Cache Complexity in Computer Algebra

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics
University of Western Ontario, Canada

École Polytechnique, 5 Décembre 2022
Acknowledgements

- Many thanks to the organizers of this seminar for their invitation.
- This talk a collection of observations, rather than a research talk with new results. I will show many slides that you may have already seen.
- These observations are based on research projects in which many of my former and current graduate students have played an essential role. By alphabetic order: Ali Asadi, Alexander Brandt Changbo Chen, Xiaohui Chen, Svyatoslav Covanov, Sardar Haque, Xin Li, Farnam Mansouri, Davood Mohajerani, Robert Moir, Wei Pan, Delaram Talaashrafi, Linxiao Wang, Ning Xie, Yuzhen Xie, Haoze Yuan.
- This talk is also based on collaborations with MIT/CSAIL, Intel and IBM Canada, with funding support from IBM and NSERC of Canada.
- Special thanks go to Alexander Brandt who is leading the development of the Basic Polynomial Algebra Subprograms (BPAS) [1].
Tentative Plan

- Part 1: (Well-known) Motivations
- Part 2: (Well-known) Memory Models
- Part 3: A case study
- Part 4: Multi-measure models
The BPAS library

A high-performance polynomial algebra library
- Core of library written in C, wrapped in C++ 11 interface for usability and object-oriented programming

Optimized algorithms and data structures, data locality, and parallelism
- Sparse multivariate polynomials [3], dense univariate and bivariate [24]
- Triangular decomposition of polynomial systems [2, 4]

User-friendly, object-oriented interface based on template meta-programming [5]
- A natural encoding of the algebraic hierarchy
- “Dynamic” creation of algebraic types through composition
- Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 ■ The model
 ■ Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
In the 1980’s, a memory access and a CPU operation were both as slow as the other

- CPU frequency increased between 1985 and 2005 has reduced CPU op times much more than DRAM technology improvement could reduce memory access times
- Even after the introduction of multicore processors, the gap is still huge.
A typical matrix multiplication C code

```c
#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)
{
    double *A; double *B; double *C;
    long started, ended;
    float timeTaken;
    int i, j, k;
    srand(getSeed());
    A = (double *)malloc(sizeof(double)*x*y);
    B = (double *)malloc(sizeof(double)*x*z);
    C = (double *)malloc(sizeof(double)*y*z);
    for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
    for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
    for (i = 0; i < x*y; i++) A[i] = 0 ;
    started = example_get_time();
    for (i = 0; i < x; i++)
        for (j = 0; j < y; j++)
            for (k = 0; k < z; k++)
                // A[i][j] += B[i][k] * C[k][j];
                IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);
    ended = example_get_time();
    timeTaken = (ended - started)/1.f;
    return timeTaken;
}
```
Issues with matrix representation

Contiguous accesses are better:

- Data fetch as cache line (Core 2 Duo: 64 byte per cache line)
- With contiguous data, a single cache fetch supports 8 reads of doubles.
- Transposing the matrix C should reduce L1 cache misses!
Transposing for optimizing spatial locality

```c
float testMM(const int x, const int y, const int z)
{
    double *A; double *B; double *C; double *Cx;
    long started, ended; float timeTaken; int i, j, k;
    A = (double *)malloc(sizeof(double)*x*y);
    B = (double *)malloc(sizeof(double)*x*z);
    C = (double *)malloc(sizeof(double)*y*z);
    Cx = (double *)malloc(sizeof(double)*y*z);
    srand(getSeed());
    for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
    for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
    for (i = 0; i < x*y; i++) A[i] = 0 ;
    started = example_get_time();
    for(j =0; j < y; j++)
        for(k=0; k < z; k++)
            IND(Cx,j,k,z) = IND(C,k,j,y);
    for (i = 0; i < x; i++)
        for (j = 0; j < y; j++)
            for (k = 0; k < z; k++)
                IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);
    ended = example_get_time();
    timeTaken = (ended - started)/1.f;
    return timeTaken;
}
```
Issues with data reuse

- Computing a 32×32-block of A, so computing again 1024 coefficients: 1024 accesses in A, 384×32 in B and 32×384 in C. Total = 25,600.

