v ∈ Π∩Q
does imply y = u = v.
To prove that u, v ∈ Π, note that since y ∈ Π we have

aT y = aT x̄ ≥ max{aT u, aT v}

(the concluding inequality follows from (B.2.9)). On the other hand,

aT y = λaT u + (1− λ)aT v;

combining these observations and taking into account that λ ∈ (0, 1), we conclude that

aT y = aT u = aT v.

But these equalities imply that u, v ∈ Π.

Equipped with the Lemma, we can easily prove (i) by induction on the dimension of the convex set
M (recall that this is nothing but the affine dimension of the affine span of M , i.e., the linear dimension
of the linear subspace L such that Aff(M) = a + L).

There is nothing to do if the dimension of M is zero, i.e., if M is a point – then, of course, M = Ext(M).
Now assume that we already have proved the nonemptiness of Ext(T) for all nonempty closed and not
containing lines convex sets T of certain dimension k, and let us prove that the same statement is valid
for the sets of dimension k + 1. Let M be a closed convex nonempty and not containing lines set of
dimension k + 1. Since M does not contain lines and is of positive dimension, it differs from Aff(M)

B.2. MAIN THEOREMS ON CONVEX SETS 369

and therefore it possesses a relative boundary point x̄ 3). According to Proposition B.2.1, there exists a
hyperplane Π = {x | aT x = aT x̄} which supports M at x̄:

inf
x∈M

aT x < max
x∈M

aT x = aT x̄.

By the same Proposition, the set T = Π∩M (which is closed, convex and nonempty) is of affine dimension
less than the one of M , i.e., of the dimension ≤ k. T clearly does not contain lines (since even the larger
set M does not contain lines). By the inductive hypothesis, T possesses extreme points, and by Lemma
B.2.4 all these points are extreme also for M . The inductive step is completed, and (i) is proved.

Now let us prove (ii). Thus, let M be nonempty, convex, closed and bounded; we should prove that

M = Conv(Ext(M)).

What is immediately seen is that the right hand side set is contained in the left hand side one. Thus, all
we need is to prove that every x ∈ M is a convex combination of points from Ext(M). Here we again
use induction on the affine dimension of M . The case of 0-dimensional set M (i.e., a point) is trivial.
Assume that the statement in question is valid for all k-dimensional convex closed and bounded sets, and
let M be a convex closed and bounded set of dimension k + 1. Let x ∈ M ; to represent x as a convex
combination of points from Ext(M), let us pass through x an arbitrary line ` = {x+λh | λ ∈ R} (h 6= 0)
in the affine span Aff(M) of M . Moving along this line from x in each of the two possible directions,
we eventually leave M (since M is bounded); as it was explained in the proof of (i), it means that there
exist nonnegative λ+ and λ− such that the points

x̄± = x + λ±h

both belong to the relative boundary of M . Let us verify that x̄± are convex combinations of the extreme
points of M (this will complete the proof, since x clearly is a convex combination of the two points x̄±).
Indeed, M admits supporting at x̄+ hyperplane Π; as it was explained in the proof of (i), the set Π ∩M
(which clearly is convex, closed and bounded) is of affine dimension less than that one of M ; by the
inductive hypothesis, the point x̄+ of this set is a convex combination of extreme points of the set, and by
Lemma B.2.4 all these extreme points are extreme points of M as well. Thus, x̄+ is a convex combination
of extreme points of M . Similar reasoning is valid for x̄−.

B.2.8 Structure of polyhedral sets

B.2.8.A. Main result

By definition, a polyhedral set M is the set of all solutions to a finite system of nonstrict linear inequalities:

M = {x ∈ Rn | Ax ≤ b}, (B.2.10)

where A is a matrix of the column size n and certain row size m and b is m-dimensional vector. This is an
“outer” description of a polyhedral set. We are about to establish an important result on the equivalent
“inner” representation of a polyhedral set.

3)Indeed, there exists z ∈ Aff(M)\M , so that the points

xλ = x + λ(z − x)

(x is an arbitrary fixed point of M) do not belong to M for some λ ≥ 1, while x0 = x belongs to M . The set of
those λ ≥ 0 for which xλ ∈ M is therefore nonempty and bounded from above; this set clearly is closed (since M
is closed). Thus, there exists the largest λ = λ∗ for which xλ ∈ M . We claim that xλ∗ is a relative boundary
point of M . Indeed, by construction this is a point from M . If it would be a point from the relative interior of M ,
then all the points xλ with close to λ∗ and greater than λ∗ values of λ would also belong to M , which contradicts
the origin of λ∗

370 APPENDIX B. CONVEX SETS IN RN

Consider the following construction. Let us take two finite nonempty set of vectors V (“vertices”)
and R (“rays”) and build the set

M(V,R) = Conv(V) + Cone (R) = {
∑

v∈V

λvv +
∑

r∈R

µrr | λv ≥ 0, µr ≥ 0,
∑

v

λv = 1}.

Thus, we take all vectors which can be represented as sums of convex combinations of the points from V
and conic combinations of the points from R. The set M(V,R) clearly is convex (as the arithmetic sum
of two convex sets Conv(V) and Cone (R)). The promised inner description polyhedral sets is as follows:

Theorem B.2.7 [Inner description of a polyhedral set] The sets of the form M(V, R) are exactly the
nonempty polyhedral sets: M(V, R) is polyhedral, and every nonempty polyhedral set M is M(V, R) for
properly chosen V and R.

The polytopes M(V, {0}) = Conv(V) are exactly the nonempty and bounded polyhedral sets. The sets
of the type M({0}, R) are exactly the polyhedral cones (sets given by finitely many nonstrict homogeneous
linear inequalities).

Remark B.2.1 In addition to the results of the Theorem, it can be proved that in the representation
of a nonempty polyhedral set M as M = Conv(V) + Cone (R)

– the “conic” part Conv(R) (not the set R itself!) is uniquely defined by M and is the recessive cone
of M (see Comment to Lemma B.2.3);

– if M does not contain lines, then V can be chosen as the set of all extreme points of M .

Postponing temporary the proof of Theorem B.2.7, let us explain why this theorem is that important –
why it is so nice to know both inner and outer descriptions of a polyhedral set.

Consider a number of natural questions:

• A. Is it true that the inverse image of a polyhedral set M ⊂ Rn under an affine mapping y 7→
P(y) = Py + p : Rm → Rn, i.e., the set

P−1(M) = {y ∈ Rm | Py + p ∈ M}
is polyhedral?

• B. Is it true that the image of a polyhedral set M ⊂ Rn under an affine mapping x 7→ y = P(x) =
Px + p : Rn → Rm – the set

P(M) = {Px + p | x ∈ M}
is polyhedral?

• C. Is it true that the intersection of two polyhedral sets is again a polyhedral set?

• D. Is it true that the arithmetic sum of two polyhedral sets is again a polyhedral set?

The answers to all these questions are positive; what is very instructive is how these positive answers are
obtained.

It is very easy to answer affirmatively to A, starting from the original – outer – definition of a
polyhedral set: if M = {x | Ax ≤ b}, then, of course,

P−1(M) = {y | A(Py + p) ≤ b} = {y | (AP)y ≤ b−Ap}
and therefore P−1(M) is a polyhedral set.

An attempt to answer affirmatively to B via the same definition fails – there is not seen an easy
way to update the linear inequalities defining a polyhedral set into those defining its image, and it is
absolutely unclear why the image indeed is given by finitely many linear inequalities. Note, however, that
there is no difficulty to answer affirmatively to B with the inner description of a nonempty polyhedral
set: if M = M(V, R), then, evidently,

P(M) = M(P(V), PR),

B.2. MAIN THEOREMS ON CONVEX SETS 371

where PR = {Pr | r ∈ R} is the image of R under the action of the homogeneous part of P.
Similarly, positive answer to C becomes evident, when we use the outer description of a polyhedral

set: taking intersection of the solution sets to two systems of nonstrict linear inequalities, we, of course,
again get the solution set to a system of this type – you simply should put together all inequalities from
the original two systems. And it is very unclear how to answer positively to D with the outer definition
of a polyhedral set – what happens with inequalities when we add the solution sets? In contrast to this,
the inner description gives the answer immediately:

M(V, R) + M(V ′, R′) = Conv(V) + Cone (R) + Conv(V ′) + Cone (R′)
= [Conv(V) + Conv(V ′)] + [Cone (R) + Cone (R′)]
= Conv(V + V ′) + Cone (R ∪R′)
= M(V + V ′, R ∪R′).

Note that in this computation we used two rules which should be justified: Conv(V) + Conv(V ′) =
Conv(V + V ′) and Cone (R) + Cone (R′) = Cone (R ∪ R′). The second is evident from the definition of
the conic hull, and only the first needs simple reasoning. To prove it, note that Conv(V) + Conv(V ′) is a
convex set which contains V + V ′ and therefore contains Conv(V + V ′). The inverse inclusion is proved
as follows: if

x =
∑

i

λivi, y =
∑

j

λ′jv
′
j

are convex combinations of points from V , resp., V ′, then, as it is immediately seen (please check!),

x + y =
∑

i,j

λiλ
′
j(vi + v′j)

and the right hand side is a convex combination of points from V + V ′.
We see that it is extremely useful to keep in mind both descriptions of polyhedral sets – what is

difficult to see with one of them, is absolutely clear with another.
As a seemingly “more important” application of the developed theory, let us look at Linear Program-

ming.

B.2.8.B. Theory of Linear Programming

A general Linear Programming program is the problem of maximizing a linear objective function over a
polyhedral set:

(P) cT x → max | x ∈ M = {x ∈ Rn | Ax ≤ b};
here c is a given n-dimensional vector – the objective, A is a given m× n constraint matrix and b ∈ Rm

is the right hand side vector. Note that (P) is called “Linear Programming program in the canonical
form”; there are other equivalent forms of the problem.

B.2.8.B.1. Solvability of a Linear Programming program. According to the Linear Pro-
gramming terminology which you for sure know, (P) is called

• feasible, if it admits a feasible solution, i.e., the system Ax ≤ b is solvable, and infeasible otherwise;

• bounded, if it is feasible and the objective is above bounded on the feasible set, and unbounded, if
it is feasible, but the objective is not bounded from above on the feasible set;

• solvable, if it is feasible and the optimal solution exists – the objective attains its maximum on the
feasible set.

If the program is bounded, then the upper bound of the values of the objective on the feasible set is a
real; this real is called the optimal value of the program and is denoted by c∗. It is convenient to assign
optimal value to unbounded and infeasible programs as well – for an unbounded program it, by definition,
is +∞, and for an infeasible one it is −∞.

372 APPENDIX B. CONVEX SETS IN RN

Note that our terminology is aimed to deal with maximization programs; if the program is to mini-
mize the objective, the terminology is updated in the natural way: when defining bounded/unbounded
programs, we should speak about below boundedness rather than about the above boundedness of the
objective, etc. E.g., the optimal value of an unbounded minimization program is −∞, and of an infeasible
one it is +∞. This terminology is consistent with the usual way of converting a minimization problem
into an equivalent maximization one by replacing the original objective c with −c: the properties of
feasibility – boundedness – solvability remain unchanged, and the optimal value in all cases changes its
sign.

I have said that you for sure know the above terminology; this is not exactly true, since you definitely
have heard and used the words “infeasible LP program”, “unbounded LP program”, but hardly used the
words “bounded LP program” – only the “solvable” one. This indeed is true, although absolutely unclear
in advance – a bounded LP program always is solvable. With the tools we have now we can immediately
prove this fundamental for Linear Programming fact.

Theorem B.2.8 (i) A Linear Programming program is solvable if and only if it is bounded.
(ii) If the program is solvable and the feasible set of the program does not contain lines, then at least

one of the optimal solutions is an extreme point of the feasible set.

Proof. (i): The “only if” part of the statement is tautological: the definition of solvability includes
boundedness. What we should prove is the “if” part – that a bounded program is solvable. This is
immediately given by the inner description of the feasible set M of the program: this is a polyhedral set,
so that being nonempty (as it is for a bounded program), it can be represented as

M(V, R) = Conv(V) + Cone (R)

for some nonempty finite sets V and R. I claim first of all that since (P) is bounded, the inner product
of c with every vector from R is nonpositive. Indeed, otherwise there would be r ∈ R with cT r > 0;
since M(V, R) clearly contains with every its point x the entire ray {x + tr | t ≥ 0}, and the objective
evidently is unbounded on this ray, it would be above unbounded on M , which is not the case.

Now let us choose in the finite and nonempty set V the point, let it be called v∗, which maximizes
the objective on V . I claim that v∗ is an optimal solution to (P), so that (P) is solvable. The justification
of the claim is immediate: v∗ clearly belongs to M ; now, a generic point of M = M(V,R) is

x =
∑

v∈V

λvv +
∑

r∈R

µrr

with nonnegative λv and µr and with
∑

v λv = 1, so that

cT x =
∑

v λvcT v +
∑

r µrc
T r

≤ ∑
v λvcT v [since µr ≥ 0 and cT r ≤ 0, r ∈ R]

≤ ∑
v λvcT v∗ [since λv ≥ 0 and cT v ≤ cT v∗]

= cT v∗ [since
∑

v λv = 1]

(ii): if the feasible set of (P), let it be called M , does not contain lines, it, being convex and closed
(as a polyhedral set) possesses extreme points. It follows that (ii) is valid in the trivial case when the
objective of (ii) is constant on the entire feasible set, since then every extreme point of M can be taken
as the desired optimal solution. The case when the objective is nonconstant on M can be immediately
reduced to the aforementioned trivial case: if x∗ is an optimal solution to (P) and the linear form cT x is
nonconstant on M , then the hyperplane Π = {x | cT x = c∗} is supporting to M at x∗; the set Π ∩M is
closed, convex, nonempty and does not contain lines, therefore it possesses an extreme point x∗∗ which,
on one hand, clearly is an optimal solution to (P), and on another hand is an extreme point of M by
Lemma B.2.4.

B.2. MAIN THEOREMS ON CONVEX SETS 373

B.2.8.C. Structure of a polyhedral set: proofs

B.2.8.C.1. Extreme points of a polyhedral set. Consider a polyhedral set

K = {x ∈ Rn | Ax ≤ b},

A being a m× n matrix and b being a vector from Rm. What are the extreme points of K? The answer
is given by the following

Theorem B.2.9 [Extreme points of polyhedral set]
Let x ∈ K. The vector x is an extreme point of K if and only if some n linearly independent (i.e., with
linearly independent vectors of coefficients) inequalities of the system Ax ≤ b are equalities at x.

Proof. Let aT
i , i = 1, ..., m, be the rows of A.

The “only if” part: let x be an extreme point of K, and let I be the set of those indices i for which
aT

i x = bi; we should prove that the set F of vectors {ai | i ∈ I} contains n linearly independent vectors,
or, which is the same, that Lin(F) = Rn. Assume that it is not the case; then the orthogonal complement
to F contains a nonzero vector h (since the dimension of F⊥ is equal to n− dimLin(F) and is therefore
positive). Consider the segment ∆ε = [x − εh, x + εh], ε > 0 being the parameter of our construction.
Since h is orthogonal to the “active” vectors ai – those with i ∈ I, all points y of this segment satisfy
the relations aT

i y = aT
i x = bi. Now, if i is a “nonactive” index – one with aT

i x < bi – then aT
i y ≤ bi

for all y ∈ ∆ε, provided that ε is small enough. Since there are finitely many nonactive indices, we can
choose ε > 0 in such a way that all y ∈ ∆ε will satisfy all “nonactive” inequalities aT

i x ≤ bi, i 6∈ I. Since
y ∈ ∆ε satisfies, as we have seen, also all “active” inequalities, we conclude that with the above choice of
ε we get ∆ε ⊂ K, which is a contradiction: ε > 0 and h 6= 0, so that ∆ε is a nontrivial segment with the
midpoint x, and no such segment can be contained in K, since x is an extreme point of K.

To prove the “if” part, assume that x ∈ K is such that among the inequalities aT
i x ≤ bi which are

equalities at x there are n linearly independent, say, those with indices 1, ..., n, and let us prove that x
is an extreme point of K. This is immediate: assuming that x is not an extreme point, we would get
the existence of a nonzero vector h such that x ± h ∈ K. In other words, for i = 1, ..., n we would have
bi ± aT

i h ≡ aT
i (x ± h) ≤ bi, which is possible only if aT

i h = 0, i = 1, ..., n. But the only vector which is
orthogonal to n linearly independent vectors in Rn is the zero vector (why?), and we get h = 0, which
was assumed not to be the case. .

Corollary B.2.1 The set of extreme points of a polyhedral set is finite.

Indeed, according the above Theorem, every extreme point of a polyhedral set K = {x ∈ Rn | Ax ≤ b}
satisfies the equality version of certain n-inequality subsystem of the original system, the matrix of
the subsystem being nonsingular. Due to the latter fact, an extreme point is uniquely defined by the
corresponding subsystem, so that the number of extreme points does not exceed the number Cn

m of n×n
submatrices of the matrix A and is therefore finite.

Note that Cn
m is nothing but an upper (ant typically very conservative) bound on the number of

extreme points of a polyhedral set given by m inequalities in Rn: some n × n submatrices of A can be
singular and, what is more important, the majority of the nonsingular ones normally produce “candidates”
which do not satisfy the remaining inequalities.

Remark B.2.2 The result of Theorem B.2.9 is very important, in particular, for the theory
of the Simplex method – the traditional computational tool of Linear Programming. When
applied to the LP program in the standard form

cT x → min | Px = p, x ≥ 0 [x ∈ Rn],

with k × n matrix P , the result of Theorem B.2.9 is that extreme points of the feasible
set are exactly the basic feasible solutions of the system Px = p, i.e., nonnegative vectors
x such that Px = p and the set of columns of P associated with positive entries of x is
linearly independent. Since the feasible set of an LP program in the standard form clearly

374 APPENDIX B. CONVEX SETS IN RN

does not contain lines, among the optimal solutions (if they exist) to an LP program in the
standard form at least one is an extreme point of the feasible set (Theorem B.2.8.(ii)). Thus,
in principle we could look through the finite set of all extreme points of the feasible set (≡
through all basic feasible solutions) and to choose the one with the best value of the objective.
This receipt allows to find a feasible solution in finitely many arithmetic operations, provided
that the program is solvable, and is, basically, what the Simplex method does; this latter
method, of course, looks through the basic feasible solutions in a smart way which normally
allows to deal with a negligible part of them only.

Another useful consequence of Theorem B.2.9 is that if all the data in an LP program are
rational, then every extreme point of the feasible domain of the program is a vector with
rational entries. In particular, a solvable standard form LP program with rational data has
at least one rational optimal solution.

B.2.8.C.2. Structure of a bounded polyhedral set. Now we are in a position to prove a
significant part of Theorem B.2.7 – the one describing bounded polyhedral sets.

Theorem B.2.10 [Structure of a bounded polyhedral set] A bounded and nonempty polyhedral set M
in Rn is a polytope, i.e., is the convex hull of a finite nonempty set:

M = M(V, {0}) = Conv(V);

one can choose as V the set of all extreme points of M .
Vice versa – a polytope is a bounded and nonempty polyhedral set.

Proof. The first part of the statement – that a bounded nonempty polyhedral set is a polytope – is
readily given by the Krein-Milman Theorem combined with Corollary B.2.1. Indeed, a polyhedral set
always is closed (as a set given by nonstrict inequalities involving continuous functions) and convex; if it
is also bounded and nonempty, it, by the Krein-Milman Theorem, is the convex hull of the set V of its
extreme points; V is finite by Corollary B.2.1.

Now let us prove the more difficult part of the statement – that a polytope is a bounded polyhedral
set. The fact that a convex hull of a finite set is bounded is evident. Thus, all we need is to prove that
the convex hull of finitely many points is a polyhedral set.

