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Four methods for solving polynomial systems by means of triangular sets are presented
and implemented in a unified way. These methods are those of Wu (1987), Lazard (1991),
Kalkbrener (1991) and Wang (1993b). They are compared on various examples with the
emphasis on efficiency, conciseness and legibility of the output.
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1. Introduction

In this paper, we are concerned with the following problem: given a finite family F
of multivariate polynomials over a field k with ordered variables x1 < x2 < · · · <
xn, we want to describe the affine variety V(F ) (i.e. the common zeroes of F over
an algebraic closure of k). Such a description is usually provided by a finite family
{T1, . . . , Tr} of polynomial sets with particular properties, a relation between the Ti
and F , and an algorithm to compute the Ti from F . A well-developed method since
Buchberger (1965) is the following: given an ordering on the monomials, choose for T1

a Gröbner basis of the ideal generated by F and compute it by the Buchberger’s algo-
rithm.

Following the work of Ritt (1932, 1966), Wu (1986) introduced another way of solving
algebraic systems which is the one we are concerned with in this paper. In this case each
Ti is a polynomial set such that two distinct polynomials in Ti have distinct greatest
variables. Such a Ti is called a triangular set. A point ζ ∈ V(Ti) is called regular if for
every p ∈ Ti the point ζ does not cancel the initial of p (that is the leading coefficient of
p regarded as a univariate polynomial in its greatest variable). Then, in Wu’s method,
the variety V(F ) is the union of the regular zeroes of the Ti and this decomposition
can be computed by Wu’s CHRST-REM algorithm (Wu, 1987). This method has been
investigated in many papers. Among them: (Chou, 1988; Chou and Gao, 1990, 1992; Gallo
and Mishra, 1990; Wang, 1992, 1995). Wu’s method is efficient for geometric problems
where the degenerate solutions are not interesting. For general problems it seems to be
difficult to obtain an efficient implementation and this method may produce superfluous
triangular sets. Wu’s algorithm, like Buchberger’s, depends on many choices; moreover,
its result is not uniquely defined.
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Lazard (1991) proposed a new method to obtain Wu-like decompositions for affine
varieties. However, in this case, the definition of triangular sets has been strengthened
(Definition 2.3) in order to guarantee non-redundant decompositions. Some details and
proofs were not given in detail, especially on the subject of gcd computation, which is
the main tool of the method. In Moreno Maza (1997), these questions are treated and a
first implementation of Lazard’s method is described and shown to be efficient.

Kalkbrener (1991) introduced another type of triangular sets called regular chains
(Definition 2.2) together with another relation between F and the Ti. In this case
V(F ) is the union of the closures (w.r.t. Zarisky topology) of the regular zeroes of the
Ti.

Wang (1993b) proposed a generalization of Wu’s decompositions for affine varieties.
This approach allows the resolution of quasi-algebraic systems. In this case V(F ) is given
as a (finite) union of regular zero sets of triangular systems (Definition 3.1). This method
involves Wu’s triangular sets but its process is different from Wu’s one and seems to be
more efficient.

Let us give an example to illustrate the difference between Wu, Lazard and Wang’s
way of solving, and Kalkbrener’s one. We consider the system given by the following
polynomials, where the ordered variables are c2 > s2 > c1 > s1 > b > a and where the
coefficients lie in the field of rational numbers:

{c1c2 − s1s2 + c1 − a, s1c2 + c1s2 + s1 − b, c21 + s2
1 − 1, c22 + s2

2 − 1}.
Our implementation of Lazard’s method produces the decomposition {T1, T2, T3}, where:

T1 = {(4b2 + 4a2)s2
1 + (−4b3 − 4a2b)s1 + b4 + 2a2b2 + a4 − 4a2,

2ac1 + 2bs1 − b2 − a2,

2as2 + (2b2 + 2a2)s1 − b3 − a2b,

2c2 − b2 − a2 + 2},
T2 = {a, 2s1 − b, 4c21 + b2 − 4, s2 − bc1, 2c2 − b2 + 2},
T3 = {a, b, c21 + s2

1 − 1, s2, c2 + 1}.
What does this solution mean? In T1, one may arbitrarily choose a and b once the
product a(b2 + a2) is not zero, and obtain successively the values of the indeterminates
s1, c1, s2, c2. The triangular sets T2 and T3 describe the case a = 0. Note that in T2, one
may choose an arbitrary b whereas it is zero in T3. So, where is the case b2 + a2 = 0?
It is described by T3. In fact, if we add this equation to the input system the computed
decomposition is only {T3}. Now, our implementation of Kalkbrener’s algorithm produces
the decomposition {C}, where:

C = {(4b2 + 4a2)s2
1 + (−4b3 − 4a2b)s1 + b4 + 2a2b2 + a4 − 4a2,

2ac1 + 2bs1 − b2 − a2,

s2 − bc1 + as1,

s1c2 + bc21 − as1c1 + s1 − b}.
In this case a point is a solution of the input system if it lies in the closure of the set
of the regular zeroes of C. Although C and T1 are different, they have the same regular
zero sets and the closure of these sets contains the regular zeroes of the previous T2 and
T3. Thus Kalkbrener’s output is simpler, however, further computations are needed to
describe the zeroes satisfying a(b2 + a2) = 0.
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In the conclusion of Kalkbrener (1993) the author writes: “a comparison with the
algorithms of Ritt, Wu and Lazard seems to be interesting. In Wang (1993b) the author
concludes: “A systematic analysis and comparison among them (the elimination methods
of Lazard, Kalkbrener and Wang) both theoretically and practically remain interesting
for future work”.

The aim of this paper is to compare from a practical point of view the methods of
Wu (1987), Lazard (1991), Kalkbrener (1991) and Wang (1993b). We realized a unified
implementation in the AXIOM computer algebra system (Jenks and Sutor, 1992; Broad-
bery et al., 1994) in order to compare these four methods. In Section 4, we discuss the
matter of comparing the capabilities of different algorithms. Let us mention here that a
crucial point is that their implementations need to share the same polynomial arithmetic
and data structures.

The complexity of these algorithms, based on pseudo-division, is not known and to
determine it is still a challenging task. Anyway, theoretical complexity considerations
are not sufficient for the development of Computer Algebra; it is crucial to evaluate the
possible efficiency of the algorithms on an experimental level.

A few papers report on the implementation of some methods for computing triangular
decompositions of algebraic systems. Moreover, the examples which are presented in these
papers differ from one to the other and the characteristics of the computer are generally
not very detailed. Thus, the capabilities of the different algorithms do not appear clearly.
Besides, it is important to focus on the properties of the output (representation, size,
legibility, . . . ) since a triangular decomposition of a given polynomial system is not
uniquely defined and two distinct implementations of the same method may produce
distinct outputs on the same example.

Let us recall that an experimental comparison between Wu’s method and Wang’s trian-
gular-series-based method is reported in Wang (1996). It appears that Wang’s method
is more efficient than Wu’s characteristic set method. This extensive comparison is per-
formed with the three notions of reduction proposed in Wu (1987). Another notion of
reduction is presented here (Definition 2.1). Our implementation of Wu’s algorithm is
realized with this new notion and confirm the experimental results of Wang (1996).

Obviously, the methods considered in this paper can also be applied to a (lexicogra-
phical) Gröbner basis as input. It happens sometimes that this is the only way to obtain
a result in a human time. However, we restrict ourselves to methods which accept any
set of equations as input and do not compute Gröbner bases explicitly.† This choice
was influenced by complexity reasons: Gröbner bases have double exponential behavior
in worst cases—see Mayr and Meyer (1982) and Huynh (1986)—and direct triangular
methods may simply have exponential complexity as indicated by Gallo and Mishra
(1990). This is a strong reason for solving polynomial systems by means of methods
which do not rely on explicit Gröbner bases computations.

Thus our comparative implementation excludes methods like Lextriangular (Lazard,
1992) or the approach of Möller (1993), which is generalized in Gräbe (1995).

We also specify that polynomial factorization (into irreducibles) is not a necessary
tool in the four methods of our comparison. It is true that this technique is exploited in
some implementations since it may discover some splits and thus make the decomposition
easier to obtain. However, it is not a general rule, and systematic factorizations may also

†It may happen that a triangular decomposition consists of a single triangular set which is a lexico-
graphical Gröbner basis.
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be costly in difficult problems (and the AXIOM factorizer is not very efficient). After
some preliminary tests it appeared that the use of factorization did not really modify
the differences between the four methods of our comparison. Hence, we implemented the
methods without using this technique.

Finally, we would like to remark that since the beginning of our work some improve-
ments on the methods described in this paper, together with new triangular decomposi-
tion algorithms, have been proposed (Moreno Maza, 1998; Wang, 1998; Aubry, 1999).

The paper is organized as follows. Section 2 presents the general notions used in the
paper. In Section 3, we review the main features of the methods and the properties of their
decompositions. We also propose an inductive version of Wang’s method. In Section 4, we
develop the requirements which have guided our work and we present our implementation.
Section 5 reports on some experimental data on a set of test examples. Most of them
can be found in the data base of the research project PoSSo (European Commission,
1992) and are available in ftp://www-calfor.lip6.fr/pub/papers/TriangularSets.
We investigate the computed decompositions for some relevant examples and point out
some remarks suggested by our experimentations. In Section 6, we take into account
some experimental results of the literature, which may be related to other approaches
for computing triangular decompositions of algebraic systems. Finally, we present some
conclusions about our work.

2. Definitions

The terminology and the notations concerning polynomials and triangular sets are
exactly the same as in Aubry et al. (1999). We do not recall them in this paper ex-
cept for the notions related to polynomial reduction. The four methods rely on pseudo-
division and they use various notions of polynomial reduction related to this operation
(Notation 2.1).

In the case of Wu’s method, choosing one notion of reduction rather than another may
strongly affect the efficiency (run time) and the legibility of the output. Wu considered
the notion of reduced polynomial and the weaker notion of head reduced polynomial. He
also remarked that his method was more efficient without any notion of reduction, but
the termination of the computations was not guaranteed in this case. Here we introduce
the new notion of initially reduced polynomial. This notion is weaker than the previous
ones. However, it still insures the termination of Wu’s algorithm and generally speeds up
the computations, so we use it in our implementation.