- The iteration space is traversed so as to reduce memory accesses.
float testMM(const int x, const int y, const int z)
{
 double *A; double *B; double *C;
 long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
 A = (double *)malloc(sizeof(double)*x*y);
 B = (double *)malloc(sizeof(double)*x*z);
 C = (double *)malloc(sizeof(double)*y*z);
 srand(getSeed());
 for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
 for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
 for (i = 0; i < x*y; i++) A[i] = 0 ;
 started = example_get_time();
 for (i = 0; i < x; i += BLOCK_X)
 for (j = 0; j < y; j += BLOCK_Y)
 for (k = 0; k < z; k += BLOCK_Z)
 for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
 for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)
 for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
 IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);
 ended = example_get_time();
 timeTaken = (ended - started)/1.f;
 return timeTaken;
}
Transposing and blocking for optimizing data locality

```c
float testMM(const int x, const int y, const int z)
{
    double *A; double *B; double *C;
    long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
    A = (double *)malloc(sizeof(double)*x*y);
    B = (double *)malloc(sizeof(double)*x*z);
    C = (double *)malloc(sizeof(double)*y*z);
    srand(getSeed());
    for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
    for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
    for (i = 0; i < x*y; i++) A[i] = 0 ;
    started = example_get_time();
    for (i = 0; i < x; i += BLOCK_X)
        for (j = 0; j < y; j += BLOCK_Y)
            for (k = 0; k < z; k += BLOCK_Z)
                for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
                    for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)
                        for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
                            IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);
    ended = example_get_time();
    timeTaken = (ended - started)/1.f;
    return timeTaken;
}
```
Experimental results

Computing the product of two $n \times n$ matrices on my laptop (Core2 Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

<table>
<thead>
<tr>
<th>n</th>
<th>naive</th>
<th>transposed</th>
<th>speedup</th>
<th>64×64-tiled</th>
<th>speedup</th>
<th>t. & t.</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>7</td>
<td>3</td>
<td>6.81</td>
<td>7</td>
<td>0.936</td>
<td>2</td>
<td>9.65</td>
</tr>
<tr>
<td>256</td>
<td>26</td>
<td>43</td>
<td>1928</td>
<td>155</td>
<td>1.76</td>
<td>23</td>
<td>16.59</td>
</tr>
<tr>
<td>512</td>
<td>1805</td>
<td>265</td>
<td>6.62</td>
<td>14020</td>
<td>2.41</td>
<td>11960</td>
<td>22.69</td>
</tr>
<tr>
<td>1024</td>
<td>24723</td>
<td>3730</td>
<td>9.11</td>
<td>112298</td>
<td>2.32</td>
<td>101264</td>
<td>23.15</td>
</tr>
<tr>
<td>2048</td>
<td>271446</td>
<td>29767</td>
<td>9.83</td>
<td>1009445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>2344594</td>
<td>238453</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978 and 106758 for $n = 2048$ and $n = 4096$ respectively.
Other performance counters

Hardware count events

- CPI – Clock cycles Per Instruction: the number of clock cycles that happen when an instruction is being executed. With pipelining we can improve the CPI by exploiting instruction level parallelism.
- L1 and L2 Cache Miss Rate.
- Instructions Retired: In the event of a misprediction, instructions that were scheduled to execute along the mispredicted path must be canceled.

