
A M o r e P r a c t i c a l P R A M M o d e l

Phillip B. Gibbons
Computer Science Division

University of California
Berkeley, CA 94720

A b s t r a c t

This paper introduces the Asynchronous PRAM model
of computation, a variant of the PRAM in which the
processors run asy ~chronously and there is an explicit
charge for synchronization. A fanfily of Asynchrooous
PRAM's are defined, varying in the types of synchro-
nization steps permitted and the costs for accessing the
shared memory. Algorithms, lower bounds, and simula-
tion results are presented for an interesting member of
the family.

1 I n t r o d u c t i o n

The PRAM model of computation consists of a collec-
tion ofp sequential processors, each with its own private
local memory, communicating with one another through
a shared global memory. The processors execute in lock-
step, although each processor does have its own local
program. A PRAM computation is a sequence of time
steps, alternating between three types of instructions:
read, compute, and write. In a read step, each proces-
sor can read one global memory location into a local
memory location. In a compute step, each processor
can execute a single RAM operation whose operands
are in local memory, storing the result in a local mem-
ory location. In a write step, each processor can write
the contents of one local memory location into a global
memory location. All three steps are assumed to take
unit time in the model. Although an idealized model,
the PRAM has proven to be a useful model for study-
ing parallel computation (see [KRS8] for a survey of
results). The model is simple and relatively easy to use:
its shared memory abstraction hides the details of the
interprocessor communication and synchronization.

This work was supported in part by the International
Computer Science Institute, Berkeley, CA and by the IBM
Almaden Research Center, San Jose, CA.
Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a %e and/or specific permission.

~) 1989 ACM 0-89791-323-X/89 /0006 /0158 $1.50
158

There are several difficulties that arise in mapping
PRAM algorithms onto existing shared memory MIMD
machines, such as the Sequent Balance, the BBN But-
terfly, the NYU Ultracomputer, and the IBM RP3.
First, realistic MIMD machines have more limited com-
munication capabilities than the PRAM. The PRAM
assumes that each processor can access any memory lo-
cation in one step. Realistic machines are more limited
in at least three respects:

* the shared memory locations are partitioned into
a smaller number of memory banks, each of which
can support only a constant number of accesses per
cycle,

o the processors are connected to these memory
banks by an intereonnection network in which the
shortest path between a processor and most loca-
tions requires many hops through the network, and

® a link in the network can transmit only one message
per cycle, and thus messages competing for a link
are serialized.

Considerable research effort has been focused on finding
efficient ways to satisfy the simultaneous global mem-
ory accesses of a PRAM read or write step on realis-
tic networks (e.g. [KU86][Ran87]). Of course, no sim-
ulation effort can overcome the fact that many global
memory accesses must traverse the full diameter of the
network. Indeed, most global memory accesses will take
considerably longer to complete than a local operation.
Recently, several researchers have explored variants of
the PRAM that account for this communicalion delay
(e.g. [ACSS9][PY8S]).

Second, existing MIMD machines are asynchronous.
The PRAM assumes that the processors execute in lock-
step. In order to effectively support a large number
of processors, multiple users, and multiple instruction
streams, realistic MIMD machines must permAt each
processor to execute its instructions independently of
the timing of the other processors. These asynchronous
machines have an advantage over synchronous machii~es
in that they avoid making worst case assumptions on

the indeterminacy of instruction completion times (in-
cluding worst case assumptions on clock skew). This
indeterminacy arises in real machines due to network
congestion, memory bank contention, operating system
interference, and the relative speeds of register vs. cache
vs. local memory vs. global memory access. Further in-
determinacy arises due to the relative speeds of instruc-
tion execution: an add is much faster than a floating
point multiply or a global memory access.

Supporting a synchronous model, such as the PRAM,
on an asynchronous machine is inherently inefficient
since the ability of the machine to run asynchronously
is not fully exploited and there is a (potentially large)
overhead in synchronizing the processors as part of each
instruction. For example, in Ranade's scheme for sim-
ulating a PRAM[Ran87], each switch holds any global
memory accesses for an instruction until all global mem-
ory accesses of the previous instruction are flnished with
the switch. Thus there is a cost for synchronization at
each level of the network, even for instructions that do
not require it.

Surprisingly, this impor tant limitation of the PRAM
has been largely ignored by the theoretical community,
even by those doing research into making the PRAM
more practical.

With these limitations in mind, this paper intro-
duces the Asynchronous PRAM model, a variant of the
PRAM model more suited to shared memory MIMD
machines. The paper is organized as follows. Section 2
defines the Asynchronous PRAM model and compares
it with related models. Section 3 focuses in on the Phase
PRAM, an Asynchronous PRAM in which all the pro-
cessors synchronize at each synchronization step. Sec-
tions 4, 5, and 6 present new algorithms, simulation re-
suits, and lower bounds for the Phase PRAM. Finally,
section 7 presents some concluding remarks and direc-
tions for future work.

2 The Asynchronous P R A M

The Asynchronous PRAM model of computat ion con-
sists of a collection o f p sequential processors, each with
its own private local memory, communicating with one
another through a shared global memory. Each pro-
cessor has its own local program. Unlike the PRAM,
the processors of an Asynchronous PRAM run asyn-
chronously, i.e. each processor executes its instructions
independently of the timing of the other processors.
There is no global clock.

A processor can issue up to one instruction per tick
of its local clock. An instruction completes after some
unbounded, but finite, delay.

There are four types of instructions:

* global reads: reading the contents of a shared mem-
ory location into a local memory location,

® local operations: any RAM operation where the
operands are in local memory and the result is
stored in local memory,

* global writes: writing the contents of a local mem-
ory cell into a global memory cell, and

* synchronization steps.

A synchronization step among a set S of processors is
a logical point in a computat ion where each processor
in S waits for all the processors in S to arrive before
continuing in its local program. The local program for
a processor consists of a series of phases in which the
processor runs independently, separated by synchroniza-
tion steps. All instructions for processors in S prior to
a synchronization step complete before any processor in
S issues an instruction from its next phase.