To make our terminology more brief, let us temporary call the polytopes – convex hulls of nonempty
finite sets – V-sets (“V” from “vertex”), and the bounded polyhedral nonempty sets – PB-sets (“P” from
“polyhedral”, “B” from “bounded”). From the already proved part of the Theorem we know that every
PB-set is a V-set as well, and what we should prove is that every V-set M is a PB-set.

Let M = Conv({v1, ..., vN} be a V-set, and let us prove that it is a PB-set. As always, we can assume
without loss of generality that the set is full-dimensional4). Thus, we may assume that intM 6= 0. By
translation, we can also ensure that 0 ∈ intM . Now let us look at the polar M ′ = Polar (M) of M . By
Exercise B.14.1, this set is bounded. I claim that this set is also polyhedral, so that M∗ is a PB-set.
Indeed, a point f belongs to M ′ if and only if fT x ≤ 1 for all x’s which are convex combinations of the
points v1, ..., vN , or, which is clearly the same, f ∈ M ′ if and only if fT vi ≤ 1, i = 1, ..., N . Thus, M ′ is
given by a finite system of nonstrict linear inequalities

vT
i f ≤ 1, i = 1, ..., N

and indeed is polyhedral.

4)here is the justification: shifting M , we can assume that M contains 0; replacing Rn with L = Lin(M) we
come to the situation when the interior of M is nonempty. Given that the result we are proving is valid in this
particular case – when the V-set in question possesses a nonempty interior – we are able to conclude that M ,
as a subset of L, is defined by finitely many nonstrict linear inequalities. Adding to these inequalities the linear
equalities defining L – we know from Proposition A.3.7 that a linear subspace is a polyhedral set – we get the
desired polyhedral description of M as a subset of Rn.

B.2. MAIN THEOREMS ON CONVEX SETS 375

Now we are done. M ′ is a PB-set, and therefore, as we already know, is a V-set. Besides this, M ′ is
the polar of a bounded set and therefore 0 is an interior point of M ′ (Exercise B.14.1). But we just now
have proved that the polar to every V-set with 0 in the interior of the set is a PB-set. Thus, the polar to
M ′ – and this is M by Proposition B.2.2 – is a PB-set.

B.2.8.C.3. Structure of a general polyhedral set: completing the proof. Now let us
prove the general Theorem B.2.7. The proof basically follows the lines of the one of Theorem B.2.10,
but with one elaboration: now we cannot use the Krein-Milman Theorem to take upon itself part of our
difficulties.

Same as above, to simplify language let us call VR-sets (“V” from “vertex”, “R” from rays) the sets
of the form M(V, R), and P-sets the nonempty polyhedral sets. We should prove that every P-set is a
VR-set, and vice versa. We start with proving that every P-set is a VR-set.

B.2.8.C.3.A. P⇒VR:

P⇒VR, Step 1: reduction to the case when the P-set does not contain lines. Let
M be a P-set, so that M is the set of all solutions to a solvable system of linear inequalities:

M = {x ∈ Rn | Ax ≤ b} (B.2.11)

with m×n matrix A. Such a set may contain lines; if h is the direction of a line in M , then A(x+ th) ≤ b
for some x and all t ∈ R, which is possible only if Ah = 0. Vice versa, if h is from the kernel of A, i.e., if
Ah = 0, then the line x+Rh with x ∈ M clearly is contained in M . Thus, we come to the following fact:

Lemma B.2.5 Nonempty polyhedral set (B.2.11) contains lines if and only if the kernel of
A is nontrivial, and the nonzero vectors from the kernel are exactly the directions of lines
contained in M : if M contains a line with direction h, then h ∈ KerA, and vice versa: if
0 6= h ∈ KerA and x ∈ M , then M contains the entire line x + Rh.

Given a nonempty set (B.2.11), let us denote by L the kernel of A and by L⊥ the orthogonal complement
to the kernel, and let M ′ be the cross-section of M by L⊥:

M ′ = {x ∈ L⊥ | Ax ≤ b}.
The set M ′ clearly does not contain lines (since the direction of every line in M ′, on one hand, should
belong to L⊥ due to M ′ ⊂ L⊥, and on the other hand – should belong to L = KerA, since a line in
M ′ ⊂ M is a line in M as well). The set M ′ is nonempty and, moreover, M = M ′ + L. Indeed, M ′

contains the orthogonal projections of all points from M onto L⊥ (since to project a point onto L⊥, you
should move from this point along certain line with the direction in L, and all these movements, started
in M , keep you in M by the Lemma) and therefore is nonempty, first, and is such that M ′ + L ⊃ M ,
second. On the other hand, M ′ ⊂ M and M + L = M by Lemma B.2.5, whence M ′ + L ⊂ M . Thus,
M ′ + L = M .

Finally, M ′ is a polyhedral set together with M , since the inclusion x ∈ L⊥ can be represented by
dim L linear equations (i.e., by 2dimL nonstrict linear inequalities): you should say that x is orthogonal
to dim L somehow chosen vectors a1, ..., adimL

forming a basis in L.
The results of our effort are as follows: given an arbitrary P-set M , we have represented is as the

sum of a P-set M ′ not containing lines and a linear subspace L. With this decomposition in mind we see
that in order to achieve our current goal – to prove that every P-set is a VR-set – it suffices to prove the
same statement for P-sets not containing lines. Indeed, given that M ′ = M(V, R′) and denoting by R′ a
finite set such that L = Cone (R′) (to get R′, take the set of 2dim L vectors ±ai, i = 1, ..., dim L, where
a1, ..., adimL

is a basis in L), we would obtain

M = M ′ + L
= [Conv(V) + Cone (R)] + Cone (R′)
= Conv(V) + [Cone (R) + Cone (R′)]
= Conv(V) + Cone (R ∪R′)
= M(V, R ∪R′)

376 APPENDIX B. CONVEX SETS IN RN

We see that in order to establish that a P-set is a VR-set it suffices to prove the same statement for
the case when the P-set in question does not contain lines.

P⇒VR, Step 2: the P-set does not contain lines. Our situation is as follows: we are
given a not containing lines P-set in Rn and should prove that it is a VR-set. We shall prove this
statement by induction on the dimension n of the space. The case of n = 0 is trivial. Now assume that
the statement in question is valid for n ≤ k, and let us prove that it is valid also for n = k + 1. Let M
be a not containing lines P-set in Rk+1:

M = {x ∈ Rk+1 | aT
i x ≤ bi, i = 1, ..., m}. (B.2.12)

Without loss of generality we may assume that all ai are nonzero vectors (since M is nonempty, the
inequalities with ai = 0 are valid on the entire Rn, and removing them from the system, we do not vary
its solution set). Note that m > 0 – otherwise M would contain lines, since k ≥ 0.

10. We may assume that M is unbounded – otherwise the desired result is given already by Theorem
B.2.10. By Exercise B.17, there exists a recessive direction r 6= 0 of M Thus, M contains the ray
{x + tr | t ≥ 0}, whence, by Lemma B.2.3, M + Cone ({r}) = M .

20. For every i ≤ m, where m is the row size of the matrix A from (B.2.12), that is, the number
of linear inequalities in the description of M , let us denote by Mi the corresponding “facet” of M – the
polyhedral set given by the system of inequalities (B.2.12) with the inequality aT

i x ≤ bi replaced by the
equality aT

i x = bi. Some of these “facets” can be empty; let I be the set of indices i of nonempty Mi’s.
When i ∈ I, the set Mi is a nonempty polyhedral set – i.e., a P-set – which does not contain lines

(since Mi ⊂ M and M does not contain lines). Besides this, Mi belongs to the hyperplane {aT
i x = bi},

i.e., actually it is a P-set in Rk. By the inductive hypothesis, we have representations

Mi = M(Vi, Ri), i ∈ I,

for properly chosen finite nonempty sets Vi and Ri. I claim that

M = M(∪i∈IVi,∪i∈IRi ∪ {r}), (B.2.13)

where r is a recessive direction of M found in 10; after the claim will be supported, our induction will be
completed.

To prove (B.2.13), note, first of all, that the right hand side of this relation is contained in the left
hand side one. Indeed, since Mi ⊂ M and Vi ⊂ Mi, we have Vi ⊂ M , whence also V = ∪iVi ⊂ M ; since
M is convex, we have

Conv(V) ⊂ M. (B.2.14)

Further, if r′ ∈ Ri, then r′ is a recessive direction of Mi; since Mi ⊂ M , r′ is a recessive direction of M
by Lemma B.2.3. Thus, every vector from ∪i∈IRi is a recessive direction for M , same as r; thus, every
vector from R = ∪i∈IRi ∪ {r} is a recessive direction of M , whence, again by Lemma B.2.3,

M + Cone (R) = M.

Combining this relation with (B.2.14), we get M(V, R) ⊂ M , as claimed.
It remains to prove that M is contained in the right hand side of (B.2.13). Let x ∈ M , and let us move

from x along the direction (−r), i.e., move along the ray {x− tr : t ≥ 0}. After large enough step along
this ray we leave M . (Indeed, otherwise the ray with the direction −r started at x would be contained
in M , while the opposite ray for sure is contained in M since r is a recessive direction of M ; we would
conclude that M contains a line, which is not the case by assumption.) Since the ray {x − tr : t ≥ 0}
eventually leaves M and M is bounded, there exists the largest t, let it be called t∗, such that x′ = x− t∗r
still belongs to M . It is clear that at x′ one of the linear inequalities defining M becomes equality –
otherwise we could slightly increase the parameter t∗ still staying in M . Thus, x′ ∈ Mi for some i ∈ I.
Consequently,

x′ ∈ Conv(Vi) + Cone (Ri),

whence x = x′ + t∗r ∈ Conv(Vi) + Cone (Ri ∪ {r}) ⊂ M(V, R), as claimed.

B.2. MAIN THEOREMS ON CONVEX SETS 377

B.2.8.C.3.B. VR⇒P: We already know that every P-set is a VR-set. Now we shall prove that
every VR-set is a P-set, thus completing the proof of Theorem B.2.7. This will be done via the polarity
– exactly as in the case of Theorem B.2.10.

Thus, let M be a VR-set:

M = M(V, R), V = {v1, ..., vN}, R = {r1, ..., rM};

we should prove that it is a P-set. Without loss of generality we may assume that 0 ∈ M .
10. Let M ′ be the polar of M . I claim that M ′ is a P-set. Indeed, f ∈ M ′ if and only if fT x ≤ 1 for

every x of the form
(convex combination of vi) + (conic combination of rj),

i.e., if and only if fT rj ≤ 0 for all j (otherwise fT x clearly would be unbounded from above on M) and
fT vi ≤ 1 for all i. Thus,

M ′ = {f | vT
i f ≤ 1, i = 1, ..., N, rT

j f ≤ 0, j = 1, ..., n}

is a P-set.
20. Now we are done: M ′ is a P-set, and consequently - we already know it – is a VR-set. By 10,

the polar of a VR-set M ′ is a P-set; since M is closed and convex and contains the origin, this polar is
nothing but M (Proposition B.2.2). Thus, M is a P-set.

Theorem B.2.7 claims also that the sets of the type M(V, {0}) are exactly the bounded polyhedral
sets – we already know this from Theorem B.2.10 – and that the sets of the type M({0}, R) are exactly
the polyhedral cones – i.e., those given by finite systems of homogeneous nonstrict linear inequalities.
This latter fact is all which we still should prove. This is easy:

First, let us prove that a polyhedral cone M can be represented as M({0}, S) for some S. Since M
is a polyhedral cone, it, as every polyhedral set, can be represented as

M = Conv(V) + Cone (R); (B.2.15)

since, by evident reasons, Conv(V) ⊂ Cone (V), we get

M ⊂ Cone (V) + Cone (R) = Cone (V ∪R). (B.2.16)

On the other hand, since M , being a cone, contains 0, on one hand, and, on the other hand,

M + Cone (R) = Conv(V) + Cone (R) + Cone (R) = Conv(V) + Cone (R) = M

(since Cone (R) + Cone (R) clearly is the same as Cone (R)), we get

Cone (R) = 0 + Cone (R) ⊂ M + Cone (R) = M ;

since Cone (R) ⊂ M and from (B.2.15) V ⊂ M , the right hand side in (B.2.16) is the conic hull of vectors
from M and therefore is a subset of the cone M . Thus, the inclusion in (B.2.16) is in fact equality, and
M = M({0}, V ∪R), as required.

It remains to prove that the set of the type M = M({0}, R) – which clearly is a cone – is a polyhedral
cone. As every VR-set, M is given by a finite system of inequalities

aT
i x ≤ bi, i = 1, ...,m,

and all we should prove is that the inequalities in the system can be chosen to be homogeneous (with
bi = 0). This is immediate: since M is a cone, for every solution x of the above system all vectors tx,
t ≥ 0, also are solutions, which is possible if and only if bi ≥ 0 for all i and aT

i x ≤ 0 for all i and all
solutions x to the system. It follows that when “strengthening” the system – replacing in it bi ≥ 0 by
bi = 0, thus making the system homogeneous – we do not vary the solution set.

378 APPENDIX B. CONVEX SETS IN RN

Appendix C

Convex functions

C.1 Convex functions: first acquaintance

C.1.1 Definition and Examples

Definition C.1.1 [convex function] A function f : Q → R defined on a nonempty subset Q of Rn and
taking real values is called convex, if

• the domain Q of the function is convex;

• for every x, y ∈ Q and every λ ∈ [0, 1] one has

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (C.1.1)

If the above inequality is strict whenever x 6= y and 0 < λ < 1, f is called strictly convex.

A function f such that −f is convex is called concave; the domain Q of a concave function should be
convex, and the function itself should satisfy the inequality opposite to (C.1.1):

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y), x, y ∈ Q,λ ∈ [0, 1].

The simplest example of a convex function is an affine function

f(x) = aT x + b

– the sum of a linear form and a constant. This function clearly is convex on the entire space, and the
“convexity inequality” for it is equality. An affine function is both convex and concave; it is easily seen
that a function which is both convex and concave on the entire space is affine.

Here are several elementary examples of “nonlinear” convex functions of one variable:

• functions convex on the whole axis:
x2p, p is a positive integer;
exp{x};

• functions convex on the nonnegative ray:
xp, 1 ≤ p;
−xp, 0 ≤ p ≤ 1;
x ln x;

• functions convex on the positive ray:
1/xp, p > 0;
− ln x.

379

380 APPENDIX C. CONVEX FUNCTIONS

To the moment it is not clear why these functions are convex; in the mean time we shall derive a simple
analytic criterion for detecting convexity which immediately demonstrates that the above functions indeed
are convex.

A very convenient equivalent definition of a convex function is in terms of its epigraph. Given a
real-valued function f defined on a nonempty subset Q of Rn, we define its epigraph as the set

Epi(f) = {(t, x) ∈ Rn+1 : x ∈ Q, t ≥ f(x)};

geometrically, to define the epigraph, you should take the graph of the function – the surface {t =
f(x), x ∈ Q} in Rn+1 – and add to this surface all points which are “above” it. The equivalent, more
geometrical, definition of a convex function is given by the following simple statement (prove it!):

Proposition C.1.1 [definition of convexity in terms of the epigraph]
A function f defined on a subset of Rn is convex if and only if its epigraph is a nonempty convex set

in Rn+1.

More examples of convex functions: norms. Equipped with Proposition C.1.1, we can extend
our initial list of convex functions (several one-dimensional functions and affine ones) by more examples
– norms. Let π(x) be a norm on Rn (see Section B.1.2.B). To the moment we know three examples of
norms – the Euclidean norm ‖x‖2 =

√
xT x, the 1-norm ‖x‖1 =

∑
i

|xi| and the ∞-norm ‖x‖∞ = max
i
|xi|.

It was also claimed (although not proved) that these are three members of an infinite family of norms

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p ≤ ∞

(the right hand side of the latter relation for p = ∞ is, by definition, max
i
|xi|).

We are about to prove that every norm is convex:

Proposition C.1.2 Let π(x) be a real-valued function on Rn which is positively homogeneous of degree
1:

π(tx) = tπ(x) ∀x ∈ Rn, t ≥ 0.

π is convex if and only if it is subadditive:

π(x + y) ≤ π(x) + π(y) ∀x, y ∈ Rn.

In particular, a norm (which by definition is positively homogeneous of degree 1 and is subadditive) is
convex.

Proof is immediate: the epigraph of a positively homogeneous of degree 1 function π clearly is a conic
set: (t, x) ∈ Epi(π) ⇒ λ(t, x) ∈ Epi(π) whenever λ ≥ 0. Now, by Proposition C.1.1 π is convex if and
only if Epi(π) is convex. From Proposition 1.7.2 we know that a conic set is convex (i.e., is a cone) if and
only if it contains the sum of every two its elements; this latter property is satisfied for the epigraph of
a real-valued function if and only if the function is subadditive (evident).

C.1.2 Elementary properties of convex functions

C.1.2.A. Jensen’s inequality

The following elementary observation is, I believe, one of the most useful observations in the world:

Proposition C.1.3 [Jensen’s inequality] Let f be convex and Q be the domain of f . Then for every
convex combination

N∑

i=1

λixi

C.1. CONVEX FUNCTIONS: FIRST ACQUAINTANCE 381

of points from Q one has

f(
N∑

i=1

λixi) ≤
N∑

i=1

λif(xi).

The proof is immediate: the points (f(xi), xi) clearly belong to the epigraph of f ; since f is convex, its
epigraph is a convex set, so that the convex combination

N∑

i=1

λi(f(xi), xi) = (
N∑

i=1

λif(xi),
N∑

i=1

λixi)

of the points also belongs to Epi(f). By definition of the epigraph, the latter means exactly that
N∑

i=1

λif(xi) ≥ f(
N∑

i=1

λixi).

Note that the definition of convexity of a function f is exactly the requirement on f to satisfy the
Jensen inequality for the case of N = 2; we see that to satisfy this inequality for N = 2 is the same as to
satisfy it for all N .

C.1.2.B. Convexity of level sets of a convex function

The following simple observation is also very useful:

Proposition C.1.4 [convexity of level sets] Let f be a convex function with the domain Q. Then, for
every real α, the set

levα(f) = {x ∈ Q : f(x) ≤ α}
– the level set of f – is convex.

The proof takes one line: if x, y ∈ levα(f) and λ ∈ [0, 1], then f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤
λα + (1− λ)α = α, so that λx + (1− λ)y ∈ levα(f).

Note that the convexity of level sets does not characterize convex functions; there are nonconvex
functions which share this property (e.g., every monotone function on the axis). The “proper” character-
ization of convex functions in terms of convex sets is given by Proposition C.1.1 – convex functions are
exactly the functions with convex epigraphs. Convexity of level sets specify a wider family of functions,
the so called quasiconvex ones.

C.1.3 What is the value of a convex function outside its domain?

Literally, the question which entitles this subsection is senseless. Nevertheless, when speaking about
convex functions, it is extremely convenient to think that the function outside its domain also has a
value, namely, takes the value +∞; with this convention, we can say that

a convex function f on Rn is a function taking values in the extended real axis R ∪ {+∞} such that
the domain Dom f of the function – the set of those x’s where f(x) is finite – is nonempty, and for all
x, y ∈ Rn and all λ ∈ [0, 1] one has

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (C.1.2)

If the expression in the right hand side involves infinities, it is assigned the value according to the

standard and reasonable conventions on what are arithmetic operations in the “extended real axis”
R ∪ {+∞} ∪ {−∞}:

• arithmetic operations with reals are understood in their usual sense;

• the sum of +∞ and a real, same as the sum of +∞ and +∞ is +∞; similarly, the sum of a real
and −∞, same as the sum of −∞ and −∞ is −∞. The sum of +∞ and −∞ is undefined;

382 APPENDIX C. CONVEX FUNCTIONS

• the product of a real and +∞ is +∞, 0 or −∞, depending on whether the real is positive, zero or
negative, and similarly for the product of a real and −∞. The product of two ”infinities” is again
infinity, with the usual rule for assigning the sign to the product.