<table>
<thead>
<tr>
<th></th>
<th>CPI</th>
<th>L1 Miss Rate</th>
<th>L2 Miss Rate</th>
<th>Percent SSE</th>
<th>Instructions Retired</th>
</tr>
</thead>
<tbody>
<tr>
<td>In C</td>
<td>4.78</td>
<td>0.24</td>
<td>0.02</td>
<td>43%</td>
<td>13,137,280,000</td>
</tr>
<tr>
<td>Transposed</td>
<td>1.13</td>
<td>0.15</td>
<td>0.02</td>
<td>50%</td>
<td>13,001,486,336</td>
</tr>
<tr>
<td>tiled</td>
<td>0.49</td>
<td>0.02</td>
<td>0</td>
<td>39%</td>
<td>18,044,811,264</td>
</tr>
</tbody>
</table>
Analyzing cache misses in the naive and transposed multiplication

Let A, B and C have format (m, n), (m, p) and (p, n) respectively.

- A is scanned once, so mn/L cache misses if L is the number of coefficients per cache line.
- B is scanned n times, so mnp/L cache misses if the cache cannot hold a row.
- C is accessed “nearly randomly” (for m large enough) leading to mnp cache misses.
- Since $2mnp$ arithmetic operations are performed, this means roughly one cache miss for two flops!
- If C is transposed, then the ratio improves to 1 for L.
Let A, B and C are all square of order of n.

Assume all tiles are square of order b and three fit in cache.

If C is transposed, then loading three blocks in cache cost $3b^2/L$.

This process happens n^3/b^3 times, leading to $3n^3/(bL)$ cache misses.

Three blocks fit in cache for $3b^2 < Z$, if Z is the cache size.

So $O(n^3/(\sqrt{ZL}))$ cache misses, if b is well chosen, which is optimal.
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
Overview

We will discuss

- the details of the *ideal cache model* proposed by Frigo, Leiserson, Prokop and Ramachandran in [9],
- the principles of the *I/O Complexity Model* proposed by Jia-Wei Hong and Hsiang-Tsung Kung in [17].
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
The ideal cache model (1/5)

- Computer with a **two-level memory hierarchy**:
 - an ideal (data) cache of Z words partitioned into Z/L cache lines, where L is the number of words per cache line.
 - an arbitrarily large main memory.

- Data moved between cache and main memory are always cache lines.

- The cache is **tall**, that is, Z is much larger than L, say $Z \in \Omega(L^2)$.
The processor can only reference words that reside in the cache.

If the referenced word belongs to a line already in cache, a **cache hit** occurs, and the word is delivered to the processor.

Otherwise, a **cache miss** occurs, and the line is fetched and installed into the cache.
The ideal cache model (3/5)

- The ideal cache is **fully associative**: cache lines can be stored anywhere in the cache.
- The ideal cache uses the **optimal off-line strategy of replacing** the cache line whose next access is furthest in the future, and thus it exploits temporal locality perfectly.
For an algorithm with an input of size \(n \), the ideal-cache model uses two complexity measures:

- the **work complexity** \(W(n) \), which is its conventional running time in a RAM model.
- the **cache complexity** \(Q(n; Z, L) \), the number of cache misses it incurs (as a function of the size \(Z \) and line length \(L \) of the ideal cache).
- When \(Z \) and \(L \) are clear from context, we simply write \(Q(n) \) instead of \(Q(n; Z, L) \).
An algorithm is said to be **cache aware** if its behavior (and thus performances) can be tuned (and thus depend on) on the particular cache size and line length of the targeted machine.

Otherwise the algorithm is **cache oblivious**.

Cache oblivious naturally performs well on hierarchical memories.
Scanning

- Scanning \(n \) words stored in a contiguous segment of memory with cache-line size \(L \) costs at most \(\lceil \frac{n}{L} \rceil + 1 \) cache misses.
- If this vector of \(n \) words is aligned in memory, then this estimate is simply \(\lceil \frac{n}{L} \rceil \).

Proof.

