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A b s t r a c t  

This paper introduces the Asynchronous PRAM model 
of computation, a variant of the PRAM in which the 
processors run asy ~chronously and there is an explicit 
charge for synchronization. A fanfily of Asynchrooous 
PRAM's are defined, varying in the types of synchro- 
nization steps permitted and the costs for accessing the 
shared memory. Algorithms, lower bounds, and simula- 
tion results are presented for an interesting member of 
the family. 

1 I n t r o d u c t i o n  

The PRAM model of computation consists of a collec- 
tion ofp sequential processors, each with its own private 
local memory, communicating with one another through 
a shared global memory. The processors execute in lock- 
step, although each processor does have its own local 
program. A PRAM computation is a sequence of time 
steps, alternating between three types of instructions: 
read, compute, and write. In a read step, each proces- 
sor can read one global memory location into a local 
memory location. In a compute step, each processor 
can execute a single RAM operation whose operands 
are in local memory, storing the result in a local mem- 
ory location. In a write step, each processor can write 
the contents of one local memory location into a global 
memory location. All three steps are assumed to take 
unit time in the model. Although an idealized model, 
the PRAM has proven to be a useful model for study- 
ing parallel computation (see [KRS8] for a survey of 
results). The model is simple and relatively easy to use: 
its shared memory abstraction hides the details of the 
interprocessor communication and synchronization. 
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There are several difficulties that arise in mapping 
PRAM algorithms onto existing shared memory MIMD 
machines, such as the Sequent Balance, the BBN But- 
terfly, the NYU Ultracomputer, and the IBM RP3. 
First, realistic MIMD machines have more limited com- 
munication capabilities than the PRAM. The PRAM 
assumes that each processor can access any memory lo- 
cation in one step. Realistic machines are more limited 
in at least three respects: 

* the shared memory locations are partitioned into 
a smaller number of memory banks, each of which 
can support only a constant number of accesses per 
cycle, 

o the processors are connected to these memory 
banks by an intereonnection network in which the 
shortest path between a processor and most loca- 
tions requires many hops through the network, and 

® a link in the network can transmit only one message 
per cycle, and thus messages competing for a link 
are serialized. 

Considerable research effort has been focused on finding 
efficient ways to satisfy the simultaneous global mem- 
ory accesses of a PRAM read or write step on realis- 
tic networks (e.g. [KU86][Ran87]). Of course, no sim- 
ulation effort can overcome the fact that many global 
memory accesses must traverse the full diameter of the 
network. Indeed, most global memory accesses will take 
considerably longer to complete than a local operation. 
Recently, several researchers have explored variants of 
the PRAM that  account for this communicalion delay 
(e.g. [ACSS9][PY8S]). 

Second, existing MIMD machines are asynchronous. 
The PRAM assumes that the processors execute in lock- 
step. In order to effectively support a large number 
of processors, multiple users, and multiple instruction 
streams, realistic MIMD machines must permAt each 
processor to execute its instructions independently of 
the timing of the other processors. These asynchronous 
machines have an advantage over synchronous machii~es 
in that they avoid making worst case assumptions on 



the indeterminacy of instruction completion times (in- 
cluding worst case assumptions on clock skew). This 
indeterminacy arises in real machines due to network 
congestion, memory bank contention, operating system 
interference, and the relative speeds of register vs. cache 
vs. local memory vs. global memory access. Further in- 
determinacy arises due to the relative speeds of instruc- 
tion execution: an add is much faster than a floating 
point multiply or a global memory access. 

Supporting a synchronous model, such as the PRAM, 
on an asynchronous machine is inherently inefficient 
since the ability of the machine to run asynchronously 
is not fully exploited and there is a (potentially large) 
overhead in synchronizing the processors as part  of each 
instruction. For example, in Ranade's  scheme for sim- 
ulating a PRAM[Ran87], each switch holds any global 
memory accesses for an instruction until  all global mem- 
ory accesses of the previous instruction are flnished with 
the switch. Thus  there is a cost for synchronization at 
each level of the network, even for instructions that  do 
not require it. 

Surprisingly, this impor tant  limitation of the PRAM 
has been largely ignored by the theoretical community, 
even by those doing research into making the PRAM 
more practical. 

With these limitations in mind, this paper  intro- 
duces the Asynchronous PRAM model, a variant of the 
PRAM model more suited to shared memory MIMD 
machines. The  paper is organized as follows. Section 2 
defines the Asynchronous PRAM model and compares 
it with related models. Section 3 focuses in on the Phase 
PRAM, an Asynchronous PRAM in which all the pro- 
cessors synchronize at  each synchronization step. Sec- 
tions 4, 5, and 6 present new algorithms, simulation re- 
suits, and lower bounds for the Phase PRAM. Finally, 
section 7 presents some concluding remarks and direc- 
tions for future work. 

2 The Asynchronous  P R A M  

The Asynchronous PRAM model of computat ion con- 
sists of  a collection o f p  sequential processors, each with 
its own private local memory, communicating with one 
another through a shared global memory. Each pro- 
cessor has its own local program. Unlike the PRAM, 
the processors of an Asynchronous PRAM run asyn- 
chronously, i.e. each processor executes its instructions 
independently of the timing of the other processors. 
There is no global clock. 

A processor can issue up to one instruction per tick 
of its local clock. An instruction completes after some 
unbounded, but  finite, delay. 

There are four types of instructions: 

* global reads: reading the contents of a shared mem- 
ory location into a local memory location, 

® local operations: any RAM operation where the 
operands are in local memory and the result is 
stored in local memory, 

* global writes: writing the contents of a local mem- 
ory cell into a global memory cell, and 

* synchronization steps. 