We also review the important concept of normalization (Lazard, 1991, 1992) which
strengthens the notion of initially reduced polynomial. This concept is also related to the
notion of regular chain (Definition 2.2) since a normalized triangular set (Definition 2.1)
is a regular chain.

Notation 2.1. Let p, q ∈ Pn with q 6∈ k. We denote by prem(p, q) and pquo(p, q) the
pseudo-remainder and the pseudo-quotient of p by q when interpreting them as univari-
ate in mvar(q). Let us denote by iter(p) the triangular set of Pn recursively defined as
follows: if p ∈ k then iter(p) = ∅ otherwise iter(p) = {p} ∪ iter(init(p)). The elements of
iter(p) are called the iterated initials of p. For instance, with p = (x2x3 + x3

2)x4 − 2x1 we
have iter(p) = {x2, x2x3 + x3

2, p}. We say that p is reduced w.r.t. q if deg(p,mvar(q)) <
mdeg(q). We say that p is initially reduced w.r.t. q if for every h ∈ iter(p) the condition
mvar(h) = mvar(q) implies mdeg(h) < mdeg(q). Note that if p is reduced w.r.t. q then p is
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obviously initially reduced w.r.t. q. We say that p is normalized w.r.t. q if no polynomial
in iter(p) has the same main variable as q. Thus, if p is normalized w.r.t. q, then p is
initially reduced w.r.t. q.

Example 2.1. Let p = (x2x3 + x3
2)x4 − 2x1. The polynomial p is normalized (but not

reduced) w.r.t. the polynomial q = x1 since no element in iter(p) has main variable x1.
If q = x1x

2
2 − 3, then p is initially reduced w.r.t. q. Indeed, there exists a polynomial

h = x2 in iter(p) such that mvar(h) = mvar(q) but mdeg(h) < mdeg(q). However, p is
neither normalized nor reduced w.r.t. q. If q = x2

3 − 2x1x2x3 + 3x1, then p is reduced,
but not normalized, w.r.t. q.

Definition 2.1. A triangular set T of Pn is called reduced (resp. initially reduced,
normalized) if for every v ∈ algVar(T ), the polynomial Tv is reduced (resp. initially
reduced, normalized) w.r.t. each polynomial in T−v .

Example 2.2. Assume n ≥ 4. Let p1 = x1x
2
2 − 3, p2 = x2

3 − 2x1x2x3 + 3x1 and
p3 = (x2x3 + x3

2)x4 − 2x1. The subset T1 = {p1, p2, p3} of Pn is an initially reduced
triangular set, but it is neither reduced nor normalized. Let p2

′ = x3 − 2x1x2. The
triangular set T2 = {p1, p2

′, p3} is not initially reduced since the degree of the initial of
p3 w.r.t. x3 is not smaller than the main degree of p2

′. Let p3
′ = 3(x2 + 2x1)x4 − 2x1.

The triangular set T3 = {p1, p2
′, p3

′} is reduced but not normalized. Finally, let p3
′′ =

(12x3
1 + 9)x4 + 2x2

1x2 − 4x3
1. The set T4 = {p1, p2

′, p3
′′} is a normalized triangular set.

Notation 2.2. For i = 0, . . . , n the saturated ideal of T∩Pi in Pi is denoted by sati(T ).

General triangular sets present some inconveniences. For instance, the affine variety
associated with a triangular set may be empty (see the example in Remark 3.2). In order
to guarantee better properties, the definition of triangular sets has been strengthened by
several authors. Regular chains are particular triangular sets defined in Yang and Zhang
(1994) and Kalkbrener (1991). For a regular chain T the set W(T ) of its regular zeroes is
not empty. By using the results of Section 4 in Aubry et al. (1999) we can simply define
regular chains as follows:

Definition 2.2. A triangular set T in Pn is a regular chain if for each variable xi ∈
algVar(T ) the polynomial init(Txi) does not belong to any prime ideal associated with√

sati−1(T−xi).

Example 2.3. Let p1, p2, p3 and T1 be as in Example 2.2. First, remark that {p1, p2}
is obviously a regular chain. Let I be the ideal generated by {p1, p2} in P3. In fact,
the ideal I is primary and it is the saturated ideal of the triangular set {p1, p2}. One
can check that init(p3) does not lie in the radical of I, hence T1 is a regular chain.
Now, if T ′1 = {p′1, p2, p3} with p′1 = x2p1, then T ′1 is not a regular chain. Indeed, let
I ′ be the ideal generated by {p′1, p2} in P3. We have the following primary decom-
position: I ′ = I ∩ 〈x2, x

2
3 + 3x1〉, and it is clear that init(p3) lies in the radical of

〈x2, x
2
3 + 3x1〉.

We now recall the definition of Lazard sets (Lazard, 1991).
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Notation 2.3. Let T be a triangular set of Pn and i ∈ {0, . . . , n}. From now on, we
define Ai = fr(Pi/sati(T )). We denote by Fi the algebra homomorphism from Pi+1 onto
Ai[xi+1] such that Fi(xi+1) = xi+1 and such that for any polynomial p ∈ Pi the value
Fi(p) is the canonical image of p in Ai.

Definition 2.3. Let T ⊆ Pn be a triangular set. For each variable xi ∈ algVar(T ) we
put ti = Txi and denote by t′i the derivative of ti w.r.t. xi. We say that T is a Lazard set
if T is normalized, and if for each variable xi ∈ algVar(T ) we have

(i) [square-free] the ideal generated by Fi−1(ti) and Fi−1(t′i) in Ai−1[xi] is the unit
ideal,

(ii) [primitive] for every j = 1, . . . , i − 1, the coefficients of ti, interpreted as a multi-
variate polynomial in (Aj−1[xj ])[xj+1, . . . , xi] generate the unit ideal of Aj−1[xj ].

Remark 2.1. If T is a Lazard set of Pn, then for each i ∈ {0, . . . , n}, the ring Ai

is a finite product of fields. See Moreno Maza (1997) for a proof of this statement.
Now, let Ai = Ki,1 × · · · × Ki,ri , where the Ki,j are fields. Condition (i) means that
for ` = 1, . . . , ri−1 the image of ti modulo Ki−1,` is square-free. Condition (ii) can be
viewed as follows: for each j = 1, . . . , i − 1, and for ` = 1, . . . , rj−1, the image of ti in
(Kj−1,`[xj ])[xj+1, . . . , xi] is a primitive multivariate polynomial.

Example 2.4. Let T = {x1x
2
2 − 3, x2

3 − 2x1x2x3 + 3x1}. Here t3 = x2
3 − 2x1x2x3 + 3x1

and t′3 = 2x3 − 2x1x2. We have A2 = k(x1)[x2]/〈x1x
2
2 − 3〉. Since 4t3 ≡ t′3

2 modulo the
ideal 〈x1x

2
2 − 3〉, the polynomial F2(t3) lies in the ideal generated by F2(t′3) in A2[x3].

Thus, T is not a Lazard set. In fact, the polynomial t′3 is the square-free form of t3 if
they are both interpreted in A2[x3] and {x1x

2
2 − 3, t′3} is a Lazard set.

3. Methods

This section summarizes the four methods. We recall the specifications of each method
together with the properties of the decompositions that they compute. A detailed re-
view of these methods could not take place here. The reader may refer to the original
papers.

We present the first method proposed in Wang (1993b). In fact, we suggest here a
recursive presentation of this method. Note that the decompositions of Wang’s algorithm
are different from the other ones in the sense that they are not triangular sets but fine
triangular quasi-algebraic systems (see Definition 3.1).

The basic ideas of Wu’s method are given but for more details one can refer to Wu
(1987) or Wang (1991).

We recall the main features of the methods of Lazard (1991) and Kalkbrener (1991)
which both involve gcd computations over towers of simple extensions.

Our implementation of Lazard’s method is based on an algorithm for gcd computations
of univariate polynomials with coefficients in a separable tower of simple extensions
(Moreno Maza, 1997). The idea is a generalization of the one of Moreno Maza and
Rioboo (1995). This algorithm is rather technical and could not be outlined here.

We use the AXIOM programming language for describing the algorithms presented
in this section.
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Notation 3.1. Let p ∈ Pn be a polynomial and T ⊆ Pn be a triangular set. There
exists a polynomial r ∈ Pn, initially reduced w.r.t. T , and a product s of the initials
of T , such that sp − r lies in the ideal generated by T . We define iRed(p, T ) = r. Now,
for F ⊆ Pn we set iRed(F, T ) = {iRed(p, T ) , p ∈ F}. Finally, we define prem(F, T ) =
{prem(p, T ) , p ∈ F}.

3.1. Wang’s method

Wang’s method computes a finite family {(T1, Q1), . . . , (Tr, Qr)} of fine triangular
q.a.s. (see Definition 3.1) such that

V(F ) =
r⋃
i=1

Z(Ti, Qi).

Such a decomposition is produced by triangulation(F, ∅, ∅) (see Theorem 3.1). There is
no reason for a fine triangular system produced by the method of Wang described below
(called elimination without projection in Wang, 1993b) to be necessarily consistent. How-
ever, maybe due to our optimizations, we never encountered an inconsistent fine trian-
gular system during our experiences. Note that Wang also proposes a method called
elimination with projection to produce necessarily consistent outputs.

Definition 3.1. Every couple Σ = (P,Q), where P and Q are two finite subsets of Pn,
is called a quasi-algebraic system in Pn (q.a.s. for short). Let Σ = (P,Q) be a q.a.s. in
Pn. The q.a.s. Σ is called triangular if P is a triangular set of Pn. If Q 6= ∅, then we
denote by h(Σ) the product of the elements of Q, otherwise we define h(Σ) = 1. We call
a zero of Σ every element of the subset of Kn denoted by Z(Σ) and defined by:

Z(Σ) = V(P ) \V(h(Σ)).

The q.a.s. Σ is called inconsistent if Z(Σ) = ∅, otherwise it is called consistent. Finally,
a triangular q.a.s. Σ = (T,Q) is called fine if V(h(T )) ∩ Z(Σ) = ∅ and 0 6∈ prem(Q,T )
where h(T ) is the product of the initials of T .

Let Σ = (P,Q) be a q.a.s. in Pn. From now on we assume that P 6⊆ k. Let xi be the
greatest variable occurring in P , denoted by mvar(P ). The algorithm elimination(xi, P,Q)
presented below (Proposition 3.1) splits the q.a.s. Σ into several q.a.s. which contain at
most one equation with xi as main variable (see Definition 3.2). Its proof is based on the
following Lemma 3.1 (Wang, 1993a) and Lemma 3.2 (which is a practical remark whose
proof is straightforward).

