Efficient Algorithms for
 Evaluating Matrix Polynomials

Sivan Toledo and Niv Hoffman
Blavatnik School of Computer Science
Tel-Aviv University
Oded Schwartz
Hebrew University

Efficiency in Evaluation of
$\mathbf{q}(\boldsymbol{A})=\mathbf{c}_{0} \mathrm{I}+\mathrm{c}_{1} \mathcal{A}+\mathrm{c}_{2} \mathcal{A}^{2}+\cdots \mathbf{c}_{\mathrm{d}} \mathcal{A}^{\mathrm{d}}$
A is an n-by- n real or complex matrix
Given A^{ℓ}, A^{k},

- $c_{k} A^{k}$ requires n^{2} scalar multiplications, but
- $A^{\ell+k}=A^{\ell} A^{k}$ requires n^{3} (or $n^{2.81}$ with Strassen)

Minimize the number of matrix-matrix multiplications required to evaluate $q(A)$; these are called in the literature nonscalar multiplications
Maybe other ways to reduce arithmetic
Reduce communication (cache misses in this talk)

A Side Note on Functions of Matrices

When A is normal or close to normal, we can compute $q(A)$ or any other function $f(A)$ using an eigendecompotion,

$$
\begin{aligned}
\mathrm{q}(\mathrm{~A}) & =\mathrm{q}\left(\mathrm{~V} \wedge \mathrm{~V}^{*}\right) \\
& =\mathrm{Vq}(\Lambda) \mathrm{V}^{*} \\
& =\mathrm{V}\left(\begin{array}{lll}
\mathrm{q}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathrm{q}\left(\lambda_{\mathrm{n}}\right)
\end{array}\right) \mathrm{V}^{*} .
\end{aligned}
$$

It is mostly when A is far from normal when these problems become interesting

Building Blocks

q(A) via Explicit Powers

Allocate three matrices, A, A^{k}, and Q
Initialize $Q=0$, and $A^{k}=I$
for $\mathrm{k} \leftarrow 0, \ldots, \mathrm{~d}$, add $\mathrm{Q} \leftarrow \mathrm{Q}+\mathrm{c}_{\mathrm{k}} \mathrm{A}^{\mathrm{k}}$ and multiply $A^{k+1} \leftarrow A A^{k}$

In step d we produce $\mathrm{q}(\mathcal{A})=\mathrm{Q}$
A total of $d-1$ matrix-matrix multiplications

Allocate two matrices, A and Q
Initialize $\mathrm{Q}=\mathrm{c}_{\mathrm{d}-1} \mathrm{I}+\mathrm{c}_{\mathrm{d}} \mathrm{A}$
In step $\mathrm{k} \leftarrow \mathrm{d}-2, \ldots, 1,0$, multiply and add $\mathrm{Q} \leftarrow \mathrm{c}_{\mathrm{k}} \mathrm{I}+\mathrm{Q} A$
In step 0 we produce $q(A)=Q$
Again a total of $\mathrm{d}-1$ matrix-matrix multiplications

If the roots ξ_{1}, \ldots, ξ_{d} are given, not the coefficients c, then Allocate two matrices, A and Q
Initialize $\mathrm{Q}=\mathrm{A}-\xi_{1} \mathrm{I}$
For $k \leftarrow 2, \ldots, \mathrm{~d}$ add and multiply $\mathrm{Q} \leftarrow \mathrm{Q}\left(A-\xi_{k} \mathrm{I}\right)$
In step d we produce $q(\mathcal{A})=Q$
Again a total of $d-1$ matrix-matrix multiplications
(Computing the roots from the coefficients is not advised; often ill conditioned)

Clearly, Matrix Multiplication is Important Here

n^{3} multiplications ($\approx 2 n^{3}$ arithmetic operations) using native algorithms
$\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ using so-called fast methods; e.g., $\mathrm{O}\left(\mathfrak{n}^{2.81}\right)$ for Strassen-Winograd
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{k}^{\omega-2}\right)$ to multiply an n -by-n matrix by an n -by-k (block mat-vec); no gain for $k=1$!
$\times 6$ arithmetic speedup for triangular mat mult (plus can apply Strassen to square blocks within the recursion)

Does it Really Take d-1 Matrix Multiplications?