A synchronization step among a set S of processors is 
a logical point in a computat ion where each processor 
in S waits for all the processors in S to arrive before 
continuing in its local program. The local program for 
a processor consists of a series of phases in which the 
processor runs independently, separated by synchroniza- 
tion steps. All instructions for processors in S prior to 
a synchronization step complete before any processor in 
S issues an instruction from its next phase. 

Processors can read and write to the shared memory 
asynehronously, but no processor may read the same 
memory location that  another one writes unless there 
is a synchronization step involving both processors be- 
tween the two accesses. Thus  there are no race con- 
ditions possible in the model (except in Asynchronous 
PRAM's  that  permit  "arbitrary" concurrent write: see 
section 3). 

R e m a r k :  In the PRAM model, a processor at step i 
can use the fact that  all processors have completed step 
i -  1. For example, a processor can read a memory loca- 
tion at step i tha t  some other processor may have writ- 
ten at step i -  1. In the Asynchronous PRAM, on the 
other hand, there is no global clock and arbi t rary delays 
are possible, thus a processor at its instruction i does 
not automatically know the progress of the other pro- 
cessors. In order to be sure tha t  all accesses to a global 
location at a point in the computation have completed, 
the processor must first synchronize with all other pro- 
cessors that  might be accessing the location (see, e.g., 
the multiprefix problem of section 4). 

2.1 Computa t ion  costs  in the  mode l  

An Asynchronous PRAM program is correct only if it 
works regardless of any delays that  may occur. As ar- 
gued in section 1, some delays are to be expected in 
MIMD machines. Nevertheless, these same machines 
are often tightly-coupled multiprocessors with regular 
networks and identical processors. Thus  a reasonable 
first approximation to  :the behavior o f  one of these ma- 
chines, for the purpose of measuring the cost of a com- 
putation, is to assume that  the local clocks all run at  the 
same speed. Given very similar local programs, the pro- 
cessors will progress through their programs at  roughly 
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the same rate. This motivates the following accounting 
scheme for our model. 

We will analyze programs assuming a global clock and 
a fixed cost for each instruction, independent of the pro- 
cessor. In particular, a local operation at a processor 
takes unit time. 

Recall that a local program for a processor consists 
of a series of phases separated by synchronization steps. 
The processor can not begin its next phase until the syn- 
chronization step has completed. The completion time 
for a synchronization step depends on the last processor 
to reach the step. Consider a phase that is followed by a 
synch[onization step among a set S of processors. The 
completion time for the phase (not counting the syn- 
chronization step) is defined to be the completion time 
for the processor's prior synchronization step plus the 
cost for its instructions this phase. The completion time 
for the synchronization step is the maximum completion 
time for the phase over all the processors in S plus the 
cost of the synchronization step itself. The cost of a 
synchronization step is B(p), a nondecreasing function 
of p, where p = ISI. The running time for a program 
is defined to be the maximum over all processors of the 
completion time for its local program. 

R e m a r k :  There are a wide variety of schemes for im- 
plementing synchronization steps on MIMD machines, 
with varying runtime overheads. Thus the estimated 
"cost" for a synchronization step is not some fixed value 
in our model, but a parameter. This permits algo- 
rithms to be designed that  are more machine indepen- 
dent. Given a target machine, an algorithm can then 
be tailored to the machine by specifying an appropriate 
function for B(p). 

2.2 A family of models  

The Asynchronous PRAM defines a family of models 
that differ in the types of synchronization steps permit- 
ted, the cost of accessing the shared memory, and the 
extent to which concurrent reads or writes to a location 
are permitted: 

® In an Asynchronous PRAM with subset synchro- 
nization, multiple disjoint sets of processors can 
synchronize independently and in parallel. The 
cost for a synchronization step among the proces- 
sors in a set S is charged only to those processors 
in S. An Asynchronous PRAM with all-processor 
synchronization restricts synchronization steps to 
only those that include all the processors. Multi- 
pie, independent synchronization steps are not per- 
mitted. Three options are possible: (a) the set S 
must be all the processors in the machine, (b) the 
set S is all the processors assigned to the program, 

or (c) the set S is all processors currently active in 
the program. In this paper, we will consider only 
the second case. 

An Asynchronous PRAM can either account for a 
communication delay to the shared memory or not. 
For the purpose of estimating execution time, we 
consider fixed communication delays: a global read 
takes 2d time and a global write takes d time. If 
communication delays are ignored, then both global 
reads and writes take unit time. 

® An Asynchronous PRAM can either permit concur- 
rent read and/or write or not. 

In all cases, for the purpose of analysis, we will assume 
that a processor can pipeline its instructions: it may is- 
sue instructions i + 1, i + 2, etc. of its local program 
before its instruction i has completed. (This assump- 
tion is irrelevant in Asynchronous PRAM~s in which 
all instructions - other than synchronize - are assumed 
to take unit time.) The pipelining of instructions in a 
phase is limited only by the dependencies (if any) be- 
tween the instructions. For example, the pipelining of 
global reads within a phase is limited only by the lo- 
cal dependencies of one read upon another: there are 
no interprocessor dependencies since no other processor 
can write into any of the locations being read. Local 
dependencies can occur between a sequence of reads if, 
for example, the value returned by one global read dic- 
tates the location to be read by the next global read, 
as is the case when traversing a linked list. A sequence 
of r global read instructions with no interdependencies, 
issued one after another by a processor, completes in 
2d + v - 1 time. Likewise, w write instructions issued 
one after another by a processor complete in d + w - 1 
time. 

We make two further assumptions that simplify the 
model. First, any sequence of reads and writes issued 
by a processor to a location read and write the memory 
in the same order as they are dispatched. Second, any 
sequence of reads issued by a processor to different lo- 
cations return to the processor in order. The former is 
true of machines that use FIFO buffers and links, while 
the latter can be simulated by buffering requests as they 
return, if necessary. 

