
International Journal of Parallel Programming, Vol. 21, No. 1, 1992 

Extended Parallelism 
Basis Algorithm 

Stephen A. Schwab 1'2 

in the Gr6bner 

Received June 1991, Revised November 1992 

This paper presents a new parallel implementation to compute Gr6bner bases 
utilizing two different forms of parallelism. A coarse-grain technique developed 
by Jean-Phillipe Vidal expands and reduces S-polynomials in parallel. A fine- 
grain technique, proposed by Melenk and Neun, constructs a pipeline of 
processors to overlap execution of the reduction operations. A hybrid algorithm 
that outperforms both of the original approaches is presented. The combined 
algorithm requires the user to select the appropriate allocation of processors to 
the two styles of parallelism, and uses this static assignment throughout the 
computation. The paper also discusses the design and implementation 
approaches used to construct an efficient version of this algorithm. 

KEY WORDS:  Parallel algorithms; shared memory multiprocessors; 
Gr6bner bases; computer algebra. 

1. INTRODUCTION 

Gr6bner bases are one of the basic tools of computational algebraic 
geometry, the branch of mathematics which, to oversimplify, studies the 
solutions of sets of algebraic equations in affine or projective n space. ") The 
significance of Gr6bner bases, which give a normal form to ideals in poly- 
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nomial rings, as well as an algorithm for computing them, was first 
demonstrated by Buchberger. Once a Gr6bner basis is found for the corre- 
sponding ideals, it becomes easy to test if a polynomial belongs to an ideal, 
if two ideals are equal, if an ideal is contained in another, and so on. The 
interested reader is referred to Buchberger's work, (2"3) where one will find 
a complete introduction to Gr6bner bases, a description of their computa- 
tion, as well as a list of many applications. A self-contained introduction to 
both the mathematical theory and applications of Gr6bner bases can also 
be found in the tutorial article by Misra and Yap. (4) A complete review of 
the various attempts to parallelize the algorithm can be found in Vidal's 
paper. (5) 

The Buchberger algorithm transforms a set of polynomials into 
another set of polynomials, a Gr6bner basis generating the same ideal. 
These polynomials have rational coefficients, and indeterminates drawn 
from some finite set of variables. While the theory behind the algorithm is 
quite complex, the actual computation is relatively simple to describe. This 
implementation is based on a version of the algorithm given by Gebauer 
and M611erJ 6) 

The computation of Gr6bner bases require a great deal of time in 
practice. There are several theoretical bounds but they are of limited use in 
predicting actual performance because they are based on worst-case com- 
plexity which is unlikely to occur in practice. One well known result is a 
double exponential lower-bound due to Mayr and Meyer. (7) Even when a 
particular instance of the problem does not require time approaching this 
bound, it often requires a large amount of computation. One parameterized 
family of examples due to Arnborg and Davenport appears to require time 
at least exponential in the number of equations, but this is an artificial 
example. Our experiments were carried out using examples from the 
literature, but a more useful set of measurements would require the ability 
to characterize and produce average case examples similar to those typi- 
cally encountered when the algorithm is used, for example, in a symbolic 
mathematical system to solve a set of equations. 

One way to speed up the solution of the problem is to transform the 
sequential algorithm into a parallel one and execute it on a multiprocessor. 
There have been many attempts over the past few years to develop an 
efficient parallel algorithm. Watt, ~8) and Buchberger ~9) were the first to 
propose parallel algorithms to compute Gr6bner bases but they did not 
implement them, nor attempt to measure or predict their performance. 
Ponder (1~ implemented corrected versions of Wart's algorithm but 
obtained only limited parallel speed-up. Melenk and Neun (H) designed a 
pipelined version of the most time consuming step of the algorithm. They 
simulated it and obtained good parallel efficiency for a small number of 
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processes. More recently, Siegl (12/ modified Buchberger's parallel version of 
the algorithm by distributing the basis, which is a set of polynomials, 
among the processes. He implemented this version and obtained good 
performance for small examples. Senechaud (13~ had already implemented a 
similar version of the algorithm, but only for Boolean polynomials. Vidal (5) 
was the first to implement an efficient parallel algorithm on a shared 
memory multiprocessor. 

The work presented here differs from the attempts described so far in 
several respects: 

�9 The underlying architecture is a shared memory multiprocessor 
and the main objects used during the computation are shared 
among all processes. 

�9 The implementation can be  used for problems of size significantly 
larger than the other implementations. Also, in general, the parallel 
performance achieved is better than that observed in the other 
implementations, especially for problems of large size. 

�9 This implementation is the first one which combines two parallel 
schemes: the coarse-grain level of parallelism similar to what Watt 
and Buchberger proposed is complemented by a fine-grain level of 
parallelism similar to what Melenk and Neun proposed. After we 
discuss these two parallel schemes, we will see how well both 
combine in one algorithm. 

In Section 2, we present a brief description of the various machines on 
which these experiments were performed. In Section 3, we give an introduc- 
tion to the Gr6bner basis algorithm. In Section 4, we present the coarse- 
grain parallelism of Vidal. In Section 5, we describe the fine-grain 
parallelism using reduction pipelines, and point out the key issues in the 
implementation. In Section 6, we discuss the combined version of the algo- 
rithm and the various scheduling and load balancing issues. In Section 7, 
we analyze the various implementations. Section 8 compares this implenta- 
tion to the other parallel implementations reported on in the literature. In 
Section 9, we conclude with a discussion of additional work and future 
directions. 

2. M U L T I P R O C E S S O R  A R C H I T E C T U R E S  U S E D  IN T H E  
I M  P L E M  E N T A T I O  N 

A wide variety of multiprocessor architectures have been described in 
the literature over the past few years. The characteristics of these architec- 
tures vary widely and are determined by the available technology, the class 
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of applications addressed, the trade-offs between processor speed, memory 
system complexity and communication costs, and other design decisions. In 
this paper, we describe algorithms implemented on three shared memory 
architectures. 