Note that it is not clear in advance that our new definition of a convex function is equivalent to the initial
one: initially we included into the definition requirement for the domain to be convex, and now we omit
explicit indicating this requirement. In fact, of course, the definitions are equivalent: convexity of Dom f
– i.e., the set where f is finite – is an immediate consequence of the “convexity inequality” (C.1.2).

It is convenient to think of a convex function as of something which is defined everywhere, since it
saves a lot of words. E.g., with this convention I can write f + g (f and g are convex functions on Rn),
and everybody will understand what is meant; without this convention, I am supposed to add to this
expression the explanation as follows: “f +g is a function with the domain being the intersection of those
of f and g, and in this intersection it is defined as (f + g)(x) = f(x) + g(x)”.

C.2 How to detect convexity

In an optimization problem
f(x) → min | gj(x) ≤ 0, j = 1, ..., m

convexity of the objective f and the constraints gi is crucial: it turns out that problems with this property
possess nice theoretical properties (e.g., the local necessary optimality conditions for these problems are
sufficient for global optimality); and what is much more important, convex problems can be efficiently
(both in theoretical and, to some extent, in the practical meaning of the word) solved numerically, which
is not, unfortunately, the case for general nonconvex problems. This is why it is so important to know
how one can detect convexity of a given function. This is the issue we are coming to.

The scheme of our investigation is typical for mathematics. Let me start with the example which
you know from Analysis. How do you detect continuity of a function? Of course, there is a definition
of continuity in terms of ε and δ, but it would be an actual disaster if each time we need to prove
continuity of a function, we were supposed to write down the proof that ”for every positive ε there exists
positive δ such that ...”. In fact we use another approach: we list once for ever a number of standard
operations which preserve continuity, like addition, multiplication, taking superpositions, etc., and point
out a number of standard examples of continuous functions – like the power function, the exponent,
etc. To prove that the operations in the list preserve continuity, same as to prove that the standard
functions are continuous, this takes certain effort and indeed is done in ε− δ terms; but after this effort
is once invested, we normally have no difficulties with proving continuity of a given function: it suffices
to demonstrate that the function can be obtained, in finitely many steps, from our ”raw materials” – the
standard functions which are known to be continuous – by applying our machinery – the combination
rules which preserve continuity. Normally this demonstration is given by a single word ”evident” or even
is understood by default.

This is exactly the case with convexity. Here we also should point out the list of operations which
preserve convexity and a number of standard convex functions.

C.2.1 Operations preserving convexity of functions

These operations are as follows:

• [stability under taking weighted sums] if f, g are convex functions on Rn, then their linear combi-
nation λf + µg with nonnegative coefficients again is convex, provided that it is finite at least at
one point;

[this is given by straightforward verification of the definition]

• [stability under affine substitutions of the argument] the superposition f(Ax + b) of a convex
function f on Rn and affine mapping x 7→ Ax + b from Rm into Rn is convex, provided that it is
finite at least at one point.

C.2. HOW TO DETECT CONVEXITY 383

[you can prove it directly by verifying the definition or by noting that the epigraph of the super-
position, if nonempty, is the inverse image of the epigraph of f under an affine mapping]

• [stability under taking pointwise sup] upper bound sup
α

fα(·) of every family of convex functions on

Rn is convex, provided that this bound is finite at least at one point.

[to understand it, note that the epigraph of the upper bound clearly is the intersection of epigraphs
of the functions from the family; recall that the intersection of every family of convex sets is convex]

• [“Convex Monotone superposition”] Let f(x) = (f1(x), ..., fk(x)) be vector-function on Rn with
convex components fi, and assume that F is a convex function on Rk which is monotone, i.e., such
that z ≤ z′ always implies that F (z) ≤ F (z′). Then the superposition

φ(x) = F (f(x)) = F (f1(x), ..., fk(x))

is convex on Rn, provided that it is finite at least at one point.

Remark C.2.1 The expression F (f1(x), ..., fk(x)) makes no evident sense at a point x where some
of fi’s are +∞. By definition, we assign the superposition at such a point the value +∞.

[To justify the rule, note that if λ ∈ (0, 1) and x, x′ ∈ Dom φ, then z = f(x), z′ = f(x′) are vectors
from Rk which belong to DomF , and due to the convexity of the components of f we have

f(λx + (1− λ)x′) ≤ λz + (1− λ)z′;

in particular, the left hand side is a vector from Rk – it has no “infinite entries”, and we may
further use the monotonicity of F :

φ(λx + (1− λ)x′) = F (f(λx + (1− λ)x′)) ≤ F (λz + (1− λ)z′)

and now use the convexity of F :

F (λz + (1− λ)z′) ≤ λF (z) + (1− λ)F (z′)

to get the required relation

φ(λx + (1− λ)x′) ≤ λφ(x) + (1− λ)φ(x′).

]

Imagine how many extra words would be necessary here if there were no convention on the value of a
convex function outside its domain!

Two more rules are as follows:

• [stability under partial minimization] if f(x, y) : Rn
x ×Rm

y is convex (as a function of
z = (x, y); this is called joint convexity) and the function

g(x) = inf
y

f(x, y)

is proper, i.e., is > −∞ everywhere and is finite at least at one point, then g is convex
[this can be proved as follows. We should prove that if x, x′ ∈ Dom g and x′′ =
λx + (1 − λ)x′ with λ ∈ [0, 1], then x′′ ∈ Dom g and g(x′′) ≤ λg(x) + (1 − λ)g(x′).
Given positive ε, we can find y and y′ such that (x, y) ∈ Dom f , (x′, y′) ∈ Dom f and
g(x) + ε ≥ f(x, y), g(y′) + ε ≥ f(x′, y′). Taking weighted sum of these two inequalities,
we get

λg(x) + (1− λ)g(y) + ε ≥ λf(x, y) + (1− λ)f(x′, y′) ≥

384 APPENDIX C. CONVEX FUNCTIONS

[since f is convex]

≥ f(λx + (1− λ)x′, λy + (1− λ)y′) = f(x′′, λy + (1− λ)y′)

(the last ≥ follows from the convexity of f). The concluding quantity in the chain is
≥ g(x′′), and we get g(x′′) ≤ λg(x)+ (1−λ)g(x′)+ ε. In particular, x′′ ∈ Dom g (recall
that g is assumed to take only the values from R and the value +∞). Moreover, since
the resulting inequality is valid for all ε > 0, we come to g(x′′) ≤ λg(x) + (1− λ)g(x′),
as required.]

• the “conic transformation” of a convex function f on Rn – the function g(y, x) =
yf(x/y) – is convex in the half-space y > 0 in Rn+1.

Now we know what are the basic operations preserving convexity. Let us look what are the standard
functions these operations can be applied to. A number of examples was already given, but we still do
not know why the functions in the examples are convex. The usual way to check convexity of a “simple”
– given by a simple formula – function is based on differential criteria of convexity. Let us look what are
these criteria.

C.2.2 Differential criteria of convexity

From the definition of convexity of a function if immediately follows that convexity is one-dimensional
property: a proper (i.e., finite at least at one point) function f on Rn taking values in R ∪ {+∞} is
convex if and only if its restriction on every line, i.e., every function of the type g(t) = f(x + th) on the
axis, is either convex, or is identically +∞.

It follows that to detect convexity of a function, it, in principle, suffices to know how to detect
convexity of functions of one variable. This latter question can be resolved by the standard Calculus
tools. Namely, in the Calculus they prove the following simple

Proposition C.2.1 [Necessary and Sufficient Convexity Condition for smooth functions on the axis] Let
(a, b) be an interval in the axis (we do not exclude the case of a = −∞ and/or b = +∞). Then

(i) A differentiable everywhere on (a, b) function f is convex on (a, b) if and only if its derivative f ′

is monotonically nondecreasing on (a, b);
(ii) A twice differentiable everywhere on (a, b) function f is convex on (a, b) if and only if its second

derivative f ′′ is nonnegative everywhere on (a, b).

With the Proposition, you can immediately verify that the functions listed as examples of convex functions
in Section C.1.1 indeed are convex. The only difficulty which you may meet is that some of these functions
(e.g., xp, p ≥ 1, and −xp, 0 ≤ p ≤ 1, were claimed to be convex on the half-interval [0, +∞), while the
Proposition speaks about convexity of functions on intervals. To overcome this difficulty, you may use
the following simple

Proposition C.2.2 Let M be a convex set and f be a function with Dom f = M . Assume that f is
convex on ri M and is continuous on M , i.e.,

f(xi) → f(x), i →∞,

whenever xi, x ∈ M and xi → x as i →∞. Then f is convex on M .

Proof of Proposition C.2.1:
(i), necessity. Assume that f is differentiable and convex on (a, b); we should prove that then
f ′ is monotonically nondecreasing. Let x < y be two points of (a, b), and let us prove that
f ′(x) ≤ f ′(y). Indeed, let z ∈ (x, y). We clearly have the following representation of z as a
convex combination of x and y:

z =
y − z

y − x
x +

x− z

y − x
y,

C.2. HOW TO DETECT CONVEXITY 385

whence, from convexity,

f(z) ≤ y − z

y − x
f(x) +

x− z

y − x
f(y),

whence
f(z)− f(x)

x− z
≤ f(y)− f(z)

y − z
.

Passing here to limit as z → x + 0, we get

f ′(x) ≤ (f(y)− f(x)
y − x

,

and passing in the same inequality to limit as z → y − 0, we get

f ′(y) ≥ (f(y)− f(x)
y − x

,

whence f ′(x) ≤ f ′(y), as claimed.
(i), sufficiency. We should prove that if f is differentiable on (a, b) and f ′ is monotonically
nondecreasing on (a, b), then f is convex on (a, b). It suffices to verify that if x < y,
x, y ∈ (a, b), and z = λx + (1− λ)y with 0 < λ < 1, then

f(z) ≤ λf(x) + (1− λ)f(y),

or, which is the same (write f(z) as λf(z) + (1− λ)f(z)), that

f(z)− f(x)
λ

≤ f(y)− f(z)
1− λ

.

noticing that z − x = λ(y − x) and y − z = (1 − λ)(y − x), we see that the inequality we
should prove is equivalent to

f(z)− f(x)
z − x

≤ f(y)− f(z)
y − z

.

But in this equivalent form the inequality is evident: by the Lagrange Mean Value Theorem,
its left hand side is f ′(ξ) with some ξ ∈ (x, z), while the right hand one is f ′(η) with some
η ∈ (z, y). Since f ′ is nondecreasing and ξ ≤ z ≤ η, we have f ′(ξ) ≤ f ′(η), and the left hand
side in the inequality we should prove indeed is ≤ the right hand one.
(ii) is immediate consequence of (i), since, as we know from the very beginning of Calculus,
a differentiable function – in the case in question, it is f ′ – is monotonically nondecreasing
on an interval if and only if its derivative is nonnegative on this interval.
In fact, for functions of one variable there is a differential criterion of convexity which does
not preassume any smoothness (we shall not prove this criterion):

Proposition C.2.3 [convexity criterion for univariate functions]
Let g : R → R∪ {+∞} be a function. Let the domain ∆ = {t : g(t) < ∞} of the function be
a convex set which is not a singleton, i.e., let it be an interval (a, b) with possibly added one
or both endpoints (−∞ ≤ a < b ≤ ∞). g is convex if and only if it satisfies the following 3
requirements:
1) g is continuous on (a, b);
2) g is differentiable everywhere on (a, b), excluding, possibly, a countable set of points, and
the derivative g′(t) is nondecreasing on its domain;
3) at each endpoint u of the interval (a, b) which belongs to ∆ g is upper semicontinuous:

g(u) ≥ lim supt∈(a,b),t→ug(t).

386 APPENDIX C. CONVEX FUNCTIONS

Proof of Proposition C.2.2: Let x, y ∈ M and z = λx + (1 − λ)y, λ ∈ [0, 1], and let us
prove that

f(z) ≤ λf(x) + (1− λ)f(y).

As we know from Theorem B.1.1.(iii), there exist sequences xi ∈ ri M and yi ∈ ri M con-
verging, respectively to x and to y. Then zi = λxi + (1− λ)yi converges to z as i →∞, and
since f is convex on ri M , we have

f(zi) ≤ λf(xi) + (1− λ)f(yi);

passing to limit and taking into account that f is continuous on M and xi, yi, zi converge,
as i →∞, to x, y, z ∈ M , respectively, we obtain the required inequality.

From Propositions C.2.1.(ii) and C.2.2 we get the following convenient necessary and sufficient condition
for convexity of a smooth function of n variables:

Corollary C.2.1 [convexity criterion for smooth functions on Rn]
Let f : Rn → R ∪ {+∞} be a function. Assume that the domain Q of f is a convex set with a

nonempty interior and that f is

• continuous on Q

and

• twice differentiable on the interior of Q.

Then f is convex if and only if its Hessian is positive semidefinite on the interior of Q:

hT f ′′(x)h ≥ 0 ∀x ∈ intQ ∀h ∈ Rn.

Proof. The ”only if” part is evident: if f is convex and x ∈ Q′ = intQ, then the function
of one variable

g(t) = f(x + th)

(h is an arbitrary fixed direction in Rn) is convex in certain neighbourhood of the point
t = 0 on the axis (recall that affine substitutions of argument preserve convexity). Since f
is twice differentiable in a neighbourhood of x, g is twice differentiable in a neighbourhood
of t = 0, so that g′′(0) = hT f ′′(x)h ≥ 0 by Proposition C.2.1.

Now let us prove the ”if” part, so that we are given that hT f ′′(x)h ≥ 0 for every x ∈ intQ
and every h ∈ Rn, and we should prove that f is convex.

Let us first prove that f is convex on the interior Q′ of the domain Q. By Theorem B.1.1, Q′

is a convex set. Since, as it was already explained, the convexity of a function on a convex
set is one-dimensional fact, all we should prove is that every one-dimensional function

g(t) = f(x + t(y − x)), 0 ≤ t ≤ 1

(x and y are from Q′) is convex on the segment 0 ≤ t ≤ 1. Since f is continuous on Q ⊃ Q′,
g is continuous on the segment; and since f is twice continuously differentiable on Q′, g is
continuously differentiable on (0, 1) with the second derivative

g′′(t) = (y − x)T f ′′(x + t(y − x))(y − x) ≥ 0.

Consequently, g is convex on [0, 1] (Propositions C.2.1.(ii) and C.2.2). Thus, f is convex on
Q′. It remains to note that f , being convex on Q′ and continuous on Q, is convex on Q by
Proposition C.2.2.

C.3. GRADIENT INEQUALITY 387

Applying the combination rules preserving convexity to simple functions which pass the “infinitesimal’
convexity tests, we can prove convexity of many complicated functions. Consider, e.g., an exponential
posynomial – a function

f(x) =
N∑

i=1

ci exp{aT
i x}

with positive coefficients ci (this is why the function is called posynomial). How could we prove that the
function is convex? This is immediate:

exp{t} is convex (since its second order derivative is positive and therefore the first derivative is
monotone, as required by the infinitesimal convexity test for smooth functions of one variable);

consequently, all functions exp{aT
i x} are convex (stability of convexity under affine substitutions of

argument);
consequently, f is convex (stability of convexity under taking linear combinations with nonnegative

coefficients).
And if we were supposed to prove that the maximum of three posynomials is convex? Ok, we could

add to our three steps the fourth, which refers to stability of convexity under taking pointwise supremum.

C.3 Gradient inequality

An extremely important property of a convex function is given by the following

Proposition C.3.1 [Gradient inequality] Let f be a function taking finite values and the value +∞, x
be an interior point of the domain of f and Q be a convex set containing x. Assume that

• f is convex on Q

and

• f is differentiable at x,

and let ∇f(x) be the gradient of the function at x. Then the following inequality holds:

(∀y ∈ Q) : f(y) ≥ f(x) + (y − x)T∇f(x). (C.3.1)

Geometrically: the graph
{(y, t) ∈ Rn+1 : y ∈ Dom f ∩Q, t = f(y)}

of the function f restricted onto the set Q is above the graph

{(y, t) ∈ Rn+1 : t = f(x) + (y − x)T∇f(x)}

of the linear form tangent to f at x.

Proof. Let y ∈ Q. There is nothing to prove if y 6∈ Dom f (since there the right hand side in the gradient
inequality is +∞), same as there is nothing to prove when y = x. Thus, we can assume that y 6= x and
y ∈ Dom f . Let us set

yτ = x + τ(y − x), 0 < τ ≤ 1,

so that y1 = y and yτ is an interior point of the segment [x, y] for 0 < τ < 1. Now let us use the following
extremely simple

Lemma C.3.1 Let x, x′, x′′ be three distinct points with x′ ∈ [x, x′′], and let f be convex
and finite on [x, x′′]. Then

f(x′)− f(x)
‖x′ − x‖2 ≤ f(x′′)− f(x)

‖x′′ − x‖2 . (C.3.2)

388 APPENDIX C. CONVEX FUNCTIONS

Proof of the Lemma. We clearly have

x′ = x + λ(x′′ − x), λ =
‖x′ − x‖2
‖x′′ − x‖2 ∈ (0, 1)

or, which is the same,
x′ = (1− λ)x + λx′′.

From the convexity inequality

f(x′) ≤ (1− λ)f(x) + λf(x′′),

or, which is the same,
f(x′)− f(x) ≤ λ(f(x′′)− f(x′)).

Dividing by λ and substituting the value of λ, we come to (C.3.2).

Applying the Lemma to the triple x, x′ = yτ , x′′ = y, we get

f(x + τ(y − x))− f(x)
τ‖y − x‖2 ≤ f(y)− f(x)

‖y − x‖2 ;

as τ → +0, the left hand side in this inequality, by the definition of the gradient, tends to ‖y− x‖−1
2 (y−

x)T∇f(x), and we get

‖y − x‖−1
2 (y − x)T∇f(x) ≤ ‖y − x‖−1

2 (f(y)− f(x)),

or, which is the same,
(y − x)T∇f(x) ≤ f(y)− f(x);

this is exactly the inequality (C.3.1).

It is worthy of mentioning that in the case when Q is convex set with a nonempty interior
and f is continuous on Q and differentiable on intQ, f is convex on Q if and only if the
Gradient inequality (C.3.1) is valid for every pair x ∈ intQ and y ∈ Q.
Indeed, the ”only if” part, i.e., the implication

convexity of f ⇒ Gradient inequality for all x ∈ intQ and all y ∈ Q

is given by Proposition C.3.1. To prove the ”if” part, i.e., to establish the implication inverse
to the above, assume that f satisfies the Gradient inequality for all x ∈ intQ and all y ∈ Q,
and let us verify that f is convex on Q. It suffices to prove that f is convex on the interior
Q′ of the set Q (see Proposition C.2.2; recall that by assumption f is continuous on Q and
Q is convex). To prove that f is convex on Q′, note that Q′ is convex (Theorem B.1.1) and
that, due to the Gradient inequality, on Q′ f is the upper bound of the family of affine (and
therefore convex) functions:

f(y) = sup
x∈Q′

fx(y), fx(y) = f(x) + (y − x)T∇f(x).

C.4 Boundedness and Lipschitz continuity of a convex function

Convex functions possess nice local properties.