Both the communication delay d and the synchroniza- 
tion cost B are nondecreasing functions of the number 
of processors. The appropriate functions to use depend 
on the parallel machine on which the program is to ru~ 
A typical function for d is the diameter of the inter- 
connection network, e.g. logp or ~/~; a typical func- 
tion for B is d or dlogp. In designing algorithms for 
the Asynchronous PRAM model, we assume only that 
l < d < B < p .  
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Altbough only a simple variant of the PRAM, the 
Asynchronous PRAM is considerably more practical. 
Its primary advantages are that it permits asynchronous 
~xecution of processors and it reflects some of the costs 
associated with synchronization and/or communication 
delay in real machines. Algorithms designed for the 
PRAM model tend to be far too fine-grained for real 
machines; algorithms designed for the Asynchronous 
PRAM model tend to be less fine-grained. 

2 .3  C o m p a r i s o n  w i t h  r e l a t e d  m o d e l s  

Most models of parallel computation studied to date 
have been synchronous (e.g. the PRAM, the LPRAM 
[ACS89]). There are asynchronous models in the world 
of distributed computing, but in these models, the pa- 
rameters are typically the number of processes and the 
number of messages. Typical programming models for 
MIMD machines (e.g. for the IBM RP3 and the Se- 
quent) have no notion of costs. 

Recently, Cole and Zajicek have been studying a 
model they call the APRAM[CZ89]. The APRAM 
is based on an accounting scheme for asynchronous 
computation due to Lynch and Fisher[LF81]. In this 
scheme, in one time unit or "round", each processor ex- 
ecutes at least one instruction (see also [KRS88]). The 
APRAM permits multiple sets of processors to synchro- 
nize independently and in parallel, does not account for 
communication delay, and permits concurrent reads and 
writes. The goal in the APRAM model is to redesign al- 
gorithlns so that processors synchronize in constant-size 
sets only: when this can be achieved, it leads to algo- 
rithms with the same time complexity as their PRAM 
counterparts. 

Another related model is a message-passing model 
with unbounded messages[Sni88]. In this model, each 
processor can pack a collection of values into a single 
message which it then sends to some other processor. 
Sending such a message is similar to issuing the set of 
global writes by a processor in an Asynchronous PRAM 
phase, since all such writes complete before any val- 
ues can be read. However, in the Asynchronous PRAM 
model, the individual values that make up the set can be 
accessed by different processors in the very next phase, 
unlike in the message-passing model. 

3 T h e  P h a s e  P R A M  

In this section and the sections that follow, we will focus 
on Asynchronous PRAM's with all.processor synchro- 
nization. A computation is a series of global, program- 
wide phases in which the processors run asynchronously, 
separated by synchronization steps that are among all 
the processors. We will refer to such Asynchronous 

PRAM's as either Phase PRAM's or Phase LPRAhTs. 
The two models are identical except that the Phase 
PRAM charges unit time for global reads and writes, 
while the Phase LPRAM cha,rges 2d for glcbzol reads and 
d for global writes. Recall, however, that a sequence of k 
global read (write) instructions with no interdependen- 
cies, issued one after another by a processor, completes 
i n 2 d + k - l t i m e ( d + k -  1time). 

Since all processors participate in each synchroniza- 
tion step, we can count time on a global phase-by-phase 
basis. Thus the time cost for a phase is the maximum 
over all processors of the cost of the instructions exe- 
cuted by a processor during the phase. The running 
time for a program is simply the sum of the time costs 
for each phase plus B times the number of synchroniza- 
tion steps. 

Various concurrent read/write policies are possible: 

• EREW Phase PRAM or Phase LPRAM: no two 
processors access the same location in a phase, 

® CREW Phase PRAM or Phase LPRAM: any num- 
ber of processors can read the same location (as 
long as no processor writes to the location), but no 
two processors may write to the same location in a 
phase, and 

® CRCW Phase PRAM or Phase LPRAM: any num- 
ber of processors can read (write) the same loca- 
tion, as long as no processor writes to (reads from) 
the location in the same phase. For concurrent 
writes, either (a) the processors must all write the 
same value (common-CRCW) or (b) an arbitrary 
processor succeeds in writing the final value at the 
location (arbitrary-CRCW). 

Let us turn to an example. 

Pref ix sum: 
We consider the first half of the prefix sum compu- 
tation in which we compute the sum of the n input 
numbers. We can compute the sum on an EREW 
PRAM in O(log 2 n) time, in binary tree fashion. By 
inserting a synchronization step after each PRAM read 
or write step, we get an EREW Phase PRAM or 
Phase LPRAM algorithm that runs in O((B + d)log2 n) 
time, i.e. O(B log n) time. This can be improved to 
O(B log n~ log B) time using a B-ary tree, where at each 
level of the tree, each active processor reads B values, 
computes their sum, writes the result, and then syn- 
chronizes. Since the reads can be pipelined, each level 
of the treetakes ( 2 d +  B - i )  + ( B - 1 ) + d +  B ~ime, 
i.e. O(B) time, and there are log B n levels. 

Let r = B log n~ log B. By initially having each pro- 
cessor sum r inputs without synchronizing and then us- 
ing a B-ary tree, n/v Phase PRAM or Phase LPRAM 
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processors suffice to achieve O(r) time. This is the opti- 
mal number of processors to use. In fact, in the typical 
case where B is a strictly increasing function of p, us- 
ing p = n or p = n / l o g s  processors would result in a 
slower algorithm. This reflects the realities of most real 
machines. 

Similarly, this B-ary tree approach (the same algo- 
rithm as in [PY88]), can be used to solve any parallel 
prefix problem. 

This motivates a few simple lemmas. 