Definition 3.2. Let 1 ≤ i ≤ n and Σ = (P,Q) be a q.a.s. in Pn such that P ⊆ Pi and
Q ⊆ Pn. We call elimination of the variable xi in Σ a set Λ of triplets (Pk, Qk, τk) such
that Pk, Qk and τk are finite subsets of Pn which satisfy the following conditions:

(i) Pk 6= ∅ ⇒ mvar(Pk) < xi,
(ii) τk 6= ∅ ⇒ (∃t ∈ Pi \Pi−1) | τk = {t},
(iii) Z(P,Q) =

⋃
(Pj ,Qj ,τj)∈Λ Z(Pj ∪ {τj}, Qj).
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Lemma 3.1. Let f be a non-constant polynomial in Pn and (P,Q) a q.a.s. in Pn. Then

Z(P ∪ {f}, Q) = Z(prem(P, f) ∪ {f}, Q ∪ {init(f)}) ∪ Z(P ∪ {init(f), tail(f)}, Q).

Lemma 3.2. Let (P,Q) be a q.a.s. in Pn and f ∈ Pn \ k . Then

init(f) ∈ Q⇒ Z(P ∪ {f}, Q) = Z(P ∪ {f}, prem(Q, f)).

Proposition 3.1. Let v be a variable in {x1, . . . , xn} and (P,Q) a q.a.s. in Pn such
that mvar(P ) ≤ v. Then the algorithm elimination(v, P,Q) given below, computes an elim-
ination of the variable v in the q.a.s. (P,Q). In particular, if the output of the algorithm
is the empty set, then Z(P,Q) = ∅.

• elimination(v, P,Q) ==
P := P \ {0}
(0 ∈ Q) or (P ∩ k 6= ∅) => return({})
P−v := {p ∈ P | mvar(p) < v}
Pv := P \ P−v
Pv = ∅ => return ( {(P,Q, ∅)} )
f := a polynomial in Pv with minimal degree in v
P1 := (Pv \ {f}) ∪ {init(f), tail(f)} ∪ P−v
Q2 := Q∪ {init(f)}
empty? (Pv \ {f}) => return ({(P−v , prem(Q2, f), {f})} ∪ elimination(v, P1, Q))
P2 := prem(Pv \ {f}, f) ∪ {f} ∪ P−v
return (elimination(v, P2, Q2) ∪ elimination(v, P1, Q))

Proof. Let us define s(P ) =
∑
p∈P\{0} deg(p, v). We will prove termination and cor-

rectness by induction on s(P ). If a constant occurs in P or if 0 ∈ Q, the result is
obvious. Otherwise, if s(P ) = 0, then Pv = ∅ and the algorithm terminates. The cor-
rectness is obvious. Now we assume that s(P ) > 0, i.e. Pv is not empty. First, we re-
mark that s(P1) < s(P ) since deg(init(f), v) = 0 and deg(tail(f), v) < deg(f, v). Two
cases arise. First, assume that Pv consists of the single polynomial f . By induction,
elimination(v, P1, Q) terminates and is correct. Thus elimination(v, P,Q) terminates and
correction follows from Lemmas 3.1 and 3.2. Now assume that Pv \ {f} 6= ∅. Let us
denote by P ′ the set Pv \ {f}. For any p ∈ P ′, we have deg(prem(p, f), v) < deg(f, v)
≤ deg(p, v). Since P ′ is not empty, we obtain s(prem(P ′, f)) < s(P ′), and consequently
s(P2) < s(P ). Then termination and correctness follow by application of Lemma 3.1 and
induction hypothesis.

By repeated use of the algorithm elimination with v decreasing, we easily obtain a
triangulation of any q.a.s. with the algorithm triangulation presented below.

Theorem 3.1. Let 1 ≤ i ≤ n and (P,Q) be a q.a.s. in Pn such that P ⊆ Pi.
Let T a triangular set of Pn such that T ∩ Pi = ∅. Then the following algorithm
triangulation(P,Q, T ) computes a finite family {(T1, Q1), . . . , (Tr, Qr)} of triangular q.a.s.
such that

Z(P ∪ T,Q) =
r⋃

k=1

Z(Tk, Qk).
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• triangulation(P,Q, T ) ==
P := P \ {0}
(0 ∈ Q) or (P ∩ k 6= ∅) => return ({})
empty? P => return ( {(T,Q)} )
v := mvar(P )
Λ := elimination(v, P,Q)
return (

⋃
(Pj ,Qj ,τj)∈Λ triangulation(Pj , Qj , τj ∪ T ))

Proof. The proof of the algorithm is obtained by induction on the smallest integer i(P )
such that P ⊆ Pi(P ). For i(P ) = 0, i.e. P ⊆ k, the result is obvious. Now assume that
i(P ) > 0. We do not need to consider the case 0 ∈ Q, the case P ∩ k 6= ∅, and the
case Λ = ∅, for which the termination and the correctness are obvious. Then, due to the
specifications of the algorithm elimination, we obtain

Z(P ∪ T,Q) = Z(P,Q) ∩V(T ) =
⋃

(Pj ,Qj ,τj)∈Λ

Z(Pj ∪ ({τj} ∪ T ), Qj).

Let us denote Tj = {τj} ∪ T . The triplets (Pj , Qj , Tj) satisfy the input conditions of
triangulation. Since i(Pj) < i(P ), the result follows from the induction hypothesis.

Remark 3.1. It is easy to check that the quasi-algebraic systems produced by the algo-
rithm triangulation(F, ∅, ∅) are fine.

3.2. Wu’s method

Wu used Ritt’s work to provide an algorithm for solving systems of algebraic equations
by means of triangular sets which only requires pseudo-remainder computations (i.e.
no factorizations are needed). Wu’s process is based on a procedure called CHRST-
REM, see p. 3 in Wu (1987). Given a finite subset F of Pn, this procedure computes a
characteristic set T of a finite subset G of Pn such that F and G generate the same ideal
in Pn. It involves Ritt ordering for (initially) reduced triangular sets of Pn. For more
details about Ritt ordering and characteristic sets the reader may consult Ritt (1932,
1966) and Aubry et al. (1999).

Definition 3.3. Let F be a non-empty finite subset of non-constant polynomials in
Pn. We call basic set of F a subset B of F such that B is a minimal element for Ritt
ordering among the family of initially reduced triangular sets contained in F .

It is easy to compute a basic set of F . Let us denote by basicSet(F ) the result of
an algorithm which computes a basic set of F . Now the following operation charSet(F )
either returns the set C = {1} or computes an initially reduced triangular set C. In both
cases C is called a Wu characteristic set of F and satisfies the following:

(i) W(C) ⊆ V(F ) ⊆ V(C),
(ii) V(F ) = W(C) ∪

⋃
p∈C V(F ∪ {init(p)}).

charSet(F ) ==
R := F \ {0}
Q := ∅
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C := ∅
while (R 6= ∅) and (R ∩ k = ∅) repeat

Q := Q ∪R ∪ C
C := basicSet(Q)
Q := Q \ C
R := iRed(Q,C) \ {0}

R ∩ k 6= ∅ => return({1})
return C

Remark 3.2. The set C obtained by the above algorithm may be a fine triangular set
(i.e. none of its initials reduces to 0 w.r.t. C) of F even if F generates the unit ideal
of Pn. For instance, choose F = {x2

1 − x1, x1x2 − 1, (x1 − 1)x3 + x2}. In this case the
algorithm charSet(F ) returns F itself, but we have 〈F 〉 = 〈1〉.

Let p ∈ C. We remark that V(F ∪ {init(p)}) = V(F ∪ C ∪ {init(p)}). Moreover, the
set C ∪ {init(p)} has obviously a basic set which is smaller than C w.r.t. Ritt ordering.
Therefore, by computing charSet(F ∪ C ∪ {init(p)}), we obtain a smaller characteristic
set than C w.r.t. Ritt ordering. Now one can easily check that every strictly decreasing
chain of triangular sets for Ritt ordering is finite. Thus, by virtue of the above formula
(ii), repeated calls to the algorithm charSet allow the computation of a finite family
{T1, . . . , Tr} of initially reduced triangular sets such that

V(F ) =
r⋃
i=1

W(Ti).

Remark 3.3. Note that not only some components W(Ti) of Wu’s decomposition may
be empty (as shown in Remark 3.2), but also the algorithm may produce superfluous
components in the following sense: for some i ∈ {1, . . . , r} such that W(Ti) 6= ∅ there
exists j ∈ {1, . . . , r} with i 6= j such that W(Ti) is contained in W(Tj).

3.3. Lazard’s method

Let i be in the range 0 . . . n − 1. Let T ⊆ Pi \ Pi−1 be a Lazard set. We saw in
Remark 2.1 that Ai = fr(Pi/sati(T )) is a product of fields. We put Ai = k1 × · · · × km,
where the k` are fields. The main tool in Lazard’s method is the computation of gcd in
Ai[xi+1]. Let p, q ∈ Ai[xi+1]. To compute a gcd of p and q one may apply a standard
algorithm in each k`[xi+1]. But in practice the k` are not known. So a variation of the
subresultant PRS algorithm, proposed in Moreno Maza and Rioboo (1995), is performed
in the ring Ai[xi+1]. As in Della Dora et al. (1985), Kalkbrener (1991) and Gómez-
Dı́az (1994), computations may be split when a zero-divisor is discovered. Full details of
this gcd algorithm and the implementation of Lazard’s method appear in Moreno Maza
(1997).

The main procedure of Lazard’s method is called intersect. Given T ⊆ Pn and p ∈ Pn

the operation intersect(p, T ) returns a finite family of Lazard sets {S1, . . . , S`} such that

V(p) ∩W(T ) ⊆ ∪`1W(Si) ⊆ V(p) ∩W(T ).
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Given {T1, . . . , Ts}, a finite family of Lazard sets, we define intersect(p, {T1, . . . , Ts}) as
the union of the intersect(p, Ti). Then, given a finite subset F = {f1, . . . , fm} of Pn we
define intersect(F, T ) = intersect(f1, intersect(. . . , intersect(fm, T ))). Thus, intersect(F, ∅)
produces a finite family of Lazard sets {S1, . . . , Sl} such that

V(F ) =
⋃̀
i=1

W(Si).