Theorem C.4.1 [local boundedness and Lipschitz continuity of convex function]
Let f be a convex function and let K be a closed and bounded set contained in the relative interior of

the domain Dom f of f . Then f is Lipschitz continuous on K – there exists constant L – the Lipschitz
constant of f on K – such that

|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ K. (C.4.1)

In particular, f is bounded on K.

C.4. BOUNDEDNESS AND LIPSCHITZ CONTINUITY OF A CONVEX FUNCTION 389

Remark C.4.1 All three assumptions on K – (1) closedness, (2) boundedness, and (3) K ⊂ ri Dom f –
are essential, as it is seen from the following three examples:

• f(x) = 1/x, Dom F = (0, +∞), K = (0, 1]. We have (2), (3) but not (1); f is neither bounded, nor
Lipschitz continuous on K.

• f(x) = x2, Dom f = R, K = R. We have (1), (3) and not (2); f is neither bounded nor Lipschitz
continuous on K.

• f(x) = −√x, Dom f = [0, +∞), K = [0, 1]. We have (1), (2) and not (3); f is not Lipschitz
continuous on K 1), although is bounded. With properly chosen convex function f of two variables
and non-polyhedral compact domain (e.g., with Dom f being the unit circle), we could demonstrate
also that lack of (3), even in presence of (1) and (2), may cause unboundedness of f at K as well.

Remark C.4.2 Theorem C.4.1 says that a convex function f is bounded on every compact (i.e., closed
and bounded) subset of the relative interior of Dom f . In fact there is much stronger statement on the
below boundedness of f : f is below bounded on any bounded subset of Rn!.

Proof of Theorem C.4.1. We shall start with the following local version of the Theorem.

Proposition C.4.1 Let f be a convex function, and let x̄ be a point from the relative interior of the
domain Dom f of f . Then

(i) f is bounded at x̄: there exists a positive r such that f is bounded in the r-neighbourhood Ur(x̄)
of x̄ in the affine span of Dom f :

∃r > 0, C : |f(x)| ≤ C ∀x ∈ Ur(x̄) = {x ∈ Aff(Dom f) : ‖x− x̄‖2 ≤ r};

(ii) f is Lipschitz continuous at x̄, i.e., there exists a positive ρ and a constant L such that

|f(x)− f(x′)| ≤ L‖x− x′‖2 ∀x, x′ ∈ Uρ(x̄).

Implication “Proposition C.4.1 ⇒ Theorem C.4.1” is given by standard Analysis reasoning. All we
need is to prove that if K is a bounded and closed (i.e., a compact) subset of ri Dom f , then f is Lipschitz
continuous on K (the boundedness of f on K is an evident consequence of its Lipschitz continuity on K
and boundedness of K). Assume, on contrary, that f is not Lipschitz continuous on K; then for every
integer i there exists a pair of points xi, yi ∈ K such that

f(xi)− f(yi) ≥ i‖xi − yi‖2. (C.4.2)

Since K is compact, passing to a subsequence we can ensure that xi → x ∈ K and yi → y ∈ K.
By Proposition C.4.1 the case x = y is impossible – by Proposition f is Lipschitz continuous in a
neighbourhood B of x = y; since xi → x, yi → y, this neighbourhood should contain all xi and yi with
large enough indices i; but then, from the Lipschitz continuity of f in B, the ratios (f(xi)− f(yi))/‖xi−
yi‖2 form a bounded sequence, which we know is not the case. Thus, the case x = y is impossible. The
case x 6= y is “even less possible” – since, by Proposition, f is continuous on Dom f at both the points
x and y (note that Lipschitz continuity at a point clearly implies the usual continuity at it), so that
we would have f(xi) → f(x) and f(yi) → f(y) as i → ∞. Thus, the left hand side in (C.4.2) remains
bounded as i →∞. In the right hand side one factor – i – tends to ∞, and the other one has a nonzero
limit ‖x− y‖, so that the right hand side tends to ∞ as i →∞; this is the desired contradiction.
Proof of Proposition C.4.1.

10. We start with proving the above boundedness of f in a neighbourhood of x̄. This is immediate:
we know that there exists a neighbourhood Ur̄(x̄) which is contained in Dom f (since, by assumption,
x̄ is a relative interior point of Dom f). Now, we can find a small simplex ∆ of the dimension m =

1)indeed, we have lim
t→+0

f(0)−f(t)
t

= lim
t→+0

t−1/2 = +∞, while for a Lipschitz continuous f the ratios t−1(f(0)−
f(t)) should be bounded

390 APPENDIX C. CONVEX FUNCTIONS

dimAff(Dom f) with the vertices x0, ..., xm in Ur̄(x̄) in such a way that x̄ will be a convex combination
of the vectors xi with positive coefficients, even with the coefficients 1/(m + 1):

x̄ =
m∑

i=0

1
m + 1

xi
2).

We know that x̄ is the point from the relative interior of ∆ (Exercise B.8); since ∆ spans the same affine
subspace as Dom f , it means that ∆ contains Ur(x̄) with certain r > 0. Now, we have

∆ = {
m∑

i=0

λixi : λi ≥ 0,
∑

i

λi = 1}

so that in ∆ f is bounded from above by the quantity max
0≤i≤m

f(xi) by Jensen’s inequality:

f(
m∑

i=0

λixi) ≤
m∑

i=0

λif(xi) ≤ max
i

f(xi).

Consequently, f is bounded from above, by the same quantity, in Ur(x̄).
20. Now let us prove that if f is above bounded, by some C, in Ur = Ur(x̄), then it in fact is

below bounded in this neighbourhood (and, consequently, is bounded in Ur). Indeed, let x ∈ Ur, so that
x ∈ Aff(Dom f) and ‖x − x̄‖2 ≤ r. Setting x′ = x̄ − [x − x̄] = 2x̄ − x, we get x′ ∈ Aff(Dom f) and
‖x′ − x̄‖2 = ‖x− x̄‖2 ≤ r, so that x′ ∈ Ur. Since x̄ = 1

2 [x + x′], we have

2f(x̄) ≤ f(x) + f(x′),

whence
f(x) ≥ 2f(x̄)− f(x′) ≥ 2f(x̄)− C, x ∈ Ur(x̄),

and f is indeed below bounded in Ur.
(i) is proved.
30. (ii) is an immediate consequence of (i) and Lemma C.3.1. Indeed, let us prove that f is Lipschitz

continuous in the neighbourhood Ur/2(x̄), where r > 0 is such that f is bounded in Ur(x̄) (we already
know from (i) that the required r does exist). Let |f | ≤ C in Ur, and let x, x′ ∈ Ur/2, x 6= x′. Let
us extend the segment [x, x′] through the point x′ until it reaches, at certain point x′′, the (relative)
boundary of Ur. We have

x′ ∈ (x, x′′); ‖x′′ − x̄‖2 = r.

From (C.3.2) we have

f(x′)− f(x) ≤ ‖x′ − x‖2 f(x′′)− f(x)
‖x′′ − x‖2 .

The second factor in the right hand side does not exceed the quantity (2C)/(r/2) = 4C/r; indeed, the
numerator is, in absolute value, at most 2C (since |f | is bounded by C in Ur and both x, x′′ belong to
Ur), and the denominator is at least r/2 (indeed, x is at the distance at most r/2 from x̄, and x′′ is at
the distance exactly r from x̄, so that the distance between x and x′′, by the triangle inequality, is at
least r/2). Thus, we have

f(x′)− f(x) ≤ (4C/r)‖x′ − x‖2, x, x′ ∈ Ur/2;

2to see that the required ∆ exists, let us act as follows: first, the case of Dom f being a singleton is evident, so
that we can assume that Dom f is a convex set of dimension m ≥ 1. Without loss of generality, we may assume
that x̄ = 0, so that 0 ∈ Dom f and therefore Aff(Dom f) = Lin(Dom f). By Linear Algebra, we can find m

vectors y1, ..., ym in Dom f which form a basis in Lin(Dom f) = Aff(Dom f). Setting y0 = −
m∑

i=1

yi and taking into

account that 0 = x̄ ∈ ri Dom f , we can find ε > 0 such that the vectors xi = εyi, i = 0, ..., m, belong to Ur̄(x̄). By

construction, x̄ = 0 = 1
m+1

m∑
i=0

xi.

C.5. MAXIMA AND MINIMA OF CONVEX FUNCTIONS 391

swapping x and x′, we come to
f(x)− f(x′) ≤ (4C/r)‖x′ − x‖2,

whence
|f(x)− f(x′)| ≤ (4C/r)‖x− x′‖2, x, x′ ∈ Ur/2,

as required in (ii).

C.5 Maxima and minima of convex functions

As it was already mentioned, optimization problems involving convex functions possess nice theoretical
properties. One of the most important of these properties is given by the following

Theorem C.5.1 [“Unimodality”] Let f be a convex function on a convex set Q ⊂ Rn, and let x∗ ∈
Q ∩Dom f be a local minimizer of f on Q:

(∃r > 0) : f(y) ≥ f(x∗) ∀y ∈ Q, ‖y − x‖2 < r. (C.5.1)

Then x∗ is a global minimizer of f on Q:

f(y) ≥ f(x∗) ∀y ∈ Q. (C.5.2)

Moreover, the set Argmin
Q

f of all local (≡ global) minimizers of f on Q is convex.

If f is strictly convex (i.e., the convexity inequality f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) is strict
whenever x 6= y and λ ∈ (0, 1)), then the above set is either empty or is a singleton.

Proof. 1) Let x∗ be a local minimizer of f on Q and y ∈ Q, y 6= x∗; we should prove that f(y) ≥ f(x∗).
There is nothing to prove if f(y) = +∞, so that we may assume that y ∈ Dom f . Note that also
x∗ ∈ Dom f for sure – by definition of a local minimizer.

For all τ ∈ (0, 1) we have, by Lemma C.3.1,

f(x∗ + τ(y − x∗))− f(x∗)
τ‖y − x∗‖2 ≤ f(y)− f(x∗)

‖y − x∗‖2 .

Since x∗ is a local minimizer of f , the left hand side in this inequality is nonnegative for all small enough
values of τ > 0. We conclude that the right hand side is nonnegative, i.e., f(y) ≥ f(x∗).

2) To prove convexity of Argmin
Q

f , note that Argmin
Q

f is nothing but the level set levα(f) of f

associated with the minimal value min
Q

f of f on Q; as a level set of a convex function, this set is convex

(Proposition C.1.4).
3) To prove that the set Argmin

Q
f associated with a strictly convex f is, if nonempty, a singleton,

note that if there were two distinct minimizers x′, x′′, then, from strict convexity, we would have

f(
1
2
x′ +

1
2
x′′) <

1
2
[f(x′) + f(x′′) == min

Q
f,

which clearly is impossible - the argument in the left hand side is a point from Q!
Another pleasant fact is that in the case of differentiable convex functions the known from Calculus

necessary optimality condition (the Fermat rule) is sufficient for global optimality:

Theorem C.5.2 [Necessary and sufficient optimality condition for a differentiable convex function]
Let f be convex function on convex set Q ⊂ Rn, and let x∗ be an interior point of Q. Assume that

f is differentiable at x∗. Then x∗ is a minimizer of f on Q if and only if

∇f(x∗) = 0.

392 APPENDIX C. CONVEX FUNCTIONS

Proof. As a necessary condition for local optimality, the relation ∇f(x∗) = 0 is known from Calculus;
it has nothing in common with convexity. The essence of the matter is, of course, the sufficiency of the
condition ∇f(x∗) = 0 for global optimality of x∗ in the case of convex f . This sufficiency is readily given
by the Gradient inequality (C.3.1): by virtue of this inequality and due to ∇f(x∗) = 0,

f(y) ≥ f(x∗) + (y − x∗)∇f(x∗) = f(x∗)

for all y ∈ Q.
A natural question is what happens if x∗ in the above statement is not necessarily an interior point

of Q. Thus, assume that x∗ is an arbitrary point of a convex set Q and that f is convex on Q and
differentiable at x∗ (the latter means exactly that Dom f contains a neighbourhood of x∗ and f possesses
the first order derivative at x∗). Under these assumptions, when x∗ is a minimizer of f on Q?

The answer is as follows: let

TQ(x∗) = {h ∈ Rn : x∗ + th ∈ Q ∀ small enough t > 0}

be the radial cone of Q at x∗; geometrically, this is the set of all directions leading from x∗ inside Q, so
that a small enough positive step from x∗ along the direction keeps the point in Q. From the convexity of
Q it immediately follows that the radial cone indeed is a convex cone (not necessary closed). E.g., when
x∗ is an interior point of Q, then the radial cone to Q at x∗ clearly is the entire Rn. A more interesting
example is the radial cone to a polyhedral set

Q = {x : aT
i x ≤ bi, i = 1, ..., m}; (C.5.3)

for x∗ ∈ Q the corresponding radial cone clearly is the polyhedral cone

{h : aT
i h ≤ 0 ∀i : aT

i x∗ = bi} (C.5.4)

corresponding to the active at x∗ (i.e., satisfied at the point as equalities rather than as strict inequalities)
constraints aT

i x ≤ bi from the description of Q.
Now, for the functions in question the necessary and sufficient condition for x∗ to be a minimizer of

f on Q is as follows:

Proposition C.5.1 Let Q be a convex set, let x∗ ∈ Q, and let f be a convex on Q function which is
differentiable at x∗. The necessary and sufficient condition for x∗ to be a minimizer of f on Q is that
the derivative of f taken at x∗ along every direction from TQ(x∗) should be nonnegative:

hT∇f(x∗) ≥ 0 ∀h ∈ TQ(x∗).

Proof is immediate. The necessity is an evident fact which has nothing in common with convexity:
assuming that x∗ is a local minimizer of f on Q, we note that if there were h ∈ TQ(x∗) with hT∇f(x∗) < 0,
then we would have

f(x∗ + th) < f(x∗)

for all small enough positive t. On the other hand, x∗ + th ∈ Q for all small enough positive t due to
h ∈ TQ(x∗). Combining these observations, we conclude that in every neighbourhood of x∗ there are
points from Q with strictly better than the one at x∗ values of f ; this contradicts the assumption that
x∗ is a local minimizer of f on Q.

The sufficiency is given by the Gradient Inequality, exactly as in the case when x∗ is an interior point
of Q.

Proposition C.5.1 says that whenever f is convex on Q and differentiable at x∗ ∈ Q, the necessary
and sufficient condition for x∗ to be a minimizer of f on Q is that the linear form given by the gradient
∇f(x∗) of f at x∗ should be nonnegative at all directions from the radial cone TQ(x∗). The linear forms
nonnegative at all directions from the radial cone also form a cone; it is called the cone normal to Q at
x∗ and is denoted NQ(x∗). Thus, Proposition says that the necessary and sufficient condition for x∗ to
minimize f on Q is the inclusion ∇f(x∗) ∈ NQ(x∗). What does this condition actually mean, it depends

C.5. MAXIMA AND MINIMA OF CONVEX FUNCTIONS 393

on what is the normal cone: whenever we have an explicit description of it, we have an explicit form of
the optimality condition.

E.g., when TQ(x∗) = Rn (it is the same as to say that x∗ is an interior point of Q), then the normal
cone is comprised of the linear forms nonnegative at the entire space, i.e., it is the trivial cone {0};
consequently, for the case in question the optimality condition becomes the Fermat rule ∇f(x∗) = 0, as
we already know.

When Q is the polyhedral set (C.5.3), the normal cone is the polyhedral cone (C.5.4); it is comprised
of all directions which have nonpositive inner products with all ai coming from the active, in the afore-
mentioned sense, constraints. The normal cone is comprised of all vectors which have nonnegative inner
products with all these directions, i.e., of vectors a such that the inequality hT a ≥ 0 is a consequence
of the inequalities hT ai ≤ 0, i ∈ I(x∗) ≡ {i : aT

i x∗ = bi}. From the Homogeneous Farkas Lemma we
conclude that the normal cone is simply the conic hull of the vectors −ai, i ∈ I(x∗). Thus, in the case in
question (*) reads:

x∗ ∈ Q is a minimizer of f on Q if and only if there exist nonnegative reals λ∗i associated with “active”
(those from I(x∗)) values of i such that

∇f(x∗) +
∑

i∈I(x∗)

λ∗i ai = 0.

These are the famous Karush-Kuhn-Tucker optimality conditions; these conditions are necessary for
optimality in an essentially wider situation.

The indicated results demonstrate that the fact that a point x∗ ∈ Dom f is a global minimizer of a
convex function f depends only on the local behaviour of f at x∗. This is not the case with maximizers
of a convex function. First of all, such a maximizer, if exists, in all nontrivial cases should belong to the
boundary of the domain of the function:

Theorem C.5.3 Let f be convex, and let Q be the domain of f . Assume that f attains its maximum
on Q at a point x∗ from the relative interior of Q. Then f is constant on Q.

Proof. Let y ∈ Q; we should prove that f(y) = f(x∗). There is nothing to prove if y = x∗, so that we
may assume that y 6= x∗. Since, by assumption, x∗ ∈ riQ, we can extend the segment [x∗, y] through the
endpoint x∗, keeping the left endpoint of the segment in Q; in other words, there exists a point y′ ∈ Q
such that x∗ is an interior point of the segment [y′, y]:

x∗ = λy′ + (1− λ)y

for certain λ ∈ (0, 1). From the definition of convexity

f(x∗) ≤ λf(y′) + (1− λ)f(y).

Since both f(y′) and f(y) do not exceed f(x∗) (x∗ is a maximizer of f on Q!) and both the weights λ
and 1− λ are strictly positive, the indicated inequality can be valid only if f(y′) = f(y) = f(x∗).

The next theorem gives further information on maxima of convex functions:

Theorem C.5.4 Let f be a convex function on Rn and E be a subset of Rn. Then

sup
ConvE

f = sup
E

f. (C.5.5)

In particular, if S ⊂ Rn is convex and compact set, then the supremum of f on S is equal to the supremum
of f on the set of extreme points of S:

sup
S

f = sup
Ext(S)

f (C.5.6)

394 APPENDIX C. CONVEX FUNCTIONS

Proof. To prove (C.5.5), let x ∈ ConvE, so that x is a convex combination of points from E (Theorem
B.1.4 on the structure of convex hull):

x =
∑

i

λixi [xi ∈ E, λi ≥ 0,
∑

i

λi = 1].

Applying Jensen’s inequality (Proposition C.1.3), we get

f(x) ≤
∑

i

λif(xi) ≤
∑

i

λi sup
E

f = sup
E

f,

so that the left hand side in (C.5.5) is ≤ the right hand one; the inverse inequality is evident, since
ConvE ⊃ E.

To derive (C.5.6) from (C.5.5), it suffices to note that from the Krein-Milman Theorem (Theorem
B.2.6) for a convex compact set S one has S = ConvExt(S).

The last theorem on maxima of convex functions is as follows:

Theorem C.5.5 Let f be a convex function such that the domain Q of f is closed and does
not contain lines. Then

(i) If the set
Argmax

Q
f ≡ {x ∈ Q : f(x) ≥ f(y) ∀y ∈ Q}

of global maximizers of f is nonempty, then it intersects the set Ext(Q) of the extreme points
of Q, so that at least one of the maximizers of f is an extreme point of Q;

(ii) If the set Q is polyhedral and f is above bounded on Q, then the maximum of f on Q is
achieved: Argmax

Q
f 6= ∅.

Proof. Let us start with (i). We shall prove this statement by induction on the dimension
of Q. The base dim Q = 0, i.e., the case of a singleton Q, is trivial, since here Q = ExtQ =
Argmax

Q
f . Now assume that the statement is valid for the case of dim Q ≤ p, and let us

prove that it is valid also for the case of dim Q = p + 1. Let us first verify that the set
Argmax

Q
f intersects with the (relative) boundary of Q. Indeed, let x ∈ Argmax

Q
f . There

is nothing to prove if x itself is a relative boundary point of Q; and if x is not a boundary
point, then, by Theorem C.5.3, f is constant on Q, so that Argmax

Q
f = Q; and since Q is

closed, every relative boundary point of Q (such a point does exist, since Q does not contain
lines and is of positive dimension) is a maximizer of f on Q, so that here again Argmax

Q
f

intersects ∂riQ.