- Let \((q, r)\) be the quotient and remainder in the integer division of \(n \) by \(L \).
- Let \(u \) (resp. \(w \)) be the total number of words stored in cache-lines fully (not fully) used by those \(n \) consecutive words. Thus, we have \(n = u + w \). Three cases arise.
 1. if \(w = 0 \) then \((q, r) = (\lfloor \frac{n}{L} \rfloor, 0)\) and the scanning costs exactly \(q \); thus the conclusion is clear since \(\lceil \frac{n}{L} \rceil = \lfloor \frac{n}{L} \rfloor \) in this case.
 2. if \(0 < w < L \) then \((q, r) = (\lfloor \frac{n}{L} \rfloor, w)\) and the scanning cost is at most \(q + 2 \); the conclusion is clear since \(\lceil \frac{n}{L} \rceil = \lfloor \frac{n}{L} \rfloor + 1 \) in this case.
 3. if \(L \leq w < 2L \) then \((q, r) = (\lfloor \frac{n}{L} \rfloor, w - L)\) and the scanning cost is at most \(q + 1 \); the conclusion is clear again.
Adding vectors

- Consider $m \geq 2$ vectors V_1, \ldots, V_m of size $n \geq 1$ aligned in memory.
- Consider $m - 1$ scalars $\alpha_1, \ldots, \alpha_{m-1}$, stored in a contiguous segment of memory in $m - 1$ words.
- Assume that the ideal cache has at least $\lceil m/L \rceil + 4$ cache-lines.
- Then, computing the linear combination $\alpha_1 V_1 + \cdots + \alpha_{m-1} V_{m-1}$ and writing it to V_m can be done in no more cache misses than those required for scanning $V_1, \ldots, V_m, \alpha_1, \ldots, \alpha_{m-1}$.
- thus, within $m\lceil n/L \rceil + \lceil m/L \rceil + 1$ cache misses.

Proof.

- We first load $\alpha_1, \ldots, \alpha_{m-1}$ into the cache, thus using at most $\lceil m/L \rceil + 1$ cache-lines.
- In the pseudo-code below, vector indexing starts at 0.

```
1 For b with 0 \leq b \leq \lceil n/L \rceil, for each j with 1 \leq j < m, for each i with 0 \leq i < L do:
   1 k := b \times L + i,
   2 if k < n then V_m[k] := V_m[k] + \alpha_j V_j[k]
```

- Use the optimal replacement policy and the fact that vectors are aligned in memory.
Counting sort: the algorithm

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
 Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:
 c = Count[i]
 Count[i] = total
 total = total + c
allocate an output array Output[0..n-1]
for each input item x:
 store x in Output[Count[key(x)]]
 Count[key(x)] = Count[key(x)] + 1
return Output

- **Counting sort** takes as input a collection of n items, each of which known by a key in the range 0⋯k.
- The algorithm computes a **histogram** of the number of times each key occurs.
- Then performs a **prefix sum** to compute positions in the output.
Counting sort: poor spatial locality

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
 Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:
 c = Count[i]
 Count[i] = total
 total = total + c
allocate an output array Output[0..n-1]
for each input item x:
 store x in Output[Count[key(x)]]
 Count[key(x)] = Count[key(x)] + 1
return Output

- **For** n **large enough**: $Q(n; Z, L) = 3n + 3n/L + 2k/L$ cache misses (worst case).
- The possibly random distribution of the input values creates possibly many non-cold misses, see counting_sort.pdf for an animation.
Counting sort: improved by a blocking strategy

```python
allocate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:
    bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1
total = 0
for i = 0, 1, ... m-1:
    c = bucketsize[i]
    bucketsize[i] = total
    total = total + c
allocate an array bucketedinput[0..n-1];
for each input item x:
    q := floor(key(x) m/(k+1))
    bucketedinput[bucketsize[q]] := key(x)
    bucketsize[q] := bucketsize[q] + 1
return bucketedinput
```

- Split the input value range into m buckets (given by well-chosen pivot values) so that counting sort can be applied in succession to several smaller input arrays, with smaller value ranges, incurring cold misses only, see counting_sort_bucket.pdf for an animation.
- This yields $Q(n; Z, L) = 9n/L + 3m/L + m + 2k/L$ (assuming $m < Z/(1 + L)$) improving on $3n + 3n/L + 2k/L$.
Counting sort: experimentation

- Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has L2 cache of 8MB.
- CPU times in seconds for both classical and cache-friendly counting sort algorithm.
- The keys are random machine integers in the range \([0, n]\).

