
Chapter VI

All Pair Shortest Paths

and Matrix Multiplication

VI.1 APSPs and Matrix Multiplication

There is a close similarity between the inner loop in the APSP algorithm and matrix
multiplication. Recall that for n×n matrices A = (aij) and B = (bij), its product C = (cij)
is given by

cij =

n
∑

k=1

aik · bkj .

This product is computed by the algorithm

MatrixMultiply (A, B)
for i← 1 to n

for j ← 1 to n
C[i][j]← 0
for k ← 1 to n

C[i][j]← C[i][j] + A[i][k] · B[k][j]

while the APSP inner loop is

for all vertices u
for all vertices v

D′[u][v]←∞
for all vertices x

D′[u][v]← min(D′[u][v], D[u][x] + w[x][v]).

There is a close similarity between both algorithms: in the second min substitutes + and
+ substitutes ·. Matrix multiplication can be performed in time o(n3) using Strassen’s
algorithm. and so this similarity brings the question of whether shortest paths can be
computed in time o(n3). Below, we describe Strassen’s algorithm and then describe how
to compute all-pair shortest distances (APSD) in time o(n3) via matrix multiplication for
the case of unit weights. For the all pair shortest paths problem (APSP)), clearly o(n3)
time is not possible if one wants to store explicitly a shortest path for every pair. However,

VI.1

a compact Θ(n2) representation is possible: for each i, j, store the first vertex after i in
a shortest path from i to j. Such successor matrix can be found in time o(n3). For this,
a solution to the problem of finding witnesses for boolean matrix multiplication is used.
Some extensions of these results are possible for non-unit weights, but this extensions are
omitted here.

VI.2 Strassen’s Matrix Multiplication Algorithm

Consider the product of 2× 2 matrices

(

a b
c d

)

·

(

e f
g h

)

=

(

r s
t u

)

where

r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh.

If we are dealing with 2k × 2k matrices, we can write similarly

(

A B
C D

)

·

(

E F
G H

)

=

(

R S
T U

)

where A, B, C, D, E, F, G, H, R, S, T, U are k × k matrices and

R = AE + BG

S = AF + BH

T = CE + DG

U = CF + DH.

This leads to a divide-and-conquer algorithm whose running time satisfies the recurrence
(assume n is a power of 2)

T (n) = 8T (n/2) + Θ(n2)

which has a solution Θ(n3), no better than following the definition.

Strassen’s algorithm is based on the following clever way of multiplying 2×2 matrices with
only 7 multiplications instead of 8. With

p1 = a(f − h)

p2 = (a + b)h

p3 = (c + d)e

p4 = d(g − e)

p5 = (a + d)(e + h)

p6 = (b− d)(g + h)

p7 = (a− c)(e + f)

VI.2

then

r = p5 + p6 + p4 − p2

s = p1 + p2

t = p3 + p4

u = p1 − p7 − p3 + p5.

This can be easily but tediously verified. How did Strassen come up with this ? The CLRS
describes an approach how one could have found this, but it is not very simple, and not
clear that was the path followed by Strassen.

Now, similar equations apply to the 2k × 2k matrix product above, which means that in
the divide-and-conquer approach, recursion is performed on 7 pairs of matrices. This leads
to the recurrence

T (n) = 7T (n/2) + Θ(n2)

which has solution Θ(nlog
2
7) = Θ(n2.80735). Improved methods have been devised since

Strassen’s original one; the current best running time is O(n2.376) and is beyond this course.
The best lower bound is the trivial Ω(n2) (since there are that many input and output
entries). Since the algorithms for shortest paths below depend on the running time for
matrix multiplication, we will use a function M(n) to indicate the time for multiplying two
n× n matrices. (Note that we are assuming O(1) time addition and multiplication integer
operations.)

VI.3 All Pair Shortest Path Distances – Unit Weights

Given a graph G with unit weights, we want to compute for each pair of vertices u, v
in V (G) the shortest distance between them. We describe an algorithm based on matrix
multiplication that runs in time o(n3).

The idea is to first to solve recursively the problem for the graph G′, which has an edge
(u, v) iff u and v are at distance 1 or 2 in G. Let A,D and A′,D′ be the adjacency and
distance matrices for G and G′ respectively. (We will be using the convention of writing
the entries of a matrix with the corresponding lower case letter, and the row and column
numbers as subindices. If convenient, we may also write [A]ij , instead of aij .)

Claim 1. Let Z = A2. Then there is a path of length 2 in G between vertices i and j iff
zij > 0 (zij is actually the number of such paths).

