The Cilkview Scalability Analyzer

T *

William M. Leiserson

Yuxiong He" Charles E. Leiserson
Intel Corporation
Nashua, New Hampshire
ABSTRACT

The Cilkview scalability analyzer is a software tool for profiling,
estimating scalability, and benchmarking multithreaded Cilk++ ap-
plications. Cilkview monitors logical parallelism during an instru-
mented execution of the Cilk++ application on a single process-
ing core. As Cilkview executes, it analyzes logical dependencies
within the computation to determine its work and span (critical-
path length). These metrics allow Cilkview to estimate parallelism
and predict how the application will scale with the number of pro-
cessing cores. In addition, Cilkview analyzes scheduling overhead
using the concept of a “burdened dag,” which allows it to diagnose
performance problems in the application due to an insufficient grain
size of parallel subcomputations.

Cilkview employs the Pin dynamic-instrumentation framework
to collect metrics during a serial execution of the application code.
It operates directly on the optimized code rather than on a debug
version. Metadata embedded by the Cilk++ compiler in the binary
executable identifies the parallel control constructs in the executing
application. This approach introduces little or no overhead to the
program binary in normal runs.

Cilkview can perform real-time scalability benchmarking auto-
matically, producing gnuplot-compatible output that allows devel-
opers to compare an application’s performance with the tool’s pre-
dictions. If the program performs beneath the range of expectation,
the programmer can be confident in seeking a cause such as insuf-
ficient memory bandwidth, false sharing, or contention, rather than
inadequate parallelism or insufficient grain size.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;
D.1.3 [Programming Techniques]: Concurrent Programming—

This work was supported in part by the National Science Foundation un-
der Grants 0615215, 0712243, and 0822896 and in part by the Defense
Advanced Research Projects Agency under Contract W31P4Q-08-C-0156.
Cilk, Cilk++, and Cilkview are registered trademarks of Intel Corporation.
*Author’s current address: Microsoft Research, Redmond, Washington.
Email address: yuxhe@microsoft.com.

TAuthor is Professor of Computer Science and Engineering at MIT and an
Intel consultant. Email address: cel@mit.edu

"Email address: william.m.leiserson@intel.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’10, June 13-15, 2010, Thira, Santorini, Greece.

Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

145

parallel programming; 1.6.6 [Simulation and Modeling]: Simula-
tion Output Analysis

General Terms

Measurement, Performance, Theory.

Keywords

Burdened parallelism, Cilk++, Cilkview, dag model, multicore pro-
gramming, multithreading, parallelism, parallel programming, per-
formance, scalability, software tools, span, speedup, work.

1. INTRODUCTION

Although the performance of serial application programs can
be measured by execution time, multithreaded applications exhibit
one additional dimension: scalability. How does execution time
scale as the number of processing cores increases. Although per-
formance tools to analyze serial applications are widely available,
few tools exist that effectively address scalability issues for mul-
tithreaded programs on multicore machines. When a serial appli-
cation fails to run as quickly as one expects, various tools, such
as gprof [26], Intel® VTune™ [44], Intel® Performance Tun-
ing Utility [1], etc., can be used to analyze the program execution
and identify performance bottlenecks. Parallel-performance tools,
such as Intel® Thread Profiler [30] of VTune and Intel® Paral-
lel Amplifier [29] of Intel®) Parallel Studio, can provide important
data about a multithreaded application, but since the information
gathered is specific to how the computation was scheduled for the
particular run, these tools do not address how performance scales.

The Cilkview scalability analyzer,! which runs under the Pin
[35] dynamic instrumentation framework, gathers statistics during
a single instrumented run of a multithreaded Cilk++ [28,33] ap-
plication, analyzes the logical parallelism within the computation,
and estimates the application’s scalability over various numbers of
cores. It also provides a framework for benchmarking actual runs
of the application so that the actual behavior can be compared with
the scalability predictions.

To illustrate Cilkview, consider the problem of analyzing the
simple quicksort program shown in Figure 1. First, it is help-
ful to understand the Cilk++ extensions to C++, which consist of
three keywords: cilk_spawn, cilk_sync, and cilk_for. Par-
allel work is created when the keyword cilk_spawn precedes the
invocation of a function, as in line 15 of the figure. A function can-
not safely use the values returned by its spawned children until it

'The examples in this article were produced with an as-yet-unreleased
version of Cilkview, but the latest released version (available at http:
//software.intel.com/en-us/articles/intel-cilk/) differs in-
substantially.

1 // Parallel quicksort

3 #include <algorithm>
4 #include <iterator>

5 #include <functional >
6 #include <cmath>

7 #include <cilkview>

9 using namespace std;

11 template <typename T>

12 void gsort (T begin, T end) {

13 if (begin != end) {

14 T middle = partition(begin, end,
bind2nd (less <typename
iterator_traits<T>::value_type >()
,*begin)) ;

15 cilk_spawn gsort(begin, middle);

16 qsort (max(begin + 1, middle), end);

17 cilk_sync;

18 }

19 3

21 // Simple test code:

22 int cilk_main () {

23 int n = 100;

24 double al[n];

25 cilk::cilkview cv;

26 cilk_for (int i=0; i<n; ++i) {

27 alil = sin((double) 1i);

28 }

30 cv.start ();

31 gsort(a, a + n);

32 cv.stop();

33 cv.dump (¢ ‘qsort’’);

35 return 0;

36}

Figure 1: Parallel quicksort implemented in Cilk++.

executes a cilk_sync statement, which acts as a local “barrier.” In
the quicksort example, the cilk_sync statement on line 17 avoids
the anomaly that would occur if the recursively spawned function
in line 15 did not complete before the return, thus leaving the vector
to be sorted in an intermediate and inconsistent state. The keyword
cilk_for,asin line 26, indicates a parallel for loop, which allows
all iterations of the loop to operate in parallel.

The Cilkview API allows users to control which portions of their
Cilk++ program are analyzed. For example, the program in Fig-
ure 1 restricts the analysis to the sorting function by designating
“start” and “stop” points in the code on lines 30 and 32, respec-
tively. Without these start and stop points, Cilkview defaults to
reporting the full run of the application from beginning to end.

Figure 2 shows the scalability profile produced by Cilkview that
results from running the quicksort application in Figure 1 on 10
million numbers. Included in the graphical output are curves indi-
cating estimated upper and lower bounds of performance over dif-
ferent numbers of cores. The area between the upper and lower
bounds indicates an estimation of the program’s speedup with
the given input. Cilkview produces this output from a single in-
strumented serial run of the application. Section 4 describes the
Cilkview output in more detail.

In addition to scalability estimation, Cilkview supports a frame-
work for automatically benchmarking an application across a range
of processor core counts. For each benchmark run, Cilkview mea-
sures the total elapsed time and plots the results. If scalability anal-
ysis is enabled, the benchmark data — shown in Figure 2 as crosses
— 1is overlaid on the scalability profile. In the figure, the bench-
mark runs represent the actual speedup of the quicksort program
using from 1 to 8 cores of an 8-core Intel® Core™ i7 machine.

To produce the upper-bound estimate for a program’s speedup,
Cilkview employs the “dag” (directed acyclic graph) model of mul-
tithreading [4, 5], which is founded on earlier theoretical work on

146

B8 cilkview

EEX

gsort

30 +

25 +

0 5 10 15 20 25 30
Cores

£ Measured Speedup
—7— Upper Performance Bound
Ideal Speedup

—#— Lower Performance Bound
—— Application Parallelism = 21.31

Figure 2: The scalability profile produced by Cilkview for the quicksort
program from Figure 1.

dag scheduling [7,17,25]. In this model, parallelism is an intrinsic
property of an application execution which depends on its logical
construction but not on how it is scheduled. The dag model uses
two performance measures — work and span — to gauge the theo-
retical parallelism of a computation and predict its scalability.