The Encore Multimax is a classic shared memory multiprocessor using 
a central bus for communication between processors and main memory. 
Each processor has a local cache and uses a snooping protocol to maintain 
cache coherency. The Multimax is suitable for medium and coarse grained 
parallel applications. (m The particular machine used in these experiments 
had 16 National Semiconductor 32332 processors, each rated at roughly 2 
MIPS, and 32 megabytes of shared memory. The local cache size is 64K 
bytes, shared between two processors. 

The RP3 is a large-scale research parallel processor developed at the 
IBM T.J.  Watson Research Center. The machine consists of a number 
of processor-memory elements connected by an Omega-interconnection 
network. Local memory references are handled immediately, while remore 
memory references must be resolved over the network. The architecture 
provides three types of memory pages: local pages, global pages, and 
replicated pages. The machine does not support automatic cache 
coherency; instead, cache management is the responsibility of the program- 
mer or compiler. (15~ The virtual memory interface allows each page to be 
marked as cacheable or noncacheable, as well as allowing the cache to be 
flushed under user level control. The current version of the system has 
64 ROMP processors. Each processor has 8 megabytes of storage, and a 
64K byte local cache shared between two processors. 

The Plus architecture (16) is a mesh of processor-memory elements 
connected by a deterministic routing network. The routers always send 
messages along an L-shaped path in the mesh, so that the message first 
propagates vertically, then horizontally to the destination. Remote memory 
references are transparently routed to the appropriate destination. In addi- 
tion several special features enhance this basic design. Local computation 
proceeds while remote writes are being completed, increasing overall 
throughput, When needed, a fence operation is used to stall the local pro- 
cessor until all remote writes have completed. Also, any page in memory 
may be replicated to other processing nodes. Reads from these replicated 
pages are handled locally, while writes are directed to the master copy of 
the page and transparently propagated to all replicated copies. This allows 
the processor which owns the page to write it without stopping, while the 
hardware keeps track of these writes and updates the memory of other pro- 
cessors which have a copy of the page. Tuning an application to run on 
this architecture involves studying reference patterns of the algorithm and 
selecting a memory replication scheme that minimizes remote read refer- 
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ences, while limiting remote writes and overall network traffic. This type of 
architecture is expected to perform better than a pure message-passing 
architecture because additional hardware supports the remote memory 
references, as opposed to a software layer processing these memory 
requests. The experiments described in the paper were run on the Plus 
simulator, as well as the Proteus (~7~ simulator configured to model the Plus 
architecture. A machine with 40 nodes is currently under construction. 

There are several key differences between these architectures that 
impact on how applications are tuned to these machines. The Multimax, 
with a uniform memory system accessed via a common bus, requires no 
decisions about where to locate data structures in the machine. Both the 
RP3 and Plus support nonuniform memory systems, so data locality is 
critical to performance. Synchronization on the Multimax uses a test-and- 
set primitive, which requires exclusive access to the bus, making this a 
potentially expensive operation. On the RP3 and Plus, atomic opera- 
tions such as fetch-and-add are used to implement mutual exclusion. The 
RP3 requires that memory locations operated on atomically be uncached, 
so that the operation is executed by the memory system, while Plus 
implements the same functionality by routing the operation to the master 
copy of the page. The cache coherency protocol on the Multimax, and the 
replication hardware on Plus, effectively provide reliable and transparent 
sharing of data. The added flexibility of the Plus memory system allows the 
architecture to better support the data sharing pattern of the application 
program. The RP3, which provides no hardware cache coherence support, 
requires software support for data which is shared and modified. This 
complicates the implementation of parallel programs, and makes porting 
of code from one architecture to another more difficult. 

These implementations were all written in C and use the C-Threads 
package, (~8) which allows parallel programming under the MACH 
operating system. (191 The programming model provided by C-Threads is 
one of many executing processes sharing a common global address space. 
Synchronization is provided through locks for mutual exclusion and condi- 
tions for waiting and signaling of events. The model is augmented on the 
nonuniform memory access machines to provide for the assignment of 
specific threads to specific processors, and for controlling the placement 
and replication policy of memory pages. 

3. T H E  B A S I C  A L G O R I T H M  

Before presenting the details of how to compute a Gr6bner basis, some 
preliminary background on multivariate polynomial computation must be 
provided. Computer algebra systems typically manipulate large data 
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structures that represent the underlying mathematical objects, such as poly- 
nomials. Unlike numerical computations, approximations to real numbers 
and the use of error bounds are not sufficient to yield the correct result. To 
deal with these issues of precision, variable sized data structures are used 
throughout the system, and memory for these structures is allocated and 
released as it is needed. 

In this implementation, polynomials are represented as dynamically 
allocated arrays of bignumber integer coefficients, and exponent descrip- 
tors. Each big number integer is in turn a dynamically allocated array of 
integers representing the digits of the big number in a large radix. The 
exponent descriptors are arrays of integers specifying the exponents of each 
variable. The implementation makes extensive use of an explicit memory 
allocator using the standard malloe and free C library interface. However, 
there is nothing in the implementation which precludes it from using a 
garbage-collection based memory allocation scheme, which is often built in 
to complete computer algebra systems. An earlier version of this program 
was modified to serve as a benchmark for a concurrent garbage-collection 
based memory allocator. (2~ 

One issue not yet discussed is the order in which the terms of a poly- 
nomial are stored and, indeed, what the logical ordering of these terms will 
be. For  univariate polynomials, the common logical order of terms is from 
that of greatest degree to least degree, so that a quadratic polynomial is 
written 3x 2 + 2x + 1 and not 2x + x 2 + l. It is then natural to describe the 
leading term of this polynomial as 3x 2 without ambiguity. Turning to the 
case of multivariate polynomials, we find that a polynomial such as 
2x2y + 3xy 2 may just as easily be written with its terms in the opposite 
order. Because the Gr6bner basis depends on the term ordering, we must 
select a particular order in which to list the terms of a polynomial. The 
implementation takes care to always store the terms of a polynomial in the 
selected order. All of the experiments reported on in this paper where 
performed using the reverse lexicographic ordering, described in several 
other papers. (3'5) To be concrete, we will present the simpler lexicographic 
ordering for terms in a polynomial. 