<table>
<thead>
<tr>
<th>n</th>
<th>classical counting sort</th>
<th>cache-friendly counting sort (bucketing + sorting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000000</td>
<td>13.74</td>
<td>4.66 (= 3.04 + 1.62)</td>
</tr>
<tr>
<td>2000000000</td>
<td>30.20</td>
<td>9.93 (= 6.16 + 3.77)</td>
</tr>
<tr>
<td>3000000000</td>
<td>50.19</td>
<td>16.02 (= 9.32 + 6.70)</td>
</tr>
<tr>
<td>4000000000</td>
<td>71.55</td>
<td>22.13 (= 12.50 + 9.63)</td>
</tr>
<tr>
<td>5000000000</td>
<td>94.32</td>
<td>28.37 (= 15.71 + 12.66)</td>
</tr>
<tr>
<td>6000000000</td>
<td>116.74</td>
<td>34.61 (= 18.95 + 15.66)</td>
</tr>
</tbody>
</table>
Cache-friendly counting sort: extension to sample sort

1. Split the input array into \sqrt{n} contiguous subarrays of size \sqrt{n} and sort those subarrays recursively.
2. Choose $m := \sqrt{n} - 1$ “good” pivot values $p_1 \leq p_2 \leq \cdots \leq p_m$.
3. Distribute subarrays into buckets B_1, \ldots, B_{m+1} according to pivots. Bucket B_i has size $n_i \approx \sqrt{n}$, expectedly.
4. Recursively sort the buckets.
5. Copy-concatenate the buckets back to the input array.

Cache complexity analysis of Sample sort

- Step 1 costs $\sqrt{n}Q(\sqrt{n})$, Step 4 (expectedly) costs $\sqrt{n}Q(\sqrt{n})$ also and Steps 2, 3, 5 cost $\Theta(n/L)$. Thus, we have:

\[
Q(n) = \begin{cases}
 n/L & \text{if } n < Z \quad \text{(base case)} \\
 2\sqrt{n}Q(\sqrt{n}) + \Theta(n/L) & \text{if } n \geq Z \quad \text{(recurrence)}
\end{cases}
\]

- This yields $Q(n) \in \Theta\left(\frac{n}{L} \log_Z(n)\right)$.

Marc Moreno Maza
Transposition of a matrix

Assume that multi-dimensional arrays (and in particular dense rectangular matrices) are stored in memory using a row-major layout.

Assume that each array coefficient is stored on a single word.

Therefore, reading a $k \times k$ block may incur $k(\lceil k/L \rceil + 1)$ caches misses.

In this exercise sheet, determine the cache complexity of the proposed algorithms for transposing a square matrix of order n. Assume n large (say $n > Z$) and n is a power of 2.
Transposition of a matrix

- Assume that multi-dimensional arrays (and in particular dense rectangular matrices) are stored in memory using a row-major layout.
- Assume that each array coefficient is stored on a single word.
- Therefore, reading a $k \times k$ block may incur $k(\lceil k/L \rceil + 1)$ cache misses.
- In this exercise sheet, determine the cache complexity of the proposed algorithms for transposing a square matrix of order n. Assume n large (say $n > Z$) and n is a power of 2.
- Algo 1: $\Theta(n^2)$. Algo 2: $\Theta(\log_2\left(\frac{n}{Z}\right) \frac{n^2}{L})$. Algo 3: $\Theta(n^2/L)$. Proofs and precise estimates below.
Matrix transposition: various algorithms

- **Matrix transposition problem:** Given an $m \times n$ matrix A stored in a row-major layout, compute and store A^T into an $n \times m$ matrix B also stored in a row-major layout.