Lazard’s decompositions are non-redundant in the following sense:⋃
j 6=i

W(Sj) 6=
⋃
j

W(Sj).

We will not describe here how to produce non-redundant decompositions. For this pur-
pose, see Moreno Maza (1997). The operation intersect(p, T ) proceeds in the following
way. Let us recall that Fn(p) is the image of p in fr(Pn/sat(T )) (see Notation 2.3). Note
also that an operation is available in our implementation to compute Fn(p).

(l1) If p is normalized w.r.t. T , then go to step (l2) with r = p else go to the next step.
(l1′) If p is not normalized w.r.t. T , compute two polynomials q, r ∈ Pn such that r

is normalized w.r.t. T and Fn(pq − r) = 0 and Fn(p) = 0 ⇐⇒ Fn(r) = 0.
Polynomials q and r are computed by means of an extended (i.e. with Bezout
coefficients) version of the gcd algorithm outlined above. Here the computations
may be split, in particular if Fn(p) is a zero-divisor. The polynomial r is also
denoted by normalize(p, T ). Now, go to the next step.

(l2) If r = 0, then return {T} and exit. If r 6= 0 and r ∈ k, then return { } and exit. If
r 6∈ k, then go to the next step.

(l3) Return intersect(tail(r), intersect(init(r), T )) and go to the next step.
(l4) Remove the content of r viewed as univariate in mvar(r) and go to the next step.
(l5) If T−

mvar(r) ∪ {r} is a square-free regular chain (that is, which satisfies the square-

free condition of Definition 2.3), then go to step (l7).
(l6) Let v = mvar(r). Compute a gcd (normalized w.r.t. T−v ) of r and its derivative

w.r.t. v while interpreting their coefficients in the tower associated with T−v . Here
computations may be split. Let g be this gcd. Replace r by pquo(r, g). Thus T−v ∪{r}
is now a square-free regular chain. Go to step (l3).

(l7) Let v = mvar(r). Define T+
v = {tk, . . . , tl} with mvar(tk) < · · · < mvar(tl). Compute

D = intersect(tl, intersect(. . . , intersect(tk, T−v ∪ {r}))). Then remove from D any
triangular set U such that normalize(init(ti), U−mvar(ti)

) = 0 for some i ∈ {k, . . . , l}.
Now, go to the next and last step.

(l8) Return intersect(p,D), where p is the input polynomial.

3.4. Kalkbrener’s method

Kalkbrener’s method is not so incremental as Lazard’s one. It computes a finite family
{T1, . . . , Tr} of regular chains but deals rather with varieties than regular zero sets. The
decomposition is such that

V(F ) =
r⋃
i=1

V(sat(Ti)).
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Thus, by Theorem 2.1 in Aubry (1999), we have

V(F ) =
r⋃
i=1

W(Ti).

Moreover, each W(Ti) is not empty. However, there may exist i1 and i2 such that
W(Ti1) ⊆W(Ti2). Note that when V(F ) is zero-dimensional then V(F ) = ∪ri=1W(Ti) =
∪ri=1V(Ti).

We think that a good way to sketch this method is to give the algorithm for computing
triangular decompositions together with the specifications of Kalkbrener’s algorithm for
computing gcd modulo regular chains (Kalkbrener, 1998). The notion of gcd is similar as
in Lazard’s method. Let T ⊆ Pi be a regular chain and Bi = fr(Pi/

√
sati(T )). Aubry

(1999) shows that Bi is the following product of fields:

Bi ' fr(Pn/P1)× · · · × fr(Pn/Pm),

where P1, . . . ,Pm are the prime ideal associated to sati(T ). The algorithm ggcd of
Kalkbrener (1993) computes gcd of polynomials in Bi[xi+1] by a dynamical process like
the algorithms of Moreno Maza and Rioboo (1995) and Moreno Maza (1997). More
details about the way of implementing efficiently these algorithms and extensions of
Kalkbrener’s method are given by Aubry (1999).

Notation 3.2. Let P be an ideal in Pn−1 and p ∈ Pn. We denote by p̄P the canonical
image of p in fr(Pn−1/P)[xn].

Algorithm. gcdn(C,F )

Input: C a regular chain in Pn−1 and F a finite subset of Pn.
Output: {(C1, g1), . . . , (Cs, gs)} where every Ck is a regular chain in Pn−1 and every

gk is a polynomial in Pn such that

(i)
⋃s

1, ap(
√

satn−1(Ck)) = ap(
√

satn−1(C))
(ii) for all P ∈ ap(

√
satn−1(Ck)),

1 F = ∅ ⇒ s = 1 and g1 = 0,
F 6= ∅ ⇒ gk

P is the gcd of {f̄P , f ∈ F} for each k,
2 if gk ∈ k and mvar(gk) = xn then init(gk) /∈ P,

if gk ∈ k and mvar(gk) < xn then gk /∈ P,
3 gk ∈ 〈

√
sat(Ck) ∪ F 〉.

Algorithm. decomposen(F )

Input: F a finite subset of Pn.
Output: regular chains T1, . . . , Tr of Pn such that

√
〈F 〉 = ∩rj=1

√
sat(Tj)

decomposen(F ) ==
F := F\{0}
empty? F => {∅}
F ∩R 6= ∅ => { }
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Θ := ∅
F ′ := F ∩Pn−1

∆ := decomposen−1(F ′)
for C ∈ ∆ repeat

Γ := gcdn(C,F\F ′)
for (Cj , gj) ∈ Γ repeat

gj = 0 => Θ := Θ ∪ {Cj}
mvar(gj) < xn => Θ := Θ ∪ decomposen(F ∪ {gi})
Θ := Θ ∪ {Cj ∪ {gj}} ∪ decomposen(F ∪ init(gj))

return Θ

4. Implementation

4.1. general requirements

In the introduction we specified why comparing methods for computing triangular
decompositions is not an easy task. Recall that each of the algorithms studied in this
paper has its own specifications and that a triangular decomposition of a polynomial
system by a given method is not uniquely defined.

In order to realize a reasonable comparison we think that the following requirements
should meet.

(1) The algorithms must be implemented and run with the same human, material and
software conditions (using the same data structures and sub-routines).

(2) A process to check the correctness of the computed decompositions must be imple-
mented.

(3) The experiments must not only focus on timings but also on the legibility of the
outputs and their suitability for further computations.

The goal of the first requirement is to get as close as possible to the ideal situation
where the differences between computations of triangular decompositions—for a given
system—only depend on the corresponding algorithms. Thus our implementations of
these methods need to use the same data structures and sub-routines. It is clear that
even with the same hardware and software, experimental comparisons strongly depend
on some implementation choices.

We thought that the AXIOM computer algebra system (Jenks and Sutor, 1992; Broad-
bery et al., 1994), with its strongly typed and object-oriented language, is convenient to
satisfy our first requirement. We defined categories corresponding to the different prop-
erties of triangular sets, packages and domains for the common data structures and
sub-routines. Furthermore, AXIOM (version 1.2) is connected with GB, the very pow-
erful Gröbner engine developed by Faugère (1994). This allowed us to run the non-trivial
Gröbner basis computations that are required in order to satisfy our other two require-
ments.

We mentioned that two implementations of the same method for computing triangular
decompositions may produce different outputs for a given polynomial system. Therefore
it is difficult to be sure that a decomposition is correct. We concentrated on this prob-
lem rather than trying to produce very optimized implementations. We think that only
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checking by hand some computations (necessarily simple) produced by an implemen-
tation is not sufficient to make sure that this implementation is correct, especially for
mixed-dimensional problems. For instance, we discovered a bug in the management of the
elimination of redundant branches in our implementation of Wu’s method by verifying
the computed output on Liu’s example. More generally, our checking process (described
below) is a convenient debugging tool for our implementations.

This checking process

(i) has been intensively tested for more than a year,
(ii) is based on simple and well-known algorithms and
(iii) is implemented in a direct way in AXIOM as an top-level package of the GB

software.

Thus it can be safely considered as reliable.
In our analysis of the computed solutions we also looked for other information than

timings and correctness. Given a solution, we wanted to know if some of the computed
triangular sets are inconsistent or if some quasi-components W(Ti) are contained in
another quasi-component W(Tj) (or in the closure of another quasi-component). An
overview of these facilities is given in the subsequent paragraph.

Some of the information extracted from our experiments could not be presented here
and is reported together with all the computed outputs in Moreno Maza (1997).

4.2. description of the implementation

Each implementation of the four methods uses the same AXIOM domain for poly-
nomials (with a sparse and recursive representation). Let us recall that an AXIOM
category specifies the mathematical properties of the domains which belong to this cate-
gory. It may also give default definitions for exported operations (eventually redefined in
the domains of this category). The main categories and domains of our implementation
are described below and their hierarchy is illustrated in Figure 1.

First we defined a category PolynomialSetCategory for finite subsets of Pn. This cate-
gory exports and implements operations on sets, ideals and varieties like (I, J) 7−→ I ∩J
and (I, p) 7−→ I : p∞, where I, J ⊆ Pn denote ideals and p ∈ Pn is a polynomial. We
implemented these operations by means of Gröbner bases techniques (Cox et al., 1992) in
an AXIOM package using the connection between AXIOM and the powerful Gröbner
engine GB.

Then we wrote a category for triangular sets of Pn named TriangularSetCategory.
This category exports and implements basic operations like (T, v) 7−→ Tv and (p, T ) 7−→
prem(p, T ) and (p, T ) 7−→ iRed(p, T ) (Notation 3.1), where v is a variable and T ⊆ Pn is
a triangular set. It also exports and implements more sophisticated operations like:

(i) T 7−→ sat(T ) which computes a Gröbner basis of the saturated ideal of T ,
(ii) (F ⊆ Pn, {T1, . . . , Tr ⊆ Pn}) 7−→ V(F ) ?= ∪i W(Ti) which tests if the variety

V(F ) is the union of the closures of the W(Ti).

We use the operations from the category PolynomialSetCategory that we mentioned
above to perform these latter operations. That way we can check the consistency of a
triangular set and the correctness of a triangular decomposition.
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PolynomialSetCategory

TriangularSetCategory

TowerOfSimpleExtension (t.o.s.e.) RegularChain

WuTriSet

Normalized (t.o.s.e.)