L e m m a  1 An E R E W  (CREW, common- 
CRCW, arbitrary-CRCW) P R A M  algorithm running 
in time t using p processors can be simulated by an 
E R E W  (CREW, common-CRCW, arbitrary-CRCW) 
Phase P R A M  or Phase L P R A M  running in time O(Bt)  
with p/  B processors. 

The idea is to have each Phase PRAM or Phase LPRAM 
processor simulate B PRAM processors for a single step 
and then synchronize. This balances the time spent syn- 
chronizing with the time spent accessing memory and 
computing. The goal in designing algorithms for the 
Phase PRAM or Phase LPRAM is to beat these imme- 
diate time and processor bounds. 

L e m m a  2 A Phase P R A M  (Phase LPRAM)  program 
using Po processors and running in time t + B(po)s, 
where s is the number of synchronization steps, can be 
simulated by a Phase P R A M  (Phase L P R A M )  using 
P < Po processors in time O((po/p)t  + B(p)s).  

For each phase, each processor in the smaller machine 
simulates the instructions in the phase for po/p proces- 
sors of the larger machine and then synchronizes. 

A more general result, corresponding to Brent's 
scheduling principle for the PRAM[Bre74], is as follows. 
Define the work of an algorithm to be the sum over all 
processors of the number of instructions performed by 
a processor in the algorithm, not counting synchroniza- 
tion steps. 

L e m m a  3 A Phase P R A M  program using Po proces- 
sors, s synchronization steps, a total of x work, and 
t q- B(po)s time can be simulated by a Phase P R A M  
using p processors in lime O ( x / p  + t + B(p)s) .  

The proof is given in section 5. As in Brent's scheduling 
principle, this lemma does not account for scheduling 
costs. 

Now we turn to the relationship between the Phase 
PRAM and the Phase LPRAM. We will need the fol- 
lowing lamina: 

L a m i n a  4 An Asynchronous P R A M  program can be 
simulated with constant overhead by an Asynchronous 
P R A M  program in which each processor, in each of its 

phases, first performs all its global reads and local oper- 
ations for the phase, then performs its global writes. 

This lemma follows from the observation that (a) the 
timing of the reads and writes within a phase does not 
affect other processors, and (b) the processor's local 
state can be simulated even if the writes by a processor 
are queued until the end of the phase. 

Clearly a Phase PRAM can simulate a Phase LPRAM 
with no loss. The following lemma gives a sufficient con- 
dition for a Phase LPRAM to simulate a Phase PRAM 
with only constant overhead. Recall that a sequence of 
global reads with no interdependencies can be pipeline& 
We call such reads oblivious. A locally oblivious al- 
gorithm or program is one in which, in each phase, 
each processor first issues a sequence of oblivious global 
reads, then issues a sequence of local computes, and fi- 
nally issues a sequence of global writes. 

L e m m a  5 A locally oblivious Phase P R A M  program 
running in lime t with p processors can be simulated 
by a Phase L P R A M  program running in time O(t) wi~h 
p processors. 

Proof :  We show that the Phase LPRAM can simulate 
each phase of the Phase PRAM with constant overhead. 
Suppose the worst case processor for a Phase PRAM 
phase performs r (oblivious) global reads, l local op- 
erations, and w global writes. The time on the Phase 
PRAM for this phase and the subsequent synchroniza- 
tion step is r + l + w + B. The reads and the writes can 
be pipelined, so the time on the Phase LPRAM for the 
phase is ( 2 d + r -  1 ) + l + ( d + w -  1)+B, i.e. O ( r + l + w + B )  
s i n c e d < B .  [] 

R e m a r k :  With this in mind, for convenience~ we can 
focus on the simpler Phase PRAM, and not the Phase 
LPRAM. Most of our algorithms will be locally oblivi- 
ous, and so the results will apply to the more realistic 
Phase LPRAM. 

R e m a r k ,  Similar arguments show that upper bounds 
for locally oblivious Phase PRAM's yield upper bounds 
for the LPRAM model and the model in [PY88], by 
setting B = d. 

4 Improved algorithms for ira° 
portant primitive operations 

In this section, we analyze the complexity of various 
primitive operations that, along with parallel prefix, are 
used as building blocks for many parallel algorithms° 

We begin this section with a lower bound. Our re- 
suit of the previous section for summing n m~rnbers is 
optimal in the following sense: 

162 



T h e o r e m  1 Given n numbers, stored one per global 
memory location, and the .following four types off in. 
struclions: L ~-- G,L ~ L + L,G ~-- L, and "syn- 
chronize", where L is a local cell and G is a global cell, 
then the sum of n numbers on a CRCW Phase P R A M  
with lhis instruction set requires f~( B log n / log B ) time, 
regardless of the number off processors. 

Proof.. Let the fastest algorithm have s phases, of time 
tl, t2, . . . ,  is. In a phase of time ti, each processor can at 
best compute the sum oftl numbers, thus the number of 
partial sums reduces by a factor ofti at best. So in order 
to produce the sum, we must have n/ ( t l t2 . . . t s )  < 1. 
By an easy induction proof or calculus argument, the 

s t nl/s time t = Ei=I  i is minimized when ti : for all i. 
Thus t > snVS. 

The running time to produce the sum-is t + Bs. Let 
s = a logn / iogB .  If a > 1, then the time is at least 
Bs > B l o g n / l o g B .  If a < 1, then the time is at least 
t > sn 1/~ > o~B1/~logn/logB > B logn / logB .  o 

This argument can be applied to any n input, 1 output 
associative function f ,  where (1) the output of f de- 
pends on all the inputs, and (2) the basic step permitted 
is combining two partial results to get one. The factor of 
B~ logB occuring in this lower bound reflects the extent 
to which expensive synchronization (or communication 
delay) hinders information flow to a processor in our 
model. 