The actual performance of a multithreaded application is deter-
mined not only by its intrinsic parallelism, but also by the per-
formance of the runtime scheduler. The Cilk++ runtime system
contains a provably efficient work-stealing scheduling algorithm
[5,20], which on an ideal parallel computer scales application per-
formance linearly with processor cores, as long as the application
exhibits sufficient parallelism. In practice, however, scheduler per-
formance is also influenced by other factors, such as overheads for
task migration, which is needed for load balancing, and bandwidth
to memory, if the application is memory bound. We introduce
the concept of a “burdened” dag, which embeds the task-migration
overhead of a job into the dag model. Burdening allows Cilkview to
estimate lower bounds on application speedup effectively. Cilkview
does not currently analyze the impact of limited memory bandwidth
on application scalability.

Cilkview employs dynamic instrumentation [8, 35] to collect
scalability statistics during a serial execution of the program code.
Since performance analysis can suffer from perturbations due to the
instrumentation, Cilkview attempts to minimize this impact in two
ways. First, Cilkview operates on the optimized production binary
executable, rather than on a specially compiled “debug” version of
the application. Debug versions require recompilation and may dif-
fer significantly from the production executable. Second, Cilkview
relies on metadata that the Cilk++ compiler embeds in the binary
executable to identify the parallel control constructs (spawns and
syncs), rather than placing calls to null functions or other runtime
instrumentation in the execution path. By using metadata, rather
than embedding instrumentation in-line in the code, the impact on
the performance of the production executable is negligible.

The remainder of this paper is organized as follows. Section 2
provides a brief tutorial on the theory of parallelism, which pro-
vides the foundation for Cilkview’s upper bounds on speedup. Sec-
tion 3 describes the Cilk++ runtime system and introduces the con-
cept of “burdening,” the basis for Cilkview’s lower-bound estima-
tions. With this theoretical understanding of Cilk++’s performance

series

continuation

-
spawn return

Figure 3: A dag representation of a multithreaded execution. Each vertex
is a strand. Edges represent ordering dependencies between instructions.

model in hand, Section 4 describes the output of Cilkview in de-
tail. Section 5 illustrates how Cilkview output can be used to di-
agnose performance problems in a “stencil” program. Section 6
presents the binary instrumentation framework that Cilkview uses
and how Cilkview computes scalability metrics during a job’s ex-
ecution. Section § discusses related work. Finally, Section 9 con-
cludes with a discussion of directions for future research.

2. THE DAG MODEL FOR
MULTITHREADING

For a parallel program to obtain good performance, the program
must exhibit sufficient parallelism. This section reviews the dag
model of multithreading [4,5], which provides a general and pre-
cise quantification of parallelism based on the theory developed by
Graham [25]; Brent [7]; Eager, Zahorjan, and Lazowska [17]; and
Blumofe and Leiserson [4,5]. Tutorials on the dag model can be
found in [13, Ch. 27] and [33].

The dag model of multithreading views the execution of a multi-
threaded program as a set of vertices called strands — sequences of
serially executed instructions containing no parallel control — with
graph edges indicating ordering dependencies between strands, as
illustrated in Figure 3. We say that a strand x precedes a strand y,
denoted x <y, if x must complete before y can begin. If neither
X < ynory < x, we say that the strands are in parallel, denoted by
x || y. In Figure 3, for example, we have 1 < 2,6 <8, and 4 || 9.
A strand can be as small as a single instruction, or it can represent
a longer chain of serially executed instructions. A maximal strand
is one that cannot be included in a longer strand. We can dice a
maximal strand into a series of smaller strands in any manner that
is convenient.

The dag model of multithreading can be interpreted in the con-
text of the Cilk++ programming model. Normal serial execution
of one strand after another creates a serial edge from the first
strand to the next. A cilk_spawn of a function creates two de-
pendency edges emanating from the instruction immediately before
the cilk_spawn: the spawn edge goes to the strand containing the
first instruction of the spawned function, and the continuation edge
goes to the strand containing the first instruction after the spawned
function. A cilk_sync creates a return edge from the strand con-
taining the final instruction of each spawned function to the strand
containing the instruction immediately after the cilk_sync. A
cilk_for can be viewed as parallel divide-and-conquer recursion
using cilk_spawn and cilk_sync over the iteration space.

The dag model admits two natural measures that allow us to de-

147

fine parallelism precisely, as well as to provide important bounds
on performance and speedup.

The Work Law

The first measure is work, which is the total time spent in all the
strands. Assuming for simplicity that it takes unit time to execute a
strand, the work for the example dag in Figure 3 is 18.

We can adopt a simple notation to be more precise. Let Tp be the
fastest possible execution time of the application on P processors.
Since the work corresponds to the execution time on 1 processor,
we denote it by 77. One reason that work is an important measure
is that it provides a lower bound on P-processor execution time:

T, =T /P.)]

This Work Law holds because, in our simple theoretical model, P
processors can execute at most P instructions in unit time. Thus,
with P processors, to do all the work requires at least 77 /P time.

We can interpret the Work Law (1) in terms of the speedup on P
processors, which using our notation, is just 77 /7Tp. The speedup
tells us how much faster the application runs on P processors than
on 1 processor. Rewriting the Work Law, we obtain 77 /Tp < P,
which is to say that the speedup on P processors can be at most P.
If the application obtains speedup P (which is the best we can do
in our model), we say that the application exhibits linear speedup.
If the application obtains speedup greater than P (impossible in our
model due to the Work Law, but possible in practice due to caching
and other processor effects), we say that the application exhibits
superlinear speedup.

The Span Law

The second measure is span, which is the maximum time to exe-
cute along any path of dependencies in the dag. Assuming that it
takes unit time to execute a strand, the span of the dag from Fig-
ure 3 is 9, which corresponds to the path 1 <2 <3 <6 <7 <8<
10 < 11 < 18. This path is sometimes called the critical path of the
dag, and span is sometimes referred to in the literature as critical-
path length. Since the span is the theoretically fastest time the dag
could be executed on a computer with an infinite number of proces-
sors (assuming no overheads for communication, scheduling, etc.),
we denote it by 7. Like work, span also provides a bound on
P-processor execution time:

Tp > Tw . 2

This Span Law arises for the simple reason that a finite number
of processors cannot outperform an infinite number of processors,
because the infinite-processor machine could just ignore all but P
of its processors and mimic a P-processor machine exactly.

Parallelism

We define parallelism as the ratio of work to span, or T} /Tw. Par-
allelism can be viewed as the average amount of work along each
step of the critical path. Moreover, perfect linear speedup cannot be
obtained for any number of processors greater than the parallelism
Ti/Tw. To see why, suppose that P > T; /T, in which case the
Span Law (2) implies that the speedup satisfies 71 /Tp < Ty /T < P.
Since the speedup is strictly less than P, it cannot be perfect lin-
ear speedup. Another way to see that the parallelism bounds the
speedup is to observe that, in the best case, the work is distributed
evenly along the critical path, in which case the amount of work at
each step is the parallelism. But, if the parallelism is less than P,
there isn’t enough work to keep P processors busy at every step.
As an example, the parallelism of the dag in Figure 3 is 18/9 = 2.

Thus, there is little point in executing it with more than 2 proces-
sors, since additional processors surely will be starved for work.

In general, one does not need to estimate parallelism particularly
accurately to diagnose scalability problems. All that is necessary
is that the parallelism exceed the actual number of processors by
a reasonable margin. Thus, the measures of work and span need
not be particularly precise. A binary order of magnitude is usually
more than sufficient. Cilkview takes advantage of this looseness in
measurement by performing simple instruction-counting for work
and span, rather than attempting to use high-resolution timers.

Upper bounds on speedup

The Work and Span Laws engender two important upper bounds on
speedup. The Work Law implies that the speedup on P processors
can be at most P:

Ti/Tp <P. 3)
The Span Law dictates that speedup cannot exceed parallelism:
T /Ty <T/Tw. “)

In Figure 2, the upper bound on speedup provided by the Work Law
corresponds to the line of slope 1. The upper bound provided by
the Span Law corresponds to the horizontal line at 23.07.

rinstru

3. THE BURDENED-DAG MODEL

The dag model in Section 2 provides upper bounds on the best
possible speedup of a multithreaded application based on the work
and span. Actual speedup is influenced not only by these intrin-
sic characteristics, but also by the performance of the scheduling
algorithm and the cost of migrating tasks to load-balance the com-
putation across processor cores. This section discusses prior work
on scheduling bounds and proposes a new model, called “burdened
dags,” for incorporating migration costs.