NormalizedSeparable (t.o.s.e.)NormalizedAlgebraic (t.o.s.e.)

Separable (t.o.s.e.)Algebraic (t.o.s.e.)

LazardTriSetLexTriangular

WanTriSet

Figure 1. Categories and domains of the implementation

Moreover, the category TriangularSetCategory exports (but does not implement) an
operation F ⊆ Pn 7−→ zeroSetSplit(F ) which represents any method for solving polyno-
mial system by means of triangular systems.

From the category of general triangular sets we derived a category for towers of simple
extensions (t.o.s.e.) which corresponds to the properties of regular chains. It exports the
associated map of a t.o.s.e. implemented with the operation (p, T ) 7−→ Fn(p) (Nota-
tion 2.3). It also exports operations like (p, T ) 7−→ is-Fn(p)-a-unit ?.

Finally, from the category of t.o.s.e. we derived three categories corresponding to par-
ticular properties.

(1) A category for the towers T ⊆ Pn such that algVar(T ) = {x1, x2, . . . , xn}, called
algebraic t.o.s.e.,

(2) A category for the normalized towers called normalized t.o.s.e.,
(3) A category for the square-free towers (that is, which satisfy square-free condition

of Definition 2.3) called separable t.o.s.e..

Each method for computing triangular decompositions is an implementation of the
operation F ⊆ Pn 7−→ zeroSetSplit(F ) in an AXIOM domain of the suitable category.
For instance, Kalkbrener’s method is implemented in an domain which belongs to the
category of t.o.s.e. and which is called RegularChain (see Figure 1). Note that the second
author implemented the lexTriangular method (Lazard, 1992) by using the techniques
described in Moreno Maza and Rioboo (1995). This algorithm is implemented in an
AXIOM domain which belongs to both categories of normalized t.o.s.e. and algebraic
t.o.s.e.

4.3. some techniques used in the implementation

Before studying the implementation of each method, let us give some common tech-
niques and optimizations.

We mentioned in the introduction that we do not use polynomial factorization into
irreducibles. However, square-free factorization of multivariate polynomials has a lower
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cost. We use it at certain steps of each method, in particular in order to clean up the
triangular sets in the outputs: this increases their legibility and helps to discover incon-
sistent components in Wu’s method.

Another common technique is the use of what we call pre-processing: the idea is to
perform some inter-reductions in a polynomial set Q before calling a procedure with
Q as input. This is done, for instance, in Wu’s method before calling charSet(Q). More
precisely, polynomials in Q with constant initials are used to reduce the other polynomials
in Q. This speeds up the computation of a characteristic set from Q. In the same way,
in Wang’s method, before running elimination(v,P,Q) we reduce the polynomials with
main variable v by the polynomials in P−v with a constant initial. It appears that this
also improves our implementation. For the methods of Kalkbrener and Lazard, a pre-
processing is only performed with the input system F . In this case, for each main variable
v of some polynomial in F , we choose a polynomial fv in Fv, which is minimal w.r.t. Ritt
and Wu ordering. Then, we use these polynomials fv to reduce the other polynomials
in F in the sense of Gröbner bases (i.e. we use the division algorithm in Pn as in Cox
et al., 1992, p. 59). In many examples (Arnborg–Lazard, Gonnet, Hairer-2, Butcher), this
speeds up the computation of a triangular decomposition. Sometimes, this may also slow
down the computations (Gerdt, Liu–Li). However, this pre-processing is used for both
methods with all examples.

Concerning the case of Wu’s method, most of the optimizations that we use appear in
Wu (1987) and Wang (1992). Note that the removal of the redundant branches for this
method is not easy since empty components may be produced. Thus, many heuristics
are needed.

Several techniques are given in Wang (1993b) to improve the practical efficiency of
the method. In particular, the author points out the removal of the redundant factors.
By means of gcd computations and exact divisions, our implementation actually removes
the redundant factors which appear among the set of inequations, or between equations
and inequations. Another technique to increase the legibility of an output triangular set
T is to reduce the polynomials in T by those with a constant initial.

We remarked in Section 3 that some superfluous components may occur in Kalkbrener’s
decompositions. There may exist indices i1 and i2 such that W(Ti1) ⊇ W(Ti2). As
suggested by Kalkbrener, one way to avoid some of these redundant computations is to
use Krull’s Primeidealkettensatz (see Samuel and Zariski, 1967, p.240): since the height
of the saturated ideal of a regular chain T equals the number of its elements, we can
delete from the output any regular chain which contains more elements than the input
system. However, it is not sufficient to remove all superfluous components and we also
use the following trick. If the initials of the polynomials in Ti1 are all in k then we have
W(Ti1) = V(Ti1). In this case we may easily check the inclusion by using the algorithm
split presented in Kalkbrener (1998), and remove eventually Ti2 from the output. With
this last strategy we can remove eight components on the Gonnet example and four on
Butcher. It happens that this technique slows down the computation. However, we use
it with every example.

Most of the computing time in the methods of Kalkbrener and Lazard is dedicated
to gcd computations modulo regular chains. Moreover, some of these gcd computations
may be repeated. So we keep the results of these computations in hash-tables.

A last optimization of our implementation of Kalkbrener’s method is the use of sub-
resultant techniques for computing gcd modulo regular chains. This limits the growth of
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the coefficients. Note that it is also possible to construct normalized triangular sets in
Kalkbrener’s method as described in Aubry (1999).

The normalization and the computation of the square-free part of a polynomial w.r.t.
a Lazard set are expensive operations. Thus, an improvement of Lazard’s method is used
to avoid these operations as much as possible. A typical situation where normalization
can be avoided is the following. Assume that T ⊆ Pi is a Lazard set with i polynomials
(thus the saturated ideal of T is zero-dimensional) and let p be a polynomial in Pi.
Recall that normalize(p, T ) returns a list of couples (ni, Ti) such that ni is a normalized
polynomial w.r.t. the Lazard set Ti and such that ni and p are associated w.r.t. the
t.o.s.e. associated with Ti. It follows from our assumptions that each ni is a constant.
Thus, either p is invertible w.r.t. Ti and we can set ni to 1 or p and ni are null. Hence, it
is sufficient to check whether p is invertible w.r.t. T by a simple gcd computation without
Bezout coefficients.

Another improvement of Lazard’s method is to relax the square-freeness condition for
Lazard sets in the intermediate computations. In fact, it is sufficient to guarantee that
this property holds for the normalized sets of the final decomposition. The algorithm
sketched in the previous section remains correct with this relaxation technique. However,
the procedure for deciding whether a W(Ti1) is contained in a W(Ti2) becomes a partial
operation: in some cases the inclusion cannot be checked. Thus, some redundant com-
putations may only be removed at the end of the computations, when square-freeness is
required. Note also that the normalization procedure needs some adaptation. This relax-
ation technique leads to a great speed up (except for the L3 example). This is due to the
fact that in practice very few normalized sets are not square-free.

Many other tricks can be used for improving Lazard’s method, especially in dimension
zero. For instance, it is possible to delay the normalization condition for zero-dimensional
Lazard sets until the final decomposition. This implies some adaptation of the algorithm
outlined in the previous section but speeds up the computations. In positive dimension,
the normalization condition cannot be delayed. This explains why Lazard’s method (using
these relaxation techniques) is more satisfactory in dimension zero, as we will see in the
next section.

As suggested in Lazard (1991), a last idea to speed up the computations of decompo-
sitions into Lazard triangular sets is to generate these chains by decreasing dimension. If
this is done, the superfluous sets may be removed before any computation is performed
with them. Since the practical complexity of gcd computations (and thus normalizations)
w.r.t. a tower of simple extensions increases with the height of this tower, some unnec-
essary and expensive computations can be avoided by using this dimension argument.

5. Results

We now present our experimental results and give the triangular decompositions for
some polynomial systems. The sources of our examples are specified in Table 5. For eve-
ry example F (given as a polynomial set) and every method which decomposes V(F )
into triangular systems σ1, . . . , σr we give two pieces of information. The first one is
the computing time (evaluation and garbage collector). It can be found in Table 1
for zero-dimensional examples and in Table 3 for examples of positive dimension. If
V(F ) has dimension zero, the second information is given in Table 2. It is a sequence
n(σ1), . . . , n(σr), where n(σi) denotes the number of solutions of σi (counted with their
multiplicities). For examples of positive dimension, the second information consists of a
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Table 1. Timings for zero-dimensional examples.
Wang Wu Kalkb. Lazard FGLM-AXIOM FGLM-GB HOM-GB

Trinks-1 <1 2 <1 1 1 <1 <1
Trinks-2 <1 <1 <1 <1 <1 <1 <1
Katsura-3 <1 <1 <1 1 <1 <1 <1
Katsura-4 3 >1000 5 7 2 <1 <1
Rose 2 >1000 3 22 >1000 65 5
S4 69 >1000 51 66 70 22 3
S5 74 >1000 200 495 280 84 11
Caprasse 7 >1000 2 2 8 <1 <1
Caprasse–Li 4 >1000 2 2 9 <1 <1
Arn-Laz 5 72 3 6 2 <1 <1
Cyclic-5 >1000 >1000 6 6 15 <1 <1
Wang-16 >1000 >1000 83 208 21 7 3
Singular <1 1 <1 <1 <1 <1 <1
R5 <1 >1000 <1 <1 43 <1 <1
R6 <1 >1000 5 <1 >1000 66 <1
R7 <1 >1000 >1000 <1 >1000 >1000 <1
L2 <1 <1 <1 <1 <1 <1 <1
L3 5 >1000 6 16 26 1 <1

Table 2. Degrees of outputs (zero-dimensional examples).