For the purposes of our paper, the key property of any ordering is 
that the first, or leading, term of any polynomial is always well defined. 
Suppose we are working with the lexicographic order over the variables 
x, y, z in that order. The greater term in this order is the one with the 
biggest exponent at the first variable where the exponents are different. For  
example, x3yZz I is greater than x3y ~z 3 because the exponent of y2 is bigger 
than that of y 2. Likewise, yZz3 is smaller than x 1 because the implicit expo- 
nent of x in y2z3, is 0, which is less than 1. Armed with a representation 
of multivariate polynomials, and a method for ordering their terms, we 



Extended Parallelism in the Gr6bner Basis Algorithm 45 

now present a sketch of the Gr6bner basis (also called Buchberger's) 
algorithm. 

The primitive step of the computation, called reduction, involves 
deleting the first term of the current working polynomial, called the S-poly- 
nomial, by subtraction of an appropriate multiple of a polynomial already 
in the set. The result of this reduction is of lower order, but not necessarily 
smaller in size or number of terms. A polynomial is totally reduced with 
respect to a set of polynomials when no further reduction is possible. Note 
that polynomial Q is only selected to reduce polynomial P if its leading 
term divides a scalar multiple of the leading term of Q. This means that P 
is multiplied by an integer, and not by a monomial. 

R~duc4 P, Q):= { 

Assert( Q reduces P)  

G := LCM(LeadingTerm(P) ,  LeadingTerm(Q)) 

Kp := G/LeadingTerm(P) 

)~Iq := G/LeadingTerm(Q) 

Reduce := Ii~ �9 P - AI~ �9 Q 

Reduce(z3y 2 + 2x2y § 3,2x~y 2 + y) := 

G = LCM(z3y  2,2z2y 2) = 2z3y 2 

~duc~ :=  2 .  (x3y  ~ + 2 . ~ y  + 3) - x .  (2~2v  ~ + y)  

= 4x2y - -  xy 

The S-polynomial of two polynomials already in the set is computed 
by finding the least common multiple of the leading terms, multiplying by 
appropriate monomials to make the two leading terms equal, and then 
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finding the difference of these polynomials. Intuitively, each polynomial is 
scaled by the smallest factor such that the lead terms become equal; sub- 
tracting them cancels out the lead terms. This primitive is almost identical 
to the Reduce operation, except that both polynomials are multiplied by 
monomials. 

spoz( P, Q):= ( 

G := LCM(LeadingTerm(P) ,  LeadingTerm(Q)) 

2lip :-- G/neadingTerm(P)  

21Iq := G/LeadingTerm(Q) 

SpoZ :=  P - M . .  Q 

} 

SpoI(2x2y + 3xy + 1,3xy 2 + my + 2y + 2) := 

G = LCM(2x2y ,3xy  2) = 6x2y 2 

~ =  6x~y2/2x2y = 3y, ;lq = 6m2y2/3xy~ = 2x 

SpoI = 3y.  (2x2y + 3xy + 1) - 2x -(3my 2 + xy + 2y + 2) 

= - 2 x ~ y  + 9xy 2 - 4zy - 4x + 3y 

The simplest form of the algorithm can now be stated, and is presented 
in Fig. 1. Termination is guaranteed by restrictions on the ordering of 
terms in each polynomial. For  our discussion, it is enough that selecting an 
admissible ordering ensures that only a finite number of critical pairs will 
be examined. An admissible order is one in which constant terms are the 
least terms in the order, and the ordering is preserved under multiplication. 
That is, if T 1 -~  T 2 then, T 1 �9 T 3 "~ T 2 �9 T 3 ,  where the Ti are terms. 

The algorithm begins with the input set B, and constructs the set P of 
all pairs of distinct polynomials in B. Then, while pairs remain, the algo- 
rithm processes a pair from P. This processing consists of computing the 
S-polynomial of the pair, and then reducing it with the polynomials in B 
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Gr6bnerBasis(B) := { 
P := {(b~,,bj)]bi, bj E B, i  < j }  
whi le  ( P not empty) { 

choose and delete any pair (bi, bj) from P. 
s := Spol(b,,  
whi le  (3r E B which reduces s) { 

s := Reduce(s, r) 
} 
i f  (s r O) { 

P : = P U ( { s }  x B )  
B : = B U { s }  

} 
} 
r e t u r n  B 

} 
Fig. 1. The GrSbner basis algorithm. 

until no further reductions are possible. Sometimes, the S-polynomial 
reduces all the way to 0, in which case the algorithm proceeds to the next 
iteration of the loop with no additional work. However, if the S-polyno- 
mial reduces to a nonzero polynomial, then this new polynomial is added 
to the set B. In addition, the new polynomial is paired with each polyno- 
mial already in B, and these additional pairs are added to the set P. Even- 
tually, the set of pairs is empty, and the algorithm terminates. It should be 
noted that while B is a GrSbner basis upon termination, a follow-up step 
to transform B into a reduced Gr6bner basis is often needed. (This is 
accomplished by reducing each element of the basis by the other polyno- 
mials, which in effect means that the final polynomials added to the basis 
are used to eliminate those polynomials that were produced earlier, and are 
no longer necessary to span the ideal. In addition, a generalized reduction 
operation is applied to every term of a polynomial, instead of just the 
leading term. This complete reduction of each polynomial in the reduced 
GrSbner basis means that the leading term of each polynomial in the basis 
is a unique power product of variables, and does not appear in any other 
polynomial in the final result.) We have not addressed that step in this 
paper, although some of the techniques presented here can also be applied. 

Of course, the order in which the pairs are selected is very important 
to the practical efficiency of the algorithm. One heuristic is to select the 
pair whose S-polynomial has the smallest leading term under the selected 
order. In addition, several tests have been developed to delete pairs whose 
S-polynomial will reduce to zero. These criteria can be found in Refs. 6 and 



48 Schwab 

21 and involve testing for certain constraints on the leading terms. The 
order in which reductions are performed is less well defined; in this 
implementation we use the order in which the polynomials first appear 
when searching for a reducing polynomial. Most of the computation time 
is spent in the S-polynomial and reduction steps. 

