
CS4403 - CS9535: An Overview of Parallel
Computing

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

January 10, 2017

Plan

1 Hardware

2 Types of Parallelism

3 Concurrency Platforms: Three Examples
Julia
Cilk
CUDA
MPI

Hardware

Plan

1 Hardware

2 Types of Parallelism

3 Concurrency Platforms: Three Examples
Julia
Cilk
CUDA
MPI

Hardware

The Pentium Family

The Pentium Family.

Hardware

Multicore processors

Hardware

Multicore processors

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Hardware

Once uopn a time, every thing was slow in a computer . . .

Hardware

Graphics processing units (GPUs)

Hardware

Distributed Memory

Distributed memory systems require a communication network to
connect inter-processor memory.

Processors have their own local memory and operate independently.

Memory addresses in one processor do not map to another processor,
so there is no concept of global address space across all processors.

Data exchange between processors is managed by the programmer ,
not by the hardware.

Hardware

Hybrid Distributed-Shared Memory

The largest and fastest computers in the world today employ both
shared and distributed memory architectures.

Current trends seem to indicate that this type of memory architecture
will continue to prevail.

While this model allows for applications to scale, it increases the
complexity of writing computer programs.

Types of Parallelism

Plan

1 Hardware

2 Types of Parallelism

3 Concurrency Platforms: Three Examples
Julia
Cilk
CUDA
MPI

Types of Parallelism

Pipelining

Pipelining is a common way to organize work with the objective of
optimizing throughput.

It turns out that this is also a way to execute concurrently several
tasks (that is, work units) processable by the same pipeline.

Types of Parallelism

Instruction pipeline

Above is a generic pipeline with four stages: Fetch, Decode, Execute,
Write-back.
The top gray box is the list of instructions waiting to be executed; the
bottom gray box is the list of instructions that have been completed;
and the middle white box is the pipeline.

Types of Parallelism

Data parallelism

The data set is typically organized into a common structure, such as
an array.

A set of tasks work collectively on that structure, however, each task
works on a different region.

Tasks perform the same operation on their region of work, for
example, ”multiply every array element by some value”.

Types of Parallelism

Task parallelism (1/4)

program:

...

if CPU="a" then

do task "A"

else if CPU="b" then

do task "B"

end if

...

end program

Task parallelism is achieved when each processor executes a different
thread (or process) on the same or different data.

The threads may execute the same or different code.

Types of Parallelism

Task parallelism (2/4)

Code executed by CPU "a":

program:

...

do task "A"

...

end program

Code executed by CPU "b":

program:

...

do task "B"

...

end program

In the general case, different execution threads communicate with one
another as they work.
Communication usually takes place by passing data from one thread to
the next as part of a work-flow.

Types of Parallelism

Stencil computations

In scientific computing, stencil computations are very common.
Typically, a procedure updates array elements according to some fixed
pattern, called stencil.
In the above, a 2D array of 100× 100 elements is updated by the
stencil T .
With a bit of care, one array-update can be done in a concurrent
fashion.

Types of Parallelism

Pascal triangle construction: another stencil computation

1

1

1

0 0 0 0 0 0 0 0

1

1

1

1

1

1
2

1111 111

3 4 5 6 7 8

3 6 10 15 21 28

4 10 20 35 56

5 15 35 70

6 21 56

7 28

8

Construction of the Pascal Triangle: nearly the simplest stencil
computation!

Concurrency Platforms: Three Examples

Plan

1 Hardware

2 Types of Parallelism

3 Concurrency Platforms: Three Examples
Julia
Cilk
CUDA
MPI

Concurrency Platforms: Three Examples Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20

Concurrency Platforms: Three Examples Julia

Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10

Concurrency Platforms: Three Examples Julia

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110

Concurrency Platforms: Three Examples Julia

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

methods for generic function preduce

preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)

min(x,y)

end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)

2

Concurrency Platforms: Three Examples Cilk

Task Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

Concurrency Platforms: Three Examples Cilk

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

CilkPlus’s scheduler maps strands onto processors dynamically at
runtime.

Concurrency Platforms: Three Examples Cilk

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Concurrency Platforms: Three Examples Cilk

Benchmarks for parallel divide-and-conquer matrix multiplication

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Concurrency Platforms: Three Examples Cilk

Uisng Cilkview

Concurrency Platforms: Three Examples CUDA

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100’s of cores, 1000’s of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms (as much as possible).

Concurrency Platforms: Three Examples CUDA

Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4

Concurrency Platforms: Three Examples CUDA

Example: increment array elements (2/2)

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Partition data into subsets that fit into shared memory

Concurrency Platforms: Three Examples CUDA

A Common Programming Strategy

Handle each data subset with one thread block

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Perform the computation on the subset from shared memory.

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Copy the result from shared memory back to global memory.

Concurrency Platforms: Three Examples MPI

Example

Here’s a common example:

Have the master (rank 0) process create some strings and send them
to the worker processes

The worker processes modify the string and send it back to the master

Concurrency Platforms: Three Examples MPI

Example Code (1)

Concurrency Platforms: Three Examples MPI

Example Code (2)

Concurrency Platforms: Three Examples MPI

Example Code (3)

Concurrency Platforms: Three Examples MPI

Example Code (4)

	Hardware
	Types of Parallelism
	Concurrency Platforms: Three Examples
	Julia
	Cilk
	CUDA
	MPI