Z is used to compute A′: a′
ij = 1 iff i 6= j and aij = 1 or zij > 0. The bottom of the

recursion happens when G′ is the complete graph. This is the case iff G has diameter 2
(maximum shortest path length over all pairs of vertices) and then D = 2A′ −A.

How to obtain dij from d′
ij ? Roughly dij = 2d′

ij but a correction needs to made depending
on the parity of dij:

Observation 2. For any i, j:

(i) If dij is even then dij = 2d′
ij.

VI.3

(ii) If dij is odd then dij = 2d′
ij − 1.

This does not seem very helpful since dij is what we are trying to compute. Fortunately,
there is a fix. The following obsercation is a simple exercise:

Observation 3. For i 6= j:

(i) For any neighbor k of i, dij − 1 ≤ dkj ≤ dij + 1.

(ii) There is a neighbor k of i such that dkj = dij − 1.

The previous two observations can be used to prove the following:

Lemma 4. For any i 6= j:

(i) If dij is even, then d′
kj ≥ d′

ij for every neighbor k of i.

(ii) If dij is odd, then d′
kj ≤ d′

ij for every neighbor k of i. Moreover, there exists a neighbor
k of i with d′

kj < d′
ij.

We leave the proof of this lemma as an exercise. Now, let deg(i) be the degree of i in G.
Summing the inequalities in the previous lemma, we obtain:

Lemma 5. For any i 6= j:

dij is even iff
∑

{k,i}∈E(G)

d′
kj ≥ d′

ij · deg(i).

Note zii (defined above) is equal to deg(i), and that

∑

{k,i}∈E(G)

d′
kj =

∑

k

aikd
′
kj = sij

where S = AD′.

In summary, the algorithm works as follows:

MM-APSD (A)
/* A = [aij] is the adjacency matrix of G */
1. Z← A2

2. for all i, j /* define A′ = [a′
ij] */

a′
ij ← [i 6= j and (aij = 1 or zij > 0)]

3. if (for all i 6= j, a′
ij = 1) return (2A′ −A)

4. D′ ←MM-APSD(A′)
5. S← AD′

6. for all i, j /* define D = [dij] */
dij ← 2d′

ij − [sij < d′
ijzii]

7. return (D).

The running time is described by the recurrence, where n is the longest distance:

T (n, δ) = 2M(n) + T (n, dδ/2e) + O(n2),

which implies that T (n, n) = O(M(n) log n).

VI.4

VI.4 Witnesses for Boolean Matrix Multiplication

Let A and B be n × n boolean (0/1) matrices. The boolean product of A and B is the
matrix P with entries:

pij =
n
∨

k=1

(aik ∧ bkj)

where ∨ and ∧ are the boolean operators OR and AND. Thus, pij = 1 iff for some k,
aik = bkj = 1. Clearly, P = AB can be computed in time O(M(n)), since we can handle
the 0/1 entries as integers and obtain an integer product matrix M: pij = 1 iff mij > 0. In
some applications though, it does not suffice to know that pij = 1, one also wants an index
k with aik = bkj = 1, which is called a witness. Thus, a witness matrix for P = AB is a
matrix W with

wij =

{

0 if pij = 0
k with aik = bkj = 1 if pij = 1

It seems difficult to do better than checking each k foor each pair i, j. Since we can compute
P in time O(M(n)) = o(n3), we would like to be able to compute a witness matrix also in
subcubic time.
Suppose that for i, j with pij = 1, there is a unique witness kij. Note that then

∑n
k=1(kaik)bkj =

kij. If we define Â by âik = kaik then the i, j entry of ÂB is a correct witness for pij = 1.
On the other hand, if the witness for i, j is not unique then the i, j entry is “garbage”, we
cannot in general identify an index based on its value.1

Using this very specific solution, a general solution can be obtained with the help of ran-
domization. Let wij be the number of witnesses for pij = 1. Suppose we let

âR
ik = rij

k kaik

where rij
k is a random variable

rij
k =

{

1 with probability πij

0 with probability 1− πij

with
1

2wij

≤ πij <
1

wij

.

Claim 6. The probability that
∑n

k=1 âR
ikbkj is a witness for pij = 1 is at least 1/2e (where

e is Euler’s number, the base of natural log).

Proof. To simplify notation, let w = wij, π = πij with 1/2w ≤ π < 1/w. The question can
be restated as follows: Suppose that there are w ≥ 1 white balls and n − w black balls.
If we pick each of the n balls independently with probability π, what is the probability ρ
that exactly one white ball is chosen ? This is easily computed:

ρ = w · π · (1− π)w−1.