Classical/Naive methods (e.g. Horner) require d-1.
Is this really necessary?

d/2 Mat-Mults: Rabin-Winograd/Patterson-Stockmeyer

No (Rabin-Winograd 1971, Patterson-Stockmeyer 1973).

$$
\begin{aligned}
q(A) & =c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{2 r-1} A^{2 r-1} \\
& =c_{0} I+\cdots+c_{r-1} A^{r-1}+A^{r}\left(\tilde{c}_{0} I+\cdots+\tilde{c}_{r-1} A^{r-1}\right)
\end{aligned}
$$

use recursion and denote \# mat-mults by $\mathrm{N}(\mathrm{d})$ (repeated squaring for A^{r}). For powers of two,

$$
\mathrm{N}(2 \mathrm{r}-1)=2 \mathrm{~N}(\mathrm{r}-1)+1
$$

total (inc. repeated squaring) $\approx d / 2+\log (\mathrm{d})$
for non powers of two, split into powers of two so

$$
N(d) \leq d / 2+2 \log (d)
$$

The Algorithm of Paterson \& Stockmeyer
Consider an example,

$$
\begin{aligned}
\mathrm{q}(A)= & 2 I+3 A+4 A^{2} \\
& +5 A^{3}+6 A^{4}+7 A^{5} \\
& +8 A^{6}+9 A^{7}+2 A^{8} \\
= & \left(2 I+3 A+4 A^{2}\right) \\
& +\left(5 A^{3}+6 A^{4}+7 A^{5}\right) \\
& +\left(8 A^{6}+9 A^{7}+2 A^{8}\right) \\
= & \left(2 I+3 A+4 A^{2}\right) I \\
& +\left(5 I+6 A+7 A^{2}\right) A^{3} \\
& +\left(8 I+9 A+2 A^{2}\right)\left(A^{3}\right)^{2}
\end{aligned}
$$

Analysis of the Example

Consider an example,

$$
\begin{aligned}
q(A)= & \left(2 I+3 A+4 A^{2}\right) I \\
& +\left(5 I+6 A+7 A^{2}\right) A^{3} \\
& +\left(8 I+9 A+2 A^{2}\right)\left(A^{3}\right)^{2}
\end{aligned}
$$

We perform 1 matmult to produce I, $A, A^{2}, 1$ to produce A^{3}, 1 square it, and 2 more to multiply degree- 2 polynomials by powers of A^{3}.
A polynomial in A^{3} whose coefficients are quadratics in A.

The General Case of the PS Algorithm

Let $\mathrm{ps}=\mathrm{d}$ (remainder is easy to handle),

$$
\begin{aligned}
q(A)= & c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{d} A^{d} \\
= & c_{0} I+c_{1} A+\cdots+c_{p-1} A^{p-1} \\
& +\left(c_{p} I+c_{p+1} A+\cdots+c_{2 p-1} A^{p-1}\right) A^{p} \\
& +\cdots \\
& +\left(c_{d-p+1} I+c_{d-p+2} A+\cdots+c_{d} A^{p-1}\right)\left(A^{p}\right)^{s-1} \\
= & c_{0} I+c_{1} A+\cdots+c_{p-1} A^{p-1} \\
& +\left(c_{p} I+c_{p+1} A+\cdots+c_{2 p-1} A^{p-1}\right) A^{p} \\
& +\cdots \\
& +\left(c_{(s-1) p} I+c_{(s-1) p+1} A+\cdots+c_{(s-1) p+p} A A^{p-1}\right)\left(A^{p}\right)^{s-1}
\end{aligned}
$$

Arithmetic and Memory Complexity of PS

Let $p s=d$ (remainder is easy to handle),

$$
\begin{aligned}
\mathrm{q}(A)= & \left(c_{0} \mathrm{I}+\mathrm{c}_{1} A+\cdots+{c_{p-1}} A^{p-1}\right) \\
& +\left(c_{\mathfrak{p}} \mathrm{I}+{c_{p+1}} A+\cdots+{c_{2 p-1}} A^{p-1}\right) A^{p} \\
& +\cdots \\
& +\left(c_{(s-1) \mathfrak{p}} I+c_{(s-1) \mathfrak{p}+1} A+\cdots+c_{(s-1) \mathfrak{p}+\mathfrak{p}-1} A^{p-1}\right)\left(A^{p}\right)^{s-1}
\end{aligned}
$$