Processors can read and write to the shared memory
asynehronously, but no processor may read the same
memory location that another one writes unless there
is a synchronization step involving both processors be-
tween the two accesses. Thus there are no race con-
ditions possible in the model (except in Asynchronous
PRAM's that permit "arbitrary" concurrent write: see
section 3).

R e m a r k : In the PRAM model, a processor at step i
can use the fact that all processors have completed step
i - 1. For example, a processor can read a memory loca-
tion at step i tha t some other processor may have writ-
ten at step i - 1. In the Asynchronous PRAM, on the
other hand, there is no global clock and arbi t rary delays
are possible, thus a processor at its instruction i does
not automatically know the progress of the other pro-
cessors. In order to be sure tha t all accesses to a global
location at a point in the computation have completed,
the processor must first synchronize with all other pro-
cessors that might be accessing the location (see, e.g.,
the multiprefix problem of section 4).

2.1 Computa t ion costs in the mode l

An Asynchronous PRAM program is correct only if it
works regardless of any delays that may occur. As ar-
gued in section 1, some delays are to be expected in
MIMD machines. Nevertheless, these same machines
are often tightly-coupled multiprocessors with regular
networks and identical processors. Thus a reasonable
first approximation to :the behavior o f one of these ma-
chines, for the purpose of measuring the cost of a com-
putation, is to assume that the local clocks all run at the
same speed. Given very similar local programs, the pro-
cessors will progress through their programs at roughly

159

the same rate. This motivates the following accounting
scheme for our model.

We will analyze programs assuming a global clock and
a fixed cost for each instruction, independent of the pro-
cessor. In particular, a local operation at a processor
takes unit time.

Recall that a local program for a processor consists
of a series of phases separated by synchronization steps.
The processor can not begin its next phase until the syn-
chronization step has completed. The completion time
for a synchronization step depends on the last processor
to reach the step. Consider a phase that is followed by a
synch[onization step among a set S of processors. The
completion time for the phase (not counting the syn-
chronization step) is defined to be the completion time
for the processor's prior synchronization step plus the
cost for its instructions this phase. The completion time
for the synchronization step is the maximum completion
time for the phase over all the processors in S plus the
cost of the synchronization step itself. The cost of a
synchronization step is B(p), a nondecreasing function
of p, where p = ISI. The running time for a program
is defined to be the maximum over all processors of the
completion time for its local program.

R e m a r k : There are a wide variety of schemes for im-
plementing synchronization steps on MIMD machines,
with varying runtime overheads. Thus the estimated
"cost" for a synchronization step is not some fixed value
in our model, but a parameter. This permits algo-
rithms to be designed that are more machine indepen-
dent. Given a target machine, an algorithm can then
be tailored to the machine by specifying an appropriate
function for B(p).

2.2 A family of models

The Asynchronous PRAM defines a family of models
that differ in the types of synchronization steps permit-
ted, the cost of accessing the shared memory, and the
extent to which concurrent reads or writes to a location
are permitted:

® In an Asynchronous PRAM with subset synchro-
nization, multiple disjoint sets of processors can
synchronize independently and in parallel. The
cost for a synchronization step among the proces-
sors in a set S is charged only to those processors
in S. An Asynchronous PRAM with all-processor
synchronization restricts synchronization steps to
only those that include all the processors. Multi-
pie, independent synchronization steps are not per-
mitted. Three options are possible: (a) the set S
must be all the processors in the machine, (b) the
set S is all the processors assigned to the program,

or (c) the set S is all processors currently active in
the program. In this paper, we will consider only
the second case.

An Asynchronous PRAM can either account for a
communication delay to the shared memory or not.
For the purpose of estimating execution time, we
consider fixed communication delays: a global read
takes 2d time and a global write takes d time. If
communication delays are ignored, then both global
reads and writes take unit time.

® An Asynchronous PRAM can either permit concur-
rent read and/or write or not.

In all cases, for the purpose of analysis, we will assume
that a processor can pipeline its instructions: it may is-
sue instructions i + 1, i + 2, etc. of its local program
before its instruction i has completed. (This assump-
tion is irrelevant in Asynchronous PRAM~s in which
all instructions - other than synchronize - are assumed
to take unit time.) The pipelining of instructions in a
phase is limited only by the dependencies (if any) be-
tween the instructions. For example, the pipelining of
global reads within a phase is limited only by the lo-
cal dependencies of one read upon another: there are
no interprocessor dependencies since no other processor
can write into any of the locations being read. Local
dependencies can occur between a sequence of reads if,
for example, the value returned by one global read dic-
tates the location to be read by the next global read,
as is the case when traversing a linked list. A sequence
of r global read instructions with no interdependencies,
issued one after another by a processor, completes in
2d + v - 1 time. Likewise, w write instructions issued
one after another by a processor complete in d + w - 1
time.

We make two further assumptions that simplify the
model. First, any sequence of reads and writes issued
by a processor to a location read and write the memory
in the same order as they are dispatched. Second, any
sequence of reads issued by a processor to different lo-
cations return to the processor in order. The former is
true of machines that use FIFO buffers and links, while
the latter can be simulated by buffering requests as they
return, if necessary.

Both the communication delay d and the synchroniza-
tion cost B are nondecreasing functions of the number
of processors. The appropriate functions to use depend
on the parallel machine on which the program is to ru~
A typical function for d is the diameter of the inter-
connection network, e.g. logp or ~/~; a typical func-
tion for B is d or dlogp. In designing algorithms for
the Asynchronous PRAM model, we assume only that
l < d < B < p .

160

Altbough only a simple variant of the PRAM, the
Asynchronous PRAM is considerably more practical.
Its primary advantages are that it permits asynchronous
~xecution of processors and it reflects some of the costs
associated with synchronization and/or communication
delay in real machines. Algorithms designed for the
PRAM model tend to be far too fine-grained for real
machines; algorithms designed for the Asynchronous
PRAM model tend to be less fine-grained.