Using the bounds for π, for w > 1, we get ρ > (1/2)(1− 1/w)w−1 ≥ 1/2e, where we have
used (1− 1/w)w−1 ≥ 1/e, for w > 1. ρ ≥ 1/2e also applies for w = 1. This completes the
proof.

1As it was suggested during the lecture, if we used âik = 2kaik then we could identify all the witnesses.
This however would use n-bit numbers and we can’t reasonably continue assuming that integer operations
take time O(1).

VI.5

We want a unique witness. Multiplying by rij
k gives this with probability at least 1/2e.

This is not sufficient. However, by repeating the “experiment” many times, the probability
of getting exactly one witness becomes greater: if N trials are made, then the probability
of failure in all of them is less than (using 1− x ≤ e−x)

(1− 1/2e)N ≤ e−N/2e.

Chosing N = 2ec log n, the probability of failure is less than 1/nc. This is better because
it means that it would fail only for a few entries i, j.

Now, since each i, j has possibly a different wij and we don’t know them anyway, to handle
all the range 1 to n, we try all the probabilities πs = 1/2s with s = 0, . . . , dlog ne. A
way to achieve these probabilities is to start with a set R = {1, . . . , n} and iteratively
take a sample from R with probability 1/2: each element of R is taken independently with
probability 1/2 – we call this a (1/2)-sample from R. We make this the new set R. Thus,
in the i-th iteration, k is in R with probability 1/2i. Now, we can write the algorithm

BMM-Witness (A,B)
1. W←−AB

2. repeat 2ec log n times
3. R←{1, . . . , n}
4. repeat dlog ne times
5. compute AR: aR

ik←[k ∈ R]kaik

6. Z←ARB

7. for all i, j
8. if wij < 0 and zij is a witness
9. then wij←zij

10. R←(1/2)-sample from R
11. for all i, j
12. if wij < 0
13. then find witness for i, j by brute force

The minus sign for W (set in line 1) is just for book-keeping purposes – a negative entry
means that we still need to find a witness for that entry (hence the check in lines 8 and
12). In line 5, [k ∈ R] is an indicator (note that it is 1 with probability 1/2i in the i-th
iteration). In line 8, checking whether zij is a witness is done simply by checking that
aizij

= bzijj = 1. In line 13, all the entries aik, bkj need to be checked and so each check
needs time O(n). The result is correct because in lines 9 and 13, we set a witness only if
we have directly checked it.

Running Time. For every i, j, the loop of lines 4-10 guarantees that we try a probability
that is close to 1/wij as it is needed, and this is tried 2ec log n times, so the probability of
failing to find a witness for i, j in that loop is at most 1/nc. Since there are n2 pairs i, j,
the expected number of failed pairs is at most 1/nc−2. With c = 1, this is at most n and
then the expected time of the loop 11-13 is at most O(n2). In the loop 4-10, the running
time is dominated by the matrix multiplication in line 6. So the expected total running
time is O(M(n) log2 n).

VI.6

VI.5 Successors for Shortest Paths

We now use boolean multiplication witnesses to obtain a successor matrix S for the APSP
problem. Consider a pair i, j. Clearly, s is a successor of i on a shortest path from i to j
iff dsj = dij − 1 ((recall D = [dij] is the matrix of shortest distances). Suppose we define a
boolean matrix F by fsj = 1 if dsj = dij − 1. Then a successor for i, j could be found as
the i, j entry in a witness matrix for the boolean product AF. This is not useful though
because since the setting of dsj depends on i, it would mean that we need to try all the n
possibilities.

Fortunately, observation 3(i) comes to our rescue: we only need to distinguish distances
module 3 ! More precisley, we would like to define F by fsj = 1 if dsj = dij − 1 mod 3.
Note that though this definition still depends on i, only 3 different cases are possible. So,
it is sufficient to define 3 different matrices F(c), c = 0, 1, 2, by

f
(c)
sj = 1 if dsj = c− 1 mod 3.

The algorithm outline is as follows:

MM-APSP (A)
1. D←MM-APSD(A)
2. for c = 0, 1, 2

3. compute F(c): f
(c)
sj = 1 iff dsj = c− 1 mod 3

4. W(c) = BMM-Witness(A,F(c))

5. compute S: sij = w
(dij mod 3)
ij

6. return S

The expected total running time is O(M(n) log2 n).

VI.7