Work-stealing scheduling

Although optimal multiprocessor scheduling is NP-complete [23],
Cilk++’s runtime system employs a “work-stealing” scheduler
[5,20] which achieves provably tight asymptotic bounds. In theory,
an application with sufficient parallelism can rely on the Cilk++
runtime system to dynamically and automatically exploit an arbi-
trary number of available processor cores near optimally.

Cilk++’s work-stealing scheduler operates as follows. When the
runtime system starts up, it allocates as many system threads, called
workers, as there are processors (although the programmer can
override this default decision). In the common case, each worker’s
stack operates just as in C++. When a subroutine is spawned,
the subroutine’s activation frame containing its local variables is
pushed onto the bottom of the stack. The worker begins work on
the child (spawned) subroutine. When the child returns to its par-
ent, the parent’s activation frame is popped off the bottom of the
stack. Since Cilk++ operates just like C++ in the common case,
ordinary execution imposes little overhead.

When a worker runs out of work, however, it becomes a thief
and “steals” the top (oldest) frame from another victim worker’s
stack. Thus, the stack is in fact a double-ended queue, or deque,
with the worker operating on the bottom and thieves stealing from
the top. This strategy has the great advantage that all communica-
tion and synchronization is incurred only when a worker runs out
of work. If an application exhibits sufficient parallelism, one can
prove mathematically [5] that stealing is infrequent, and thus the
overheads of communication and synchronization to effect a steal

148

// Snippet A

cilk_for (int i=0; i<2; ++i) {
for (int j=0; j<n; ++j) {
£(i,3);
}
// Snippet B
for (int j=0; j<n; ++j) {

cilk_for (int i=0; i<2;
£(i,3);

++1) {

}

Figure 4: An example of how migration overhead can affect performance.

is negligible. Specifically, the Cilk++ randomized work-stealing
scheduler can execute an application with 77 work and 7. span on
P processors in expected time

Tp <Ti/P+ 6T , ®)

where 0 is a constant called the span coefficient. (We omit the
notation for expectation for simplicity.)

Inequality (5) can be interpreted as follows. If the parallelism
T1 /Tw exceeds the number P of processors by a sufficient margin,
the bound guarantees near-perfect linear speedup. To see why, as-
sume that 77 /Tw > P. Equivalently, we have T, < T;/P. Thus, in
Inequality (5), the 77 /P term dominates the 875 term, and thus the
running time is 7p ~ T} /P, leading to a speedup of 7} /Tp = P.

The key weakness in this argument stems from what is meant by
“sufficient.” The proof of the bound assumes that the scheduling
overheads are at most a constant. The larger the constant hidden by
the big-O, however, the greater the factor by which the parallelism
T /T» must exceed the number P of processors to guarantee near-
perfect linear speedup. In particular, to estimate speedup accurately
for all P, asymptotics are not good enough, especially when paral-
lelism is modest. Moreover, naively using an upper bound on the
constant hidden by the big-O yields poor scalability estimates.

Migration overhead

As an example of how migration overhead can affect performance,
consider the two snippets in Figure 4. In this code, £ (i, j) is some
small function. The work of each of the two snippets involves 2n
function calls. The span of each snippet involves n function calls,
since the for loops in n run serially. Thus, the parallelism of each
snippet is about 2. Nevertheless, Snippet A will generally outper-
form Snippet B by a wide margin. The reason is that Snippet A
only requires one steal in order to realize the parallelism, whereas
Snippet B requires one steal for each of the n iterations of the for
loop. Thus, Snippet B incurs substantial migration overhead.

Burdened dags

The migration cost, or burden, for a steal includes the explicit costs
of bookkeeping to set up the context to run the stolen task and the
implicit costs of cache misses in order to migrate the stolen task’s
working set. There is also some minor bookkeeping overhead when
a function returns to discover that its parent has been stolen, but
this cost can be considered as an indirect part of the cost of a steal.
Although the scheduling cost modeled by the burden generally de-
pends upon what is stolen, we have found that a fixed cost suffices
in practice. Cilkview assumes a burden of 15,000 instructions.
The burdened-dag model augments the dag model by including
the burden on each continuation edge of the dag, which is akin to
assuming that every continuation is stolen. Figure 5 shows the bur-
dened dag for the computation from Figure 3. Cilkview computes
the burdened span by finding the longest path in the burdened dag.

Figure 5: The burdened dag of the computation from Figure 3. Squares in-
dicate the burdens on continuation edges and represent potential migration
overhead.

The following theorem shows how migration costs can be incor-
porated into the bound from Inequality (5).

THEOREM 1. Let Ty be the work of an application program,
and let T be its burdened span. Then, a work-stealing scheduler
running on P processors can execute the application in expected
time

Tp < T, /P+28T ,
where 0 is the span coefficient.

PROOF. Let G be the ordinary dag arising from the P-processor
execution, and let G be the corresponding burdened dag. Consider
the more-explicit dag G’ that arises during the P-processor exe-
cution, where all migration overheads incurred explicitly by the
scheduler or implicitly by the application are accounted for with
additional vertices and edges. Let 7| and T, be the work and span,
respectively, of G'. The accounting argument in [5] can be used to
show that for any constant € > 0, we have

Tp < T{/P+8T,, + O(log(1/))

with probability at least 1 — €. Moreover, the number of steals is at
most PT,, + O(Plog(1/¢)).

Let us now look at work. Every path in G’ corresponds to a
path in the burdened dag G, except that G’ omits overheads for
continuations that are not stolen. Thus, we have T/, < ﬁc. Since we
only have a migration overhead when a continuation is stolen, the
total amount of overhead in G’ is at most dPT,, + O(Plog(1/¢)),
from which it follows that 7| < Ty +8PT,, + O(Plog(1/¢)) < T} +

dPT.. + O(Plog(1/¢)). Consequently, we have

T, < T|/P+3T,+0(log(1/e))
< (Ty +8PTw + O(Plog(1/¢))) /P + 8T + O(log(1 /¢))
< Ty /P+28T. +O(log(1/¢))

with probability at least 1 —¢. Therefore, the expected time is
bounded by Tp < T} /P+28Tw. [

__ COROLLARY 2. Let Ty be the work of an application program,
Tw its burdened span, and § the span coefficient. Then, a work-
stealing scheduler running on P processors achieves speedup at
least

L, & ©)
TP Tl / P+ 26Too

in expectation.

149

1) Parallelism Profile
Work: 5,570,609,776 instructions
Span: 261,374,874 instructions
Burdened span: 262,078,779 instructions
Parallelism: 21.31
Burdened parallelism: 21.26
Spawns: 8,518,398
Syncs: 8,518,398
Average maximal strand: 218
2) Speedup Estimate
2 processors: 1.85-2.00
4 processors: 3.23-4.00
8 processors: 5.13-8.00
16 processors: 7.27-16.00
32 processors: 9.20-21.31

Figure 6: Textual output for the quicksort program from Figure 1.

Cilkview applies Corollary 2 to compute an estimated lower
bound on speedup. Our experimental results show that a typical
value of span coefficient & has range 0.8 — 1.0. Cilkview uses
0 = 0.85, and a corresponding estimated speedup lower bound
T <T\/P+ 1.7T.. An example is the lower curve in Figure 2.
In addition, it computes the burdened parallelism as T / To.

4. TEXTUAL OUTPUT AND
BENCHMARKING

Cilkview employs the dag and burdened dag models described in
Sections 2 and 3, respectively, to analyze scalability. In addition to
graphical output, which was illustrated in Figure 2 for the quicksort
program, Cilkview also provides a textual report with explicit num-
bers, as is illustrated in Figure 6 for quicksort. The textual report
is broken into two parts, the Parallelism Profile and the Speedup
Estimate.