Wang Wu Kalkbrener Lazard Gröbner basis
Trinks-1 10 10 10 10 10
Trinks-2 2 2 2 2 2
Katsura-3 8 8 1, 7 1, 7 8
Katsura-4 4, 12 ? 4, 12 22, 12 16
Rose 132 ? 4, 128 4, 128 136
S4 22, 39 ? 22, 39 22, 39 99
S5 22, 45 ? 22, 45 22, 45 99
Caprasse 22, 4, 162 ? 2, 6, 8, 16 42, 8, 16 56
Caprasse–Li 2, 6, 8, 122 ? 42, 8, 16 42, 8, 16 56
Arn-Laz 2, 18 2, 18 2, 18 2, 18 20
Cyclic-5 ? ? 103, 202 105, 20 70
Wang-16 ? ? 24 24 24
Singular 42 1, 3, 4 1, 3, 4 12, 2, 4 8
R5 1, 120 ? 1, 120 1, 120 121
R6 1, 720 ? 1, 720 1, 720 721
R7 1, 5040 ? 1, 5040 1, 5040 5041
L2 2, 3 2, 3 13, 2 13, 2 8
L3 1, 2, 6, 8, 18, 322 ? 15, 24, 8, 12, 16, 32 15, 24, 8, 12, 16, 32 81

sequence d(σ1), . . . , d(σr), where d(σi) denotes the dimension of satn(σi). It is given in
Table 4.

In order to make these sequences of numbers easy to read, we use some notations. Let us
take the Caprasse example with Wang’s method in Table 2. The sequence 22, 4, 162 means
that the decomposition contains two triangular sets with 16 solutions, one triangular set
with four solutions and two triangular sets with two solutions. The same kind of notation
applies for sequences of dimensions.

During our checking process, the empty components produced by Wu’s method are
automatically removed. So their number is not reported in our tables. In a similar way, the
degrees given for Wu’s method are obtained after removing the empty components. Note
that the number of empty components depends on the heuristics and optimizations used
in implementing Wu’s method. So counting them does not make sense. Without using this
cleaning process the decompositions of Wu’s method are not easy to read, even for small
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Table 3. Timings for positive dimension examples.
Wang Wu Kalkb. Lazard SUGAR-AXIOM SUGAR-GB HOM-GB

DoTr <1 <1 1 <1 3 <1 <1
Alonso <1 <1 <1 <1 <1 <1 <1
Alonso–Li 9 >1000 6 >1000 1 <1 <1
Wang-91c 1 4 2 3 1 <1 <1
Wu-87b <1 <1 <1 <1 <1 <1 <1
Wang-2 4 53 51 177 9 <1 <1
Wang-12 3 10 <1 2 <1 <1 <1
Gerdt 2 16 5 9 3 <1 <1
Gonnet 1 3 <1 5 <1 <1 1
Butcher 4 4 3 1 300 46 <1
Hairer-1 <1 <1 <1 <1 <1 <1 <1
Hairer-2 4 >1000 7 74 >1000 >1000 33
Vermeer >1000 >1000 8 >1000 >1000 >1000 <1
Neural >1000 >1000 8 >1000 8 <1 <1
Liu 95 >1000 66 >1000 >1000 >1000 2
Liu–Li 48 >1000 108 >1000 >1000 >1000 1
Romin 2 8 9 8 2 <1 <1
f-633 3 32 2 50 12 <1 1

Table 4. Dimensions for positive dimension examples.
Wang Wu Kalkbrener Lazard

DoTr 02, 1 02, 1 1 02, 1
Alonso 22, 3 22, 3 3 22, 3
Alonso–Li 17, 23, 3 ? 3 ?
Wang-91c 13 14 13 14

Wu-87b 0, 1 05, 1 1 05, 1
Wang-2 14, 2 15, 2 18, 2 14, 2
Wang-12 19, 22 15, 22 1, 22 1, 22

Gerdt 12, 23, 3 17, 25, 3 13, 23, 3 12, 23, 3
Gonnet 33 33 33 33

Butcher 0, 22, 34 0, 25, 33 0, 22, 33 0, 22, 33

Hairer-1 12, 23 14, 23 23 12, 23

Hairer-2 13, 2 ? 2 13, 2
Vermeer ? ? 12 ?
Neural ? ? 12 016, 12

Liu 09, 1 ? 1 ?
Liu–Li 06, 1 ? 1 ?
Romin 35, 45, 5 36, 45, 5 5 34, 45, 5
f-633 13, 2 03, 110, 2 2 0, 14, 2

examples. See, for instance, the output of the Singular Points example. Another example
is the Romin system. Our implementation of Wu’s method produces 31 components, 17
being empty and four being non-empty but redundant. Our implementation of Wang’s
method may also produce empty components. However, it happens much less frequently
than with that of Wu.

We also give the timings for computing the lexicographical Gröbner bases with AXIOM
and GB. To compute these bases for zero-dimensional systems we use the FGLM algo-
rithm (Faugère et al., 1993) with AXIOM and GB. For systems of positive dimension
we use the Sugar algorithm (Giovinni et al., 1991) with AXIOM and GB too.

The AXIOM timings for lexicographical Gröbner bases are interesting to give an idea
on the efficiency of both classes of methods, based on different tools (triangular systems
and Gröbner bases), but implemented within similar conditions (using the same AXIOM
polynomial domain). Nevertheless, remember that solving algebraic systems does not
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Table 5. Examples.

Example Source or description

Trinks-1 (Boege et al., 1986) with B < S < T < Z < P < W .
Trinks-2 (Boege et al., 1986) with B < S < T < Z < P < W .

Katsura-3 (Boege et al., 1986) with U3 < U2 < U1 < U0.
Katsura-4 (Boege et al., 1986) with U0 < U1 < U2 < U3 < U4.

Rose (Boege et al., 1986) with A46 < U4 < U3.
S4 4-body problem (Kotsireas, 1998) with ψ < s < p.
S5 5-body problem (Kotsireas, 1998) with ψ < s < p.

Caprasse {(2ty − 2)x+ zy2 − z, (t2 − 1)x+ 2tzy − 2z,
−zx3 + (4ty + 4)x2 + (4zy2 + 4z)x+ 2ty3 − 10y2 − 10ty + 2,
(−z3 + (4t2 + 4)z)x+ (4tz2 + 2t3 − 10t)y + 4z2 − 10t2 + 2}
with t < z < y < x.

Caprasse–Li Caprasse with x < y < z < t as in Li (1995).
Arn-Laz Arnborg–Lazard (Giovinni et al., 1991) with x < y < z.
Cyclic–5 (Lazard, 1992) with e < d < c < b < a.
Wang-16 problem 5(a) in Czapor and Geddes (1986) with d < p < c < q and

example 16 in Wang (1993b).

Singular {f, ∂f
∂x
, ∂f
∂y
} where f = (y − x)(y2 + x2 − 1)(y2 − x) and x < y.

R5 {x1(x1 + 1), (x2
2 + x2 + 1)x1 + x2, p3, p4, p5}

where pi = xix
i−1
i−1 + (xii + 1)xi−1 + xi and x5 < · · · < x1.

R6 {x1(x1 + 1), (x2
2 + x2 + 1)x1 + x2, p3, p4, p5, p6}

with x6 < · · · < x1.
R7 {x1(x1 + 1), (x2

2 + x2 + 1)x1 + x2, p3, p4, p5, p6, p7}
with x7 < · · · < x1.

L2 {x2
1 + x2 + x3 − 1, x1 + x2

2 + x3 − 1, x1 + x2 + x2
3 − 1}

with x1 < x2 < x3.
L3 {x3

1 + x2 + x3 + x4 − 1, x1 + x3
2 + x3 + x4 − 1, x1 + x2 + x3

3 + x4 − 1,
x1 + x2 + x3 + x3

4 − 1} with x1 < · · · < x4.
Do-Tr (Donati and Traverso, 1989).
Alonso {(u− r − 2)x− u− 2t4 + 1, ry − t2u− 1, tuz − 1, v − tr}

with t < r < u < v < z < y < x.
Alonso–Li Alonso with v < z < y < x < t < u < r as in Li (1995).
Wang-91c Wang’s example in Wang (1995).
Wu-87b Wu’s example in Wang (1995).
Wang-2 (Wu, 1986) ex. 4 with x10 < · · · < xi < xi+1 < · · · < x105.
Wang-12 (Bronstein, 1986) p. 248 with a < b < y < x and example 12 in Wang (1993b).

Gerdt (Boege et al., 1986) with L1 < L2 < · · · < L7.
Gonnet (Boege et al., 1986) with A0 < A2 . . . < A5 < B0 . . . < B5 < C0 . . . < C5.
Butcher (Boege et al., 1986) with B < C2 < C3 < A < B3 < B2 < A32 < B1.
Hairer-1 (Boege et al., 1986).
Hairer-2 (Boege et al., 1986) with A43 > A42 > A41 > A32 >

A31 > A21 > B1 > B2 > B3 > B4 > C4 > C3 > C2.
Vermeer (Wang, 1993b) ex.2 p.110.
Neural Neural Network (Kalkbrener, 1991).

Liu (Liu, 1989) with a < t < z < y < x.
Liu–Li Liu with a < x < y < z < t as in Li (1995).
Romin Robot ROMIN (González-López and Recio, 1993) {−ds1 − a, dc1 − b,

l2c2 + l3c3 − d, 2s2 + l3s3 − c, s21 + c21 − 1, s22 + c22 − 1, s23 + c23 − 1}
with d < c < b < a < l3 < l2 < c3 < s3 < c2 < s2 < c1 < s1.

f-633 {2u6 + 2u5 + 2u4 + 2u3 + 2u2 + 1, 2U6 + 2U5 + 2U4 + 2U3 + 2U2 + 1,
(8u6 + 8u5)U5 + (8u6 + 8u5 + 8u4)U4 + (8u6 + 8u5 + 8u4 + 8u3)U3+
(8u6 + 8u5 + 8u4 + 8u3 + 8u2)U2 − 13,
(8u5 + 8u4 + 8u3 + 8u2)U6 + (8u5 + 8u4 + 8u3 + 8u2)U5+
(8u4 + 8u3 + 8u2)U4 + (8u3 + 8u2)U3 + 8u2U2 − 13,
u2U2 − 1, u3U3 − 1, u4U4 − 1, u5U5 − 1, u6U6 − 1}
with u2 < u3 < u4 < u5 < u6 < U2 < U3 < U4 < U5 < U6 (Faugère et al., 1998).
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have the same meaning for those different classes of methods. One cannot extract the
same information from a Gröbner basis as from a triangular decomposition.