2 .3 C o m p a r i s o n w i t h r e l a t e d m o d e l s

Most models of parallel computation studied to date
have been synchronous (e.g. the PRAM, the LPRAM
[ACS89]). There are asynchronous models in the world
of distributed computing, but in these models, the pa-
rameters are typically the number of processes and the
number of messages. Typical programming models for
MIMD machines (e.g. for the IBM RP3 and the Se-
quent) have no notion of costs.

Recently, Cole and Zajicek have been studying a
model they call the APRAM[CZ89]. The APRAM
is based on an accounting scheme for asynchronous
computation due to Lynch and Fisher[LF81]. In this
scheme, in one time unit or "round", each processor ex-
ecutes at least one instruction (see also [KRS88]). The
APRAM permits multiple sets of processors to synchro-
nize independently and in parallel, does not account for
communication delay, and permits concurrent reads and
writes. The goal in the APRAM model is to redesign al-
gorithlns so that processors synchronize in constant-size
sets only: when this can be achieved, it leads to algo-
rithms with the same time complexity as their PRAM
counterparts.

Another related model is a message-passing model
with unbounded messages[Sni88]. In this model, each
processor can pack a collection of values into a single
message which it then sends to some other processor.
Sending such a message is similar to issuing the set of
global writes by a processor in an Asynchronous PRAM
phase, since all such writes complete before any val-
ues can be read. However, in the Asynchronous PRAM
model, the individual values that make up the set can be
accessed by different processors in the very next phase,
unlike in the message-passing model.

3 T h e P h a s e P R A M

In this section and the sections that follow, we will focus
on Asynchronous PRAM's with all.processor synchro-
nization. A computation is a series of global, program-
wide phases in which the processors run asynchronously,
separated by synchronization steps that are among all
the processors. We will refer to such Asynchronous

PRAM's as either Phase PRAM's or Phase LPRAhTs.
The two models are identical except that the Phase
PRAM charges unit time for global reads and writes,
while the Phase LPRAM cha,rges 2d for glcbzol reads and
d for global writes. Recall, however, that a sequence of k
global read (write) instructions with no interdependen-
cies, issued one after another by a processor, completes
i n 2 d + k - l t i m e (d + k - 1time).

Since all processors participate in each synchroniza-
tion step, we can count time on a global phase-by-phase
basis. Thus the time cost for a phase is the maximum
over all processors of the cost of the instructions exe-
cuted by a processor during the phase. The running
time for a program is simply the sum of the time costs
for each phase plus B times the number of synchroniza-
tion steps.

Various concurrent read/write policies are possible:

• EREW Phase PRAM or Phase LPRAM: no two
processors access the same location in a phase,

® CREW Phase PRAM or Phase LPRAM: any num-
ber of processors can read the same location (as
long as no processor writes to the location), but no
two processors may write to the same location in a
phase, and

® CRCW Phase PRAM or Phase LPRAM: any num-
ber of processors can read (write) the same loca-
tion, as long as no processor writes to (reads from)
the location in the same phase. For concurrent
writes, either (a) the processors must all write the
same value (common-CRCW) or (b) an arbitrary
processor succeeds in writing the final value at the
location (arbitrary-CRCW).

Let us turn to an example.

Pref ix sum:
We consider the first half of the prefix sum compu-
tation in which we compute the sum of the n input
numbers. We can compute the sum on an EREW
PRAM in O(log 2 n) time, in binary tree fashion. By
inserting a synchronization step after each PRAM read
or write step, we get an EREW Phase PRAM or
Phase LPRAM algorithm that runs in O((B + d)log2 n)
time, i.e. O(B log n) time. This can be improved to
O(B log n~ log B) time using a B-ary tree, where at each
level of the tree, each active processor reads B values,
computes their sum, writes the result, and then syn-
chronizes. Since the reads can be pipelined, each level
of the treetakes (2 d + B - i) + (B - 1) + d + B ~ime,
i.e. O(B) time, and there are log B n levels.

Let r = B log n~ log B. By initially having each pro-
cessor sum r inputs without synchronizing and then us-
ing a B-ary tree, n/v Phase PRAM or Phase LPRAM

161

processors suffice to achieve O(r) time. This is the opti-
mal number of processors to use. In fact, in the typical
case where B is a strictly increasing function of p, us-
ing p = n or p = n / l o g s processors would result in a
slower algorithm. This reflects the realities of most real
machines.

Similarly, this B-ary tree approach (the same algo-
rithm as in [PY88]), can be used to solve any parallel
prefix problem.

This motivates a few simple lemmas.

L e m m a 1 An E R E W (CREW, common-
CRCW, arbitrary-CRCW) P R A M algorithm running
in time t using p processors can be simulated by an
E R E W (CREW, common-CRCW, arbitrary-CRCW)
Phase P R A M or Phase L P R A M running in time O(Bt)
with p/ B processors.

The idea is to have each Phase PRAM or Phase LPRAM
processor simulate B PRAM processors for a single step
and then synchronize. This balances the time spent syn-
chronizing with the time spent accessing memory and
computing. The goal in designing algorithms for the
Phase PRAM or Phase LPRAM is to beat these imme-
diate time and processor bounds.

L e m m a 2 A Phase P R A M (Phase LPRAM) program
using Po processors and running in time t + B(po)s,
where s is the number of synchronization steps, can be
simulated by a Phase P R A M (Phase L P R A M) using
P < Po processors in time O((po/p)t + B(p)s).

For each phase, each processor in the smaller machine
simulates the instructions in the phase for po/p proces-
sors of the larger machine and then synchronizes.

A more general result, corresponding to Brent's
scheduling principle for the PRAM[Bre74], is as follows.
Define the work of an algorithm to be the sum over all
processors of the number of instructions performed by
a processor in the algorithm, not counting synchroniza-
tion steps.