Form and store $A^{2}, \ldots A^{p-1}, A^{p}$ explicitly ($p-1 \mathrm{MMs}, \mathrm{p}+1$ matrices to store)
Set $\mathrm{Q} \leftarrow$ highest coefficient polynomial $=\sum_{\ell=0}^{p-1} c \ldots A^{\ell}(p-1$ scale-add, 0 MMs)
For $k \leftarrow s-1, \ldots, 1,0$ multiply and add
$\mathrm{Q} \leftarrow \mathrm{Q} A^{p}+\sum_{\ell=0}^{p-1} c \ldots A^{\ell}$ (s m-multiplications)

Parameter Optimization for PS

Total number of matrix multiplications is $p-1+s$ where $\mathrm{s}=\lceil\mathrm{d} / \mathrm{p}\rceil-1$
Therefore $p s \approx d$ so $p+s-1$ is minimized near $p \approx \sqrt{d}$ at about $2 \sqrt{\mathrm{~d}}$ MMs
Can we go even lower?
No. Paterson \& Stockmeyer proved that there are qs for which \# of MMs is at least \sqrt{d}
($\sqrt{d}-1 / 2$ MMs if the coefficients are integers), under some reasonable assumptions

A Comparison

	Work (\# MMs)	Memory (\# words)
Explicit Powers	$\mathrm{d}-1$	$3 n^{2}$
Horner's Rule	$\mathrm{d}-1$	$2 \mathrm{n}^{2}$
MM PS	$\mathrm{p}-1+\mathrm{s}$	$(\mathrm{p}+1) \mathrm{n}^{2}$
MM PS for $\mathrm{ps} \approx \mathrm{d}$	$\approx 2 \sqrt{\mathrm{~d}}$	$\approx \sqrt{\mathrm{~d} n^{2}}$

A work-storage tradeoff

Memory-Efficient Matrix-Vector PS (Van Loan 1979)

$$
q(A)=\left(2 I+3 A+4 A^{2}\right) I+\cdots+\left(8 I+9 A+2 A^{2}\right)\left(A^{3}\right)^{2}
$$

So the j th colomn is

$$
\begin{aligned}
q(A)_{:, j}= & \left(I\left(2 I+3 A+4 A^{2}\right)\right)_{:, j} \\
& +\left(A^{3}\left(5 I+6 A+7 A^{2}\right)\right)_{:, j} \\
& +\left(\left(A^{3}\right)^{2}\left(8 I+9 A+2 A^{2}\right)\right)_{:, j} \\
= & I\left(2 I e_{j}+3 A e_{j}+4 A^{2} e_{j}\right) \\
& +A^{3}\left(5 e_{j}+6 A e_{j}+7 A^{2} e_{j}\right) \\
& +\left(A^{3}\right)^{2}\left(8 e_{j}+9 A e_{j}+2 A^{2} e_{j}\right)
\end{aligned}
$$

Matrix-Vector SPH (Van Loan 1979)

$$
\begin{aligned}
q(A)_{: j}= & I\left(2 I e_{j}+3 A e_{j}+4 A^{2} e_{j}\right) \\
& +A^{3}\left(5 e_{j}+6 A e_{j}+7 A^{2} e_{j}\right) \\
& +\left(A^{3}\right)^{2}\left(8 e_{j}+9 A e_{j}+2 A^{2} e_{j}\right)
\end{aligned}
$$

Compute A^{p} ($\log _{2} p$ m-multiplications, can use Strassen) For $j \leftarrow 1, \ldots, n$

Compute $A e_{j}, \ldots, A^{p-1} e_{j}(p-1$ matvecs)
Set $\mathrm{Q}_{\mathrm{j}} \leftarrow \sum_{\ell=0}^{p-1} c_{\ldots} A^{\ell} e_{j}$ (vec ops)
For $k \leftarrow s-1, \ldots, 1,0$ multiply and add $\mathrm{Q}_{\mathrm{j}} \leftarrow A^{p} \mathrm{Q}_{\mathrm{j}}+\sum_{\ell=0}^{p-1} c \ldots A^{\ell} e_{j}$ (s MVs, vec ops) $n(p-1)+n s$ matvecs $\equiv s+p-1$ (convensional, no Strassen) MMs