Thus, among the maximizers of f there exists at least one, let it be x, which belongs to the
relative boundary of Q. Let H be the hyperplane which supports Q at x (see Section B.2.5),
and let Q′ = Q ∩ H. The set Q′ is closed and convex (since Q and H are), nonempty (it
contains x) and does not contain lines (since Q does not). We have max

Q
f = f(x) = max

Q′
f

(note that Q′ ⊂ Q), whence

∅ 6= Argmax
Q′

f ⊂ Argmax
Q

f.

Same as in the proof of the Krein-Milman Theorem (Theorem B.2.6), we have dim Q′ <
dim Q. In view of this inequality we can apply to f and Q′ our inductive hypothesis to get

Ext(Q′) ∩Argmax
Q′

f 6= ∅.

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 395

Since Ext(Q′) ⊂ Ext(Q) by Lemma B.2.4 and, as we just have seen, Argmax
Q′

f ⊂ Argmax
Q

f ,

we conclude that the set Ext(Q) ∩Argmax
Q

f is not smaller than Ext(Q′) ∩Argmax
Q′

f and is

therefore nonempty, as required.
To prove (ii), let us use the known to us from Lecture 4 results on the structure of a polyhedral
convex set:

Q = Conv(V) + Cone (R),

where V and R are finite sets. We are about to prove that the upper bound of f on Q is
exactly the maximum of f on the finite set V :

∀x ∈ Q : f(x) ≤ max
v∈V

f(v). (C.5.7)

This will mean, in particular, that f attains its maximum on Q – e.g., at the point of V
where f attains its maximum on V .
To prove the announced statement, I first claim that if f is above bounded on Q, then every
direction r ∈ Cone (R) is descent for f , i.e., is such that every step in this direction taken
from every point x ∈ Q decreases f :

f(x + tr) ≤ f(x) ∀x ∈ Q∀t ≥ 0. (C.5.8)

Indeed, if, on contrary, there were x ∈ Q, r ∈ R and t ≥ 0 such that f(x + tr) > f(x), we
would have t > 0 and, by Lemma C.3.1,

f(x + sr) ≥ f(x) +
s

t
(f(x + tr)− f(x)), s ≥ t.

Since x ∈ Q and r ∈ Cone (R), x + sr ∈ Q for all s ≥ 0, and since f is above bounded on Q,
the left hand side in the latter inequality is above bounded, while the right hand one, due to
f(x + tr) > f(x), goes to +∞ as s →∞, which is the desired contradiction.
Now we are done: to prove (C.5.7), note that a generic point x ∈ Q can be represented as

x =
∑

v∈V

λvv + r [r ∈ Cone (R);
∑

v

λv = 1, λv ≥ 0],

and we have
f(x) = f(

∑
v∈V

λvv + r)

≤ f(
∑

v∈V

λvv) [by (C.5.8)]

≤ ∑
v∈V

λvf(v) [Jensen’s Inequality]

≤ max
v∈V

f(v)

C.6 Subgradients and Legendre transformation

C.6.1 Proper functions and their representation

According to one of two equivalent definitions, a convex function f on Rn is a function taking
values in R ∪ {+∞} such that the epigraph

Epi(f) = {(t, x) ∈ Rn+1 : t ≥ f(x)}

is a nonempty convex set. Thus, there is no essential difference between convex functions
and convex sets: convex function generates a convex set – its epigraph – which of course
remembers everything about the function. And the only specific property of the epigraph as

396 APPENDIX C. CONVEX FUNCTIONS

a convex set is that it has a recessive direction – namely, e = (1, 0) – such that the intersection
of the epigraph with every line directed by h is either empty, or is a closed ray. Whenever a
nonempty convex set possesses such a property with respect to certain direction, it can be
represented, in properly chosen coordinates, as the epigraph of some convex function. Thus,
a convex function is, basically, nothing but a way to look, in the literal meaning of the latter
verb, at a convex set.
Now, we know that “actually good” convex sets are closed ones: they possess a lot of
important properties (e.g., admit a good outer description) which are not shared by arbitrary
convex sets. It means that among convex functions there also are “actually good” ones –
those with closed epigraphs. Closedness of the epigraph can be “translated” to the functional
language and there becomes a special kind of continuity – lower semicontinuity:

Definition C.6.1 [Lower semicontinuity] Let f be a function (not necessarily convex) de-
fined on Rn and taking values in R ∪ {+∞}. We say that f is lower semicontinuous at a
point x̄, if for every sequence of points {xi} converging to x̄ one has

f(x̄) ≤ lim inf
i→∞

f(xi)

(here, of course, lim inf of a sequence with all terms equal to +∞ is +∞).
f is called lower semicontinuous, if it is lower semicontinuous at every point.

A trivial example of a lower semicontinuous function is a continuous one. Note, however,
that a semicontinuous function is not obliged to be continuous; what it is obliged, is to make
only “jumps down”. E.g., the function

f(x) =
{

0, x 6= 0
a, x = 0

is lower semicontinuous if a ≤ 0 (”jump down at x = 0 or no jump at all”), and is not lower
semicontinuous if a > 0 (”jump up”).
The following statement links lower semicontinuity with the geometry of the epigraph:

Proposition C.6.1 A function f defined on Rn and taking values from R∪{+∞} is lower
semicontinuous if and only if its epigraph is closed (e.g., due to its emptiness).

I shall not prove this statement, same as most of other statements in this Section; the reader
definitely is able to restore (very simple) proofs I am skipping.
An immediate consequence of the latter proposition is as follows:

Corollary C.6.1 The upper bound

f(x) = sup
α∈A

fα(x)

of arbitrary family of lower semicontinuous functions is lower semicontinuous.
[from now till the end of the Section, if the opposite is not explicitly stated, “a function”
means “a function defined on the entire Rn and taking values in R ∪ {+∞}”]

Indeed, the epigraph of the upper bound is the intersection of the epigraphs of the functions
forming the bound, and the intersection of closed sets always is closed.
Now let us look at convex lower semicontinuous functions; according to our general conven-
tion, “convex” means “satisfying the convexity inequality and finite at least at one point”,
or, which is the same, “with convex nonempty epigraph”; and as we just have seen, “lower
semicontinuous” means “with closed epigraph”. Thus, we are interested in functions with
closed convex nonempty epigraphs; to save words, let us call these functions proper.
What we are about to do is to translate to the functional language several constructions and
results related to convex sets. In the usual life, a translation (e.g. of poetry) typically results
in something less rich than the original; in contrast to this, in mathematics this is a powerful
source of new ideas and constructions.

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 397

“Outer description” of a proper function. We know that a closed convex set is
intersection of closed half-spaces. What does this fact imply when the set is the epigraph
of a proper function f? First of all, note that the epigraph is not a completely arbitrary
convex set: it has a recessive direction e = (1, 0) – the basic orth of the t-axis in the space
of variables t ∈ R, x ∈ Rn where the epigraph lives. This direction, of course, should be
recessive for every closed half-space

(∗) Π = {(t, x) : αt ≥ dT x− a} [|α|+ |d| > 0]

containing Epi(f) (note that what is written in the right hand side of the latter relation,
is one of many universal forms of writing down a general nonstrict linear inequality in the
space where the epigraph lives; this is the form the most convenient for us now). Thus, e
should be a recessive direction of Π ⊃ Epi(f); as it is immediately seen, recessivity of e for
Π means exactly that α ≥ 0. Thus, speaking about closed half-spaces containing Epi(f), we
in fact are considering some of the half-spaces (*) with α ≥ 0.
Now, there are two essentially different possibilities for α to be nonnegative – (A) to be
positive, and (B) to be zero. In the case of (B) the boundary hyperplane of Π is “vertical”
– it is parallel to e, and in fact it “bounds” only x – Π is comprised of all pairs (t, x) with x
belonging to certain half-space in the x-subspace and t being arbitrary real. These “vertical”
subspaces will be of no interest for us.
The half-spaces which indeed are of interest for us are the “nonvertical” ones: those given
by the case (A), i.e., with α > 0. For a non-vertical half-space Π, we always can divide the
inequality defining Π by α and to make α = 1. Thus, a “nonvertical” candidate to the role
of a closed half-space containing Epi(f) always can be written down as

(∗∗) Π = {(t, x) : t ≥ dT x− a},

i.e., can be represented as the epigraph of an affine function of x.
Now, when such a candidate indeed is a half-space containing Epi(f)? The answer is clear:
it is the case if and only if the affine function dT x − a everywhere in Rn is ≤ f(·) – as
we shall say, “is an affine minorant of f”; indeed, the smaller is the epigraph, the larger
is the function. If we knew that Epi(f) – which definitely is the intersection of all closed
half-spaces containing Epi(f) – is in fact the intersection of already nonvertical closed half-
spaces containing Epi(f), or, which is the same, the intersection of the epigraphs of all affine
minorants of f , we would be able to get a nice and nontrivial result:

(!) a proper convex function is the upper bound of affine functions – all its affine
minorants.

(indeed, we already know that it is the same – to say that a function is an upper bound of
certain family of functions, and to say that the epigraph of the function is the intersection
of the epigraphs of the functions of the family).
(!) indeed is true:

Proposition C.6.2 A proper convex function f is the upper bound of all its affine mino-
rants. Moreover, at every point x̄ ∈ ri Dom f from the relative interior of the domain f f is
even not the upper bound, but simply the maximum of its minorants: there exists an affine
function fx̄(x) which is ≤ f(x) everywhere in Rn and is equal to f at x = x̄.

Proof. I. We start with the “Moreover” part of the statement; this is the key to the entire
statement. Thus, we are about to prove that if x̄ ∈ ri Dom f , then there exists an affine
function fx̄(x) which is everywhere ≤ f(x), and at x = x̄ the inequality becomes an equality.
I.10 First of all, we easily can reduce the situation to the one when Dom f is full-dimensional.
Indeed, by shifting f we may make the affine span Aff(Dom f) of the domain of f to be a

398 APPENDIX C. CONVEX FUNCTIONS

linear subspace L in Rn; restricting f onto this linear subspace, we clearly get a proper
function on L. If we believe that our statement is true for the case when the domain of f is
full-dimensional, we can conclude that there exists an affine function

dT x− a [x ∈ L]

on L (d ∈ L) such that

f(x) ≥ dT x− a ∀x ∈ L; f(x̄) = dT x̄− a.

The affine function we get clearly can be extended, by the same formula, from L on the
entire Rn and is a minorant of f on the entire Rn – outside of L ⊃ Dom f f simply is +∞!
This minorant on Rn is exactly what we need.
I.20. Now let us prove that our statement is valid when Dom f is full-dimensional, so that
x̄ is an interior point of the domain of f . Let us look at the point y = (f(x̄), x̄). This is a
point from the epigraph of f , and I claim that it is a point from the relative boundary of
the epigraph. Indeed, if y were a relative interior point of Epi(f), then, taking y′ = y + e,
we would get a segment [y′, y] contained in Epi(f); since the endpoint y of the segment is
assumed to be relative interior for Epi(f), we could extend this segment a little through this
endpoint, not leaving Epi(f); but this clearly is impossible, since the t-coordinate of the new
endpoint would be < f(x̄), and the x-component of it still would be x̄.
Thus, y is a point from the relative boundary of Epi(f). Now I claim that y′ is an interior
point of Epi(f). This is immediate: we know from Theorem C.4.1 that f is continuous at x̄,
so that there exists a neighbourhood U of x̄ in Aff(Dom f) = Rn such that f(x) ≤ f(x̄+0.5)
whenever x ∈ U , or, in other words, the set

V = {(t, x) : x ∈ U, t > f(x̄) + 0.5}
is contained in Epi(f); but this set clearly contains a neighbourhood of y′ in Rn+1.
Now let us look at the supporting linear form to Epi(f) at the point y of the relative boundary
of Epi(f). This form gives us a linear inequality on Rn+1 which is satisfied everywhere on
Epi(f) and becomes equality at y; besides this, the inequality is not equality identically on
Epi(f), it is strict somewhere on Epi(f). Without loss of generality we may assume that the
inequality is of the form

(+) αt ≥ dT x− a.

Now, since our inequality is satisfied at y′ = y + e and becomes equality at (t, x) = y, α
should be ≥ 0; it cannot be 0, since in the latter case the inequality in question would be
equality also at y′ ∈ int Epi(f). But a linear inequality which is satisfied at a convex set and
is equality at an interior point of the set is trivial – coming from the zero linear form (this
is exactly the statement that a linear form attaining its minimum on a convex set at a point
from the relative interior of the set is constant on the set and on its affine hull).
Thus, inequality (+) which is satisfied on Epi(f) and becomes equality at y is an inequality
with α > 0. Let us divide both sides of the inequality by α; we get a new inequality of the
form

(&) t ≥ dT x− a

(I keep the same notation for the right hand side coefficients – we never will come back to
the old coefficients); this inequality is valid on Epi(f) and is equality at y = (f(x̄), x̄). Since
the inequality is valid on Epi(f), it is valid at every pair (t, x) with x ∈ Dom f and t = f(x):

(#) f(x) ≥ dT x− a ∀x ∈ Dom f ;

so that the right hand side is an affine minorant of f on Dom f and therefore – on Rn

(f = +∞ outside Dom f !). It remains to note that (#) is equality at x̄, since (&) is equality
at y.

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 399

II. We have proved that if F if the set of all affine functions which are minorants of f , then
the function

f̄(x) = sup
φ∈F

φ(x)

is equal to f on ri Dom f (and at x from the latter set in fact sup in the right hand side can
be replaced with max); to complete the proof of the Proposition, we should prove that f̄ is
equal to f also outside ri Dom f .

II.10. Let us first prove that f̄ is equal to f outside cl Dom f , or. which is the same, prove
that f̄(x) = +∞ outside cl Dom f . This is easy: is x̄ is a point outside clDom f , it can be
strongly separated from Dom f , see Separation Theorem (ii) (Theorem B.2.5). Thus, there
exists z ∈ Rn such that

zT x̄ ≥ zT x + ζ ∀x ∈ Dom f [ζ > 0]. (C.6.1)

Besides this, we already know that there exists at least one affine minorant of f , or, which
is the same, there exist a and d such that

f(x) ≥ dT x− a ∀x ∈ Dom f. (C.6.2)

Let us add to (C.6.2) inequality (C.6.1) multiplied by positive weight λ; we get

f(x) ≥ φλ(x) ≡ (d + λz)T x + [λζ − a− λzT x̄] ∀x ∈ Dom f.

This inequality clearly says that φλ(·) is an affine minorant of f on Rn for every λ > 0.
The value of this minorant at x = x̄ is equal to dT x̄ − a + λζ and therefore it goes to +∞
as λ → +∞. We see that the upper bound of affine minorants of f at x̄ indeed is +∞, as
claimed.

II.20. Thus, we know that the upper bound f̄ of all affine minorants of f is equal to f
everywhere on the relative interior of Dom f and everywhere outside the closure of Dom f ;
all we should prove that this equality is also valid at the points of the relative boundary of
Dom f . Let x̄ be such a point. There is nothing to prove if f̄(x̄) = +∞, since by construction
f̄ is everywhere ≤ f . Thus, we should prove that if f̄(x̄) = c < ∞, then f(x̄) = c. Since
f̄ ≤ f everywhere, to prove that f(x̄) = c is the same as to prove that f(x̄) ≤ c. This
is immediately given by lower semicontinuity of f : let us choose x′ ∈ ri Dom f and look
what happens along a sequence of points xi ∈ [x′, x̄) converging to x̄. All the points of this
sequence are relative interior points of Dom f (Lemma B.1.1), and consequently

f(xi) = f̄(xi).

Now, xi = (1− λi)x̄ + λix
′ with λi → +0 as i →∞; since f̄ clearly is convex (as the upper

bound of a family of affine and therefore convex functions), we have

f̄(xi) ≤ (1− λi)f̄(x̄) + λif̄(x′).

Putting things together, we get

f(xi) ≤ (1− λi)f̄(x̄) + λif(x′);

as i → ∞, xi → x̄, and the right hand side in our inequality converges to f̄(x̄) = c; since f
is lower semicontinuous, we get f(x̄) ≤ c.

We see why “translation of mathematical facts from one mathematical language to another”
– in our case, from the language of convex sets to the language of convex functions – may
be fruitful: because we invest a lot into the process rather than run it mechanically.

400 APPENDIX C. CONVEX FUNCTIONS

Closure of a convex function. We got a nice result on the “outer description” of a
proper convex function: it is the upper bound of a family of affine functions. Note that,
vice versa, the upper bound of every family of affine functions is a proper function, provided
that this upper bound is finite at least at one point (indeed, as we know from Section C.2.1,
upper bound of every family of convex functions is convex, provided that it is finite at least
at one point; and Corollary C.6.1 says that upper bound of lower semicontinuous functions
(e.g., affine ones – they are even continuous) is lower semicontinuous).
Now, what to do with a convex function which is not lower semicontinuous? The similar
question about convex sets – what to do with a convex set which is not closed – can be
resolved very simply: we can pass from the set to its closure and thus get a “normal” object
which is very “close” to the original one: the “main part” of the original set – its relative
interior – remains unchanged, and the “correction” adds to the set something relatively small
– the relative boundary. The same approach works for convex functions: if a convex function
f is not proper (i.e., its epigraph, being convex and nonempty, is not closed), we can “correct”
the function – replace it with a new function with the epigraph being the closure of Epi(f).
To justify this approach, we, of course, should be sure that the closure of the epigraph of
a convex function is also an epigraph of such a function. This indeed is the case, and to
see it, it suffices to note that a set G in Rn+1 is the epigraph of a function taking values in
R ∪ {+∞} if and only if the intersection of G with every vertical line {x = const, t ∈ R} is
either empty, or is a closed ray of the form {x = const, t ≥ t̄ > −∞}. Now, it is absolutely
evident that if G is the closure of the epigraph of a function f , that its intersection with a
vertical line is either empty, or is a closed ray, or is the entire line (the last case indeed can
take place – look at the closure of the epigraph of the function equal to − 1

x for x > 0 and
+∞ for x ≤ 0). We see that in order to justify our idea of “proper correction” of a convex
function we should prove that if f is convex, then the last of the indicated three cases –
the intersection of cl Epi(f) with a vertical line is the entire line – never occurs. This fact
evidently is a corollary of the following simple

Proposition C.6.3 A convex function is below bounded on every bounded subset of Rn.

Proof. Without loss of generality we may assume that the domain of the function f is
full-dimensional and that 0 is the interior point of the domain. According to Theorem C.4.1,
there exists a neighbourhood U of the origin – which can be thought of to be a centered at
the origin ball of some radius r > 0 – where f is bounded from above by some C. Now, if
R > 0 is arbitrary and x is an arbitrary point with |x| ≤ R, then the point

y = − r

R
x

belongs to U , and we have

0 =
r

r + R
x +

R

r + R
y;

since f is convex, we conclude that

f(0) ≤ r

r + R
f(x) +

R

r + R
f(y) ≤ r

r + R
f(x) +

R

r + R
c,

and we get the lower bound

f(x) ≥ r + R

r
f(0)− r

R
c

for the values of f in the centered at 0 ball of radius R.
Thus, we conclude that the closure of the epigraph of a convex function f is the epigraph of
certain function, let it be called the closure cl f of f . Of course, this latter function is convex
(its epigraph is convex – it is the closure of a convex set), and since its epigraph is closed,
cl f is proper. The following statement gives direct description of cl f in terms of f :

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 401

Proposition C.6.4 Let f be a convex function and cl f be its closure. Then

(i) For every x one has
cl f(x) = lim

r→+0
inf

x′:‖x′−x‖2≤r
f(x′).