The Parallelism Profile displays the statistics collected during the
run of the program. The statistics include work, span, parallelism,
burdened span, and burdened parallelism, whose meaning was de-
scribed in Sections 2 and 3. The other three statistics shown are the
following:

e Spawns — the number of spawns encountered during the run.
e Syncs — the number of syncs encountered during the run.

e Average maximal strand — the work divided by 1 plus twice
the number of spawns plus the number of syncs.

‘When the average maximal strand is small (less than 500), the over-
head from spawning, which is generally negligible, may be notice-
able. In the quicksort code, for example, the value of 218 indicates
that the parallel recursion might be terminated early and replaced
by ordinary function calls. Although this change might lower the
parallelism slightly, it would lead to a faster serial execution due to
less spawn overhead.

The Speedup Estimate section profiles the estimated speedups on
varying numbers of processor cores. The estimates are displayed
as ranges with lower and upper bounds. The upper bound is the
minimum of number of cores and parallelism, based on Inequalities
(3) and (4). The lower bound is based on Inequality (6).

Whereas Cilkview generates its textual report from an applica-
tion run using the Pin instrumentation framework, it also supports
direct benchmarking of the application, automatically running it
across a range of processor counts. Each benchmark result repre-
sents the actual speedup of the run on the given number of pro-
cessor cores. To use Cilkview for benchmarking, the following
practices are recommended:

void stencil_kernel (int t,
int y, int z) {
int s = z * NXY + y * NX + x;

int x,

float *A_cur = &A[t & 11[s];
float *A_next = &A[(t + 1) & 11[s];
float div = c0 * A_cur [0]

+ c1 % ((A_cur[1] + A_cur[-1])
+ (A_cur[NX] + A_cur[-NX])
(A_cur [NXY] + A_cur[-NXY]))
c2 * ((A_cur[2] + A_cur[-2])
(A_cur [NX2] + A_cur[-NX2])
(A_cur [NXY2] + A_cur[-NXY21))
c3 * ((A_cur[3] + A_cur[-31)
(A_cur [NX3] + A_cur[-NX31)
(A_cur [NXY3] + A_cur[-NXY3]))
c4 * ((A_cur[4] + A_cur[-4])
(A_cur [NX4] + A_cur[-NX4])

+ (A_cur [NXY4] + A_cur[-NXY4]));

+F o+ o+

A_next[0] = 2 * A_cur[0] - A_next[0]
+ vsqls] * div;
void stencil_loop (int tO, int ti1,
int x0, int x1, int yO0, int yi1,
int z0, int z1){
for(int t = t0; t < t1; ++t) {
for(int z = z0; z < z1; ++z) {
for(int y = y0; y < yi; ++y) {
cilk_for(int x = x0; x < x1; ++x) {

// stencil computation kermel
stencil_kernel(t, x, y, 2);

}rr 2

void cilk_main(int argc, char** argv) {

// Compute wave equation for 20 time steps
// on a 500x500x500 array

stencil_loop (1, 20, 4, 495, 4, 495, 4, 495);

}

Figure 7: A naive implementation of the stencil computation using
cilk_for.
e Make the system as quiet as possible by killing unnecessary
processes so that measurements are as exact as possible.
e Turn off hyperthreading in the BIOS so that per-processor
measurements are meaningful.
e Turn off power saving in the BIOS, which makes clock
speeds unpredictable.
e Run trials multiple times to moderate effects due to specific
cores on which the OS schedules the worker threads.
e If necessary, pin the workers to specific cores to enhance re-
peatability.

Programmer Interface

The Cilkview API allows users to control which portions of their
Cilk++ application program are reported for both scalability analy-
sis and benchmarking. The API provides the start () and stop ()
methods for a cilkview object to indicate the section to report. In
addition, the API provides a dump (const char *) method that
can label the reported section. Consequently, Cilkview can gener-
ate reports for multiple sections of code in an application by reusing
the same cilkview object. In addition, multiple cilkview objects
can be created if the sections overlap.

S. PERFORMANCE DIAGNOSIS

This section presents an example of how Cilkview can be used
to diagnose the performance problems of a Cilk++ program that
computes a 25-point 3D stencil. We start with an analysis of the
program as written, and then we modify it step by step to improve
its performance, each time using Cilkview to understand how the
program can be improved.

Figure 7 shows a “stencil” program to solve the wave equation

0%u

) =cVZu

150

loop

Speedup

X E S AN
=k

0 5 10 15
Cores

2 Measured Speedup
—7— Upper

—&— Lower Performance Bound

Parallelism=119.39

—— Igeal Speedup

Figure 8: Cilkview’s output for the code from Figure 7.

in parallel using the finite-difference method described by
Courant, Friedrichs, and Lewy [14]. For a given 3D coordi-
nate (x,y,z) at time ¢, the code derives the value of A[x,y,z] at
time 7 using the value of A[x,y,z] and the 24 neighboring val-
ues {A[xuyvzl] 1< ‘Zle‘ < 4}U{A[X,yl,z} 1< |y7y/| < 4}U
{A[¥,y,z]: 1 < |x—x| <4} at time ¢ — 1, where there are 8
neighbors for each dimension. The multiplicative coefficients
{¢i:0<i<4} and the phase velocities vsg[x,y,z| are constants.
Since intermediate values in the computation can be thrown away,
the code uses only two 3D arrays of coordinates, one for even
values of # and the other for odd values.

We benchmarked this application on an 8-core Intel® Core™ i7
machine with two Xeon®) E5520 2.27-GHz quad-core chips (hy-
perthreading disabled), 6 GB of DRAM, a shared 8-MB L3-cache,
and private L2- and L1-caches with 256 KB and 32 KB, respec-
tively. This machine is the same as the one we used to benchmark
the quicksort program from Section 1.

Performance problem — low burdened parallelism: Running
the program on 2 or more processors takes longer than its serial ex-
ecution time. Cilkview’s scalability estimation and benchmarking
results are shown in Figure 8. The parallelism of the program is
119.39, but its burdened parallelism is only 0.87. The estimated
speedup lower bound is far less than the upper bound. In fact, it is
less than 1.0, portending a possible slowdown in parallel execution.
The trial data confirms this hypothesis.

Diagnosis: The low burdened parallelism and the large gap be-
tween the upper and lower speedup bounds indicates that the over-
head of load balancing from running the code in parallel could
negate any benefit obtained from parallel execution. The amount
of stolen work is too small to justify the overhead of load balanc-
ing. At the source-code level, the problem is that the granularity of
spawned tasks is too small. Observe that in the source code from
Figure 8, cilk_for is used in the inner loop, and hence the amount
of work per iteration is tiny, resulting in small tasks and a low bur-
dened parallelism.

Solution: Generally, it is better to parallelize outer loops than in-
ner loops. We move the cilk_for from the innermost loop to the
first nested loop, as shown in Figure 9. This change significantly
increases the granularity of spawned tasks.

Performance problem subrange benchmark results:
Cilkview now reports good parallelism and burdened parallelism

void stencil_revised_loop (int t0, int t1,
int x0, int x1, int yO0, int yi1,
int z0, int z1){
for(int t = t0; t < ti;
cilk_for(int z = z0;
for(int y = y0; y < yil; ++y) {
for(int x = x0; x < x1; ++x) {
// stencil computation kernel
stencil_kernel(t, x, y, z);

}rrr:

++t) {
z < zl; ++z) {

Figure 9: A revised implementation of the stencil in which an outer loop
has been parallelized using cilk_for, rather than the inner loop.

revised-loop

Speedup

&% K k%

o 5 10 15
Cores

Measured Speedup —&— Lower Performance Bound

—5— Upper

Parallelism =391 98

Ideal Speedup

Figure 10: Cilkview’s output for the code from Figure 9.

for the improved program, as shown in Figure 10. The estimated
lower bound on speedup is close to the upper bound of perfect
linear speedup, which indicates that this program has sufficient
parallelism and good granularity for its spawned tasks. As seen in
the figure, however, the benchmark data produced by Cilkview for
an 8-core machine shows that the actual speedup does not scale
linearly. The performance is well beneath the range of expectation.