L e m m a 3 A Phase P R A M program using Po proces-
sors, s synchronization steps, a total of x work, and
t q- B(po)s time can be simulated by a Phase P R A M
using p processors in lime O (x / p + t + B(p)s) .

The proof is given in section 5. As in Brent's scheduling
principle, this lemma does not account for scheduling
costs.

Now we turn to the relationship between the Phase
PRAM and the Phase LPRAM. We will need the fol-
lowing lamina:

L a m i n a 4 An Asynchronous P R A M program can be
simulated with constant overhead by an Asynchronous
P R A M program in which each processor, in each of its

phases, first performs all its global reads and local oper-
ations for the phase, then performs its global writes.

This lemma follows from the observation that (a) the
timing of the reads and writes within a phase does not
affect other processors, and (b) the processor's local
state can be simulated even if the writes by a processor
are queued until the end of the phase.

Clearly a Phase PRAM can simulate a Phase LPRAM
with no loss. The following lemma gives a sufficient con-
dition for a Phase LPRAM to simulate a Phase PRAM
with only constant overhead. Recall that a sequence of
global reads with no interdependencies can be pipeline&
We call such reads oblivious. A locally oblivious al-
gorithm or program is one in which, in each phase,
each processor first issues a sequence of oblivious global
reads, then issues a sequence of local computes, and fi-
nally issues a sequence of global writes.

L e m m a 5 A locally oblivious Phase P R A M program
running in lime t with p processors can be simulated
by a Phase L P R A M program running in time O(t) wi~h
p processors.

Proof : We show that the Phase LPRAM can simulate
each phase of the Phase PRAM with constant overhead.
Suppose the worst case processor for a Phase PRAM
phase performs r (oblivious) global reads, l local op-
erations, and w global writes. The time on the Phase
PRAM for this phase and the subsequent synchroniza-
tion step is r + l + w + B. The reads and the writes can
be pipelined, so the time on the Phase LPRAM for the
phase is (2 d + r - 1) + l + (d + w - 1)+B, i.e. O (r + l + w + B)
s i n c e d < B . []

R e m a r k : With this in mind, for convenience~ we can
focus on the simpler Phase PRAM, and not the Phase
LPRAM. Most of our algorithms will be locally oblivi-
ous, and so the results will apply to the more realistic
Phase LPRAM.

R e m a r k , Similar arguments show that upper bounds
for locally oblivious Phase PRAM's yield upper bounds
for the LPRAM model and the model in [PY88], by
setting B = d.

4 Improved algorithms for ira°
portant primitive operations

In this section, we analyze the complexity of various
primitive operations that, along with parallel prefix, are
used as building blocks for many parallel algorithms°

We begin this section with a lower bound. Our re-
suit of the previous section for summing n m~rnbers is
optimal in the following sense:

162

T h e o r e m 1 Given n numbers, stored one per global
memory location, and the .following four types off in.
struclions: L ~-- G,L ~ L + L,G ~-- L, and "syn-
chronize", where L is a local cell and G is a global cell,
then the sum of n numbers on a CRCW Phase P R A M
with lhis instruction set requires f~(B log n / log B) time,
regardless of the number off processors.

Proof.. Let the fastest algorithm have s phases, of time
tl, t2, . . . , is. In a phase of time ti, each processor can at
best compute the sum oftl numbers, thus the number of
partial sums reduces by a factor ofti at best. So in order
to produce the sum, we must have n/ (t l t2 . . . t s) < 1.
By an easy induction proof or calculus argument, the

s t nl/s time t = Ei=I i is minimized when ti : for all i.
Thus t > snVS.

The running time to produce the sum-is t + Bs. Let
s = a logn / iogB . If a > 1, then the time is at least
Bs > B l o g n / l o g B . If a < 1, then the time is at least
t > sn 1/~ > o~B1/~logn/logB > B logn / logB . o

This argument can be applied to any n input, 1 output
associative function f , where (1) the output of f de-
pends on all the inputs, and (2) the basic step permitted
is combining two partial results to get one. The factor of
B~ logB occuring in this lower bound reflects the extent
to which expensive synchronization (or communication
delay) hinders information flow to a processor in our
model.

4 .1 L i s t r a n k i n g

Now consider the list ranking problem. Unlike the par-
allel prefix problem of the previous section, it is no
longer trivial to partition the work among the proces-
sors such that each active processor can do B useful
operations (and avoid concurrent read) without syn-
chronizing. However, the following pointer jumping ap-
proach achieves O(Blogn/ logB) time on an EREW
Phase PRAM with n processors.

Po in te r J u m p i n g a lgor i thm:

(1) For each of log n~ log B rounds, repeat steps (2)-(4):

(2) Processor i makes B copies in global memory of
name of (pointer to) the current successor of element i,
then synchronizes.

(3) Processor i pointer jumps for B steps, visiting the
successor of i (copy 1 from step (2)), then the successor
of the successor of i (copy 2 from step (2)), etc., and
then synchronizes.

(4) Processor i writes Jn global memory the new succes-

sor of i, i.e. the B th such element visited, then synchro-
nizes.

This list-reducing procedure can be used for list ranking
by surmning as it chases pointers. This shows how dupli-
cating computation (here, B processors chase the same
pointer - although a different copy - each phase) can
reduce tile running time, and duplicating the contents
of selected memory locations can avoid concurrent read.
From the proof of theorem 1, it is easy to see that the
list reducing (list ranking) problem has a lower bound
of ~(B log n~ log B) time on a Phase PRAM.

Remark : This is not a locally oblivious algorithm. The
Phase LPRAM running time is O(B log n~ log(B/d)) on
n processors.

A more sophisticated algorithm is needed in order to
use fewer processors and achieve the same time bound
on an EREW Phase PRAM. Known processor-efficient
list ranking algorithms (e.g. [CV86b][CV86a][AM88])
communicate too frequently to run efficiently on this
model, so a new algorithm is needed. Our new algo-
rithm runs in three stages, and applies variants and/or
generalizations of three known list ranking algorithms.
Let r = B log n~ log B. We will use p = n / r processors.