In particular,
f(x) ≥ cl f(x)

for all x, and
f(x) = cl f(x)

whenever x ∈ ri Dom f , same as whenever x 6∈ clDom f .

Thus, the “correction” f 7→ cl f may vary f only at the points from the relative boundary of
Dom f ,

Dom f ⊂ Domcl f ⊂ clDom f,

whence also
ri Dom f = ri Dom cl f.

(ii) The family of affine minorants of cl f is exactly the family of affine minorants of f , so
that

cl f(x) = sup{φ(x) : φ is an affine minorant of f},
and the sup in the right hand side can be replaced with max whenever x ∈ ri Domcl f =
riDom f .

[“so that” comes from the fact that cl f is proper and is therefore the upper bound of its
affine minorants]

C.6.2 Subgradients

Let f be a convex function, and let x ∈ Dom f . It may happen that there exists an affine
minorant dT x− a of f which coincides with f at x:

f(y) ≥ dT y − a ∀y, f(x) = dT x− a.

From the equality in the latter relation we get a = dT x− f(x), and substituting this repre-
sentation of a into the first inequality, we get

f(y) ≥ f(x) + dT (y − x) ∀y. (C.6.3)

Thus, if f admits an affine minorant which is exact at x, then there exists d which gives rise
to inequality (C.6.3). Vice versa, if d is such that (C.6.3) takes place, then the right hand
side of (C.6.3), regarded as a function of y, is an affine minorant of f which is exact at x.

Now note that (C.6.3) expresses certain property of a vector d. A vector satisfying, for a
given x, this property – i.e., the slope of an exact at x affine minorant of f – is called a
subgradient of f at x, and the set of all subgradients of f at x is denoted ∂f(x).

Subgradients of convex functions play important role in the theory and numerical methods
of Convex Programming – they are quite reasonable surrogates of gradients. The most
elementary properties of the subgradients are summarized in the following statement:

Proposition C.6.5 Let f be a convex function and x be a point from Dom f . Then

(i) ∂f(x) is a closed convex set which for sure is nonempty when x ∈ ri Dom f

(ii) If x ∈ intDom f and f is differentiable at x, then ∂f(x) is the singleton comprised of
the usual gradient of f at x.

402 APPENDIX C. CONVEX FUNCTIONS

Proof. (i): Closedness and convexity of ∂f(x) are evident – (C.6.3) is an infinite system
of nonstrict linear inequalities with respect to d, the inequalities being indexed by y ∈ Rn.
Nonemptiness of ∂f(x) for the case when x ∈ ri Dom f – this is the most important fact
about the subgradients – is readily given by our preceding results. Indeed, we should prove
that if x ∈ ri Dom f , then there exists an affine minorant of f which is exact at x. But this
is an immediate consequence of Proposition C.6.4: part (i) of the proposition says that there
exists an affine minorant of f which is equal to cl f(x) at the point x, and part (i) says that
f(x) = cl f(x).
(ii): If x ∈ intDom f and f is differentiable at x, then ∇f(x) ∈ ∂f(x) by the Gradient
Inequality. To prove that in the case in question ∇f(x) is the only subgradient of f at x,
note that if d ∈ ∂f(x), then, by definition,

f(y)− f(x) ≥ dT (y − x) ∀y
Substituting y−x = th, h being a fixed direction and t being > 0, dividing both sides of the
resulting inequality by t and passing to limit as t → +0, we get

hT∇f(x) ≥ hT d.

This inequality should be valid for all h, which is possible if and only if d = ∇f(x).
Proposition C.6.5 explains why subgradients are good surrogates of gradients: at a point
where gradient exists, it is the only subgradient, but, in contrast to the gradient, a sub-
gradient exists basically everywhere (for sure in the relative interior of the domain of the
function). E.g., let us look at the simple function

f(x) = |x|
on the axis. It is, of course, convex (as maximum of two linear forms x and −x). Whenever
x 6= 0, f is differentiable at x with the derivative +1 for x > 0 and −1 for x < 0. At the point
x = 0 f is not differentiable; nevertheless, it must have subgradients at this point (since 0
is an interior point of the domain of the function). And indeed, it is immediately seen that
the subgradients of |x| at x = 0 are exactly the reals from the segment [−1, 1]. Thus,

∂|x| =



{−1}, x < 0
[−1, 1], x = 0
{+1}, x > 0

.

Note also that if x is a relative boundary point of the domain of a convex function, even
a “good” one, the set of subgradients of f at x may be empty, as it is the case with the
function

f(y) =
{−√y, y ≥ 0

+∞, y < 0 ;

it is clear that there is no non-vertical supporting line to the epigraph of the function at the
point (0, f(0)), and, consequently, there is no affine minorant of the function which is exact
at x = 0.
A significant – and important – part of Convex Analysis deals with subgradient calculus –
with the rules for computing subgradients of “composite” functions, like sums, superposi-
tions, maxima, etc., given subgradients of the operands. These rules extend onto nonsmooth
convex case the standard Calculus rules and are very nice and instructive; the related con-
siderations, however, are beyond our scope.

C.6.3 Legendre transformation

Let f be a convex function. We know that f “basically” is the upper bound of all its affine
minorants; this is exactly the case when f is proper, otherwise the corresponding equality

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 403

takes place everywhere except, perhaps, some points from the relative boundary of Dom f .
Now, when an affine function dT x− a is an affine minorant of f? It is the case if and only if

f(x) ≥ dT x− a

for all x or, which is the same, if and only if

a ≥ dT x− f(x)

for all x. We see that if the slope d of an affine function dT x − a is fixed, then in order for
the function to be a minorant of f we should have

a ≥ sup
x∈Rn

[dT x− f(x)].

The supremum in the right hand side of the latter relation is certain function of d; this
function is called the Legendre transformation of f and is denoted f∗:

f∗(d) = sup
x∈Rn

[dT x− f(x)].

Geometrically, the Legendre transformation answers the following question: given a slope d
of an affine function, i.e., given the hyperplane t = dT x in Rn+1, what is the minimal “shift
down” of the hyperplane which places it below the graph of f?

From the definition of the Legendre transformation it follows that this is a proper function.
Indeed, we loose nothing when replacing sup

x∈Rn

[dT x− f(x)] by sup
x∈Dom f

[dT x− f(x)], so that

the Legendre transformation is the upper bound of a family of affine functions. Since this
bound is finite at least at one point (namely, at every d coming form affine minorant of f ; we
know that such a minorant exists), it is a convex lower semicontinuous function, as claimed.

The most elementary (and the most fundamental) fact about the Legendre transformation
is its symmetry:

Proposition C.6.6 Let f be a convex function. Then twice taken Legendre transformation
of f is the closure cl f of f :

(f∗)∗ = cl f.

In particular, if f is proper, then it is the Legendre transformation of its Legendre transfor-
mation (which also is proper).

Proof is immediate. The Legendre transformation of f∗ at the point x is, by definition,

sup
d∈Rn

[xT d− f∗(d)] = sup
d∈Rn,a≥f∗(d)

[dT x− a];

the second sup here is exactly the supremum of all affine minorants of f (this is the origin of
the Legendre transformation: a ≥ f∗(d) if and only if the affine form dT x− a is a minorant
of f). And we already know that the upper bound of all affine minorants of f is the closure
of f .

The Legendre transformation is a very powerful tool – this is a “global” transformation, so
that local properties of f∗ correspond to global properties of f . E.g.,

• d = 0 belongs to the domain of f∗ if and only if f is below bounded, and if it is the
case, then f∗(0) = − inf f ;

• if f is proper, then the subgradients of f∗ at d = 0 are exactly the minimizers of f on
Rn;

404 APPENDIX C. CONVEX FUNCTIONS

• Dom f∗ is the entire Rn if and only if f(x) grows, as ‖x‖2 → ∞, faster than ‖x‖2:
there exists a function r(t) →∞, as t →∞ such that

f(x) ≥ r(‖x‖2) ∀x,

etc. Thus, whenever we can compute explicitly the Legendre transformation of f , we get
a lot of “global” information on f . Unfortunately, the more detailed investigation of the
properties of Legendre transformation is beyond our scope; I simply list several simple facts
and examples:

• From the definition of Legendre transformation,

f(x) + f∗(d) ≥ xT d ∀x, d.

Specifying here f and f∗, we get certain inequality, e.g., the following one:
[Young’s Inequality] if p and q are positive reals such that 1

p + 1
q = 1, then

|x|p
p

+
|d|q
q
≥ xd ∀x, d ∈ R

(indeed, as it is immediately seen, the Legendre transformation of the function |x|p/p
is |d|q/q)

Consequences. Very simple-looking Young’s inequality gives rise to a very nice
and useful Hölder inequality:

Let 1 ≤ p ≤ ∞ and let q be such 1
p + 1

q = 1 (p = 1 ⇒ q = ∞, p = ∞ ⇒ q = 1). For
every two vectors x, y ∈ Rn one has

n∑

i=1

|xiyi| ≤ ‖x‖p‖y‖q (C.6.4)

Indeed, there is nothing to prove if p or q is ∞ – if it is the case, the inequality becomes
the evident relation ∑

i

|xiyi| ≤ (max
i
|xi|)(

∑

i

|yi|).

Now let 1 < p < ∞, so that also 1 < q < ∞. In this case we should prove that
∑

i

|xiyi| ≤ (
∑

i

|xi|p)1/p(
∑

i

|yi|q)1/q.

There is nothing to prove if one of the factors in the right hand side vanishes; thus, we
can assume that x 6= 0 and y 6= 0. Now, both sides of the inequality are of homogeneity
degree 1 with respect to x (when we multiply x by t, both sides are multiplied by
|t|), and similarly with respect to y. Multiplying x and y by appropriate reals, we can
make both factors in the right hand side equal to 1: ‖x‖p = ‖y‖p = 1. Now we should
prove that under this normalization the left hand side in the inequality is ≤ 1, which
is immediately given by the Young inequality:

∑

i

|xiyi| ≤
∑

i

[|xi|p/p + |yi|q/q] = 1/p + 1/q = 1.

Note that the Hölder inequality says that

|xT y| ≤ ‖x‖p‖y‖q; (C.6.5)

C.6. SUBGRADIENTS AND LEGENDRE TRANSFORMATION 405

when p = q = 2, we get the Cauchy inequality. Now, inequality (C.6.5) is exact in the
sense that for every x there exists y with ‖y‖q = 1 such that

xT y = ‖x‖p [= ‖x‖p‖y‖q];

it suffices to take
yi = ‖x‖1−p

p |xi|p−1sign(xi)

(here x 6= 0; the case of x = 0 is trivial – here y can be an arbitrary vector with
‖y‖q = 1).
Combining our observations, we come to an extremely important, although simple,
fact:

‖x‖p = max{yT x : ‖y‖q ≤ 1} [
1
p

+
1
q

= 1]. (C.6.6)

It follows, in particular, that ‖x‖p is convex (as an upper bound of a family of linear
forms), whence

‖x′ + x′′‖p = 2‖1
2
x′ +

1
2
x′′‖p ≤ 2(‖x′‖p/2 + ‖x′′‖p/2) = ‖x′‖p + ‖x′′‖p;

this is nothing but the triangle inequality. Thus, ‖x‖p satisfies the triangle inequality;
it clearly possesses two other characteristic properties of a norm – positivity and ho-
mogeneity. Consequently, ‖ · ‖p is a norm – the fact that we announced twice and have
finally proven now.

• The Legendre transformation of the function

f(x) ≡ −a

is the function which is equal to a at the origin and is +∞ outside the origin; similarly,
the Legendre transformation of an affine function d̄T x− a is equal to a at d = d̄ and is
+∞ when d 6= d̄;

• The Legendre transformation of the strictly convex quadratic form

f(x) =
1
2
xT Ax

(A is positive definite symmetric matrix) is the quadratic form

f∗(d) =
1
2
dT A−1d

• The Legendre transformation of the Euclidean norm

f(x) = ‖x‖2
is the function which is equal to 0 in the closed unit ball centered at the origin and is
+∞ outside the ball.
The latter example is a particular case of the following statement:
Let ‖x‖ be a norm on Rn, and let

‖d‖∗ = sup{dT x : ‖x‖ ≤ 1}

be the conjugate to ‖ · ‖ norm.

Exercise C.1 Prove that ‖ · ‖∗ is a norm, and that the norm conjugate to ‖ · ‖∗ is the
original norm ‖ · ‖.
Hint: Observe that the unit ball of ‖ · ‖∗ is exactly the polar of the unit ball of ‖ · ‖.

406 APPENDIX C. CONVEX FUNCTIONS

The Legendre transformation of ‖x‖ is the characteristic function of the unit ball of
the conjugate norm, i.e., is the function of d equal to 0 when ‖d‖∗ ≤ 1 and is +∞
otherwise.

E.g., (C.6.6) says that the norm conjugate to ‖ · ‖p, 1 ≤ p ≤ ∞, is ‖ · ‖q, 1/p +1/q = 1;
consequently, the Legendre transformation of p-norm is the characteristic function of
the unit ‖ · q-ball.

Appendix D

Convex Programming, Lagrange
Duality, Saddle Points

D.1 Mathematical Programming Program

A (constrained) Mathematical Programming program is a problem as follows:

(P) min {f(x) : x ∈ X, g(x) ≡ (g1(x), ..., gm(x)) ≤ 0, h(x) ≡ (h1(x), ..., hk(x)) = 0} . (D.1.1)

The standard terminology related to (D.1.1) is:

• [domain] X is called the domain of the problem

• [objective] f is called the objective

• [constraints] gi, i = 1, ...,m, are called the (functional) inequality constraints; hj , j = 1, ..., k, are
called the equality constraints1)

In the sequel, if the opposite is not explicitly stated, it always is assumed that the objective and the
constraints are well-defined on X.

• [feasible solution] a point x ∈ Rn is called a feasible solution to (D.1.1), if x ∈ X, gi(x) ≤ 0,
i = 1, ...,m, and hj(x) = 0, j = 1, ..., k, i.e., if x satisfies all restrictions imposed by the formulation
of the problem

– [feasible set] the set of all feasible solutions is called the feasible set of the problem

– [feasible problem] a problem with a nonempty feasible set (i.e., the one which admits feasible
solutions) is called feasible (or consistent)

– [active constraints] an inequality constraint gi(·) ≤ 0 is called active at a given feasible solution
x, if this constraint is satisfied at the point as an equality rather than strict inequality, i.e., if

gi(x) = 0.

A equality constraint hi(x) = 0 by definition is active at every feasible solution x.

1)rigorously speaking, the constraints are not the functions gi, hj , but the relations gi(x) ≤ 0, hj(x) = 0; in
fact the word “constraints” is used in both these senses, and it is always clear what is meant. E.g., saying that
x satisfies the constraints, we mean the relations, and saying that the constraints are differentiable, we mean the
functions

407

408APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

• [optimal value] the quantity

f∗ =

{
inf

x∈X:g(x)≤0,h(x)=0
f(x), the problem is feasible

+∞, the problem is infeasible

is called the optimal value of the problem

– [below boundedness] the problem is called below bounded, if its optimal value is > −∞, i.e.,
if the objective is below bounded on the feasible set

• [optimal solution] a point x ∈ Rn is called an optimal solution to (D.1.1), if x is feasible and
f(x) ≤ f(x′) for any other feasible solution, i.e., if

x ∈ Argmin
x′∈X:g(x′)≤0,h(x′)=0

f(x′)

– [solvable problem] a problem is called solvable, if it admits optimal solutions

– [optimal set] the set of all optimal solutions to a problem is called its optimal set

To solve the problem exactly means to find its optimal solution or to detect that no optimal solution
exists.

D.2 Convex Programming program and Lagrange Duality The-
orem

A Mathematical Programming program (P) is called convex (or Convex Programming program), if

• X is a convex subset of Rn

• f, g1, ..., gm are real-valued convex functions on X,
and

• there are no equality constraints at all.

Note that instead of saying that there are no equality constraints, we could say that there are constraints
of this type, but only linear ones; this latter case can be immediately reduced to the one without equality
constraints by replacing Rn with the affine subspace given by the (linear) equality constraints.

D.2.1 Convex Theorem on Alternative

The simplest case of a convex program is, of course, a Linear Programming program – the one where
X = Rn and the objective and all the constraints are linear. We already know what are optimality
conditions for this particular case – they are given by the Linear Programming Duality Theorem. How
did we get these conditions?

We started with the observation that the fact that a point x∗ is an optimal solution can be expressed
in terms of solvability/unsolvability of certain systems of inequalities: in our now terms, these systems
are

x ∈ G, f(x) ≤ c, gj(x) ≤ 0, j = 1, ...,m (D.2.1)

and
x ∈ G, f(x) < c, gj(x) ≤ 0, j = 1, ..., m; (D.2.2)

here c is a parameter. Optimality of x∗ for the problem means exactly that for appropriately chosen c
(this choice, of course, is c = f(x∗)) the first of these systems is solvable and x∗ is its solution, while the
second system is unsolvable. Given this trivial observation, we converted the “negative” part of it – the

D.2. CONVEX PROGRAMMING PROGRAM AND LAGRANGE DUALITY THEOREM409

claim that (D.2.2) is unsolvable – into a positive statement, using the General Theorem on Alternative,
and this gave us the LP Duality Theorem.

Now we are going to use the same approach. What we need is a “convex analogy” to the Theorem
on Alternative – something like the latter statement, but for the case when the inequalities in question
are given by convex functions rather than the linear ones (and, besides it, we have a “convex inclusion”
x ∈ X).

It is easy to guess the result we need. How did we come to the formulation of the Theorem on
Alternative? The question we were interested in was, basically, how to express in an affirmative manner
the fact that a system of linear inequalities has no solutions; to this end we observed that if we can
combine, in a linear fashion, the inequalities of the system and get an obviously false inequality like
0 ≤ −1, then the system is unsolvable; this condition is certain affirmative statement with respect to the
weights with which we are combining the original inequalities.

Now, the scheme of the above reasoning has nothing in common with linearity (and even convexity)
of the inequalities in question. Indeed, consider an arbitrary inequality system of the type (D.2.2):

(I)
f(x) < c
gj(x) ≤ 0, j = 1, ...,m

x ∈ X;

all we assume is that X is a nonempty subset in Rn and f, g1, ..., gm are real-valued functions on X. It
is absolutely evident that

if there exist nonnegative λ1, ..., λm such that the inequality

f(x) +
m∑

j=1

λjgj(x) < c (D.2.3)

has no solutions in X, then (I) also has no solutions.

Indeed, a solution to (I) clearly is a solution to (D.2.3) – the latter inequality is nothing but a combination
of the inequalities from (I) with the weights 1 (for the first inequality) and λj (for the remaining ones).

Now, what does it mean that (D.2.3) has no solutions? A necessary and sufficient condition for this
is that the infimum of the left hand side of (D.2.3) in x ∈ X is ≥ c. Thus, we come to the following
evident

Proposition D.2.1 [Sufficient condition for insolvability of (I)] Consider a system (I) with arbitrary
data and assume that the system

(II)

inf
x∈X

[
f(x) +

m∑
j=1

λjgj(x)

]
≥ c

λj ≥ 0, j = 1, ..., m

with unknowns λ1, ..., λm has a solution. Then (I) is infeasible.

Let me stress that this result is completely general; it does not require any assumptions on the entities
involved.