The version of the algorithm sketched here purposely delays inter- 
reduction of polynomials in the basis until after all critical pairs have been 
examined. By performing interreduction immediately after a new polyno- 
mial is created, the algorithm can reduce the number of critical pairs to 
examine at the expense of operating with polynomials with more terms. To 
facilitate the parallel implementation, this technique of keeping the basis 
auto-reduced throughout the computation is not used. 

The typical computation described here consists of tens to hundreds of 
S-polynomial computations and hundreds to thousands of reduction steps. 
Because of the very rapid growth in the actual complexity of the problem, 
larger inputs will tend to produce polynomials with more terms and larger 
coefficients. In our sample executions, we observed that the total number 
of S-polynomials actually reduced does not grow as JBI 2, where IBi is the 
number of polynomials in the basis, but at a somewhat greater than linear 
rate. This is an important difference from some of the earlier parallel 
algorithms, in which every pair of polynomials in the basis was used to 
compute an S-polynomial. 

4. C O A R S E  G R A I N  P A R A L L E L I S M  

Most of the computation time in the algorithm is spent in reducing the 
S-Polynomials. Since neither the basis B, nor the set of pairs are changed 
during this step of the computation, the algorithm could reduce several 
pairs simultaneously on different processors. The only immediate bound on 
the parallelism of this technique is that there are only a fixed number of 
pairs under consideration at any point in the algorithm. 

In this parallel algorithm, the basis of polynomials is an append-only 
structure. Once a polynomial is added to the basis, it becomes read-only, 
allowing the basis to be replicated to the local memory of each processor 
if the architecture supports such a facility. The only other shared data 
structure is the set of pairs currently under consideration. One possible 
technique would be to have each processor maintain a local set of pairs, 
and expand those completely before contacting other processors for work. 
Unfortunately, the algorithm's performance depends on the pairs being 
expanded in a particular order. Any type of locally maintained structure 
would necessitate changing the order of expansion, causing much more 
work to be done. For this reason, there is a single, shared set of pairs, 
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which is protected by a lock which is acquired whenever the set needs to 
be modified. When a processor starts execution, it locks the set, removes 
and deletes the first pair, unlocks the set, and proceeds with the S-Polyno- 
mial expansion and reduction process. When a reduced polynomial is ready 
for addition to the basis, the processor locks the set of pairs, updates the 
set of pairs to include new pairs between the basis and the additional 
polynomial, and appends the polynomial to the basis, replicating it if 
appropriate. It then releases the lock, and begins the process all over again. 
(This single shared lock is potentially a bottleneck, but is not expected 
to become a problem because of two factors. First, the critical sections 
protected by the lock are very short when compared to the rest of the 
computation. Second, the structure of the problem decreases the utility of 
expanding too many pairs at once. This means that relatively few processors 
will contend for the lock at one time, as any additional processors will be 
executing the pipeline parallelism described in the next section.) 

If no pairs are available when a processor acquires the lock, then it 
checks to see if all other processors are also waiting. If so, then the algo- 
rithm has completed, and a post-processing stage is executed. If other pro- 
cessors are still executing, the current processor performs a condition_wait 
operation until it receives a signal from another processor that new pairs 
are available. Figure 2 illustrates the progress of several processors 
executing the parallel algorithm. Note that processors can always read any 
polynomial, and need the lock only to add a new polynomial to the basis. 

The parallelism exploited by this method is speculative parallelism, 
meaning that sometimes a pair will be expanded in parallel that would 
have been deleted in the sequential case. Speculative parallelism is the eager 
evaluation of a subtask in a computation before the necessity of performing 
this work is known. If the subtask had to be performed anyways, the 
algorithm benefits from increased concurrency. On the other hand, if the 
subtask could have been avoided, some computation time has been spent 
uselessly. This reduces the efficiency of the parallel algorithm because some 
of the work performed is useless--expanding the S-polynomial of the pair 
will produce, after much computation, the zero polynomial. Nevertheless, 
most of the pairs expanded in parallel are useful, and decrease the amount 
of time needed to find the Gr6bner basis. The algorithm can be viewed as 
a search algorithm, with the nodes to be explored being the critical pairs. 
A pair which reduces to the zero polynomial is a leaf node. Sometimes, 
expanding a critical pair produces many other pairs, which are then put on 
the list of work to perform, and as a side effect, we note the polynomial 
produced. Other pairs produce only the zero polynomial, and no new pairs 
to be expanded. The algorithm terminates when the search space has been 
completely explored, either by expanding or deleting each critical pair. Of 
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50 Schwab 

course, the introduction of new polynomials in the basis also prunes the 
search space, by causing more critical pairs to reduce to zero. One modest 
improvement to the algorithm can be made by pruning more frequently, 
particularly by checking to see if the pairs being expanded by other 
processors could be deleted by a polynomial just now being added to the 
basis, If so, then the other processors abort their current work and begin 
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work on a new pair. This reduces some of the penalty associated with the 
speculative parallelism. 

Because this is a searching algorithm, the parallel algorithm can be 
expected to demonstrate super-linear speedup on some inputs because of 
the opportunity to expand an important pair earlier than a sequential 
implementation would do so. This more or less points out that some of the 
speedup is due not to the parallel machine we are executing on, but to the 
concurrent structure of the algorithm. This speedup might also occur on a 
uniprocessor, if the costs of context switching and memory locality over- 
head could be adequately minimized. Of course, an improved selection 
strategy for critical pairs can be expected to reduce the effects of parallel 
searching on the algorithm. One such improvement in selection strategy 
which could be incorporated into a future version of this implementation 
has been developed by Giovini et.  al. (22) 

Typical data runs vary over a wide range, with small inputs taking 
milliseconds and modest ones hundreds or thousands of seconds on a 
sequential 2-MIPS processor. Larger inputs require much more computa- 
tion; an interesting area of inquiry is to determine if larger inputs can be 
effectively computed using a larger parallel processor, or if the intractable 
nature of the problem dominates on typical inputs as well as artificial 
examples. If the opportunity for parallelism grows at least as rapidly as 
the amount of computation required for a given problem size, then large 
parallel processors will be useful for solving these problems. On the other 
hand, if the potential parallelism in the algorithm grows more slowly than 
the total computation required, then these large machines will not be able 
to significantly increase the size of problem instances which can be com- 
puted. As expected, the larger inputs benefit the most from larger numbers 
of processors. However, inputs with only a very few large polynomials, or 
which produce only a limited number of pairs at any stage in the computa- 
tion, benefit less from additional processors. Figure 3 presents the speedup 
versus number of processors for two examples from the literature. (23) On a 
single Multimax processor, the Rose example requires about 35 seconds, 
while the Trinksl example requires only 10 seconds. 