Processor Efficient algorithm:
(1) This first stage reduces the list from n elements to
pB elements. The ideas behind this stage (we omit
the full details) are as follows. The Anderson and
Miller[AM88/EREW PRAM (deterministic) algorithm
reduces a list from n to n~ log n elements in O(log n)
time using n/ logn processors. The list elements are
partitioned into n~ log n queues of log n elements each.
Each processor works on the elements in its queue, re-
moving elements from the list according to a fixed ar-
bitration scheme. Using a clever weighting scheme to
analyze the progress of the algorithm, Anderson and
Miller show that at most n~ log n elements remain after
5 log n rounds of their algorithm.

Their analysis depends strongly on the ability to real-
locate work each of O(log n) times, and hence their al-
gorithm is too slow for our purposes. However, a careful
examination of their algorithm and proof reveals the fol-
lowing generalization. By partitioning the list elements
into n/x queues ofx elements each, where 1 < x < log n,
then n/x processors can reduce a list from n to n/x el-
ements in 5x rounds of their algorithm. For our pur-
poses, we take n/x = pB, i.e. x = r /B . At each of
O(x) rounds of the Anderson and Miller algorithm, each
Phase PRAM processor simulates the work of B PRAM
processors and then synchronizes. This takes O(v) time.

Finally, we compact the list of at most pB elements
into a block of adjacent elements. This can be done in
O(r) time using the parallel prefix algorithm described
in section 3.

163

(2) The second stage reduces the list from pB elements
to p elements. We use the deterministic coin tossing
technique of Cole and Vishkin[CV86b], with each Phase
PRAM processor simulating B PRAM processors. We
run the technique for log log*(pB) rounds (synchroniz-
ing after each round), and then compact. Then we
run the technique for at most log B additional rounds
(synchronizing after each round) until we are left with
at most p elements, and then compact. This takes
O(B log B + B log* n log log* (pB)) time.

(3) The third stage reduces the list from p elements to
one element. This is done in O(r) time using the Pointer
Jumping algorithm given above.

Th~ese ideas lead [,o an algorithm that runs in time
O(r +Blog B) with n/r processors (the second term
from stage (2) can be made not to dominate). This
is an optimal algorithm (i.e. has an optimal processor-
time product) for any parallel machine where B E

O(2vdggT), in which case the running time for p proces-
sors is O(n/p + B log n/log B), the same as for prefix
s u m .

R e m a r k : The three stages in the above algorithm
are used in an "accelerating cascade" manner[CV86b],
where earlier stages are processor efficient but make
smaller progress, while later stages are less processor
efficient but make greater progress. In order to achieve
O(Blogn/logB) time, we could only "compact" the
list a constant number of times.

R e m a r k : For certain ranges of B, e.g. B < logp, the
second stage can be omitted.

4.2 FFT and bitonic merge

In [PY88], an algorithm for F F T is given that runs
in O(d log n~ log d) time using n log d/d processors on a
model with communication delay d. The same approach
leads to an O(B log n/log B) time locally oblivious al-
gorithm on an EREW Phase PRAM using n log B/B
processors. We can improve upon this result in the re-
lated problem of bitonic merge as follows. The directed
acyclic graph for a bitonic merge computation is a but-
terfly graph of n rows and log n columns. We parti-
tion the graph into log n/logB stages, each consisting
of logB columns. For each stage j, 1 _< j < logn / logB,
the rows of the butterfly graph can be partitioned into
sets 5),,,Sj,2,...,Sj,,#B of size B with the following
property. For each stage j , the outputs of the rows in
@,i are the result of sorting the inputs to these same
rows. Each stage will have a different partitioning of
the rows. The rows in a set wilt be evenly spaced, but

not adjacent (except for the final stage). All compar-
isons in a stage are between elements of rows that are in
the same set. This leads to the following locally oblivi-
ous algorithm, which runs in O(B log n/log 13) time on
an EREW Phase PRAM using only n/B processors:

Efficient Bitonlc M e r g e a lgo r i thm:

(t) Let the n elements in the bitonic sequence be stored
in a block of global memory locations. For each of
log n/log B stages in turn, do step (2).

(2) For stage j , each processor i reads the B elements
corresponding to the "rows" for set Sy,i from the global
memory, sorts them locally using a sequential algorithm,
synchronizes, writes back its B elements sorted order,
and synchronizes. The sorting can be done in O(B) time
since the B elements in a set form a bitonic sequence.

R e m a r k : By lemma 5, the running time for a Phase
LPRAM with n/B processors is also O(B log n/ log B).

This is an example of a general paradigm for saving
processors by (1) using a known parallel algorithm for
the problem to structure the computation, while (2) per-
forming the individual steps by reading B values, run°.
ning a sequential algorithm on these values, and then
writing the results.

4.3 Multiprefix, integer sorting, and
Euler tours

In the multiprefix problem, we are given n elements con-
sisting of a value and one of L labels, and we want
to simultaneously perform a parallel prefix computa-
tion for each label. Using the parallel prefix algo-
rithm of section 3, Ln/r processors suffice to achieve
O(r) = O(Blogn/logB) time. However, we can im-
prove on this result for the case where L > r using the
following algorithm. To simplify the description of our
algorithm, we will consider the case where the associa~
tire operation to be performed is addition. We will use
p = n processors.

M u R i p r e f i x a lgo r i thm:

(1) Consider a forest of (implicit) complete B-ary trees
of p leaves each. We will have L trees in all, one for
each label. Processor i starts at leaf i of the tree for its
label. As in the parallel prefix algorithm, we will com-
pute a sum by progressing level-by-level up this tree.
The difference here is that we have only pj processors
working on the tree for label j , where pj is the nm~ber
of elements with label j.

We repeat steps (2)-(3) once for each level in the ~br-
est, a total of log n~ log B times. Initially, all processors
are active and the cumulative sum for a processor is

164

simply the value of its element.