The result we have obtained, unfortunately, does not help us: the actual power of the Theorem on
Alternative (and the fact used to prove the Linear Programming Duality Theorem) is not the sufficiency
of the condition of Proposition for infeasibility of (I), but the necessity of this condition. Justification of
necessity of the condition in question has nothing in common with the evident reasoning which gives the
sufficiency. The necessity in the linear case (X = Rn, f , g1, ..., gm are linear) can be established via the
Homogeneous Farkas Lemma. Now we shall prove the necessity of the condition for the convex case, and
already here we need some additional, although minor, assumptions; and in the general nonconvex case

410APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

the condition in question simply is not necessary for infeasibility of (I) [and this is very bad – this is the
reason why there exist difficult optimization problems which we do not know how to solve efficiently].

The just presented “preface” explains what we should do; now let us carry out our plan. We start
with the aforementioned “minor regularity assumptions”.

Definition D.2.1 [Slater Condition] Let X ⊂ Rn and g1, ..., gm be real-valued functions on X. We
say that these functions satisfy the Slater condition on X, if there exists x ∈ X such that gj(x) < 0,
j = 1, ..., m.

An inequality constrained program

(IC) min {f(x) : gj(x) ≤ 0, j = 1, ..., m, x ∈ X}
(f, g1, ..., gm are real-valued functions on X) is called to satisfy the Slater condition, if g1, ..., gm satisfy
this condition on X.

We are about to establish the following fundamental fact:

Theorem D.2.1 [Convex Theorem on Alternative]
Let X ⊂ Rn be convex, let f, g1, ..., gm be real-valued convex functions on X, and let g1, ..., gm satisfy the
Slater condition on X. Then system (I) is solvable if and only if system (II) is unsolvable.

Proof. The first part of the statement – “if (II) has a solution, then (I) has no solutions” – is given by
Proposition D.2.1. What we need is to prove the inverse statement. Thus, let us assume that (I) has no
solutions, and let us prove that then (II) has a solution.

Without loss of generality we may assume that X is full-dimensional: ri X = int X (indeed, otherwise
we could replace our “universe” Rn with the affine span of X).

10. Let us set

F (x) =




f(x)
g1(x)

...
gmx)




and consider two sets in Rm+1:

S = {u = (u0, ..., um) | ∃x ∈ X : F (x) ≤ u}
and

T = {(u0, ..., um) | u0 < c, u1 ≤ 0, u2 ≤ 0, ..., um ≤ 0}.
I claim that

• (i) S and T are nonempty convex sets;

• (ii) S and T does not intersect.

Indeed, convexity and nonemptiness of T is evident, same as nonemptiness of S. Convexity of S is an
immediate consequence of the fact that X and f, g1, ..., gm are convex. Indeed, assuming that u′, u′′ ∈ S,
we conclude that there exist x′, x′′ ∈ X such that F (x′) ≤ u′ and F (x′′) ≤ u′′, whence, for every λ ∈ [0, 1].

λF (x′) + (1− λ)F (x′′) ≤ λu′ + (1− λ)u′′.

The left hand side in this inequality, due to convexity of X and f, g1, ..., gm, is ≥ F (y), y = λx′+(1−λ)x′′.
Thus, for the point v = λu′ + (1 − λ)u′′ there exists y ∈ X with F (y) ≤ v, whence v ∈ S. Thus, S is
convex.

The fact that S ∩ T = ∅ is an evident equivalent reformulation of the fact that (I) has no solutions.
20. Since S and T are nonempty convex sets with empty intersection, by Separation Theorem

(Theorem B.2.5) they can be separated by a linear form: there exist a = (a0, ..., am) 6= 0 such that

inf
u∈S

m∑

j=0

ajuj ≥ sup
u∈T

m∑

j=0

ajuj . (D.2.4)

D.2. CONVEX PROGRAMMING PROGRAM AND LAGRANGE DUALITY THEOREM411

30. Let us look what can be said about the vector a. I claim that, first,

a ≥ 0 (D.2.5)

and, second,
a0 > 0. (D.2.6)

Indeed, to prove (D.2.5) note that if some ai were negative, then the right hand side in (D.2.4) would be
+∞ 2), which is forbidden by (D.2.4).

Thus, a ≥ 0; with this in mind, we can immediately compute the right hand side of (D.2.4):

sup
u∈T

m∑

j=0

ajuj = sup
u0<c,u1,...,um≤0

m∑

j=0

ajuj = a0c.

Since for every x ∈ X the point F (x) belongs to S, the left hand side in (D.2.4) is not less that

inf
x∈X


a0f(x) +

m∑

j=1

ajgj(x)


 ;

combining our observations, we conclude that (D.2.4) implies the inequality

inf
x∈X


a0f(x) +

m∑

j=1

ajgj(x)


 ≥ a0c. (D.2.7)

Now let us prove that a0 > 0. This crucial fact is an immediate consequence of the Slater condition.
Indeed, let x̄ ∈ X be the point given by this condition, so that gj(x̄) < 0. From (D.2.7) we conclude that

a0f(x̄) +
m∑

j=0

ajgj(x̄) ≥ a0c.

If a0 were 0, then the right hand side of this inequality would be 0, while the left one would be the

combination
m∑

j=0

ajgj(x̄) of negative reals gj(x̄) with nonnegative coefficients aj not all equal to 0 3), so

that the left hand side is strictly negative, which is the desired contradiction.
40. Now we are done: since a0 > 0, we are in our right to divide both sides of (D.2.7) by a0 and thus

get

inf
x∈X


f0(x) +

m∑

j=1

λjgj(x)


 ≥ c, (D.2.8)

where λj = aj/a0 ≥ 0. Thus, (II) has a solution.

D.2.2 Lagrange Function and Lagrange Duality

D.2.2.A. Lagrange function

The result of Convex Theorem on Alternative brings to our attention the function

L(λ) = inf
x∈X


f0(x) +

m∑

j=1

λjgj(x)


 , (D.2.9)

2)look what happens when all coordinates in u, except the ith one, are fixed at values allowed by the description
of T and ui is a large in absolute value negative real

3)indeed, from the very beginning we know that a 6= 0, so that if a0 = 0, then not all aj , j ≥ 1, are zeros

412APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

same as the aggregate

L(x, λ) = f0(x) +
m∑

j=1

λjgj(x) (D.2.10)

from which this function comes. Aggregate (D.2.10) is called the Lagrange function of the inequality
constrained optimization program

(IC) min {f(x) : gj(x) ≤ 0, j = 1, ..., m, x ∈ X} .

The Lagrange function of an optimization program is a very important entity: most of optimality condi-
tions are expressed in terms of this function. Let us start with translating of what we already know to
the language of the Lagrange function.

D.2.2.B. Convex Programming Duality Theorem

Theorem D.2.2 Consider an arbitrary inequality constrained optimization program (IC). Then
(i) The infimum

L(λ) = inf
x∈X

L(x, λ)

of the Lagrange function in x ∈ X is, for every λ ≥ 0, a lower bound on the optimal value in (IC), so
that the optimal value in the optimization program

(IC∗) sup
λ≥0

L(λ)

also is a lower bound for the optimal value in (IC);
(ii) [Convex Duality Theorem] If (IC)

• is convex,

• is below bounded

and

• satisfies the Slater condition,

then the optimal value in (IC∗) is attained and is equal to the optimal value in (IC).

Proof. (i) is nothing but Proposition D.2.1 (why?). It makes sense, however, to repeat here the corre-
sponding one-line reasoning:

Let λ ≥ 0; in order to prove that

L(λ) ≡ inf
x∈X

L(x, λ) ≤ c∗ [L(x, λ) = f(x) +
m∑

j=1

λjgj(x)],

where c∗ is the optimal value in (IC), note that if x is feasible for (IC), then evidently
L(x, λ) ≤ f(x), so that the infimum of L over x ∈ X is ≤ the infimum c∗ of f over the
feasible set of (IC).

(ii) is an immediate consequence of the Convex Theorem on Alternative. Indeed, let c∗ be the optimal
value in (IC). Then the system

f(x) < c∗, gj(x) ≤ 0, j = 1, ..., m

has no solutions in X, and by the above Theorem the system (II) associated with c = c∗ has a solution,
i.e., there exists λ∗ ≥ 0 such that L(λ∗) ≥ c∗. But we know from (i) that the strict inequality here is
impossible and, besides this, that L(λ) ≤ c∗ for every λ ≥ 0. Thus, L(λ∗) = c∗ and λ∗ is a maximizer of
L over λ ≥ 0.

D.2. CONVEX PROGRAMMING PROGRAM AND LAGRANGE DUALITY THEOREM413

C.1.2.C. Dual program

Theorem D.2.2 establishes certain connection between two optimization programs – the “primal” program

(IC) min {f(x) : gj(x) ≤ 0, j = 1, ..., m, x ∈ X}
and its Lagrange dual program

(IC∗) max
{

L(λ) ≡ inf
x∈X

L(x, λ) : λ ≥ 0
}

(the variables λ of the dual problem are called the Lagrange multipliers of the primal problem). The
Theorem says that the optimal value in the dual problem is ≤ the one in the primal, and under some
favourable circumstances (the primal problem is convex below bounded and satisfies the Slater condition)
the optimal values in the programs are equal to each other.

In our formulation there is some asymmetry between the primal and the dual programs. In fact both
of the programs are related to the Lagrange function in a quite symmetric way. Indeed, consider the
program

min
x∈X

L(x), L(x) = sup
λ≥0

L(λ, x).

The objective in this program clearly is +∞ at every point x ∈ X which is not feasible for (IC) and is
f(x) on the feasible set of (IC), so that the program is equivalent to (IC). We see that both the primal
and the dual programs come from the Lagrange function: in the primal problem, we minimize over X
the result of maximization of L(x, λ) in λ ≥ 0, and in the dual program we maximize over λ ≥ 0 the
result of minimization of L(x, λ) in x ∈ X. This is a particular (and the most important) example of a
zero sum two person game – the issue we will speak about later.

We have seen that under certain convexity and regularity assumptions the optimal values in (IC)
and (IC∗) are equal to each. There is also another way to say when these optimal values are equal
– this is always the case when the Lagrange function possesses a saddle point, i.e., there exists a pair
x∗ ∈ X, λ∗ ≥ 0 such that at the pair L(x, λ) attains its minimum as a function of x ∈ X and attains its
maximum as a function of λ ≥ 0:

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀x ∈ X, λ ≥ 0.

It can be easily demonstrated (do it by yourself or look at Theorem D.3.1) that

Proposition D.2.2 (x∗, λ∗) is a saddle point of the Lagrange function L of (IC) if and only if x∗ is
an optimal solution to (IC), λ∗ is an optimal solution to (IC∗) and the optimal values in the indicated
problems are equal to each other.

Our current goal is to extract from what we already know optimality conditions for convex programs.

D.2.3 Optimality Conditions in Convex Programming

D.2.3.A. Saddle point form of optimality conditions

Theorem D.2.3 [Saddle Point formulation of Optimality Conditions in Convex Programming]
Let (IC) be an optimization program, L(x, λ) be its Lagrange function, and let x∗ ∈ X. Then

(i) A sufficient condition for x∗ to be an optimal solution to (IC) is the existence of the vector of
Lagrange multipliers λ∗ ≥ 0 such that (x∗, λ∗) is a saddle point of the Lagrange function L(x, λ), i.e., a
point where L(x, λ) attains its minimum as a function of x ∈ X and attains its maximum as a function
of λ ≥ 0:

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀x ∈ X, λ ≥ 0. (D.2.11)

(ii) if the problem (IC) is convex and satisfies the Slater condition, then the above condition is
necessary for optimality of x∗: if x∗ is optimal for (IC), then there exists λ∗ ≥ 0 such that (x∗, λ∗)
is a saddle point of the Lagrange function.

414APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

Proof. (i): assume that for a given x∗ ∈ X there exists λ∗ ≥ 0 such that (D.2.11) is satisfied, and let us
prove that then x∗ is optimal for (IC). First of all, x∗ is feasible: indeed, if gj(x∗) > 0 for some j, then,
of course, sup

λ≥0
L(x∗, λ) = +∞ (look what happens when all λ’s, except λj , are fixed, and λj → +∞); but

sup
λ≥0

L(x∗, λ) = +∞ is forbidden by the second inequality in (D.2.11).

Since x∗ is feasible, sup
λ≥0

L(x∗, λ) = f(x∗), and we conclude from the second inequality in (D.2.11)

that L(x∗, λ∗) = f(x∗). Now the first inequality in (D.2.11) reads

f(x) +
m∑

j=1

λ∗jgj(x) ≥ f(x∗) ∀x ∈ X.

This inequality immediately implies that x∗ is optimal: indeed, if x is feasible for (IC), then the left hand
side in the latter inequality is ≤ f(x) (recall that λ∗ ≥ 0), and the inequality implies that f(x) ≥ f(x∗).

(ii): Assume that (IC) is a convex program, x∗ is its optimal solution and the problem satisfies the
Slater condition; we should prove that then there exists λ∗ ≥ 0 such that (x∗, λ∗) is a saddle point of the
Lagrange function, i.e., that (D.2.11) is satisfied. As we know from the Convex Programming Duality
Theorem (Theorem D.2.2.(ii)), the dual problem (IC∗) has a solution λ∗ ≥ 0 and the optimal value of
the dual problem is equal to the optimal value in the primal one, i.e., to f(x∗):

f(x∗) = L(λ∗) ≡ inf
x∈X

L(x, λ∗). (D.2.12)

We immediately conclude that
λ∗j > 0 ⇒ gj(x∗) = 0

(this is called complementary slackness: positive Lagrange multipliers can be associated only with active
(satisfied at x∗ as equalities) constraints. Indeed, from (D.2.12) it for sure follows that

f(x∗) ≤ L(x∗, λ∗) = f(x∗) +
m∑

j=1

λ∗jgj(x∗);

the terms in the
∑
j

in the right hand side are nonpositive (since x∗ is feasible for (IC)), and the sum

itself is nonnegative due to our inequality; it is possible if and only if all the terms in the sum are zero,
and this is exactly the complementary slackness.

From the complementary slackness we immediately conclude that f(x∗) = L(x∗, λ∗), so that (D.2.12)
results in

L(x∗, λ∗) = f(x∗) = inf
x∈X

L(x, λ∗).

On the other hand, since x∗ is feasible for (IC), we have L(x∗, λ) ≤ f(x∗) whenever λ ≥ 0. Combining
our observations, we conclude that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

for all x ∈ X and all λ ≥ 0.
Note that (i) is valid for an arbitrary inequality constrained optimization program, not necessarily

convex. However, in the nonconvex case the sufficient condition for optimality given by (i) is extremely
far from being necessary and is “almost never” satisfied. In contrast to this, in the convex case the
condition in question is not only sufficient, but also “nearly necessary” – it for sure is necessary when
(IC) is a convex program satisfying the Slater condition.

We are about to prove a modification of Theorem D.2.3, where we slightly relax the Slater condition.

D.2. CONVEX PROGRAMMING PROGRAM AND LAGRANGE DUALITY THEOREM415

Theorem D.2.4 Consider a convex problem (IC), and let x∗ be a feasible solution of the problem. As-
sume that the functions g1, ..., gk are affine, while the functions f , gk+1, ..., gm are differentiable at x.
Finally, assume the restricted Slater condition: there exists x̄ ∈ ri X such that gi(x̄) ≤ 0 for i ≤ k and
gi(x̄) < 0 for i > k. Then x∗ is an optimal solution to (IC) if and only if there exists λ∗ ≥ 0 such that
(x∗, λ∗) is a saddle point of L(x, λ) on X × {λ ≥ 0}.
Proof. The “if” part of the statement is given by Theorem D.2.3.(i). Let us focus on the “only if” part.
Thus, assume that x∗ is an optimal solution of (IC), and let us prove the existence of required λ∗. As
always, we may assume without loss of generality that intX 6= ∅. Let I(x∗) be the set of indices of the
constraints which are active at x∗. Consider the radial cone of X at x∗:

M1 = {h : ∃t > 0 : x∗ + th ∈ X}

along with the polyhedral cone

M2 = {h : (∇gT
j (x∗)h ≤ 0 ∀j ∈ I(x∗)}.

We claim that

(I): M2 is a closed cone which has a nonempty intersection with the interior of the convex cone M1;

(II): the vector ∇f(x∗) belongs to the cone dual to the cone M = M1 ∩M2.

Postponing for the time being the proofs, let us derive from (I), (II) the existence of the required vector
of Lagrange multipliers. Applying the Dubovitski-Milutin Lemma (Theorem B.2.4), which is legitimate
due to (I), (II), we conclude that there exists a representation

∇f(x∗) = u + v, u ∈ M ′
1, v ∈ M ′

2,

where M ′
i is the cone dual to the cone Mi. By the Homogeneous Farkas Lemma, we have

v = −
∑

j∈I(x∗)

λ∗j∇gj(x∗),

where λ∗j ≥ 0. Setting λ∗j = 0 for j 6∈ I(x∗), we get a vector λ∗ ≥ 0 such that

∇x

∣∣∣∣
x=x∗

L(x, λ∗) = ∇f(x∗) +
∑
j

λ∗j∇gj(x∗) = ∇f(x∗)− v = u,

λ∗jgj(x∗) = 0, j = 1, ..., m.

(D.2.13)

Since the function L(x, λ∗) is convex in x ∈ X and differentiable at x∗, the first relation in (D.2.13)
combines with the inclusion u ∈ M ′

1 and Proposition C.5.1 to imply that x∗ is a minimizer of L(x, λ∗)
over x ∈ X. The second relation in (D.2.13) is the complementary slackness which, as we remember from
the proof of Theorem D.2.3.(ii), combines with the feasibility of x∗ to imply that λ∗ is a maximizer of
L(x∗, λ) over λ ≥ 0. Thus, (x∗, λ∗) is a saddle point of the Lagrange function, as claimed.

It remains to verify (I) and (II).
(I): the fact that M2 is a closed cone is evident (M2 is a polyhedral cone). The fact that M1 is a

convex cone with a nonempty interior is an immediate consequence of the convexity of X and the relation
intX 6= ∅. By assumption, there exists a point x̄ ∈ intX such that gj(x̄ ≤ 0 for all j. Since x̄ ∈ intX,the
vector h = x̄ − x∗ clearly belongs to intM1; since gj(x∗) = 0, j ∈ I(x∗), and gj(x̄) ≤ 0, from Gradient
Inequality it follows that hT∇gj(x∗) ≤ gj(x̄)− gj(x∗) ≤ 0 for j ∈ I(x∗), so that h ∈ M1. Thus, h is the
intersection of intM1 and M2, so that this intersection is nonempty.

(II): Assume, on the contrary to what should be proven, that there exists a vector d ∈ M1 ∩M2 such
that dT∇f(x∗) < 0. Let h be the same vector as in the proof of (I). Since dT∇f(x∗) < 0, we can choose
ε > 0 such that with dε = d + εh one has dT

ε ∇f(x∗) < 0. Since both d and h belong to M1, there exists
δ > 0 such that xt = x∗ + tdε ∈ X for 0 ≤ t ≤ δ; since dT

ε ∇f(x∗) < 0, we may further assume that
f(xt) < f(x∗) when 0 < t ≤ δ. Let us verify that for every j ≤ m one has

416APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

(∗j) : There exists δj > 0 such that gj(xt) ≤ 0 for 0 ≤ t ≤ δj .

This will yield the desired contradiction, since, setting t = min[δ,min
j

δj], we would have xt ∈ X, gj(xt) ≤
0, j = 1, ..., m, f(xt) < f(x∗), which is impossible, since x∗ is an optimal solution of (IC).