Diagnosis: Since Cilkview accurately diagnoses problems involv-
ing inadequate parallelism and insufficient grain size, we can be
confident that neither of these problems is the cause of the poor per-
formance. The programmer can now look to other common sources
of meager performance, such as insufficient memory bandwidth,
false sharing, and lock contention.

The algorithm in Figure 9 applies the kernel to all space-time
points at time ¢ before computing any point at time 7 + 1. Modern
computers operate with a cache-memory hierarchy. If the num-
ber of 3D points computed during a time step exceed the size of a
given cache by a sufficient margin, the application incurs a num-
ber of cache misses proportional to the compute time. In this case,
one time step of the computation involves 125 M 3D points, which
exceeds even the L3-cache. Looking at Figure 10 more closely,
we can see that the speedup levels off around 4-5 cores. At this
point, the processor cores’ demand for memory bandwidth satu-
rates the memory subsystem. Because this stencil implementation
is a memory-bandwidth hog, the performance falls below the pre-
dicted range.

How can one determine that a multithreaded program is limited
by memory bandwidth? One indication is an unusually high value
of CPI (cycles per instruction), but there can be other reasons for
a high CPI. A simple test that often diagnoses memory-bandwidth
problems is to run two benchmarks:

151

void co_cilk(int tO, int t1, int x0, int dx0, int
x1, int dx1, int y0, int dyO, int yl1, int dyil,
int z0, int dz0, int zl1, int dzl) {
int dt = t1 - t0, dx = x1 - x0;
int dy = y1 - y0, dz = z1 - z0;

if (dx >= dx_threshold && dx >= dy && dx >= dz &&
dt >= 1 && dx >= 2 * ds * dt * NPIECES) {
//divide and conquer along x direction
int chunk = dx / NPIECES;
for (i = 0; i < NPIECES - 1;
cilk_spawn co_cilk(t0, ti,
+ (i+1) * chunk, -ds,
z0, dz0, z1, dzl);

++i) {
x0+i*chunk,
yo, dy0, yi,

ds, x0
dy1l,

}

cilk_spawn
-ds, yo,

cilk_sync;

co_cilk (tO,
dyo, yi,

t1,
dy1,

x0+i*chunk ,
z0, dz0, =z1,

ds, x1,
dz1);

cilk_spawn co_cilk(t0, t1, x0,
dy0, yi, dyl, z0, dz0, =z1,
for (i = 1; i < NPIECES; ++i) {
cilk_spawn co_cilk(t0, tl1, xO+i*chunk,
x0 + i * chunk, ds, yO0, dy0, yi,
, dz0, z1, dzl);

dx0, x0,
dz1);

ds, yo,

-ds,
dyl, z0

}
cilk_spawn co_cilk(t0, t1, x1, -ds, x1,
, dyo, yi, dyl, z0, dz0, z1, dzil);
} else if (dy >= dyz_threshold && dy >= dz && dt
>= 1 && dy>=2*ds*dt*NPIECES) {
//similarly divide and conquer along y.

dx1, yo

} else if (dz >= dyz_threshold && dt >= 1 && dz
>= 2 % ds * dt * NPIECES) {
//similarly divide and conquer along z.
} else if (dt > dt_threshold) {
int hdt = dt / 2;
//decompose over time t direction
co_cilk(t0, t0O + hdt, x0, dx0, x1, dx1l, y0, dyO
, yl, dyl, z0, dz0, zl, dzl);
co_cilk (t0 + hdt, t1, x0+dxO*hdt, dx0, x1+dxilx*
hdt, dx1, yO+dyO*xhdt, dy0, yl+dyl*hdt, dyil
z0+dz0*hdt, dz0, zl+dzlxhdt, dzl);
} else {
//compute base case
co_basecase_nv(t0, t1, x0, dx0, x1, dxl, yo,
dy0, yi, dyi, z0, dz0, zl, dzl);

Figure 11: Cache-oblivious code for the stencil computation.

1. On a P-core machine, run P simultaneous serial executions.
2. Run 1 serial execution of the program alone on 1 core.

If the execution time in Case 1 is significantly larger than in Case 2,
it is likely that the demand for memory bandwidth is high enough
to be a limiting factor on program scalability.

Solution: Divide-and-conquer recursion, properly coarsened at the
leaves so as not to incur too much function-call overhead, gener-
ally taxes memory bandwidth less than iterative methods that stride
through arrays multiple times. Frigo and Strumpen [21,22] de-
vised a so-called “cache-oblivious” [19] stencil algorithm to solve
the memory-bandwidth problem and preserve parallelism. The al-
gorithm advances time nonuniformly by strategically decomposing
the space-time points recursively. On an ideal machine, when a
subarray fits into a cache at a given level in the hierarchy, no cache
misses are incurred except for those needed to bring the subarray
into the cache.

The revised cache-oblivious implementation is shown in Fig-
ure 11. Its scalability estimation and trial results are shown in
Figure 12. As the figure shows, Cilkview reports good ideal and
burdened parallelism. Since access to memory is no longer a bot-
tleneck, the program achieves linear speedup.

6. IMPLEMENTATION

Cilkview collects a program’s parallelism information during a
serial execution of the program code running under the Pin [35] dy-

cache-oblivious

Speedup

0 ‘ '
0 5 10 15
Cores l

H Measured Speedup
—— Upper

—&— Lower Performance Bound

Parallglism =478

Ideal Speedup

Figure 12: Cilkview’s output for the code from Figure 11.

namic instrumentation framework. Since Cilkview operates on the
optimized executable binary produced by the compiler, no recompi-
lation of the code is necessary. Metadata in Cilk++ binaries allows
Cilkview to identify the parallel control constructs in the execut-
ing application precisely and to collect statistics efficiently. When
the application executes in a normal production environment, the
metadata imposes no overhead on performance.

In our implementation of Cilkview, we decided to eschew di-
rect timing measurements, which are generally not repeatable, and
use instruction counts as a surrogate for time. Although instruc-
tion counts are a coarse measure of performance, the parallelism
measurement need not be surgically precise: generally, parallelism
estimates accurate to within a binary order of magnitude suffice to
diagnose problems of inadequate parallelism. If an application with
parallelism approximately 100 is running on 8 cores, one does not
care whether the parallelism is really 95.78, 103.44, or even 1000.
What matters is that the parallelism is significantly larger than
the number of processors. Cilkview answers the simple question,
“Does my application suffer from inadequate parallelism?” and,
with the burdened analysis, “Does my application suffer from too
fine-grained task creation?” Additional digits of precision rarely
make a significant difference in the answers to these questions.

This section first reviews Cilkview’s instrumentation strategy.
Then, we present Cilkview’s algorithm to compute performance
measurements of a Cilk++ program according to logical dependen-
cies of tasks. Finally, we discuss some sources of inaccuracy in
Cilkview’s measurements.

Instrumentation strategy

The design principle behind Cilkview’s instrumentation strategy is
to encode the logical parallel dependencies among tasks as part of
an executable binary without compromising the performance of the
production code. Cilkview relies on an enhanced version of the x86
binary executable format that provides metadata relevant to multi-
threaded execution. As part of the ordinary compilation process,
the Cilk++ compiler embeds this metadata into the executable us-
ing a standard multithreaded executable format (MEF).