(2) Consider a B × B matrix for each node of the next
level in the forest. Each active processor writes its cur-
~ent cumulative sum in each row of a column of the
matrix for its parent, and then synchronizes. Columns
such that no processors have the appropriate label will
remain untouched (all zero).

(3) Each active processor sums its row in the matrix and
continues to the next level of the tree (i.e. remains an
active processor) if and only if it is the left-most pro-
cessor with this label among its B - 1 siblings at the
current level of the tree.

This algorithm produces the sum totals for each label;
reversing the process yields the partial sums. This lo-
cally oblivious algorithm runs in O(B log n/log B) time
on an EREW Phase PRAM using n Processors and
O(LnB) memory cells. Further refinements reduce the
memory requirements to O(rL/B]n) cells and include
initialization costs, while maintaining the same time and
processor bounds for any integer value of L.

An algorithm for multiprefix yields an algorithm for
sorting n integers of k log n bits each[Ran87/. It runs in
O(kB l ogn / log B) time on a locally oblivious EREW
Phase Pt~AM with n processors. Given an n node for-
est represented by each node having a pointer to its
parent, a multiprefix algorithm can be used to compute
the index of each node among the nodes with the same
parent. From this, we can construct an Euler tour of
a tree and then compute many tree functions such as
preorder and postorder numberings [TV85], all within
the same resource bounds.

5 Upper and lower bounds for
load balancing

In this section, we present a scheduling problem that
arises in the context of on-line load balancing in the
Phase PRAM, and which has more general applications.
Given p processors and k jobs of unknown (nonzero)
duration, find a preemptive on-line schedule such that
cost B is charged each time the processors are scheduled,
or preempted and rescheduled. Let h /be the (unknown)
number of unit-time steps in job i, n = ~ = 1 hi, and
h = m a x (h i , . . . , h i) . A lower bound on the completion
time is max(n/p, h, B).

There is a well known strategy for the case relevant
to the PRAM (B = 0), which achieves within a fac-
tor of 2 of optimal. In particular, this strategy, known
as Brent's scheduling principle[Bre74], achieves n/p+ h
completion time. If the durations of the jobs are known
(and sorted: hi >_ h2 > "'" ~ hk), then the following
nonpreemptive schedule achieves n/p+h+B completion

time: assign processor i to complete jobs i, i + p, i ÷ 2p,
etc.

L e m m a 6 The above schedule achieves n/p + h + B
completion time.

Pr o o f i Let xj be the number of jobs with at least j
steps. Processor 1 has the most work and it does [xj/p]
unit-time steps which are the j th step of some job. Thus

h the completion time is ~j=l [xj/p] + B < n/p+ h + B.
O

R e m a r k : Lemma 3 of section 3 follows from lemma 6.

When the durations of the jobs are unknown,
then the following simple strategy achieves within an
O(log B~ log log B) multiplicative factor of optimal. We
will view each job as a linked list of nodes, where each
node represents a unit-time step. In unit time, each pro-
cessor can "visit" the first node in some list, i.e. remove
the node from its list, perform the associated unit-time
step, and label the list as now dead (empty) or still live
(not empty). We permit at most one processor to be
assigned to any one list at a time.

Balanced a l g o r i t h m :

(1) Repeat the following while the number of live lists
is > pB: partition the live lists evenly among the pro-
cessors, and have each processor visit one node in each
of its lists.

(2) Repeat the following while the number of live lists
is > p. Part i t ion the live lists evenly among the pro-
cessors. Each processor cycles through its lists, visiting
one node from a list at a time, until it has visited B
nodes or emptied all its lists.

(3) The number of live lists is now at most p. Assign
one processor per live list and have it visit all the nodes
remaining in the list.

T h e o r e m 2 The Balanced algorithm achieves an
O(max(n/p, h, B) l ogB/ log log B) completion time.

Proof : (sketch) We focus on the second stage and ig-
nore floors and ceilings (we omit the extensions to in-
clude the first and third stages, which are within a
constant factor of optimal). Let m be the number of
rounds in the second phase. Each round is completed
in 2B time (counting the B for rescheduling). Let ki
be the number of live lists per processor at the start
of round i, 1 < ki < B. In round i, each processor
visits a t least B/ki nodes in each list that remains live
for round i + 1. Thus the total number of nodes vis-
ited in round i, i < m, is at least pBki+l/ki. At the
end of round m, there are at most p live lists. The
longest list, is at least B ~ i ~ l 1/ki. The completion

165

time is 2mB. The worst case ratio of the completion
time to the optimal time (i.e. max(n/p, h, B)) is r <
maxk,m(min(2mB/(B ~ ki+l/ki), 2mB/(B ~ 1/ki),
2mBIB)) = maxk,,m(2rn min(1/(2 ki+l/ki), 1)),
where kl ~ k2 > ... ~ kin, kl < B, and k m > 1. For
any fixed rn, r is maximized when ki+l/kl = 1/d for
all i. Thus m = log d kl and so m/(~(ki+l/k i)) = d.
Thus r is maximized when d = loga kl, i.e. when
r = d = O(logki/loglogk~). cJ

T h e o r e m 3 Any deterministic slrategy will be
f2(logB/loglogB) from optimal on some set of jobs.

Proof" (sketch) Let there be pB lists and let c~ =
loglogB/logB. In this sketch, we assume that all pro-
cesso~s visit up to B nodes and then reschedule. Let
m be the number of rounds, and let ki be the number
of live lists per processor at the start of round i. To
foil the strategy, the adversary decides when to kill off
a list (i.e. make a list have one node remaining). Each
round, the adversary will kil! off all lists assigned to the
(1 - c~)p processors with the fewest lists assigned. In
addition, the adversary will kill off any list that is vis-
ited o~B times in one round. A processor can cause at
most 1/o~ lists to be killed this way. The adversary re-
peats this approach until/ki < 2/c~, at which point the
adversary kills off all the remaining live lists.