In summary, these are the principal characteristics of the coarse-grain 
parallelism of the Gr6bner Basis algorithm: 

�9 Infrequent access to data structures in the critical sections--the 
algorithm spends a small fraction of time updating the set of pairs 
and the basis of polynomials while holding an exclusive write lock. 
This allows the processors to work efficiently in parallel. 

�9 Good Memory Reference Pattern--The algorithm creates and 
appends new polynomials to the basis, never changing an old 
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Fig. 3. Grobner Basis speedup curves--voarse-grain algorithm. 

polynomial. This means that on distributed memory architectures 
such as PLUS, the polynomials may be replicated locally on each 
processor. In addition, only the operations on the set of pairs 
require a globally shared read/write reference pattern, limiting the 
performance penalty of local versus global memory. 

Global ordering on work--The algorithm requires that the critical 
pairs be processed in a particular sorted order for efficiency 
reasons. This prevents a structure in which each processor keeps a 
local work queue, and instead requires the algorithm to maintain 
a globally ordered work queue. 

Speculative Parallelism in a Searching Algorithm--This problem 
may be viewed as a parallel search. As such, this parallelism is 
often speculative, in that the same work might not be performed 
by the sequential version. Because of this speculative nature, the 
algorithm may exhibit superlinear speed-up because some of the 
important critical pairs may be expanded and reduced earlier in the 
parallel computation than in the sequential one. 

5. FINE GRAIN PARALLELISM 

At the heart of the Gr6bner basis computation is the operation of 
reduction, in which one polynomial is used to eliminate the most signifi- 
cant term from an initial polynomial. Speeding up this step is critical to 
improving the performance of the algorithm. 

The source of fine-grain parallelism in the algorithm occurs in the 
reduction loop. The key observation of Melenk and Neun (11) is that the 
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algorithm only branches based on the leading power product of the poly- 
nomials. This means that as soon as the first term of any polynomial is 
computed, the next step of the algorithm may begin concurrently with the 
computation of the remainder of the polynomial. 

In this implementation, the pipeline of processors is constructed 
explicitly with a processor assigned to computing one reduction, and then 
reentering the computation at another reduction step. In contrast, Melenk 
and Neun used a Lisp implementation with a dataflow style. Under this 
approach, processes block, waiting for a term to be completed, and yield 
the processor to perform other work in the algorithm. Since a single big 
number multiplication dominates the computation, our implementation 
spins instead of context switching to another thread, because the time to 
begin work on another reduction is much longer than the time spent busy 
waiting. In this way we also avoid the overhead of scheduling each term as 
a separate unit of work. 

The reduction loop consists of searching the list of polynomials for a 
reducing polynomial, then setting up the reduction, and finally performing 
it term by term. The critical observation here is that the next iteration of 
the loop will examine the terms in the same order as they are produced. 

In order to exploit this parallelism, this implementation stores two 
synchronization fields with the polynomial. A size field keeps track of the 
number of terms and a done flag indicates that this polynomial is complete 
or still under construction. The reduction process begins as in the sequen- 
tial case with an examination of the leading term and a search for a 
reducing polynomial. Then before actually computing the reduction, a 
second processor is assigned the task of performing the next loop iteration. 
The second processor busy waits, checking for either a new term or a done 
indication, while the first processor computes the polynomial term by term. 
When the first processor finishes, it will wait once more in a queue to be 
assigned additional work. The second processor, meanwhile, waits for a 
term to be produced. Once a term is produced, the polynomial is definitely 
known to be nonzero, and the second processor will search for another 
reducing polynomial. If the search is successful, the second processor will 
assign a third processor to consume the next intermediate result, and the 
process repeats. If no terms are produced, and the done flag is set, then the 
second processor has detected a zero polynomial. There is no need to 
update the pairs set, and a new pair may be expanded. If the search for 
another reduction fails the second processor begins the update-pairs 
routine, in which useless pairs are deleted and the new pairs are added. 
This overlaps with the previous computation. This processor then begins 
expansion of the next pair. The S-polynomial expansion may be forced to 
wait because one of the polynomials in the pair may still be incomplete. 
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The code to compute the S-polynomials uses the same synchronization 
technique to consume terms as they are produced, overlapping additional 
computation and providing better speedup. Figure 4 illustrates the various 
stages in the pipelined computation. 

There are several issues to point out about this pipelined reduction 
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Fig. 4. Pipeline Parallelism--Each processor operates on two polynomials, producing terms 
which are consumed by the next processor in the pipe. When no more reductions can take 
place, the polynomial is added to the basis. 
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process. (1) The busy waiting loops all spin on two cached variables. This 
means that the busy waiting does not saturate the bus and slow other pro- 
cessors down. (2) Once the reduction begins, each processor in the pipeline 
consumes terms at approximately the same speed as the previous pro- 
cessors produces them; therefore very little time is spent busy-waiting in the 
middle of a reduction pipeline. (3) Because the synchronization constraints 
flow in one direction only, no synchronization primitives are used beyond 
sequential consistency of reads and writes. Sequential consistency (z4'25~ is 
the traditional processor memory model in which reads and writes to the 
memory system complete in the order in which they are issued by the 
processor. New parallel architectures have introduced more efficient, weak 
ordering models. (4) There is no speculative parallelism in this part of the 
computation. Each reduction must be performed, and this approach simply 
overlaps the computation performed by the inner loop as much as possible. 

Figure 5 presents the speedup versus number of processors for the 
Butcher example from the literature. The software mechanism was not 
implemented on the RP3 because of the demand for very tight coupling 
between processors, which was unavailable on that machine. 

The principal characteristics of the fine-grain parallelism include the 
following: 

�9 The basic reduction step can be implemented as a pipeline. This 
means the next operation may begin as soon as the first term of the 
result of the previous operation is computed. 
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�9 The pipeline uses only a linear communication pattern in which a 
processor communicates with its two neighbors. This pattern 
should be especially well suited to a mesh architecture. 