Cilkview operates directly on the optimized MEF binary exe-
cutable distributed to end users, rather than on a “debug” version,
thereby avoiding the problem of measuring an application that has
been perturbed by instrumentation overhead. The MEF binary in-
cludes metadata to inform Cilkview of where Cilk++’s high-level

152

Function P spawns function C:
C.work = P.work
C.span = P.span
C.burdened-span = P.burdened-span

C.cwork =0

C.cspan = —»
C.cburden-span = —»
Pwork =0

P.burdened-span += BURDEN

Function C returns from spawn with parent P:
P.cwork += C.work
P.cspan = max {P.cspan,C. span}
P.cburden-span = max {P.cburden-span,C. burdened-span}

cilk_sync in function P:
P.work += P.cwork

P.cwork =0

P.span = max {P.span, P.cspan}

P.cspan = —

P. burdened-span = max { P. burdened-span, P.cburden-span}
P.cburden-span = —x

Figure 13: The Cilkview algorithm.

parallel control constructs appear in the executable segment. In par-
ticular, Cilkview requires metadata to mark the beginning and end
of each spawned function, the beginning and end of each called
function, and the location of each cilk_sync.

MEF metadata is stored in a platform-specific nonloadable sec-
tion of the executable. Although this section resides in the disk im-
age, it is not loaded into memory during normal execution. Thus,
when an application executes normally, the metadata introduces no
overhead. When the application executes under Cilkview, however,
Cilkview reads the metadata and instruments the corresponding ad-
dresses in the executable segment to collect measurements. The
performance of Cilkview is typically 2—10 times normal execution
time on one core. Users report that this slowdown is acceptable for
the insights on scalability that Cilkview provides.

Algorithm

With the support of the instrumentation framework, Cilkview com-
putes three basic performance measures: work, span, and burdened
span. As Cilkview executes the Cilk++ program serially under
Pin, it associates six state variables — work, span, burdened-span,
cwork, cspan, and cburden-span — with each function, whether
spawned or called. The variables work, span and burdened-span
store the accumulated work, span, and burdened span, respectively,
from the beginning of the program to the current point of execu-
tion. The variables cwork, cspan, and cburden-span store the ac-
cumulated work and span, respectively, of child functions that run
logically in parallel with the current function.

Conceptually, for each instruction, Cilkview increments the vari-
ables? work, span, and burdened-span of the current function. In
addition, it executes certain actions at spawns and syncs, as shown
in Figure 13. The constant BURDEN represents the task-migration
overhead during a successful steal. This cost, which can be vi-
sualized as burdened nodes in Figure 5, is added to the spawn-
ing function’s burdened-span at a cilk_spawn. At a cilk_sync,
Cilkview incorporates the work and span of the parallel children
into the function’s own state variables.

2Actually, Cilkview counts instructions on a basic-block basis, which is
more efficient.

Cilkview models the task-migration cost BURDEN as a constant.
This cost could be evaluated with a more precise model that varies
the estimated BURDEN value depending on the structure of the pro-
gram, but since we only need rough measures of work, span, and
burdened span, an upper-bound value determined by experimenta-
tion suffices to diagnose most scalability problems. Cilkview as-
sumes a burden of 15,000 instructions.

Having gathered the three statistics: work, span, and
burdened-span, Cilkview uses Inequalities (3), (4), and (6) to es-
timate the bounds of the instrumented program’s speedup.

Sources of inaccuracy

When a program is deterministic, a program’s work and span as
determined by a serial run equal those of parallel runs, modulo
scheduling overheads, caching effects, and the like. Consequently,
Cilkview can collect the work and span information during a serial
execution and infer that the work and span will not change sub-
stantially during a parallel run, except for these overheads, which
can be shown to be minimal if the application contains sufficient
parallelism [5].

When a program is nondeterministic, however, a parallel run
may give different work and span from the serial one. Cilk++ al-
lows some forms of nondeterminism to be encapsulated in reducer
hyperobjects [18]. For a reducer hyperobject, the Cilk++ runtime
manages local “views” of the hyperobject locally on the workers
and combines them automatically with a reduce operation when
subcomputations join at a sync. When and where the reduce opera-
tions occur is scheduler dependent, however, and this nondetermin-
ism can affect the work and span. In particular, reduce operations
never occur during a serial execution, and since Cilkview obtains
its measurements for work and span during a serial run of the pro-
gram, it never sees reducer overheads.

Reducers only occur because work was stolen, however. Since
steals are infrequent for programs with sufficient parallelism [5],
reduce operations seldom occur and tend to impede performance
minimally. When implementing Cilkview, we therefore felt com-
fortable using the serial work and span without attempting to esti-
mate reducer overheads, even though the measurements may suffer
from some inaccuracies for programs with inadequate parallelism.

Another source of potential inaccuracy arises from the imple-
mentation of cilk_for. A cilk_for loop is implemented as
a parallel divide-and-conquer tree over the iterations of the loop.
Rather than recursing down to a single iteration, however, which
would result in the overhead of one spawn per iteration, the Cilk++
runtime system automatically coarsens the recursion. That is, when
the range of iterations drops below some grain size, it reverts to an
ordinary serial for loop. The default grain size is computed dy-
namically according to the number of loop iterations and the num-
ber of cores. Different grain sizes affect the work and span of the
program. Cilkview performs its measurements assuming that the
default grain size is 1 unless the user specifies the grain size ex-
plicitly. Thus, it may overestimate the true work due to spawning
overhead, while assuming as much parallelism as possible. As a
result, Cilkview’s estimate of parallelism may indicate somewhat
more parallelism than actually exists, but generally not enough to
influence diagnosis of performance problems.

7. BENCHMARK APPLICATIONS

This section illustrates Cilkview’s scalability analysis on six
benchmark applications. These applications were selected to cover
a wide variety of multithreaded programs across different domains.
The speedup estimation of each application was produced by the
instrumented execution under Cilkview, and we used Cilkview to

153

benchmark runs of the application on our 8-core Intel®Core™ i7
processor using 1 to 8 workers. Figure 14 shows the graphical out-
puts of Cilkview on these benchmark applications. We now briefly
describe each application and its Cilkview output.

Bzip2. Bzip2 [46] is a popular package for file compression. The
Cilk++ implementation [10] of bzip2 was coded by John F. Carr of
Intel Corporation. It compresses several blocks of data in paral-
lel and applies a stream “reducer” [18] to ensure that the parallel
compressed data is written to the output file in the correct order.
As shown in Figure 14(a), this application exhibits a parallelism of
12.25 when run on a data file of 28 MB, and it obtained about 7
times speedup on the 8-core machine. The performance fits within
the estimated scalability range.

Murphi. This application [16] is a finite-state machine veri-
fication tool used widely in the design of cache-coherence algo-
rithms, link-level protocols, and executable memory-model analy-
ses. Murphi verifies a protocol by traversing the entire state space
in what is essentially a graph-traversal process. The Cilk++ im-
plementation [27] parallelizes two of the search algorithms in the
standard Murphi 3.1 package. Parallelizing the depth-first search
is straightforward, and breadth-first search was parallelized using
the PBFS algorithm [34]. Figure 14(b) shows the Cilkview output
for the breadth-first implementation on adash, an example program
included in the Murphi package.

Collision detection. This application was adapted from an in-
dustrial CAD application. The application reads two data files, each
of which comprises a model of an assembly of three-dimensional
parts. It then compares the models and outputs another data file
listing all the parts from one assembly that collide with parts
from the other assembly. Each model is stored in a ternary tree,
and the collision-detection search performs recursive traversals of
these ternary trees. The Cilk++ implementation searches the tree
branches in parallel. It uses a list “reducer” [18] to collect the col-
liding parts. As shown in Figure 14(c), Cilkview predicts a good
speedup on an input problem of two 9.9 MB files, and the imple-
mentation performed well.

Memcpy. This utility copies a block of memory from a source
location to a destination location. The Cilk++ parallel memcpy re-
places the for loop of the serial implementation with a cilk_for
loop to enable parallelism. The Cilkview output in Figure 14(d) for
copying a 477 MB block indicates linear speedup for the estimated
lower and upper bounds. The speedups for actual runs were smaller
than predicted, since memory bandwidth is a major bottleneck.