Unfortunately, our AXIOM programs for computing triangular decompositions are
probably far to be as optimized as some Gröbner bases implementations are. Thus,
the ratio between AXIOM and GB timings for the FLGM and Sugar algorithms may
inform us of the eventual increase of performances that we could obtain with optimized
implementations. These GB timings should only be understood for this purpose and
should not be considered as references. Indeed, several efficient algorithms and tools have
been developed recently in the field of Gröbner bases such as the choice of good strategies
(Giovinni et al., 1991), new data representations or algorithms for changing monomial
ordering (Faugère, 1994; Traverso, 1996; Collart et al., 1997). These methods generally
provide a good way to compute a lexicographical Gröbner basis for our examples when a
direct computation is not efficient. Some of them are used by default in some software for
computing lexicographical Gröbner bases (MAGMA for instance). Thus, we also used
the following strategy for computing the lexicographical Gröbner basis with GB:

(1) Computing a Gröbner basis for the total degree ordering of the input system F .
(2) Homogenizing the obtained system.
(3) Computing the lexicographical Gröbner basis from this system.
(4) Dishomogenizing the result and reducing it since this is a Gröbner basis of 〈F 〉

which is not generally minimal.
(5) Verifying the result with the Hilbert function (see Traverso, 1996).

With this last method, all the Gröbner bases of our tables can be computed with GB. The
timings are given in the column HOM-GB of Tables 1 and 3. Note that for some examples
(Rose, Hairer-2) our implementations of Wang’s method and Kalkbrener’s method give
better timings than GB. Moreover, on several relevant examples (S-5, Wang-16, Butcher,
Vermeer, Liu) the ratio between GB and our implementation of Kalkbrener’s method
is satisfactory for the latter. Indeed, it is well known that polynomial arithmetic can be
implemented much more efficiently in C/C++ than in AXIOM.

The degree of the ideal generated by the input system F may be obtained from a
Gröbner basis. We mention it in Table 2 (column Gröbner basis) for the zero-dimensional
examples. The existence of multiplicities thus appears by comparing this degree with
the sum of the degrees given in the column Lazard since the square-free triangular sets
produced by Lazard’s method generate radical ideals. By comparing the decompositions
produced by our implementations of the methods of Lazard and Kalkbrener, we observed
that the saturated ideals of the regular chains of the latter method are generally radical.
Let us specify finally that the dimension of an ideal 〈F 〉 is equal to the maximal dimension
occuring in any of its decompositions reported in Table 4.

All our benchmarks have been made three times. First on a SPARC 10 station then
on Pentium II PC and finally on an DEC Alpha station. The timings reported here are
obtained with this last architecture, with a EV5.6 (21164A) processor operating at 531
MHz. This machine has 512 Meg of RAM memory and runs under OSF1(V4).

These timings are given in seconds. In the tables <1 means that the computation
finished within less than a second whereas >1000 means that the computation was not
finished after 1000 seconds. This last notation does not mean that the computation never
finished. For instance, our implementation of Kalkbrener’s method produced an output
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with the R7 example within 1672 seconds and our implementation of Lazard’s method
produced an output with the Neural example within 5160 seconds.

Example 5.1. (Donati-Traverso) This classic example shows that the computation
of a lexicographical Gröbner basis is not always very interesting. The computation with
AXIOM is less efficient than the triangular decompositions and the Gröbner basis is
much bigger than the results obtained by these triangular decompositions.

Example 5.2. (Cyclic-5) This other classic example is not considered as difficult for
Gröbner bases techniques. The results show the interest of methods based on gcd com-
putations modulo towers of extensions, since they are the only ones which compute a
triangular decomposition. Their computations are easier than the computation of the lex-
icographical Gröbner basis with AXIOM, and they detect more splits than lexTriangular.
Some coefficients in the output obtained with Kalkbrener’s method are bigger than the
coefficients in the output of Lazard’s method and lexTriangular. This difference is due to
the fact that the latter methods produce normalized triangular sets whereas Kalkbrener’s
method does not. For n > 5, it is much more difficult to obtain a direct triangular de-
composition for the cyclic-n system than computing a lexicographical Gröbner basis.

Example 5.3. (Systems Rn) All methods produce the same output (which can be
computed by hand from the input system) but our implementation of Kalkbrener’s
method is inefficient in this particular example. This follows from the sense of reduc-
tion that we use for our regular chains. A polynomial in a regular chain T is reduced
only w.r.t. the other polynomials in T whose initials are in the base field k. In many cases
the output is legible enough with this choice. But for the systems Rn the full reduction
(as it is used in Lazard’s method and lexTriangular) simplifies a lot the intermediate
triangular sets and thus speeds up the gcd computations. If we change the notion of
reduction in our implementation of Kalkbrener’s method, then the example R7 is per-
formed within less than a second. However, with this choice, we reduce the performances
of this method on several examples.

Example 5.4. (Neural) In our implementation, only the methods based on gcd com-
putations over towers of simple extensions succeed with this example. The decomposition
computed by our implementation of Kalkbrener’s method is much more compact than the
lexicographical Gröbner basis and it is obtained within the same timing. It produces two
regular chains corresponding to saturated ideals of dimension one. The decomposition
computed by our implementations of Lazard’s method produce 18 Lazard sets, two of
them corresponding to components of dimension one and the others to zero-dimensional
components. The use of normalization and full reduction in this method dramatically
slows down the intermediate computations with this example. Moreover, this example
illustrates the fact that solving in the sense of the regular zeroes (as in the methods of
Wu, Wang and Lazard) is sometimes much harder than solving in the sense of the Zariski
closure (as in Kalkbrener’s method).

Example 5.5. (Singular points) Here the methods give different results and we note
that Lazard’s decomposition is more legible than the others. One can check that W(W2)
= W(C3) and W(W3) = W(C2).
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Wang’s method:

(T1 = {x2 + x− 1, xy2 + x− 1},
Q1 = ∅),
(T2 = {2x4 − 2x3 − x2 + x,

(46x5 + 48x4 − 64x3 − 24x2 + 18x+ 2)y +
−48x5 − 51x4 + 70x3 + 28x2 − 25x},

Q2 = ∅),

Wu’s method:

W1 = {x2 + x− 1, (86x− 53)y2 + 139x− 86},
W2 = {2x4 + x3 − 3x2 + x,

(208x3 + 104x2 − 312x+ 104)y +
11960x9 − 5660x8 − 20990x7 + 26143x6 +
−9968x5 − 990x4 + 1601x3 − 218x2 − 36x},

W3 = {4x7 − 2x6 − 10x5 + 9x4 + 2x3 − 4x2 + x,

(66x6 + 29x5 − 131x4 + 24x3 + 43x2 − 15x)y +
−64x10 − 76x9 + 142x8 + 96x7 +
−124x6 − 21x5 + 32x4 + 2x3 − 3x2}.

Kalkbrener’s method:

C1 = {x2 + x− 1, (86x− 53)y2 + 139x− 86},
C2 = {2x3 − 2x2 − x+ 1, (102x2 − 39x− 23)y − 63x2 − 28x+ 51},
C3 = {x, y}.

Lazard’s method:

L1 = {2x2 − 1, y − x},
L2 = {x2 + x− 1, y2 − x},
L3 = {x, y},
L4 = {x− 1, y − 1}.

Example 5.6. (Caprasse) Unfortunately, our implementation of Wu’s method does
not succeed in this example. The methods based on gcd computations provide the best
output and the best timings. Moreover, this example shows that these methods may
provide a better way to get a triangular decomposition than a Gröbner basis computation
followed by a call to the lexTriangular algorithm.

Wang’s method:

(T1 = {t4 − 10t2 + 1, z, (t3 − 5t)y − 5t2 + 1, x},
Q1 = ∅),
(T2 = {3t4 + 10t2 + 3,

(44289t2 + 14769)z4 + (−354288t2 − 118080)z2
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+708592t2 + 236208,
((354276t3 + 118044t)z2 + 708600t3 + 236232t)y
+(−44289t2 − 14769)z4 + (−708588t2 − 236196)z2 +
−2834360t2 − 944808,
(t2 − 1)x+ 2tzy − 2z},

Q2 = [(29523t2 + 9837)z2 + 59050t2 + 19686]),
(T3 = {t2 + 1, z, ty − 1, x},
Q3 = ∅),
(T4 = {t2 − 1, z8 − 16z6 + 256z2 − 256, ty − 1,

(z3 − 8z)x+ (−4tz2 + 8t)y − 4z2 + 8},
Q4 = ∅),
(T5 = {t2 − 1, z, ty + 1, x},
Q5 = ∅).

Kalkbrener’s method:

C1 = {t2 − 1, z8 − 16z6 + 256z2 − 256, ty − 1,
(z3 − 8z)x+ (4tz2 + 8t)y − 12z2 + 8},

C2 = {3t4 + 10t2 + 3, 3t2z2 − 14t2 − 6,
(z2 + 5t2 − 1)y − tz2 + t3 − 5t,
(t2 − 1)x+ 2tzy − 2z},

C3 = {t2 − 1, z, ty + 1, x},
C4 = {t6 − 9t4 − 9t2 + 1, z, (t3 − 5t)y − 5t2 + 1, x}.

Lazard’s method:

L1 = {t2 − 1, z8 − 16z6 + 256z2 − 256, y − t,
96x− z7 + 14z5 + 16z3 − 128z},

L2 = {3t2 + 1, 3z2 + 4, y + t, x+ z},
L3 = {t2 + 3, z2 − 4, y + t, x− z},
L4 = {t8 − 10t6 + 10t2 − 1, z, 24y − 5t7 + 49t5 + 5t3 − 25t, x}.

Example 5.7. (Alonso) Alonso’s example corresponds to a prime ideal of dimension
three. Thus, Kalkbrener’s method describes it with only one regular chain C1. The other
algorithms extract points which are in the closure of the regular zeroes of C and provide
similar results.

Wu’s method:

W1 = {r, t2u+ 1, v, tz + t2, (2t2 + 1)x+ t2u+ 2t6 − t2},
W2 = {r + 2t4 + 1, u− r − 2, v − tr,

(2t5 − t)z + 1, (2t4 + 1)y + t2u+ 1},
W3 = {v − tr, tuz − 1, ry − t2u− 1(u− r − 2)x− u− 2t4 + 1}.
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Wang’s method:

(T1 = {v − tr, tuz − 1, ry − t2u− 1, (u− r − 2)x− u− 2t4 + 1},
Q1 = [u, r, t, u− r − 2]),
(T2 = {r, t2u+ 1, v, z + t, (2t2 + 1)x+ t2u+ 2t6 − t2},
Q2 = [2t2 + 1, t]),
(T3 = {r + 2t4 + 1, u+ 2t4 − 1, v + 2t5 + t, (2t5 − t)z + 1

(2t4 + 1)y − 2t6 + t2 + 1},
Q3 = [2t4 + 1, 2t4 − 1, t]).