�9 The pipeline utilizes a small grain size where communication 
between processors takes place frequently with respect to the unit 
of work. This means that busy-waiting is the best method for 
delaying a processor in the pipeline, since other synchronization 
primitives are too time consuming. 

�9 There is no speculative parallelism is this level of parallelism. The 
same work is performed here as in the sequential case. The primary 
loss of efficiency is due to the overhead of spinning in a tight loop 
while waiting for the pipeline to start processing the next reduction 
sequence. 

6. C O M B I N I N G  THE TWO LEVELS OF PARALLELISM 

The two forms of parallelism described earlier combine in a com- 
plementary fashion. The coarse-grain method performs many reductions 
in parallel; the fine-grain method parallelizes the reduction chains. We 
experimented with a number of processor scheduling mechanisms before 
choosing the one used in the implementation. One version used a single 
work queue, another separate queues with locks, and the final version uses 
a fixed ordering among processors. We expect that the two forms of 
parallelism are independent, since performing the pair expansions in 
parallel, only faster, reduces the average time between pair expansion and 
updating the set of pairs. Because of this speedup, the fraction of time spent 
in the critical section updating the shared data increases. We believe that 
this will not become a bottleneck until hundreds of processors are used, but 
varying ratios of processor to synchronization speed across different 
architectures may make this an important consideration. 

There were several steps taken in choosing the mechanism for 
scheduling the processes. These issues are closely coupled with the synchro- 
nization techniques used in the reduction pipeline, further complicating the 
problem. The first attempt to implement the algorithm used a single queue 
of available processors, each of which would be assigned the next reduction 
step anywhere in the global computatio n . All synchronization was 
implemented using mutex locks and C-thread conditions. The conceptual 
goals of this approach was clear: to provide nearly ideal load balancing as 
well as high-level synchronization on a tightly-coupled shared memory 
multiprocessor. (The Encore Multimax was the first machine on which this 
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technique was successfully implemented; the PLUS implementation came 
latter.) Unfortunately, the time between starting reduction steps was too 
short; the central queue became a bottleneck. At the same time, it also 
became clear that conditions were too heavy a synchronization primitive to 
use for such short duration operations as the term by term reductions in 
the pipeline. The first design choice was to replace the pipeline syn- 
chronization with only reads and writes. Producers signaled the completion 
of a term by incrementing a counter, while consumers busy-waited on the 
counter variable until the next term became available. The second design 
decision was to replace the single queue of processors with several separate 
queues, one for each level of coarse grain parallelism. Processors now 
entered these queues and busy-waited on a variable in the queue entry. 
When a reduction was assigned, the processor would be dequeued and 
would begin the reduction operation immediately, taking on the role of 
consumer initially, and then assigning another processor to perform the 
next reduction and acting as a producer of terms also. This implementation 
allowed some speed-up, but was still slower than expected. 

Once again, the problem was the synchronization being too slow. 
A better design was to assign the processors a fixed order in the reduction 
pipeline. Each processor now consumes terms from only one processor, 
and its terms are in turn consumed by just one processor. The dequeue 
operation becomes trivial, while the enqueue operation disappears entirely. 
This mechanism provides the best performance, but forces some additional 
constraints on the implementation. In particular, a processor in the reduc- 
tion pipeline can never signal the previous processor to change state or per- 
form additional work, because there is no longer any reliable way to solve 
the race conditions introduced by this type of synchronization using only 
reads and writes. The result is that it is no longer possible to dynamically 
move processors between different reduction pipelines. It is difficult to 
measure how much performance this costs the overall algorithm, but if 
there is large variance in the number of reductions performed in reducing 
different S-Polynomials, there would be significant benefit in this type of 
load balancing. 

Of course, on the PLUS architecture, static reduction pipelines map 
perfectly to processors connected by a mesh topology. Each critical pair 
expansion is now performed by a row of processors communicating only 
with two neighbors. Only updating the basis and set of pairs requires 
access to a globally shared memory, which improves performance of the 
algorithm on this type of machine. 

A second type of load balancing is that of migrating processors 
between the coarse-grain method and the fine-grain method. Implementa- 
tion issues aside, it is not theoretically clear when to move processors down 
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to the fine-grain level�9 A priori, it is impossible to determine whether one 
pair will be deleted by expansion of another pair. A statistical measurement 
of the fraction of pairs which are useful could be used as one load balanc- 
ing heuristic, but a good global load balancing algorithm would have to 
examine the actual structure of the basis under construction and then use 
heuristics to decide where processors may be used most fruitfully. 

In Figure 6, we present performance results for the full algorithm with 
both levels of parallelism�9 The Rose example is large enough to benefit 
from the fine-grain parallelism, while the Trinksl example is too small to 
speedup using this approach�9 The difference between these two problems is 
that the polynomials that appear in the first example tend to have 20 or 
more terms, while the second example has polynomials with 10 or fewer 
terms�9 The fine-grain parallelism only works when there are many terms to 
process in each polynomial. The Rose example seems to be more typical of 
the type of problems which arise in practice. A large multiprocessor will be 
able to handle problems with many more polynomials in their basis�9 Such 
problems are also likely to generate polynomials with proportionally more 
tezms and larger coefficients. Since the fine-grain parallelism operates more 
efficiently as the size of the polynomials increase, these larger multipro- 
cessors will show increased speed up from this form of parallelism�9 

Tables I and III compare the execution time of the algorithm on the 
Multimax when different ratios of processors are assigned to the coarse- 
grain and fine-grain parallelism�9 The execution times for the samples Rose 
and Butcher are presented in seconds�9 Each line in the table lists the times 
for an increasing number of processor groups. Each group executes an 
S-polynomial reduction in parallel with the other groups. In each column, 
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Table I. Rose Example for Various Combinations of Coarse and Fine 
Grain Parallelism (Multimax) a 

59 

processors per group 
groups 1 2 3 4 5 

1 35.3 20.2 15.3 
2 11.6 8.4 6.5 
3 8.6 4.8 3.8 
4 5.9 4.0 2.9 
5 4.9 2.7 5.3 
6 4.7 2.6 
7 4.6 3.1 

13.3 11.9 
5.7 5.6 
3.4 14.43 

a Execution times in seconds. 