A Comparison (now with Van Loan's schedule)

	Work (\# MMs)	Memory (\# words)
Explicit Powers	$\mathrm{d}-1$	$3 n^{2}$
Horner's Rule	$\mathrm{d}-1$	$2 n^{2}$
MM PS	$\mathrm{p}-1+\mathrm{s}$	$(\mathrm{p}+1) \mathrm{n}^{2}$
MV PS	$\log _{2} \mathrm{p}+(\mathrm{s}+\mathrm{p})_{\mathrm{conv}}$	$3 n^{2}+\mathrm{pn}$

Communication (Cache-Miss) Analysis

Communications Analysis in Two-Level Memories

We assume that memory consists of a large slow memory and a fast memory (cache) of size M, and count the number of accesses to slow memory (cache misses) under an ideal replacement policy.

- Any mat-mult, $M>2 n^{2}$, only $\Theta\left(n^{2}\right)$ compulsory misses
- Conventional mat-mult, $M<n^{2} / 2, \Theta\left(n^{3} / \sqrt{M}\right)$ misses (blocking, recursion)
- Fast mat-mult, small cache, $O\left(n^{\omega} / M^{\omega / 2-1}\right)$ misses (less work, smaller data-reuse ratio)

Cache Misses in MM PS

If $M>(p+1) n^{2}$, only $\Theta\left(n^{2}\right)$ compulsory misses
If $M<\mathfrak{n}^{2} / 2$,

$$
\Theta\left(\frac{(p+s) n^{3}}{\sqrt{M}}+s p n^{2}\right)=\Theta\left(\frac{(p+d / p) n^{3}}{\sqrt{M}}+d n^{2}\right)
$$

This is minimized for $p \approx \sqrt{d}$ so $\Theta\left(\sqrt{d} n^{3} / \sqrt{M}+\mathrm{dn}^{2}\right)$

- $\Theta\left(\sqrt{d} \mathfrak{n}^{3} / \sqrt{M}\right)$ for $M \leq n^{2} / d$ (tiny cache, MMs dominate)
- $\Theta\left(\mathrm{dn}^{2}\right)$ for $\mathrm{n}^{2} / \mathrm{d} \leq M<\mathrm{n}^{2} / 2$ (small cache, matrix scale-adds dominate)

Mind the gap

Cache Misses in MM PS: Filling the Gap

for $3 n^{2} \leq M \leq(p+1) n^{2}$ MMs are comm-cheap but MSAs are not

Number of cache misses $\Theta\left(\mathrm{spn}^{2}\right)=\Theta\left(\mathrm{dn}^{2}\right)$
Cache misses minimized by setting $p \approx M / n^{2}$, to get out of this regime
But arithmetic is not; yuck

Cache Misses in the MV PS

If $M>3 n^{2}+p n$, only $\Theta\left(n^{2}\right)$ compulsory misses
If $\mathrm{pn} \leq M<\mathrm{n}^{2} / 2, \Theta\left(\log p \cdot n^{3} / \sqrt{M}\right)$ to generate A^{p}, plus n iterations in which we pay $\Theta\left(\mathrm{pn}^{2}\right)$ to construct $A e_{j}, \ldots, A^{p-1} e_{j}$ and $\Theta\left(s n^{2}\right)$ for s MVs with A^{p}
In total,

$$
\begin{aligned}
\Theta\left(\frac{\log p \cdot n^{3}}{\sqrt{M}}+n(p+s) n^{2}\right) & =\Theta\left(\frac{\log p \cdot n^{3}}{\sqrt{M}}+\left(p+\frac{d}{p}\right) n^{3}\right) \\
& =\Theta\left(\left(p+\frac{d}{p}\right) n^{3}\right)
\end{aligned}
$$

Picking a (Theoretical) Winner
If $M>(p+1) n^{2}$, use MM-PS (Strassen okay)
If $M>3 n^{2}+p n$, use MV-PS (optimal arithmetic sans Strassen)
Otherwise (tiny cache), use MM-PS
But we can do better with new variants

New Algorithmic Ideas

1: Block-Column PS

Compute $A^{\mathfrak{p}}$ ($\log _{2} p \mathrm{~m}$-multiplications)
Pick a block size b
For n / b blocks $E_{j} \leftarrow I_{, j, j ;+b}$
Compute $A E_{j}, \ldots, A^{p-1} E_{j}$ ($p-1$ b-mat-vecs)
Set $\mathrm{Q}_{\mathrm{j}} \leftarrow$ (highest coefficient polynomial) E_{j} (b-vec scale-add)