Kalkbrener’s method:

C1 = {v − tr, tuz − 1, ry − t2u− 1, (u− r − 2)x− u− 2t4 + 1}.
Lazard’s method:

L1 = {v − tr, tuz − 1, ry − t2u− 1, (u− r − 2)x− u− 2t4 + 1},
L2 = {r + 2t4 + 1, u+ 2t4 − 1, v + 2t5 + t, (2t5 − t)z + 1,

(2t4 + 1)y − 2t6 + t2 + 1},
L3 = {r, t2u+ 1, v, z + t, (2t2 + 1)x+ 2t6 − t2 − 1}.

6. Some Other Implementations

The main purpose of our work is a comparison within a common environment of four
triangulation methods based on pseudo-division. We discussed this point in Section 4.
However, the problem of solving polynomial systems by means of triangular sets has been
studied by other approaches. Indeed, triangulation algorithms may involve techniques
(factorization into irreducibles, Gröbner basis computations, dynamic evaluation) or data
structures that we do not use. In this section, we take into account some experimental
results from the literature and try to compare them with our work.

Lazard (1992) proposed an algorithm (called Lextriangular) to compute triangular
decompositions of zero-dimensional ideals. This algorithm is based on a structure theorem
for zero-dimensional lexicographical Gröbner bases (Gianni, 1987; Kalkbrener, 1987) and
requires such a basis as input. Moreno Maza and Rioboo (1995) reported an efficient
implementation in AXIOM of the Lextriangular algorithm. Their work is based on an
enhanced version of the sub-resultant algorithms and their AXIOM program can process
the Cyclic-7 system (the lexicographical Gröbner basis being computed by GB). However,
recall that this algorithm can only be applied to zero-dimensional lexicographical Gröbner
bases, whereas the four methods described in this paper can be applied on any polynomial
system. Moreover, it happens, with some hard zero-dimensional examples, that using one
of these four methods provides a quicker answer than by computing a lexicographical
Gröbner basis.

Möller (1993) presents another algorithm which decomposes zero-dimensional varieties
from Gröbner bases. It involves lexicographical Gröbner basis computations of quotient
ideals which are generally expensive. This approach has been improved and extended to
positive dimension in Gräbe (1995) where an implementation in REDUCE is reported.
Factorization is also a major tool in these methods. We explained in the introduction that
we wanted to avoid Gröbner basis computations for complexity considerations. However,
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it is a personal choice and it remains interesting for further investigations to compare
experimental factorization based methods with the methods studied in this paper. The
algorithms presented in Gräbe (1995) rely on factorized Gröbner bases and reduction to
dimension zero. Several zero-dimensional examples are given. The variant ZS2 from that
paper for decomposing zero-dimensional varieties seems the most interesting. It uses as
much as possible the degree-rev-lex ordering for computing Gröbner bases. This allows
us to decompose the example Katsura-5 which is not computed by our implementation.
The other timings for this variant compare with those given by our implementation.
However, note that the hardware and software conditions are different and that only
five zero-dimensional examples (three of them being Katsura-n systems) are given. Some
examples of positive dimension are also given in Gräbe (1995), such as Donati–Traverso,
Gonnet and Hairer-1, which are computed efficiently by our implementation. We think
that a significant comparison should involve investigations with more difficult exam-
ples.

Dynamic evaluation (Gómez-Dı́az, 1994) provides a way to solve polynomial systems
by means of triangular sets. It involves particular data structures like dynamic sets and
dynamic polynomials. Therefore it could not be part of our comparative implementation.
However, we run the implementation available in AXIOM on our examples. It appears
that dynamic evaluation is much slower than our implementations of the four methods,
but recall it is designed to deal with more general subjects than polynomial system
solving.

Li (1995) reported an efficient implementation of the characteristic set method of
Wu, based on SACLIB 1.2. This implementation involves factorization, sub-resultant
techniques and modular algorithms. Li pointed out that it was a difficult task to check
the correctness of the triangular decompositions. However, he did not report on the
size and the legibility of his decompositions. Li’s implementation has good timings for
the Vermeer and the Alonso–Li examples. His implementation can process the Cyclic-
6 system whereas none of the implementations of the four methods can. However, his
implementation fails on the Liu example.

Wang (1996) reports experiments with the methods of Wu and Wang. He concludes
that the different variants of Wu’s method are less efficient than the method developed
by Wang. These implementations do not use the same notion of reduction as we do for
computing characteristic sets. Nevertheless, our experiments lead to the same conclusions.

Many of our examples are given by Wang (1996). However, we do not compare our
implementation of Wang’s method with the author’s since our implementation techniques
and experimental conditions are different.

In Moreno Maza (1998), a new algorithm for solving polynomial systems by means of
regular chains is reported. This algorithm is able to produce triangular decompositions
either in the sense of the Zariski closure (as in Kalkbrener’s method) or in the sense of
the regular zeroes (as in Lazard’s method). Moreover, it allows to use either (general)
regular chains, or square-free regular chains, or Lazard sets.

Thus, this algorithm allows to measure experimentally the cost of a given property for
a triangular decomposition. It has been implemented and tested with the same hardware
and software as our implementations of the four methods. We give here the timings for
our most difficult examples of positive dimension. In the Table 6, the column W (resp.
W) corresponds to decompositions in the regular zeroes sense (resp. in the Zariski closure
sense) by means of (general) regular chains.
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Table 6. Timings for Moreno Maza’s method.

W W
Alonso–Li 6 >1000
Wang-2 34 35
Butcher 3 3
Hairer-2 16 30
Vermeer 3 7
Neural 3 14
Liu 11 132
Liu–Li 6 >1000

These results show that the cost of the property solving in the sense of regular zeroes
is sometimes very high. This helps to understand the difference in performances between
the methods of Kalkbrener and Lazard in positive dimension.

Improvements to Kalkbrener’s method are reported in Aubry (1999). Several of our test
examples are more efficiently performed with some optimizations. The implementation
is realized in AXIOM. The basic idea of the algorithm decompose given in Kalkbrener
(1998) is kept but stronger notions of regular chains may also be used for computing a
triangular decomposition in the sense of Zariski closure. Thus, it is possible to produce
square-free and normalized regular chains with efficiency. These extensions allows to
compute the lexicographical Gröbner basis of ideals of relations in Galois Theory with
timings comparable to the function Groebner in MAGMA. These Gröbner bases of zero-
dimensional ideals are also Lazard sets.

7. Conclusions

Our conclusions are highly influenced by the way that we have implemented these
four methods, even if we have tried to limit the differences which are due only to the
implementation.

For easy examples, we remark that all methods generally have good computing times
and that the legibility of the outputs that they produce is satisfactory. Nevertheless,
Wu’s method fails in some rather easy zero-dimensional examples (Caprasse, R-5) and
for both cases of dimension zero and positive dimension, this method clearly solves less
problems than the other methods. Moreover, for the most difficult examples that Wu’s
method can solve, the outputs are hard to read (for instance with the Romin example).
In our opinion, the reason is the following. Wu’s method cannot split the computations
(in order to obtain several triangular sets) before computing a characteristic set of F
(which is sometimes hard to compute, especially for zero-dimensional problems), whereas
the other methods may split their computations earlier. More generally, it seems that
methods based on gcd computations over a tower of simple extensions, namely those
of Lazard and Kalkbrener, may discover factorizations that other methods cannot find
(Cyclic-5).

Let us now concentrate on Wang’s method. This method may be very efficient for
difficult examples. Indeed, it has the best timings for the examples S5, Liu–Li. However,
the decompositions that it produces are generally less legible than the ones of Kalkbrener
and Lazard. Furthermore, as Wu’s method, the method of Wang is disappointing in some
easy examples, namely Caprasse, Cyclic-5, Neural.

Kalkbrener’s method is the only method which solves every example and often pro-
duces the most concise outputs (except for Cyclic-5). Moreover, some examples (Vermeer,
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Neural) can only be processed by this method. But one has to keep in mind that this
method solves polynomial systems in a more lazy way than the other three in the case
of positive dimension. Our strategy for this method is also inefficient for some zero-
dimensional examples (R-7), whereas the methods of Lazard and Wang succeed with
these examples. We think that the use of normalized triangular sets in Lazard’s method
is generally a good way to solve zero-dimensional problems. This may replace a large
algebraic expression by a single integer.

However, normalization and square-free factorization over towers of separable exten-
sions are time consuming. This is the reason why Lazard’s method may also be inefficient
in some easy examples (Neural). For describing affine varieties by means of regular ze-
roes of triangular sets, Lazard’s method gives the best output. Moreover, this is the only
method which produces decompositions without redundant components.

We think that the methods based on gcd computations over towers of extensions
are promising. The experiments show that they must be investigated further for more
efficiency. For the most difficult problems of positive dimension, it appears that solving
in the sense of the Zariski closure (as in Kalkbrener’s method) may be a good way to
obtain a decomposition. Such a decomposition is sufficient when one is only interested
in a description of the radical ideal associated with the input system. However, more
investigations are needed for solving algebraic systems of positive dimension in the sense
of the regular zeroes by means of Lazard triangular sets. Indeed, the computations of
normalized gcds may be prohibitive in that case. We finally remark that for solving in
the sense of the regular zeroes, Wang’s method is a powerful tool in some hard examples.

Acknowledgements

We would like to thank Dongming Wang, Mike Dewar and the referees for their helpful
suggestions on an earlier version of this paper. The second author is also grateful to the
European research project FRISCO† for supporting his work.

References

——Aubry, P. (1999). Ensembles triangulaires de polynômes et résolution des systèmes d’équations
algébriques. Ph.D. Thesis, Université Paris 6.
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thue systems. Inf. Control, 68, 196–206.

——Jenks, R. D., Sutor, R. S. (1992). AXIOM, The Scientific Computation System. New York, Springer-
Verlag. AXIOM is a trade mark of NAG Ltd, Oxford UK.

——Kalkbrener, M. (1987). In Solving Systems of Algebraic Equations by using Gröbner Bases, LNCS 378,
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