4 .1  L i s t  r a n k i n g  

Now consider the list ranking problem. Unlike the par- 
allel prefix problem of the previous section, it is no 
longer trivial to partition the work among the proces- 
sors such that each active processor can do B useful 
operations (and avoid concurrent read) without syn- 
chronizing. However, the following pointer jumping ap- 
proach achieves O(Blogn/ logB)  time on an EREW 
Phase PRAM with n processors. 

Po in te r  J u m p i n g  a lgor i thm:  

(1) For each of log n~ log B rounds, repeat steps (2)-(4): 

(2) Processor i makes B copies in global memory of 
name of (pointer to) the current successor of element i, 
then synchronizes. 

(3) Processor i pointer jumps for B steps, visiting the 
successor of i (copy 1 from step (2)), then the successor 
of the successor of i (copy 2 from step (2)), etc., and 
then synchronizes. 

(4) Processor i writes Jn global memory the new succes- 

sor of i, i.e. the B th such element visited, then synchro- 
nizes. 

This list-reducing procedure can be used for list ranking 
by surmning as it chases pointers. This shows how dupli- 
cating computation (here, B processors chase the same 
pointer - although a different copy - each phase) can 
reduce tile running time, and duplicating the contents 
of selected memory locations can avoid concurrent read. 
From the proof of theorem 1, it is easy to see that the 
list reducing (list ranking) problem has a lower bound 
of ~(B log n~ log B) time on a Phase PRAM. 

Remark :  This is not a locally oblivious algorithm. The 
Phase LPRAM running time is O(B log n~ log(B/d)) on 
n processors. 

A more sophisticated algorithm is needed in order to 
use fewer processors and achieve the same time bound 
on an EREW Phase PRAM. Known processor-efficient 
list ranking algorithms (e.g. [CV86b][CV86a][AM88]) 
communicate too frequently to run efficiently on this 
model, so a new algorithm is needed. Our new algo- 
rithm runs in three stages, and applies variants and/or 
generalizations of three known list ranking algorithms. 
Let r = B log n~ log B. We will use p = n / r  processors. 

Processor Efficient algorithm: 
(1) This first stage reduces the list from n elements to 
pB elements. The ideas behind this stage (we omit 
the full details) are as follows. The Anderson and 
Miller[AM88/EREW PRAM (deterministic) algorithm 
reduces a list from n to n~ log n elements in O(log n) 
time using n/ logn  processors. The list elements are 
partitioned into n~ log n queues of log n elements each. 
Each processor works on the elements in its queue, re- 
moving elements from the list according to a fixed ar- 
bitration scheme. Using a clever weighting scheme to 
analyze the progress of the algorithm, Anderson and 
Miller show that at most n~ log n elements remain after 
5 log n rounds of their algorithm. 

Their analysis depends strongly on the ability to real- 
locate work each of O(log n) times, and hence their al- 
gorithm is too slow for our purposes. However, a careful 
examination of their algorithm and proof reveals the fol- 
lowing generalization. By partitioning the list elements 
into n/x  queues ofx elements each, where 1 < x < log n, 
then n/x  processors can reduce a list from n to n/x  el- 
ements in 5x rounds of their algorithm. For our pur- 
poses, we take n/x  = pB, i.e. x = r /B .  At each of 
O(x) rounds of the Anderson and Miller algorithm, each 
Phase PRAM processor simulates the work of B PRAM 
processors and then synchronizes. This takes O(v) time. 

Finally, we compact the list of at most pB elements 
into a block of adjacent elements. This can be done in 
O(r) time using the parallel prefix algorithm described 
in section 3. 
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(2) The second stage reduces the list from pB elements 
to p elements. We use the deterministic coin tossing 
technique of Cole and Vishkin[CV86b], with each Phase 
PRAM processor simulating B PRAM processors. We 
run the technique for log log*(pB) rounds (synchroniz- 
ing after each round), and then compact. Then we 
run the technique for at most log B additional rounds 
(synchronizing after each round) until we are left with 
at most p elements, and then compact. This takes 
O(B log B + B log* n log log* (pB)) time. 

(3) The third stage reduces the list from p elements to 
one element. This is done in O(r)  time using the Pointer 
Jumping algorithm given above. 

Th~ese ideas lead [,o an algorithm that runs in time 
O(r +Blog B) with n/r processors (the second term 
from stage (2) can be made not to dominate). This 
is an optimal algorithm (i.e. has an optimal processor- 
time product) for any parallel machine where B E 

O(2vdggT), in which case the running time for p proces- 
sors is O(n/p + B log n/log B), the same as for prefix 
s u m .  

R e m a r k :  The three stages in the above algorithm 
are used in an "accelerating cascade" manner[CV86b], 
where earlier stages are processor efficient but  make 
smaller progress, while later stages are less processor 
efficient but make greater progress. In order to achieve 
O(Blogn/logB) time, we could only "compact" the 
list a constant number of times. 

R e m a r k :  For certain ranges of B, e.g. B < logp, the 
second stage can be omitted. 

4.2 FFT and bitonic merge 

In [PY88], an algorithm for F F T  is given that runs 
in O(d log n~ log d) time using n log d/d processors on a 
model with communication delay d. The same approach 
leads to an O(B log n/log B) time locally oblivious al- 
gorithm on an EREW Phase PRAM using n log B/B 
processors. We can improve upon this result in the re- 
lated problem of bitonic merge as follows. The directed 
acyclic graph for a bitonic merge computation is a but- 
terfly graph of n rows and log n columns. We parti- 
tion the graph into log n/logB stages, each consisting 
of logB columns. For each stage j, 1 _< j < logn / logB,  
the rows of the butterfly graph can be partitioned into 
sets 5),,,Sj,2,...,Sj,,#B of size B with the following 
property. For each stage j ,  the outputs of the rows in 
@,i are the result of sorting the inputs to these same 
rows. Each stage will have a different partitioning of 
the rows. The rows in a set wilt be evenly spaced, but 

not adjacent (except for the final stage). All compar- 
isons in a stage are between elements of rows that are in 
the same set. This leads to the following locally oblivi- 
ous algorithm, which runs in O(B log n/log 13) time on 
an EREW Phase PRAM using only n/B processors: 

Efficient Bitonlc M e r g e  a lgo r i thm:  

( t )  Let the n elements in the bitonic sequence be stored 
in a block of global memory locations. For each of 
log n/log B stages in turn, do step (2). 