Table II. Rose Example for Various Combinations of Coarse and 
Fine Grain Parallelism (Plus Simulator)  ~ 

processors per group 
groups 1 2 3 4 5 6 

1 74.5 42.8 32.3 27.9 24.6 23.3 
2 27.4 16.9 13.7 11.4 10.9 10.4 
3 15.3 8.7 6.4 6.3 5.8 5.5 
4 9.0 5.5 5.1 3.9 3.8 4.2 
5 9.2 4.8 3.9 3.2 2.7 2.9 
6 7.9 4.3 3.3 2.9 2.8 2.6 

a Execution times in megacycles. 

Table III, Butcher Example for Various Combinations of Coarse and 
Fine Grain Parallelism (Mul t imax)  a 

processors per group 
groups 1 2 3 4 5 

1 307.4 185.2 138.2 110.5 96.4 
2 175.3 109.7 80.4 67.8 60.2 
3 132.0 82.2 62.9 57.0 137.9 
4 96.7 55.1 43.8 135.3 
5 89.1 54.4 66.5 
6 65.9 54.9 

Execution times in seconds. 

3 The measured value was extremely volatile, with times falling in the range 7.0 to 21.7. 
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Table IV. 

Schwab 

Butcher example for Various Combinations of Coarse and Fine 
Grain Parallelism (Plus Simulator) a 

processors per group 
groups 1 2 3 4 5 6 

1 701.3 404.5 284.4 235.4 198.5 173.7 
2 358.2 246.3 176.3 143.6 124.6 110.7 
3 293.1 187.7 139.9 113.8 104.7 87.4 
4 198.3 145.7 112.2 102.3 98.2 82.8 
5 190.6 136.0 ! 19.3 96.6 102.0 88.2 
6 296.6 132.8 103.6 93.0 79.6 92.0 

Execution times in megacycles. 

a different number of processors are assigned to perform fine-grain pipeline 
parallelism within each reduction group. For  example, in the second line, 
the entry under the third column reports the result when six processors 
were used, with two separate S-polynomial reductions being performed in 
parallel by sets of three processors acting as a fine-grain pipeline. The table 
shows poor performance with 14 or 15 processors, suggesting that some 
type of limit in the system or algorithm has been reached. The first column 
indicates that relatively little improvement is observed beyond five pro- 
cessors using only the coarse-grain parallelism. Examination of the other 
columns clearly shows the benefit of assigning additional processors to 
perform fine-grain parallelism. 

Tables II and IV presents the same comparison for execution on the 
Plus Simulator. Once again, we observe a gradual drop-off in the execution 
times as we move from left-to-right along each row. This is due to the 
relatively simple, uniform behavior of the fine-grain parallelism. Each 
column, from top-to-bottom, presents entries that exploit more coarse- 
grain processor groups, which exhibit faster improvements in execution 
times. Clearly, the Rose problem instance is well suited to the speculative 
parallelism used by this method. We also observe that the coarse-grain 
parallelism combines quite well with the fine-grain parallelism in the 
absence of architectural bottlenecks such as a shared bus. 

7. A N A L Y S I S  

One problem encountered was the difficulty of implementing the fine- 
grain reduction pipeline on the RP3. This form of parallelism depends on 



Extended Parallelism in the Gr6bner Basis Algorithm 61 

transmitting terms from the producer to the consumer as quickly as 
possible. While a uniform shared-memory connecting all processors to 
memory via a bus provides for instant access to a term as soon as it is 
written, the RP3 has a relatively slow global memory accessable through a 
routing network. Reads and writes take place one word at a time over this 
network, making it difficult to pass terms efficiently between processors. 
Ideally, an architecture of this type should support a remote write to 
another processor's local memory, allowing a faster exchange of data. In 
this way the data would only have to traverse the network once, from 
producer to consumer, instead of twice, from producer to global memory, 
and then from global memory to the consumer. Another possibility is to 
provide a pipelined block transfer of data from local memory to local 
memory. 

The RP3 memory architecture also made it difficult to store the basis 
locally on each processor. Even though a memory region could be 
replicated to a set of processors, no provision was made for broadcasting 
new data to the replicated memory. In order to achieve this functionality, 
each processor would have to check the global data structure and manually 
copy the new data to its local memory. While this is consistent with the 
philosophy of not providing cache coherency on the machine, it makes the 
implementation slower, and more complex, than it otherwise would be. 

Finally, no provision was made to provide interprocessor interrupts 
directly to the user process. This feature, which allows one processor 
to efficiently signal another, could have been used to provide better 
synchronization, especially a busy-waiting implementation of the mutual 
exclusion algorithm. Note that without this feature, busy-waiting requires 
continuous references to the global memory, causing increased contention 
for this critical resource, and thereby slowing down other processors doing 
useful work. 

In contrast, Plus provides a much more closely coupled memory 
system through replicated memory. Writing to a local memory location 
which is replicated transparently sends a message carrying the new data to 
other processors. This allows for efficient fine-grain performance, which is 
critical to utilizing larger numbers of processors efficiently. In addition, a 
mesh topology is well suited to this problem because the fine-grain form of 
parallelism may be arranged as a line of neighbor-to-neighbor communica- 
tion. It is necessary to replicate the basis to all processors, but since 
updating the basis occurs infrequently, the impact on overall performance 
is relatively limited. In a large system with 256 or more processors, the 
interconnection network might become overloaded because some processor 
would almost always be writing and replicating a new basis polynomial. 
One technique to limit this effect would be to split the processors into even 
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and odd groups-each processor would store only half the basis, decreas- 
ing network load. Each polynomial would, on average, pass through one 
additional processor in the reduction pipeline, introducing very little addi- 
tional cost. This technique could be generalized to any number of processor 
splitting sets, with processors selecting polynomials either deterministically 
or randomly. 