First observe that ki+l 2 a(kl - (l / a)) 2 akl/2.
Thus (after some arithmetic) we see there will be
rE(log2/~ B) = f2(1/a) rounds. We use the following
accounting scheme for counting the total number of
nodes visited in a round: the final node on a list is
not charged to the round in which it was visited and
instead we will add a one t ime charge of pB to ac-
count for these "final" nodes. Then the number of
nodes visited in a round is at most apB (since there
are only ap active processors). Thus the completion
time t is f~(B/a); n, the number of nodes visited, is
O((1/oOapB + pB) = O(pB); h, the number of nodes
in the longest list, is O((1/a)aB) = O(B). Hence the
strategy is at least t / (max(n/p,h,B)) from optimal,
i.e. f l (1/o 0 = ~(logB/loglogB) from optimal. D

In contrast, if the Balanced algorithm is modified to
randomly parti t ion the lists among the processors, it
achieves within a constant factor of optimal[Kar88].

R e m a r k : This "list" scheduling problem generalizes
to scheduling on a tree of unknown shape. This latter
problem has applications in parallel branch-and-bound.
We will not discuss the tree scheduling problem in this
paper, except to remark that an adversary can force any
strategy (that assigns at most one processor to a node)
to be @(B) from optimal as follows. At each round,
the adversary kills off all the frontier nodes of the tree
but one, and then has this one remaining frontier node
branch out to pB children.

6 S i m u l a t i o n result s

T h e o r e m 4 Any function computable by a lo9..space
uniform circuit family of bounded-fanin arithmeiic cir-
cuits of depth D(n) :~ log n, maximum width W(n),
and polynomial size can be computed by a log-space uni-
form EREW Phase LPRAM family running in time
O(B D(n)/log B) with W(n) log B processors.

Proo f : In what follows, we will sketch the proof for sim-
ulating the circuit family by a CREW Phase LPRAM
fmnily that has one processor per circuit gate. General-
izations of the proof to an EREW Phase LPRAM family
with only W(n) log B processors are omitted here.

Let c be the maximum fan-in in the circuit (c is a
constant). Intuitively, we will divide the circuit into
slices of depth log c B. The output of each node in a
slice depends on at most B predecessors in the circuit
from earlier slices (since the fan-in is c). Processor i
will first read these (up to) B values for node i into its
local memory. Using local operations that mimic the
circuit, it wilt compute the output of node i from these
B values. It will write the result to the shared memory,
and then synchronize.

Here is a more precise description of how uniformly
to generate a Phase LPRAM program tha t computes
the sarne function as the circuit. Let Ma be a log-
space Turing machine that generates a description of
the arithmetic circuit, start ing with the output node
and proceeding level-by-level back to the inputs. On in-
put n, the following log-space Turing machine Mp can
generate a description of our Phase LPRAM program,
one processor at a time, start ing with its final program
instructions. Encode the transition function for M~ into
the transition function for Mp in such a way that Mp
can simulate Ma. We maintain a counter of the cur-
rent depth of the circuit modulo log¢ B, and handle all
gates in a slice at a time. For each gate, we simulate
M, repeatedly to perform a depth first search starting
at the node and proceeding to the first node on each
path which is outside the slice (a frontier node). We
output the program for the processor (in reverse order)
as (1) synchronize, (2) global write of its final value,
(3) series of local operations which mimic gates within
the slice, and (4) global reads of the values for the .fron-

tier nodes. Finally, if the gate is in the j t h slice (f?om
the final slice), we output j - 1 additional synchronize
instructions in order that the processor starts at the
proper time. This can all be done in logarithmic space,
and the resulting CREW Phase LPRAM program runs
in time O(B D(n)/tog B) since there are D(n)/log B
slices. []

R e m a r k : By theorem 4, we see tha t the AKS sorting
network[AKS83] can be simulated on a Phase LPRAM

166

in O(B log n~ log B) time using n log B processors.

R e m a r k : Theorem 4 also yields an algorithm for ma-
trix multiplication, based on the fast matrix multiplica-
tion algorithm of Coppersmith and Winograd[CW87],
that runs in time O (B l o g n / l o g B) on an EREW Phase
LPRAM with O(n 2"37¢) processors. There is also a sim-
ple algorithm for matrix multiplication on an EREW
Phase LPRAM that runs in O(B logn/ logB) time us-
ing n a processors. We omit the details.

Coro l l a ry 1 Any language in NC k, k > 1, can be rec-
ognized by a log-space uniform E R E W Phase L P R A M
family running in O(B log k n / l o g B) lime with a poly-
nomial number of processors.

Theorem 4 saves a log B factor off the naive O(B •
D(n)) simulation time for computati0ns represented
as bounded fan-in circuits. Likewise, we can save a
log B factor off the time (using the PRAM algorithm
in [MRK88]) to evaluate a straight-line program:

L e m m a 7 Let C be an arithmetic circuit over a com-
mutative semiring (R, +,*, O, 1) with n nodes and de-
gree d with values assigned to each input node from
the domain R. The value for each node of the circuit
can be computed in O(B log n log(nd)/log B) time on an
ERE W Phase L P R A M using O(n 2"376) processors.

Proof i See [MRK88] for a precise definition of degree.
This lemma follows from the Miller, Ramachandran,
Kaltofen[MRK88] PRAM algorithm for this problem,
the fact that the time for matrix multiplication domi-
nates their algorithm, and our observation that matrix
multiplication can be performed in O(Blogn / logB)
time on a EREW Phase LPRAM using O(n 2"a76) pro-
cessors.

L e m m a 8 A C R C W P R A M algorithm running in time
t using p processors can be simulated by an E R E W
Phase L P R A M running in time O ((B l o g n / I o g B) t)
with p processors.

This lamina follows from [Eck79] and our result for the
multiprefix problem.

7 R e m a r k s

The PRAM model is a good model for studying parallel
computation. Recently, however, there has been an em-
phasis on a more precise analysis of algorithms where
logarithmic factors are important. Thus models become
important that reflect the features of real machines, en-
courage good programming practice for these machines,
are sufficiently simple to use for algorithm design and
analysis, and sufficiently general to apply to a range of

parallel machines. We believe the Asynchronous PRAM
is such a model.