(2) For stage j ,  each processor i reads the B elements 
corresponding to the "rows" for set Sy,i from the global 
memory, sorts them locally using a sequential algorithm, 
synchronizes, writes back its B elements sorted order, 
and synchronizes. The sorting can be done in O(B) time 
since the B elements in a set form a bitonic sequence. 

R e m a r k :  By lemma 5, the running time for a Phase 
LPRAM with n/B processors is also O(B log n/ log B). 

This is an example of a general paradigm for saving 
processors by (1) using a known parallel algorithm for 
the problem to structure the computation, while (2) per- 
forming the individual steps by reading B values, run°. 
ning a sequential algorithm on these values, and then 
writing the results. 

4.3 Multiprefix,  integer sorting, and 
Euler tours 

In the multiprefix problem, we are given n elements con- 
sisting of a value and one of L labels, and we want 
to simultaneously perform a parallel prefix computa- 
tion for each label. Using the parallel prefix algo- 
rithm of section 3, Ln/r processors suffice to achieve 
O(r) = O(Blogn/logB) time. However, we can im- 
prove on this result for the case where L > r using the 
following algorithm. To simplify the description of our 
algorithm, we will consider the case where the associa~ 
tire operation to be performed is addition. We will use 
p = n processors. 

M u R i p r e f i x  a lgo r i thm:  

(1) Consider a forest of (implicit) complete B-ary trees 
of p leaves each. We will have L trees in all, one for 
each label. Processor i starts at leaf i of the tree for its 
label. As in the parallel prefix algorithm, we will com- 
pute a sum by progressing level-by-level up this tree. 
The difference here is that we have only pj processors 
working on the tree for label j ,  where pj is the nm~ber 
of elements with label j. 

We repeat steps (2)-(3) once for each level in the ~br- 
est, a total of log n~ log B times. Initially, all processors 
are active and the cumulative sum for a processor is 
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simply the value of its element. 

(2) Consider a B × B matrix for each node of the next 
level in the forest. Each active processor writes its cur- 
~ent cumulative sum in each row of a column of the 
matrix for its parent,  and then synchronizes. Columns 
such that  no processors have the appropriate label will 
remain untouched (all zero). 

(3) Each active processor sums its row in the matrix and 
continues to the next level of the tree (i.e. remains an 
active processor) if and only if it is the left-most pro- 
cessor with this label among its B - 1 siblings at the 
current level of the tree. 

This algorithm produces the sum totals for each label; 
reversing the process yields the partial sums. This lo- 
cally oblivious algorithm runs in O(B log n/log B) time 
on an EREW Phase PRAM using n Processors and 
O(LnB) memory cells. Further refinements reduce the 
memory requirements to O(rL/B]n ) cells and include 
initialization costs, while maintaining the same time and 
processor bounds for any integer value of L. 

An algorithm for multiprefix yields an algorithm for 
sorting n integers of k log n bits each[Ran87/. It runs in 
O(kB l ogn / log  B) time on a locally oblivious EREW 
Phase Pt~AM with n processors. Given an n node for- 
est represented by each node having a pointer to its 
parent, a multiprefix algorithm can be used to compute 
the index of each node among the nodes with the same 
parent. From this, we can construct an Euler tour of 
a tree and then compute many tree functions such as 
preorder and postorder numberings [TV85], all within 
the same resource bounds. 

5 Upper and lower bounds for 
load balancing 

In this section, we present a scheduling problem that  
arises in the context of on-line load balancing in the 
Phase PRAM, and which has more general applications. 
Given p processors and k jobs of unknown (nonzero) 
duration, find a preemptive on-line schedule such that  
cost B is charged each time the processors are scheduled, 
or preempted and rescheduled. Let h /be  the (unknown) 
number of unit-time steps in job i, n = ~ = 1  hi, and 
h = m a x ( h i , . . . ,  h i ) .  A lower bound on the completion 
time is max(n/p, h, B). 

There is a well known strategy for the case relevant 
to the PRAM (B = 0), which achieves within a fac- 
tor of 2 of optimal. In particular, this strategy, known 
as Brent's scheduling principle[Bre74], achieves n/p+ h 
completion time. If the durations of the jobs are known 
(and sorted: hi >_ h2 > "'" ~ hk), then the following 
nonpreemptive schedule achieves n/p+h+B completion 

time: assign processor i to complete jobs i, i + p, i ÷ 2p, 
etc. 

L e m m a  6 The above schedule achieves n/p + h + B 
completion time. 

Pr o o f i  Let xj be the number of jobs with at least j 
steps. Processor 1 has the most work and it does [xj/p] 
unit-time steps which are the j th  step of some job. Thus 

h the completion time is ~j=l [xj/p] + B < n/p+ h + B. 
O 

R e m a r k :  Lemma 3 of section 3 follows from lemma 6. 

When the durations of the jobs are unknown, 
then the following simple strategy achieves within an 
O(log B~ log log B) multiplicative factor of optimal. We 
will view each job as a linked list of nodes, where each 
node represents a unit-time step. In unit time, each pro- 
cessor can "visit" the first node in some list, i.e. remove 
the node from its list, perform the associated unit-time 
step, and label the list as now dead (empty) or still live 
(not empty). We permit at most one processor to be 
assigned to any one list at  a time. 