8, RELATED W O R K  

Buchberger has described a distributed-memory algorithm to compute 
Gr6bner bases on the L-machine, a parallel machine designed to support 
parallel symbolic computation. (9~ The main idea from this work was to 
dedicate one processor to manage the set of critical pairs, and use the rest 
to distribute and reduce the S-polynomials. The algorithm was described 
for both a tree of processors and a ring topology. In addition to distribut- 
ing multiple critical pairs to the worker processors for reduction, the 
managing processor will also halt a reduction in progress if it becomes 
useless due to the addition of a new polynomial to the basis. By using this 
policy of eagerly killing off useless computation, the penalty for speculative 
computation is expected to be reduced. A more complete analysis of the 
effect of including this feature in a parallel implementation is needed to 
determine if it actuality improves execution time. No performance numbers 
have been reported for this work. 

Watt explored the use of remote-procedure call as a primitive for 
parallel computer algebra on a network of machines. (8~ This lead to an 
algorithm which performed a number of pair reductions in parallel, waiting 
for all the reductions to complete before a parallel phase in which all poly- 
nomials were interreduced with respect to the rest of the basis. Ponder (~~ 
demonstrated that this algorithm fails when two polynomials with the same 
leading term eliminate this term completely from the basis during the 
parallel interreduction. Also, due to the data structures used, the same 
S-polynomials could be expanded and reduced to 0 several times during 
execution. Ponder modified this approach to parallelize only the critica! 
pair reduction or the basis interreduction, executing the other phase 
sequentially. This resulted in a correct implementation, but very little 
parallel speedup. In addition, the theoretical constraints used to eliminate 
many critical pairs with only minimal computation were not included in 
this implementation. Two other parallel approaches where also studied by 
Ponder_ The first involved finding GrSbner bases for subsets of the input 
and then merging the results together in a divide-and-conquer paradigm. 
Unfortunately, the merge step was prohibitively expensive. The second 
approach was to speculate by running multiple independent computations, 
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each using a different ordering. Since the time to compute the result may 
depend on the selected ordering, this could result in a fair speedup, 
although this was not demonstrated. A better technique may be to start 
with a partial term ordering, and select a specific refinement of the ordering 
as needed by the computation. By using speculative parallelism to evaluate 
several refinement orderings in parallel, an efficient algorithm could be 
developed. 

Siegl (26) and Senechaud (13) have implemented distributed versions of 
the algorithm. Siegl selected Strand88 as an implementation language, and 
demonstrated an efficent algorithm on a linear topology. S-polynomials 
where reduced in parallel as they moved from processor to processor until 
reaching the end of the list of polynomials, stored one to a processor. The 
next processor then adds itself to the list, and stores this new polynomial. 
At the same time, new polynomials move up the line of processors, reduc- 
ing the old polynomial stored there. In this way, critical pair expansion and 
interreduction are performed concurrently. Reported speedups ranged from 
1.5 to 8.3, which were quite good considering that the structure of the algo- 
rithm allowed maximum theoretical speedup of only one-half the number 
of polynomials in the basis, and the examples where small. Unfortunately, 
the actual running times were quite slow, because of the inefficiency of 
Strand88 for implementing the basic mathematic and reduction operations. 
Senechaud restricts the algorithm to Boolean polynomials, where the only 
coefficients and exponents are 0 and 1. A limited degree of speedup was 
reported, perhaps because the criteria for eliminating useless pairs was not 
implemented. 

Gradually, the work in this area is evolving from the proposal of 
parallel algorithms based upon expected performance and bottlenecks to 
the refinement of parallel implementations based upon actual execution 
behavior. Als0, as the architectures and language tools available for 
parallel computation improve, more sophisticated implementations that 
match the requirements of the Gr6bner basis computation to the primitives 
available are being developed. 

9. C O N C L U S I O N  

The computation of Gr6bner bases can be carried out in parallel. 
Taking advantage of better algorithms, larger machines and scalable archi- 
tectures will allow much larger problems to be solved, as long as they do 
not exhibit the intractable behavior of some of the artificial examples. There 
are two different parallel techniques combined in this implementation, 
demonstrating that better overall performance can be achieved in this way, 
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as opposed to relying on only one method of parallelism. The cost of this 
is added complexity in the algorithm, especially in the areas of load balanc- 
ing and scheduling of processors. In addition, this implementation appears 
very suitable for one type of nonuniform access shared memory machine. 
Future work should address how much and what type of resources can be 
favorable exploited by this algorithm as well as other symbolic computa- 
tions. In addition, experimental evidence and theoretical insight need to be 
combined to provide good heuristics for migrating processors between the 
two methods of parallelism, and better software tools and implementation 
techniques are needed to actually make such an implementation of the 
algorithm perform efficiently on larger machines. 

The main contributions of this work include: 

�9 Demonstrating that two distinct types of parallelism may be com- 
bined in this algorithm to produce a more efficient implementation. 

�9 Examining the methods and issues involved in scheduling pro- 
cessors between the two parallel methods. 

�9 Utilizing more processors by implementing an algorithm that can 
effectively run on an architecture other than a bus-based shared 
memory multiprocessor, which is limited in size. 

There are several other directions in which to pursue the Gr6bner 
basis algorithm. One is the implementation on a massively parallel 
architecture, such as the Connection Machine. Both implementation issues, 
such as the methods of coercing a decidedly MIMD algorithm with 
speculative parallelism into a deterministic SIMD form, as well as theoreti- 
cal issues, such as the complexity of the algorithm over stronger computa- 
tion models with unit time primitives for integer multiplication and reduc- 
tion need to be considered. Another promising area to investigate is the 
technique of using multiple orderings in the same computation, or of con- 
structing or modifying the ordering as the computation unfolds, to increase 
performance. A third issue of concern is the behavior of the algorithm on 
completely distributed machines, including large hypercubes and general 
network-connected distributed systems. Finally, a survey of the practical 
uses of the algorithm, and case studies of real world problems solvable by 
utilizing Gr6bner bases are necessary to determine where to concentrate 
future effort in improving implementations of the algorithm. The Proteus 
version of the implementation is available via ftp from ftp.cs.cmu.edu, in 
the file/afs/cs/user/schwab/ftp/grobner.tar.Z. This version of the code runs 
on DecStation5000 and DecStation3100 workstations. 
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