For $k \leftarrow s-1, \ldots, 1,0$ multiply and add
$\mathrm{Q}_{j} \leftarrow \mathcal{A}^{p} \mathrm{Q}_{j}+$ (next lower coefficient polynomial) E_{j}
$\Theta\left(\frac{\log p \cdot n^{3}}{\sqrt{M}}+\frac{n}{b}(p+s) n^{2}\right)$ cache misses for $p n b \leq M \leq n^{2} / 2$

2: Use Fast Matrix Multiplication in MM-PS, BMV-PS

Great opportunity for fast mat-mult
Benefit in block-MV PS drops with block size (both arithmetic and data-reuse ratio)

3: Tranform to (Real) Schur Form

If $A=V T V^{*}$, then $q(A)=V q(T) V^{*}$, so the expensive part ($>\mathrm{O}\left(\mathfrak{n}^{3}\right)$) is performed on triangular matrices, $\times 6$ arithmetic benefit
\sqrt{d} needs to be high enough to offset the cost of the Schur decomposition
Unfortunately, level-3 BLAS do not have triangular-triangular matrix multiplication, but can implement fairly easily using recursion

4: Schur Form, Reorder, Parlett+Davies-Higham
If $A=V T V^{*}$, then $q(A)=V q(T) V^{*}$
Apply block Schur-Parlett substitution to $q(T)$ (evaluate q on diagonal blocks, solve Sylvester equations for off-diagonal blocks)

Higham-Davies: ensure Sylvester equations are well conditioned by partitioning $\Lambda(A)$ into well-separated clusters \& reordering the Schur form (Bai-Demmel-Kressner)
Benefit: $\Theta\left(\sqrt{\mathrm{d}} \mathrm{n}^{3}\right)$ super-cubic algorithm applied to diagonal blocks of T, not all of it
Cost: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ Schur decomposition and reordering
[Not implemented, but shows how novel discoveries can improve old algorithms]

5: Remainder Evaluation (Really an Open Problem)

If $d>n$, let χ be the Characteristic polynomial of A and let

$$
q(A)=\chi(A) \delta(A)+\rho(A)=\rho(A) .
$$

Clearly, evaluating $\rho(A)$ is cheaper than applying $q(A)$
But can we determine the coefficients of ρ in a stable way? Open problem (AFAIK)
I'll mention another interesting and related open problem at the end of the talk

Experimental Results

d = 100; MM-PS and Block-MM-PS Better than Horner

Quad-core i7
C+MKL

MV PS is Terrible! Cache Misses!

Flop/s Rates

Block-Size Sensitivity (Not High but Not Monotone)

$n=2000$

Also, For High Degrees Horner is Terrible

$\mathrm{n}=2000$

Reduced Sensitivity at Smaller Sizes

$\mathrm{n}=750$

d = 10 Emphasizes Cost of Matrix Additions

The Cost of the Schur Decomposition (≈ 25 Mat-Mults)

Savings from Triangular Matrix Multiplication ($\approx \times 4$)

Estimating The Cost of Schur + Triangular PS ($>\times 2.5$)

Conclusions and Open Problems

Conclusions

Old algorithms must be revisited (fairly obvious);
MM-PS is memory inefficient, MV-PS super slow due to cache misses
Block MV-PS fixes that
More novel tricks thanks to various innovations, mostly in extreme cases (very high degrees)

Open Problem 1: Applications?

Do these algorithms have interesting applications?
We were attracted to this due to the complex tradeoffs in Patterson-Stockmeyer variants
Seems that rational approximations are used more often in applications

Open Problem 2: Alternate Representations

Numerical analysis of Patterson-Stockmeyer in other (more useful) representations of q
Is there an efficient and numerically-stable version of PS for $d>n$? Think of $\rho(A)$ given in terms of the coefficients of $q(A)=\chi(A) \delta(A)+\rho(A)$
Is there an efficient and numerically-stable version of PS for Newton polynomials, or for any other forms of interpolation/least-squares polynomials?
Looking forward to discussions during the rest of the week!