Balanced a l g o r i t h m :  

(1) Repeat the following while the number of live lists 
is > pB: partition the live lists evenly among the pro- 
cessors, and have each processor visit one node in each 
of its lists. 

(2) Repeat the following while the number of live lists 
is > p. Part i t ion the live lists evenly among the pro- 
cessors. Each processor cycles through its lists, visiting 
one node from a list at a time, until it has visited B 
nodes or emptied all its lists. 

(3) The number of live lists is now at most p. Assign 
one processor per live list and have it visit all the nodes 
remaining in the list. 

T h e o r e m  2 The Balanced algorithm achieves an 
O(max(n/p, h, B) l ogB/ log  log B) completion time. 

Proof :  (sketch) We focus on the second stage and ig- 
nore floors and ceilings (we omit the extensions to in- 
clude the first and third stages, which are within a 
constant factor of optimal). Let m be the number of 
rounds in the second phase. Each round is completed 
in 2B time (counting the B for rescheduling). Let ki 
be the number of live lists per processor at the start  
of round i, 1 < ki < B. In round i, each processor 
visits a t  least B/ki nodes in each list that  remains live 
for round i + 1. Thus the total number of nodes vis- 
ited in round i, i < m, is at least pBki+l/ki. At the 
end of round m, there are at most p live lists. The 
longest list, is at least B ~ i ~ l  1/ki. The completion 
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time is 2mB. The worst case ratio of the completion 
time to the optimal time (i.e. max(n/p, h, B)) is r < 
maxk,m(min(2mB/(B ~ ki+l/ki), 2mB/(B ~ 1/ki), 
2mBIB)) = maxk,,m(2rn min(1/(  2 ki+l/ki), 1)), 
where kl ~ k2 > ...  ~ kin, kl < B, and k m >  1. For 
any fixed rn, r is maximized when ki+l/kl = 1/d for 
all i. Thus m = log d kl and so m/(~(ki+l/k i ) )  = d. 
Thus r is maximized when d = loga kl, i.e. when 
r = d = O(logki/loglogk~). cJ 

T h e o r e m  3 Any deterministic slrategy will be 
f2(logB/loglogB) from optimal on some set of jobs. 

Proof"  (sketch) Let there be pB lists and let c~ = 
loglogB/logB. In this sketch, we assume that all pro- 
cesso~s visit up to B nodes and then reschedule. Let 
m be the number  of rounds, and let ki be the number 
of live lists per processor at the start  of round i. To 
foil the strategy, the adversary decides when to kill off 
a list (i.e. make a list have one node remaining). Each 
round, the adversary will kil! off all lists assigned to the 
( 1  - c~)p processors with the fewest lists assigned. In 
addition, the adversary will kill off any list that  is vis- 
ited o~B times in one round. A processor can cause at 
most 1/o~ lists to be killed this way. The adversary re- 
peats this approach until/ki < 2/c~, at which point the 
adversary kills off all the remaining live lists. 

First observe that  ki+l 2 a(kl - ( l / a ) )  2 akl/2. 
Thus (after some arithmetic) we see there will be 
rE(log2/~ B) = f2(1/a) rounds. We use the following 
accounting scheme for counting the total number of 
nodes visited in a round: the final node on a list is 
not charged to the round in which it was visited and 
instead we will add a one t ime charge of pB to ac- 
count for these "final" nodes. Then the number of 
nodes visited in a round is at  most apB (since there 
are only ap active processors). Thus the completion 
time t is f~(B/a); n, the number  of nodes visited, is 
O((1/oOapB + pB) = O(pB); h, the number of nodes 
in the longest list, is O((1/a)aB) = O(B). Hence the 
strategy is at least t / (max(n/p,h,B))  from optimal, 
i.e. f l (1/o 0 = ~(logB/loglogB) from optimal. D 

In contrast, if the Balanced algorithm is modified to 
randomly parti t ion the lists among the processors, it 
achieves within a constant  factor of optimal[Kar88]. 

R e m a r k :  This "list" scheduling problem generalizes 
to scheduling on a tree of unknown shape. This latter 
problem has applications in parallel branch-and-bound. 
We will not discuss the tree scheduling problem in this 
paper, except to remark that  an adversary can force any 
strategy (that  assigns at  most one processor to a node) 
to be @(B) from optimal as follows. At each round, 
the adversary kills off all the frontier nodes of the tree 
but  one, and then has this one remaining frontier node 
branch out to pB children. 

6 S i m u l a t i o n  result s 

T h e o r e m  4 Any function computable by a lo9..space 
uniform circuit family of bounded-fanin arithmeiic cir- 
cuits of depth D(n) :~ log n, maximum width W(n), 
and polynomial size can be computed by a log-space uni- 
form EREW Phase LPRAM family running in time 
O(B D(n)/log B) with W(n) log B processors. 

Proo f :  In what follows, we will sketch the proof for sim- 
ulating the circuit family by a CREW Phase LPRAM 
fmnily that  has one processor per circuit gate. General- 
izations of the proof to an EREW Phase LPRAM family 
with only W(n) log  B processors are omitted here. 

Let c be the maximum fan-in in the circuit (c is a 
constant).  Intuitively, we will divide the circuit into 
slices of depth log c B. The output  of each node in a 
slice depends on at most B predecessors in the circuit 
from earlier slices (since the fan-in is c). Processor i 
will first read these (up to) B values for node i into its 
local memory. Using local operations that  mimic the 
circuit, it wilt compute the output  of node i from these 
B values. It will write the result to the shared memory, 
and then synchronize. 