Min poset. Computing the minimal elements of a partially or-
dered finite set (poset) is a fundamental problem with numerous ap-
plications in combinatorics and algebraic geometry. One of them
is optimizing the size of dags encoding polynomial expressions.
In this case, given the terms of a polynomial, one is interested in
determining the monomials that make up the set of minimal ele-
ments of a poset generated by the terms of the polynomial using
the divisibility relation. The Cilk++ implementation of a parallel
divide-and-conquer sieving algorithm for min poset was coded by
Yuzhen Xie of the University of Western Ontario. The application
was run on the poset generated by a polynomial with 14,869 terms,
each with up to 28 variables, and produced 14 minimal elements.
As shown in Figure 14(e), it obtained near-perfect linear speedup,
as predicted by Cilkview.

Bivariate polynomial multiplication. The Basic Polynomial
Algebra Subroutines (BPAS) package [36,37] provides a complete
set of parallel routines in Cilk++ for FFT-based dense polynomial
arithmetic over finite fields, such as polynomial multiplication and
normal-form computations. Polynomial arithmetic sits at the core
of every computer-algebra system, including Maple and Mathemat-

Ejj

32

bzip2

30 +

26 +

24 1

Speedup
>

)

o N &

10 15 20 25 30
Cores

K Measured Speedup
—5— Upper Performance Bound —— Appiication Parallelism = 12.25
—— Ideal Speedup

—a— Lower Performance Bound

(a) Bzip2.

0 ‘ ‘ 4 ; ; ;
0 5 10 15 20 25 30
Cores
“F Measured Speedup —=— Lower Performance Bound
—— Upper Performance Bound —— Application Paralielism = 27.38
—— Ideal Speedup
(c) Collision detection.
B Cilkview
baseMonomial
T T T T T T
30
25+
20 4
s
5
3
2 15 L
[
104
5 L
0 ; ; ; ; ; ;
0 5 10 15 20 25 30
Cores.
(£ Measured Speedup —4— Lower Performance Bound
—#— Upper Performance Bound —— Application Parallelism = 32,964.19
—— Ideal Speedup

(e) Min poset.

Murphi
30
25
20
a
S
3
8
a 15
2]
10 -
5 4
0 t + t t
0 5 10 15 20 25 30
Cores
2K Measured Speedup —#— Lower Performance Bound
—=— Upper Performance Bound —— Application Parallelism = 132.58
—— Ideal Speedup

(b) Murphi.

parallel_memcpy

30 +
25 1
20 +
o
5
3
3
2 15 1
w
10 +
5
N
0+ + + + + +
0 5 10 15 20 25 30
Cores
K Measured Speedup
—&— Lower Performance Bound
—s— Upper Performance Bound
—— Application Parallelism = 4,284 608.95
—— Ideal Speedup
(d) Memcpy.
S GilkView FEX
mul
30 1
25 1
20 1
a
s
3
H
215 1
2
10 1
5]
0 t t t + + +
0 5 10 15 20 25 30
Cores
“F Measured Speedup —a— Lower Performance Bound
| —%— Upper Performance Bound —— Application Paralielism = 353.16
[—— Ideal Speedup

(f) Bivariate polynomial multiplication.

Figure 14: Cilkview graphical output for six benchmark applications.

ica, and the efficiency of polynomial computations greatly impacts
the responsiveness of these software packages. A Cilk++ version of
polynomial multiplication that uses the truncated Fourier transform
was coded by Yuzhen Xie and Marc Moreno Maza of the Univer-
sity of Western Ontario. The application input was two bivariate
polynomials all of whose partial degrees are equal to 1023. As
shown in Figure 14(f), Cilkview predicts a linear speedup, which
the benchmarking results confirm.

8. RELATED WORK

This section overviews tools for measuring parallel application
performance. We survey the tools and discuss strategies for instru-
menting performance.

Much work [49-51] has been devoted to diagnosing communi-
cation and synchronization problems in message-passing systems
such as MPI. Tools for shared-memory systems [3,24] tend to fo-
cus on an explicit threading (e.g., Pthreads, WinAPI threads, etc.).
MPI and explicit-threading programs statically partition their work
into threads and then map each thread to a core. Since these models
do not perform dynamic load balancing, the performance tools fo-
cus on analyzing communication and synchronization, rather than
on scalability per se.

Dynamic multithreaded concurrency platforms — e.g., Cilk-5
[20], Cilk++ [33], Fortress [2], Hood [6], Java Fork/Join Frame-
work [31], OpenMP 3.0 [42], Task Parallel Library (TPL) [32],
Intel® Threading Building Blocks (TBB) [45], and X10 [12] —
have engendered their share of tools. Most, including Thread Pro-
filer (in VTune [44]), Parallel Amplifier (in Parallel Studio [29]),
and OMPtrace [11], gather low-level information specific to how
the computation was scheduled and which cannot be easily adapted
to forecast scalability. An exception is Cilk-5, which provided an
option for computing work and span during an instrumented run.
Unlike Cilkview, Cilk-5 instrumentation runs required recompila-
tion, were based on actual time as measured by hardware cycle
counters, and introduced overhead into the instrumented binary.

HPCToolkit [47,48] is a profiling tool for multithreaded pro-
gramming models ranging from explicit threading to dynamic mul-
tithreading. Its metrics are parallel idleness and overhead, which
are qualitatively analogous to parallelism and burden. High idle-
ness of a code segment means its parallelism is low and concur-
rency should be increased. High overhead means high burden, and
concurrency should be decreased. Idleness and overhead are in-
sufficient quantitatively to compute the logical concurrency of the
program such as span and parallelism, which are critical for scala-
bility prediction, but they are useful metrics for tuning.

Performance tools differ with respect to their strategies for in-
strumenting applications. Tools such as OPARI [40], Pablo [43],
and Tau [41] add instrumentation to source code during the build
process. Since source instrumentation can interfere with compiler
optimizations, such as inlining and loop transformations, measure-
ments may not accurately reflect the performance of fully opti-
mized code. VTune [44] uses static binary instrumentation to aug-
ment application binaries for code profiling. Some tools use in-
strumented libraries [11,39,49]. One major problem with source
instrumentation, static binary instrumentation, and instrumentation
libraries is that they require source recompilation, binary rewriting,
or library relinking, which can be inconvenient for analyzing large
production codes.

Dynamic instrumentation supports the analysis of fully opti-
mized binaries by inserting instrumentation in the executing ap-
plication. Cilkview and various other tools [9,15,38] use dynamic
instrumentation to collect metrics directly on the optimized binary.
This strategy introduces little or no overhead to the program bi-

155

nary in normal runs. During performance-collection runs, how-
ever, dynamic instrumentation can dilate total execution time with
overhead [48]. For Cilkview, it does not matter, however, because
Cilkview counts instructions instead of measuring execution time.

9. CONCLUSION

This section discusses directions for future research concerning
how Cilkview’s capabilities might be extended.

Most contemporary mainstream multicore processors have lim-
ited memory bandwidth. Indeed, a single core of the Intel®
Core™ 2, for example, can saturate the available memory band-
width. Thus, programs such as the standard daxpy loop>, which
are bandwidth-limited, do not run significantly faster on multiple
cores than on one. The current implementation of Cilkview does
not consider the influence of memory bandwidth on a program’s
execution time. Therefore, for a program like daxpy loop or par-
allel memcpy, where memory-bandwidth is the major performance
bottleneck, real speedup of the program running on a multicore pro-
cessor can deviate from Cilkview’s estimation. Section 5 suggested
one kind of test to diagnose bandwidth problems based on running
concurrent copies of the serial program. It would be interesting
to determine whether a tool could be built to diagnose memory-
bandwidth problems by modeling caches during an instrumented
run.

Some profilers, such as gprof [26], help a programmer analyze
the running time of a serial program and diagnose performance bot-
tlenecks without obligating the programmer to insert instrumenta-
tion by hand. Profilers typically provide data concerning the time
spent in each called function and the function’s children. For paral-
lel programs, it would be desirable to have a profiler that produces
comparable data for span. By knowing which parts of the code are
bottlenecks for parallelism, the programmer can better focus her or
his efforts on improving multicore performance. How to obtain and
display profile data for span is a good research question. It seems
difficult to employ gprof’s strategy of sampling the programming
counter noninvasively to obtain a good estimate of span, but binary
instrumentation may be a reasonable approach. However the pro-
file data is obtained, it remains a research question how best to lay
out the data to convey parallelism bottlenecks to the programmer.