To prove (∗j), consider the following three possibilities:
j 6∈ I(x∗): here (∗j) is evident, since gj(x) is negative at x∗ and is continuous in x ∈ X at the point

x∗ (recall that all gj are assumed even to be differentiable at x∗).
 ∈ I(x∗) and j ≤ k: For j in question, the function gj(x) is affine and vanishes at x∗, while ∇gj(x∗)

has nonpositive inner products with both d (due to d ∈ M2) and h (due to gj(x∗) = 0, gj(x∗ + h) =
gj(x̄) ≤ 0); it follows that ∇gj(x∗) has nonpositive inner product with dε, and since the function is affine,
we arrive at gj(x∗ + tdε) ≤ gj(x∗) = 0 for t ≥ 0.

j ∈ I(x∗) and j > k: In this case, the function γj(t) = gj(x∗+tε) vanishes at t = 0 and is differentiable
at t = 0 with the derivative γ′j(0) = (εh + d)T∇gj(x∗). This derivative is negative, since dT∇gj(x∗) ≤ 0
due to d ∈ M2 and j ∈ I(x∗), while by the Gradient Inequality hT∇gj(x∗) ≤ gj(x∗ + h) − gj(x∗) =
gj(x̄) − gj(x∗) ≤ gj(x̄) < 0. Since γj(0) = 0, γ′j(0) < 0, γj(t) is negative for all small enough positive t,
as required in (∗j).

D.2.3.B. Karush-Kuhn-Tucker form of optimality conditions

Theorems D.2.3, D.2.4 express, basically, the strongest optimality conditions for a Convex Programming
program. These conditions, however, are “implicit” – they are expressed in terms of saddle point of
the Lagrange function, and it is unclear how to verify that something is or is not the saddle point of
the Lagrange function. Fortunately, the proof of Theorem D.2.4 yields more or less explicit optimality
conditions as follows:

Theorem D.2.5 [Karush-Kuhn-Tucker Optimality Conditions in Convex Programming] Let (IC) be a
convex program, let x∗ be its feasible solution, and let the functions f , g1,...,gm be differentiable at x∗.
Then

(i) [Sufficiency] The Karush-Kuhn-Tucker condition:

There exist nonnegative Lagrange multipliers λ∗j , j = 1, ...,m, such that

λ∗jgj(x∗) = 0, j = 1, ...,m [complementary slackness] (D.2.14)

and

∇f(x∗) +
m∑

j=1

λ∗j∇gj(x∗) ∈ T ∗X(x∗) (D.2.15)

(that is, (x− x∗)T∇f(x∗) +
m∑

j=1

λ∗j∇gj(x∗) ≥ 0 for all x ∈ X)

is sufficient for x∗ to be optimal solution to (IC).
(ii) [Necessity and sufficiency] If, in addition to the premise, the “restricted Slater assumption” holds,

that is, there exists x̄ ∈ X such that at x̄ the nonlinear gj are strictly negative, and linear gj are
nonpositive, then the Karush-Kuhn-Tucker condition from (i) is necessary and sufficient for x∗ to be
optimal solution to (IC).

Proof. (i) is readily given by Theorem D.2.3.(ii); indeed, it is immediately seen that under the premise
of Theorem D.2.5 the Karush-Kuhn-Tucker condition is sufficient for x∗, λ∗) to be a saddle point of the
Lagrange function.

(ii) is contained in the proof of Theorem D.2.4.
Note that the optimality conditions stated in Theorem C.5.2 and Proposition C.5.1 are particular

cases of the above Theorem corresponding to m = 0.

D.3. SADDLE POINTS 417

D.3 Saddle Points

D.3.1 Definition and Game Theory interpretation

When speaking about the ”saddle point” formulation of optimality conditions in Convex Programming,
we touched a very interesting in its own right topic of Saddle Points. This notion is related to the situation
as follows. Let X ⊂ Rn and Λ ∈ Rm be two nonempty sets, and let

L(x, λ) : X × Λ → R

be a real-valued function of x ∈ X and λ ∈ Λ. We say that a point (x∗, λ∗) ∈ X × Λ is a saddle point
of L on X × Λ, if L attains in this point its maximum in λ ∈ Λ and attains at the point its minimum in
x ∈ X:

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x, λ) ∈ X × Λ. (D.3.1)

The notion of a saddle point admits natural interpretation in game terms. Consider what is called a two
person zero sum game where player I chooses x ∈ X and player II chooses λ ∈ Λ; after the players have
chosen their decisions, player I pays to player II the sum L(x, λ). Of course, I is interested to minimize
his payment, while II is interested to maximize his income. What is the natural notion of the equilibrium
in such a game – what are the choices (x, λ) of the players I and II such that every one of the players
is not interested to vary his choice independently on whether he knows the choice of his opponent? It
is immediately seen that the equilibria are exactly the saddle points of the cost function L. Indeed, if
(x∗, λ∗) is such a point, than the player I is not interested to pass from x to another choice, given that
II keeps his choice λ fixed: the first inequality in (D.3.1) shows that such a choice cannot decrease the
payment of I. Similarly, player II is not interested to choose something different from λ∗, given that I
keeps his choice x∗ – such an action cannot increase the income of II. On the other hand, if (x∗, λ∗) is
not a saddle point, then either the player I can decrease his payment passing from x∗ to another choice,
given that II keeps his choice at λ∗ – this is the case when the first inequality in (D.3.1) is violated, or
similarly for the player II; thus, equilibria are exactly the saddle points.

The game interpretation of the notion of a saddle point motivates deep insight into the structure of
the set of saddle points. Consider the following two situations:

(A) player I makes his choice first, and player II makes his choice already knowing the choice of I;
(B) vice versa, player II chooses first, and I makes his choice already knowing the choice of II.
In the case (A) the reasoning of I is: If I choose some x, then II of course will choose λ which

maximizes, for my x, my payment L(x, λ), so that I shall pay the sum

L(x) = sup
λ∈Λ

L(x, λ);

Consequently, my policy should be to choose x which minimizes my loss function L, i.e., the one which
solves the optimization problem

(I) min
x∈X

L(x);

with this policy my anticipated payment will be

inf
x∈X

L(x) = inf
x∈X

sup
λ∈Λ

L(x, λ).

In the case (B), similar reasoning of II enforces him to choose λ maximizing his profit function

L(λ) = inf
x∈X

L(x, λ),

i.e., the one which solves the optimization problem

(II) max
λ∈Λ

L(λ);

418APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

with this policy, the anticipated profit of II is

sup
λ∈Λ

L(λ) = sup
λ∈Λ

inf
x∈X

L(x, λ).

Note that these two reasonings relate to two different games: the one with priority of II (when making
his decision, II already knows the choice of I), and the one with similar priority of I. Therefore we should
not, generally speaking, expect that the anticipated loss of I in (A) is equal to the anticipated profit of II
in (B). What can be guessed is that the anticipated loss of I in (B) is less than or equal to the anticipated
profit of II in (A), since the conditions of the game (B) are better for I than those of (A). Thus, we may
guess that independently of the structure of the function L(x, λ), there is the inequality

sup
λ∈Λ

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ∈Λ

L(x, λ). (D.3.2)

This inequality indeed is true; which is seen from the following reasoning:

∀y ∈ X : inf
x∈X

L(x, λ) ≤ L(y, λ) ⇒
∀y ∈ X : sup

λ∈Λ
inf

x∈X
L(x, λ) ≤ sup

λ∈Λ
L(y, λ) ≡ L(y);

consequently, the quantity sup
λ∈Λ

inf
x∈X

L(x, λ) is a lower bound for the function L(y), y ∈ X, and is therefore

a lower bound for the infimum of the latter function over y ∈ X, i.e., is a lower bound for inf
y∈X

sup
λ∈Λ

L(y, λ).

Now let us look what happens when the game in question has a saddle point (x∗, λ∗), so that

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x, λ) ∈ X × Λ. (D.3.3)

I claim that if it is the case, then

(*) x∗ is an optimal solution to (I), λ∗ is an optimal solution to (II) and the optimal values in these
two optimization problems are equal to each other (and are equal to the quantity L(x∗, λ∗)).

Indeed, from (D.3.3) it follows that

L(λ∗) ≥ L(x∗, λ∗) ≥ L(x∗),

whence, of course,
sup
λ∈Λ

L(λ) ≥ L(λ∗) ≥ L(x∗, λ∗) ≥ L(x∗) ≥ inf
x∈X

L(x).

the very first quantity in the latter chain is ≤ the very last quantity by (D.3.2), which is possible if and
only if all the inequalities in the chain are equalities, which is exactly what is said by (A) and (B).

Thus, if (x∗, λ∗) is a saddle point of L, then (*) takes place. We are about to demonstrate that the
inverse also is true:

Theorem D.3.1 [Structure of the saddle point set] Let L : X×Y → R be a function. The set of saddle
points of the function is nonempty if and only if the related optimization problems (I) and (II) are solvable
and the optimal values in the problems are equal to each other. If it is the case, then the saddle points of
L are exactly all pairs (x∗, λ∗) with x∗ being an optimal solution to (I) and λ∗ being an optimal solution
to (II), and the value of the cost function L(·, ·) at every one of these points is equal to the common
optimal value in (I) and (II).

Proof. We already have established “half” of the theorem: if there are saddle points of L, then their
components are optimal solutions to (I), respectively, (II), and the optimal values in these two problems
are equal to each other and to the value of L at the saddle point in question. To complete the proof,
we should demonstrate that if x∗ is an optimal solution to (I), λ∗ is an optimal solution to (II) and the

D.3. SADDLE POINTS 419

optimal values in the problems are equal to each other, then (x∗, λ∗) is a saddle point of L. This is
immediate: we have

L(x, λ∗) ≥ L(λ∗) [definition of L]
= L(x∗) [by assumption]
≥ L(x∗, λ) [definition of L]

whence
L(x, λ∗) ≥ L(x∗, λ) ∀x ∈ X, λ ∈ Λ;

substituting λ = λ∗ in the right hand side of this inequality, we get L(x, λ∗) ≥ L(x∗, λ∗), and substituting
x = x∗ in the right hand side of our inequality, we get L(x∗, λ∗) ≥ L(x∗, λ); thus, (x∗, λ∗) indeed is a
saddle point of L.

D.3.2 Existence of Saddle Points

It is easily seen that a ”quite respectable” cost function may have no saddle points, e.g., the function
L(x, λ) = (x− λ)2 on the unit square [0, 1]× [0, 1]. Indeed, here

L(x) = sup
λ∈[0,1]

(x− λ)2 = max{x2, (1− x)2},

L(λ) = inf
x∈[0,1]

(x− λ)2 = 0, λ ∈ [0, 1],

so that the optimal value in (I) is 1
4 , and the optimal value in (II) is 0; according to Theorem D.3.1 it

means that L has no saddle points.
On the other hand, there are generic cases when L has a saddle point, e.g., when

L(x, λ) = f(x) +
m∑

i=1

λigi(x) : X ×Rm
+ → R

is the Lagrange function of a solvable convex program satisfying the Slater condition. Note that in this
case L is convex in x for every λ ∈ Λ ≡ Rm

+ and is linear (and therefore concave) in λ for every fixed X.
As we shall see in a while, these are the structural properties of L which take upon themselves the “main
responsibility” for the fact that in the case in question the saddle points exist. Namely, there exists the
following

Theorem D.3.2 [Existence of saddle points of a convex-concave function (Sion-Kakutani)] Let X and
Λ be convex compact sets in Rn and Rm, respectively, and let

L(x, λ) : X × Λ → R

be a continuous function which is convex in x ∈ X for every fixed λ ∈ Λ and is concave in λ ∈ Λ for
every fixed x ∈ X. Then L has saddle points on X × Λ.

Proof. According to Theorem D.3.1, we should prove that

• (i) Optimization problems (I) and (II) are solvable

• (ii) the optimal values in (I) and (II) are equal to each other.

(i) is valid independently of convexity-concavity of L and is given by the following routine reasoning from
the Analysis:

Since X and Λ are compact sets and L is continuous on X × Λ, due to the well-known Analysis
theorem L is uniformly continuous on X × Λ: for every ε > 0 there exists δ(ε) > 0 such that

|x− x′|+ |λ− λ′| ≤ δ(ε) ⇒ |L(x, λ)− L(x′, λ′)| ≤ ε 4) (D.3.4)

4) for those not too familiar with Analysis, I wish to stress the difference between the usual continuity and
the uniform continuity: continuity of L means that given ε > 0 and a point (x, λ), it is possible to choose δ > 0
such that (D.3.4) is valid; the corresponding δ may depend on (x, λ), not only on ε. Uniform continuity means
that this positive δ may be chosen as a function of ε only. The fact that a continuous on a compact set function
automatically is uniformly continuous on the set is one of the most useful features of compact sets

420APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

In particular,
|x− x′| ≤ δ(ε) ⇒ |L(x, λ)− L(x′λ)| ≤ ε,

whence, of course, also
|x− x′| ≤ δ(ε) ⇒ |L(x)− L(x′)| ≤ ε,

so that the function L is continuous on X. Similarly, L is continuous on Λ. Taking in account that X
and Λ are compact sets, we conclude that the problems (I) and (II) are solvable.

(ii) is the essence of the matter; here, of course, the entire construction heavily exploits convexity-
concavity of L.

00. To prove (ii), we first establish the following statement, which is important by its own right:

Lemma D.3.1 [Minmax Lemma] Let X be a convex compact set and f0, ..., fN be a collection of N + 1
convex and continuous functions on X. Then the minmax

min
x∈X

max
i=0,...,N

fi(x) (D.3.5)

of the collection is equal to the minimum in x ∈ X of certain convex combination of the functions: there
exist nonnegative µi, i = 0, ..., N , with unit sum such that

min
x∈X

max
i=0,...,N

fi(x) = min
x∈X

N∑

i=0

µifi(x)

Remark D.3.1 Minimum of every convex combination of a collection of arbitrary functions is ≤ the
minmax of the collection; this evident fact can be also obtained from (D.3.2) as applied to the function

M(x, µ) =
N∑

i=0

µifi(x)

on the direct product of X and the standard simplex

∆ = {µ ∈ RN+1 | µ ≥ 0,
∑

i

µi = 1}.

The Minmax Lemma says that if fi are convex and continuous on a convex compact set X, then the
indicated inequality is in fact equality; you can easily verify that this is nothing but the claim that the
function M possesses a saddle point. Thus, the Minmax Lemma is in fact a particular case of the Sion-
Kakutani Theorem; we are about to give a direct proof of this particular case of the Theorem and then
to derive the general case from this particular one.

Proof of the Minmax Lemma. Consider the optimization program

(S) t → min | f0(x)− t ≤ 0, f1(x)− t ≤ 0, ..., fN (x)− t ≤ 0, x ∈ X.

This clearly is a convex program with the optimal value

t∗ = min
x∈X

max
i=0,...,N

fi(x)

(note that (t, x) is feasible solution for (S) if and only if x ∈ X and t ≥ max
i=0,...,N

fi(x)). The problem

clearly satisfies the Slater condition and is solvable (since X is compact set and fi, i = 0, ..., N , are
continuous on X; therefore their maximum also is continuous on X and thus attains its minimum on the
compact set X). Let (t∗, x∗) be an optimal solution to the problem. According to Theorem D.2.3, there
exists λ∗ ≥ 0 such that ((t∗, x∗), λ∗) is a saddle point of the corresponding Lagrange function

L(t, x;λ) = t +
N∑

i=0

λi(fi(x)− t) = t(1−
N∑

i=0

λi) +
N∑

i=0

λifi(x),

D.3. SADDLE POINTS 421

and the value of this function at ((t∗, x∗), λ∗) is equal to the optimal value in (S), i.e., to t∗.
Now, since L(t, x;λ∗) attains its minimum in (t, x) over the set {t ∈ R, x ∈ X} at (t∗, x∗), we should

have
N∑

i=0

λ∗i = 1

(otherwise the minimum of L in (t, x) would be −∞). Thus,

[min
x∈X

max
i=0,...,N

fi(x) =] t∗ = min
t∈R,x∈X

[
t× 0 +

N∑

i=0

λ∗i fi(x)

]
,

so that

min
x∈X

max
i=0,...,N

fi(x) = min
x∈X

N∑

i=0

λ∗i fi(x)

with some λ∗i ≥ 0,
N∑

i=0

λ∗i = 1, as claimed.

From the Minmax Lemma to the Sion-Kakutani Theorem. We should prove that the
optimal values in (I) and (II) (which, by (i), are well defined reals) are equal to each other, i.e., that

inf
x∈X

sup
λ∈Λ

L(x, λ) = sup
λ∈Λ

inf
x∈X

L(x, λ).

We know from (D.3.4) that the first of these two quantities is greater than or equal to the second, so that
all we need is to prove the inverse inequality. For me it is convenient to assume that the right quantity
(the optimal value in (II)) is 0, which, of course, does not restrict generality; and all we need to prove is
that the left quantity – the optimal value in (I) – cannot be positive.

10. What does it mean that the optimal value in (II) is zero? When it is zero, then the function L(λ)
is nonpositive for every λ, or, which is the same, the convex continuous function of x ∈ X – the function
L(x, λ) – has nonpositive minimal value over x ∈ X. Since X is compact, this minimal value is achieved,
so that the set

X(λ) = {x ∈ X | L(x, λ) ≤ 0}
is nonempty; and since X is convex and L is convex in x ∈ X, the set X(λ) is convex (as a level set of
a convex function, Proposition C.1.4). Note also that the set is closed (since X is closed and L(x, λ) is
continuous in x ∈ X).

20. Thus, if the optimal value in (II) is zero, then the set X(λ) is a nonempty convex compact set for
every λ ∈ Λ. And what does it mean that the optimal value in (I) is nonpositive? It means exactly that
there is a point x ∈ X where the function L is nonpositive, i.e., the point x ∈ X where L(x, λ) ≤ 0 for
all λ ∈ Λ. In other words, to prove that the optimal value in (I) is nonpositive is the same as to prove
that the sets X(λ), λ ∈ Λ, have a point in common.

30. With the above observations we see that the situation is as follows: we are given a family of closed
nonempty convex subsets X(λ), λ ∈ Λ, of a compact set X, and we should prove that these sets have a
point in common. To this end, in turn, it suffices to prove that every finite number of sets from our family
have a point in common (to justify this claim, I can refer to the Helley Theorem II, which gives us much
stronger result: to prove that all X(λ) have a point in common, it suffices to prove that every (n + 1)
sets of this family, n being the affine dimension of X, have a point in common). Let X(λ0), ..., X(λN) be
N + 1 sets from our family; we should prove that the sets have a point in common. In other words, let

fi(x) = L(x, λi), i = 0, ..., N ;

all we should prove is that there exists a point x where all our functions are nonpositive, or, which is the
same, that the minmax of our collection of functions – the quantity

α ≡ min
x∈X

max
i=1,...,N

fi(x)

422APPENDIX D. CONVEX PROGRAMMING, LAGRANGE DUALITY, SADDLE POINTS

– is nonpositive.
The proof of the inequality α ≤ 0 is as follows. According to the Minmax Lemma (which can be

applied in our situation – since L is convex and continuous in x, all fi are convex and continuous, and X

is compact), α is the minimum in x ∈ X of certain convex combination φ(x) =
N∑

i=0

νifi(x) of the functions

fi(x). We have

φ(x) =
N∑

i=0

νifi(x) ≡
N∑

i=0

νiL(x, λi) ≤ L(x,

N∑

i=0

νiλi)

(the last inequality follows from concavity of L in λ; this is the only – and crucial – point where we use
this assumption). We see that φ(·) is majorated by L(·, λ) for a properly chosen λ; it follows that the
minimum of φ in x ∈ X – and we already know that this minimum is exactly α – is nonpositive (recall
that the minimum of L in x is nonpositive for every λ).