Here is a more precise description of how uniformly 
to generate a Phase LPRAM program tha t  computes 
the sarne function as the circuit. Let Ma be a log- 
space Turing machine that  generates a description of 
the arithmetic circuit, start ing with the output  node 
and proceeding level-by-level back to the inputs. On in- 
put n, the following log-space Turing machine Mp can 
generate a description of our Phase LPRAM program, 
one processor at  a time, start ing with its final program 
instructions. Encode the transition function for M~ into 
the transition function for Mp in such a way that  Mp 
can simulate Ma. We maintain a counter of the cur- 
rent depth of the circuit modulo log¢ B, and handle all 
gates in a slice at  a time. For each gate, we simulate 
M, repeatedly to perform a depth first search starting 
at  the node and proceeding to the first node on each 
path which is outside the slice (a frontier node). We 
output  the program for the processor (in reverse order) 
as (1) synchronize, (2) global write of its final value, 
(3) series of local operations which mimic gates within 
the slice, and (4) global reads of the values for the .fron- 

tier nodes. Finally, if the gate is in the j t h  slice (f?om 
the final slice), we output  j - 1 additional synchronize 
instructions in order that  the processor starts at the 
proper time. This can all be done in logarithmic space, 
and the resulting CREW Phase LPRAM program runs 
in time O(B D(n)/tog B) since there are D(n)/log B 
slices. [] 

R e m a r k :  By theorem 4, we see tha t  the AKS sorting 
network[AKS83] can be simulated on a Phase LPRAM 
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in O(B log n~ log B) time using n log B processors. 

R e m a r k :  Theorem 4 also yields an algorithm for ma- 
trix multiplication, based on the fast matrix multiplica- 
tion algorithm of Coppersmith and Winograd[CW87], 
that runs in time O ( B l o g n / l o g B )  on an EREW Phase 
LPRAM with O(n 2"37¢) processors. There is also a sim- 
ple algorithm for matrix multiplication on an EREW 
Phase LPRAM that runs in O(B logn/ logB) time us- 
ing n a processors. We omit the details. 

Coro l l a ry  1 Any language in NC k, k > 1, can be rec- 
ognized by a log-space uniform E R E W  Phase L P R A M  
family running in O(B log k n / l o g B )  lime with a poly- 
nomial number of processors. 

Theorem 4 saves a log B factor off the naive O(B • 
D(n))  simulation time for computati0ns represented 
as bounded fan-in circuits. Likewise, we can save a 
log B factor off the time (using the PRAM algorithm 
in [MRK88]) to evaluate a straight-line program: 

L e m m a  7 Let C be an arithmetic circuit over a com- 
mutative semiring (R, +,*, O, 1) with n nodes and de- 
gree d with values assigned to each input node from 
the domain R. The value for each node of the circuit 
can be computed in O(B log n log(nd)/log B) time on an 
ERE W Phase L P R A M  using O(n 2"376) processors. 

Proof i  See [MRK88] for a precise definition of degree. 
This lemma follows from the Miller, Ramachandran, 
Kaltofen[MRK88] PRAM algorithm for this problem, 
the fact that the time for matrix multiplication domi- 
nates their algorithm, and our observation that matrix 
multiplication can be performed in O(Blogn / logB)  
time on a EREW Phase LPRAM using O(n 2"a76) pro- 
cessors. 

L e m m a  8 A C R C W  P R A M  algorithm running in time 
t using p processors can be simulated by an E R E W  
Phase L P R A M  running in time O ( ( B l o g n / I o g B ) t )  
with p processors. 

This lamina follows from [Eck79] and our result for the 
multiprefix problem. 

7 R e m a r k s  

The PRAM model is a good model for studying parallel 
computation. Recently, however, there has been an em- 
phasis on a more precise analysis of algorithms where 
logarithmic factors are important. Thus models become 
important that reflect the features of  real machines, en- 
courage good programming practice for these machines, 
are sufficiently simple to use for algorithm design and 
analysis, and sufficiently general to apply to a range of 

parallel machines. We believe the Asynchronous PRAM 
is such a model. 

The Asynchronous PRAM model is based on two 
premises. For correctness, the program must accom- 
modate arbitrary delays in the completion of instruc- 
tions. For analysis, however, we can assume the proces- 
sors approximate lockstep execution. We believe this 
is a reasonable model for designing algorithms for ma- 
chines where arbitrary delays occur, but (a) they are 
infrequent, and (b) they tend to be evenly distributed 
among the processors, especially when the processors all 
have the same or similar programs. We expect this to be 
a reasonable approximation of the behavior of tightly- 
coupled multiprocessors with regular networks and iden- 
tical processors. Experimental research on existing ma- 
chines is needed to test the validity of our model. 

Further variations on the Asynchronous PRAM 
model are possible. Depending on the parallel machine, 
it may be feasible to compute a parallel prefix while im- 
plementing a synchronization point. If so, then another 
type of the Asynchronous PRAM would charge only B 
for parallel prefix. It may also be valuable to study 
models which present a non-uniform view of the shared 
memory, in which the communication delay depends on 
the distance from the processor issuing the request to 
the requested location. Such models may or may not 
permit the pipelining of memory requests. 

Our definition of an Asynchronous PRAM eliminates 
the possibility of race conditions. No processor may 
read the same memory location that another processor 
writes unless there is a synchronization step involving 
both processors between the two accesses. This simpli- 
fies the use of our model, since each processor sees a 
deterministic view of the computation. However, for 
certain application areas, such as operating systems, 
models that permit race conditions, and other forms 
of nondeterminism, are needed. 

Synchronization is an important consideration in 
massively parallel machines, of great concern to the 
hardware and software communities, but largely ignored 
by the theory community. Understanding the compu- 
tational power of various synchronization assumptions 
and primitives leads to an understanding of an impor- 
tant trade-off in the design of parallel machines: namely, 
how important are particular synchronization assump- 
tions versus how much it costs (in dollars, memory ac- 
cess time, machine cycle time, etc.) for the hardware to 
support these assumptions. 
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