After computing a program’s span, the programmer may wish
to determine how much speedup might be gained by optimizing a
function on the critical path. It could be that speeding up a function
by just a small amount causes it to fall off the critical path, whereas
speeding up another function may reduce the critical path by the
full savings in time. Algorithms for this kind of sensitivity analysis
are well known if the dag is given in full. Computing a sensitivity
analysis as the dag unfolds on the fly seems like an interesting re-
search problem, especially if one wishes to take into account that
certain lines of code may appear multiple times on the critical path.

10. ACKNOWLEDGMENTS

Many thanks to our great team members at Cilk Arts — now
at Intel Corporation since the acquisition of our little company in
July 2009 — and to the many customers who helped us refine the
Cilkview tool. In particular, many thanks to Barry Tannenbaum
of Intel, who implemented the original graphical output applica-
tion for Cilkview. Matteo Frigo, formerly of Intel and now of Axis
Semiconductor, offered much valuable advice on the implementa-
tion of Cilkview. John F. Carr of Intel helped with the benchmark-
ing of applications. We greatly appreciate the constructive com-
ments made by the anonymous reviewers.

3The daxpy routine computes ax + y for scalar a and vectors x and y.

11.
(1]

[2

—

(3]

(4]
[5]
(6]

[7

—

[8

[l

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

REFERENCES

A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin,
and D. Ryabtsev. Parallelization made easier with Intel
Performance-Tuning Utility. Intel Technology Journal, 2007.
http://www.intel.com/technology/itj/2007/v11i4//1-
abstract.htm.

E. Allen, D. Chase, J. Hallett, V. Luchangco, J-W. Maessen, S. Ryu,
G.L.S.Jr., and S. Tobin-Hochstadt. The Fortress Language
Specification, Version 1.0. Sun Microsystems, Inc., 2008.

T. E. Anderson and E. D. Lazowska. Quartz: a tool for tuning parallel
program performance. SIGMETRICS Perform. Eval. Rev.,
18(1):115-125, 1990.

R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of
multithreaded computations. STAM J. Comput., 27(1):202-229, 1998.
R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5):720-748, 1999.

R. D. Blumofe and D. Papadopoulos. Hood: A user-level threads
library for multiprogrammed multiprocessors. Technical Report,
University of Texas at Austin, 1999.

R. P. Brent. The parallel evaluation of general arithmetic expressions.
JACM, 21(2):201-206, 1974.

D. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, MIT EECS, 2004.

B. Buck and J. K. Hollingsworth. An API for Runtime Code
Patching. Int. J. High Perf. Comput. Appl., 14(4):317-329, 2000.

J. Carr. A parallel bzip2. Available from http://software.
intel.com/en-us/articles/a-parallel-bzip2/,2009.

J. Caubet, J. Gimenez, J. Labarta, L. D. Rose, and J. S. Vetter. A
dynamic tracing mechanism for performance analysis of OpenMP
applications. In WOMPAT, pp. 53-67,2001.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,

K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In OOPSLA, pp.
519-538,2005.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, third edition, 2009.

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference
equations of mathematical physics. IBM J. R&D, 11(2):215-234,
1967.

L. DeRose, T. Hoover Jr., and J. K. Hollingsworth. The Dynamic
Probe Class Library - an infrastructure for developing
instrumentation for performance tools. In /PDPS, p. 10066b, 2001.
D.L.Dill, A.J. Drexler, A.J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In /ICCD, pp. 522-525, 1992.
D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus
efficiency in parallel systems. IEEE Trans. Comput., 38(3):408—423,
1989.

M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In SPAA, pp. 79-90, 2009.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS, pp. 285-297, New York, New
York, 1999.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI, pp. 212-223, 1998.

M. Frigo and V. Strumpen. Cache oblivious stencil computations. In
ICS, pp. 361-366, 2005.

M. Frigo and V. Strumpen. The cache complexity of multithreaded
cache oblivious algorithms. In SPAA, pp. 271-280, 2006.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman, 1979.

A.]J. Goldberg and J. L. Hennessy. Performance debugging shared
memory multiprocessor programs with MTOOL. In SC’91, pp.
481-490, 1991.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal,45:1563-1581, 1966.

S. Graham, P. Kessler, and M. McKusick. An execution profiler for
modular programs. Software— Practice and Experience,
13(8):671-685, 1983.

Y. He. Multicore-enabling the Murphi verification tool. Available
from http://software.intel.com/en-us/articles/

156

[28]

[29]

[30

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46

[47]

[48]

[49]

[50]

[51]

multicore-enabling-the-murphi-verification-tool/,
2009.

Intel Corp. Intel Cilk++ SDK Programmer’s Guide, 2009. Available
from http://software.intel.com/en-us/articles/
download-intel-cilk-sdk/. Document No. 322581-001US.
Intel Corp. Intel Parallel Amplifier. Available from http:
//software.intel.com/sites/products/documentation/
studio/amplifier/en-us/2009/ug_docs/index.htm.
Document No. 320486-003US, 2009.

Intel Corp. Intel Thread Profiler. Available from
http://software.intel.com/en-us/articles/intel-
thread-profiler-for-windows-documentation/, 2010.

D. Lea. A Java fork/join framework. In Java Grande, pp. 3643,
2000.

D. Leijen, W. Schulte, and S. Burckhardt. The design of a task
parallel library. In OOPSLA, pp. 227-242,2009.

C. E. Leiserson. The Cilk++ concurrency platform. J. Supercomput.,
51(3):244-257,2010.

C.E. Leiserson and T. B. Schardl. A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In SPAA, 2010.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI, pp.
190-200, 2005.

M. M. Maza and Y. Xie. Balanced dense polynomial multiplication
on multi-cores. In PDCAT, pp. 1-9, 2009.

M. M. Maza and Y. Xie. FFT-based dense polynomial arithmetic on
multi-cores. In HPCS, pp. 378-399, 2009.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B.Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall.
The Paradyn parallel performance measurement tool. [EEE
Computer, 28(11):37-46, 1995.

B. Mohr, A. D. Malony, F. Schlimbach, G. Haab, J. Hoeflinger, and
S. Shah. A performance monitoring interface for OpenMP. In
IWOMP, 2002.

B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and
prototype of a performance tool interface for OpenMP. J.
Supercomput., 23(1):105-128, 2002.

S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and B. Mohr.
A scalable approach to MPI application performance analysis. In
EUROPVMMPI, pp. 309-316, 2005.

OpenMP Architecture Review Board. OpenMP application program
interface, version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf, 2008.
D. A.Reed,R. A. Aydt,R.J. Noe, P. C. Roth, K. A. Shields, B. W.
Schwartz, and L. F. Tavera. Scalable performance analysis: The
Pablo performance analysis environment. In Scalable Parallel Lib.
Conf.,pp. 104-113,1993.

J. Reinders. VTune Performance Analyzer Essentials. Intel Press,
2005.

J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

J. Seward. bzip2 and 1ibbzip2, version 1.0.5: A program and
library for data compression. Available from
http://wuw.bzip2.org.

N. R. Tallent and J. M. Mellor-Crummey. Effective performance
measurement and analysis of multithreaded applications. In PPoPP,
pp. 229-240, 2009.

N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan. Binary
analysis for measurement and attribution of program performance. In
PLDI, pp. 441-452,2009.

J. Vetter. Dynamic statistical profiling of communication activity in
distributed applications. In SIGMETRICS, pp. 240-250, 2002.

J. S. Vetter and M. O. McCracken. Statistical scalability analysis of
communication operations in distributed applications. SIGPLAN
Not.,36(7):123-132,2001.

C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan,
and E. Lusk. From trace generation to visualization: A performance
framework for distributed parallel systems. In SC’00, p. 50, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