The Asynchronous PRAM model is based on two
premises. For correctness, the program must accom-
modate arbitrary delays in the completion of instruc-
tions. For analysis, however, we can assume the proces-
sors approximate lockstep execution. We believe this
is a reasonable model for designing algorithms for ma-
chines where arbitrary delays occur, but (a) they are
infrequent, and (b) they tend to be evenly distributed
among the processors, especially when the processors all
have the same or similar programs. We expect this to be
a reasonable approximation of the behavior of tightly-
coupled multiprocessors with regular networks and iden-
tical processors. Experimental research on existing ma-
chines is needed to test the validity of our model.

Further variations on the Asynchronous PRAM
model are possible. Depending on the parallel machine,
it may be feasible to compute a parallel prefix while im-
plementing a synchronization point. If so, then another
type of the Asynchronous PRAM would charge only B
for parallel prefix. It may also be valuable to study
models which present a non-uniform view of the shared
memory, in which the communication delay depends on
the distance from the processor issuing the request to
the requested location. Such models may or may not
permit the pipelining of memory requests.

Our definition of an Asynchronous PRAM eliminates
the possibility of race conditions. No processor may
read the same memory location that another processor
writes unless there is a synchronization step involving
both processors between the two accesses. This simpli-
fies the use of our model, since each processor sees a
deterministic view of the computation. However, for
certain application areas, such as operating systems,
models that permit race conditions, and other forms
of nondeterminism, are needed.

Synchronization is an important consideration in
massively parallel machines, of great concern to the
hardware and software communities, but largely ignored
by the theory community. Understanding the compu-
tational power of various synchronization assumptions
and primitives leads to an understanding of an impor-
tant trade-off in the design of parallel machines: namely,
how important are particular synchronization assump-
tions versus how much it costs (in dollars, memory ac-
cess time, machine cycle time, etc.) for the hardware to
support these assumptions.

Acknowledgement

I thank Richard Karp, Jorge Sanz, Danny Soroker, and
Edith Cohen for helpful discussions.

167

R e f e r e n c e s

[ACS891 Alok Aggarwat, Ashok K. Chandra, and Marc
Snir. On communication latency in PRAM
computations. In Proc. of the Syrup. on Par-
allel Algorithms and Architectures (SPAA),
1989.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. Sort-
ing in clog n parallel steps. Combinatorica,
3:1-19, 1983.

JAM88]

[Bre74]

Richard J. Anderson and Gary L. Miller. De-
terministic parallel list ranking. In John H.
Reif, editor, Lecture Notes in Computer Sci-
ence, Vol. 319, pages 81-90. Springer-Verlag,
Berlin, 1988. Proc. of the 3rd Aegean Work-
shop on Computing (AWOC).

R. P. Brent. The parallel evaluation of general
arithmetic expressions. JACM, 21:201-208,
1974.

[CVS6a]

[CV86b]

Richard Cole and Uzi Vishkin. Approximate
and exact parallel scheduling with applica-
tions to list, tree, and graph problems. In
Proc. of the Syrup. on Foundations of Com-
puter Science (FOCS), pages 478-491, 1986.

Richard Cole and Uzi Vishkin. Determinis-
tic coin tossing with applications to optimal
parallel list ranking. Information and Con-
trol, 70:32-53, 1986.

[cw87]

[cz89]

[Eck79]

D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. In
Proc. of the Syrup. on Theory of Computing
(STOC}, pages 1-6, 1987.

Richard Cole and Ofer Zajicek. The APRAM:
Incorporating asynchrony into the PRAM
model. In Proc. of the Symp. on Parallel Al-
gorithms and Architectures (SPAA), 1989.

Diane M. Eckstein. Simultaneous memory ac-
cess. Technical Report TR-79-6, Computer
Science Dept., Iowa State University, Ames,
Iowa, 1979.

[Kar88] Richard M. Karp. personal communication,
1988.

[KR88] Richard M. Karp and Vijaya L. Ramachan-
dram A survey of parallel algorithms for
shared-memory machines. Technical Re-
port UCB-CSD-88-408, Computer Science
Division, University of Califbrnia, Berkeley,

[KRSSS]

[KU86]

[LF81]

[MRK88]

[PY88]

[R n87]

[Sni88]

[TV85]

March 1988. To appear in Handbook of Z~e.
oretical Computer Science, North-Holland,
Amsterdam, 1989.

Clyde P. Kruskal, Larry Rudolph, and Marc
Snir. A complexity theory of efficient paral-
lel algorithms. Technical Report RC 13572,
IBM T. J. Watson Research Center, York-
town Heights, New York, March 1988.

Anna Karlin and Eli Upfal. Parallel hashing
- an efficient implementation of shared mem-
ory. In Proc. of the Symp. on Theory of Com-
puting (STOC), pages 160-168, 1986.

N. A. Lynch and M. J. Fisher. On describ-
ing the behavior of an implementation of dis-
tributed systems. Theoretical Computer Sci-
ence, 13:17--43, 1981.

Gary L. Miller, Vijaya L. Ramachandran,
and E. Kaltofen. Efficient parallel evaluation
of straight-line code and arithmetic circuits.
SIAM Journal on Computing, 1988.

Christos H. Papadimitriou and Mihalis
Yannakakis. Towards an architecture-
independent analysis of parallel algorithms.
In Proc. of the Symp. on Theory of Comput.
ing (STOC), pages 510-513, 1988.

A. Ranade. How to emulate shared mem-
ory. In Proc. off the Symp. on Foundations
of Computer Science (FOCS), pages 185-19G
1987.

Marc Snir. personal communication, 1988.

Robert E. Tarjan and Uzi Vishkin. An effi-
cient parallel biconnectivity algorithm. SIAM
Journal on Computing, 14:862-874~ 1985.

168