- We shall describe a recursive cache-oblivious algorithm which uses $\Theta(mn)$ work and incurs $\Theta(1 + mn/L)$ cache misses, which is optimal.

- The straightforward algorithm employing doubly nested loops incurs $\Theta(mn)$ cache misses on one of the matrices when $m \gg Z/L$ and $n \gg Z/L$.

- We shall start with an apparently good algorithm and use complexity analysis to show that it is even worse than the straightforward algorithm.
Matrix transposition: a first divide-and-conquer (1/4)

- For simplicity, assume that our input matrix A is square of order n and that n is a power of 2, say $n = 2^k$.
- We divide A into four square quadrants of order $n/2$ and we have

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \Rightarrow tA = \begin{pmatrix} tA_{1,1} & tA_{2,1} \\ tA_{1,2} & tA_{2,2} \end{pmatrix}.$$

- This observation yields an “in-place” algorithm:
 1. If $n = 1$ then return A.
 2. If $n > 1$ then
 1. recursively compute $tA_{1,1}, tA_{2,1}, tA_{1,2}, tA_{2,2}$ in place as
 $$\begin{pmatrix} tA_{1,1} & tA_{1,2} \\ tA_{2,1} & tA_{2,2} \end{pmatrix}$$
 2. exchange $tA_{1,2}$ and $tA_{2,1}$.

- What is the number $M(n)$ of memory accesses to A, performed by this algorithm on an input matrix A of order n?
Matrix transposition: a first divide-and-conquer (2/4)

- $M(n)$ satisfies the following recurrence relation

$$M(n) = \begin{cases}
0 & \text{if } n = 1 \\
4M(n/2) + 2(n/2)^2 & \text{if } n > 1.
\end{cases}$$

- Unfolding the tree of recursive calls or using the Master’s Theorem, one obtains:

$$M(n) = 2(n/2)^2 \log_2(n).$$

- This is worse than the straightforward algorithm (which employs doubly nested loops). Indeed, for this latter, we have $M(n) = n^2 - n$. Explain why!

- Despite of this negative result, we shall analyze the cache complexity of this first divide-and-conquer algorithm. Indeed, it provides us with an easy training exercise.

- We shall study later a second and efficiency-optimal divide-and-conquer algorithm, whose cache complexity analysis is more involved.
Matrix transposition: a first divide-and-conquer (3/4)

- We shall determine $Q(n)$ the number of cache misses incurred by our first divide-and-conquer algorithm on a (Z, L)-ideal cache machine.
- For n small enough, the entire input matrix or the entire block (input of some recursive call) fits in cache and incurs only the cost of a scanning. Because of possible misalignment, that is, $n([n/L] + 1)$.
- **Important:** For simplicity, some authors write n/L instead of $[n/L]$. This can be dangerous.
- **However:** these simplifications are fine for asymptotic estimates, keeping in mind that n/L is a rational number satisfying

 \[n/L - 1 \leq [n/L] \leq n/L \leq [n/L] \leq n/L + 1. \]

 Thus, for a fixed L, the functions $[n/L]$, n/L and $[n/L]$ are asymptotically of the same order of magnitude.
- We need to translate “for n small enough” into a formula. We claim that there exists a real constant $\alpha > 0$ s.t. for all n and Z we have

 \[n^2 < \alpha Z \implies Q(n) \leq n^2/L + n. \]
Matrix transposition: a first divide-and-conquer (4/4)

- $Q(n)$ satisfies the following recurrence relation

\[
Q(n) = \begin{cases}
 n^2/L + n & \text{if } n^2 < \alpha Z \quad \text{(base case)} \\
 4Q(n/2) + \frac{n^2}{2L} + n & \text{if } n^2 \geq \alpha Z \quad \text{(recurrence)}
\end{cases}
\]

- Indeed, **exchanging 2 blocks** amount to $2((n/2)^2/L + n/2)$ accesses.

- Unfolding the recurrence relation k times (more details in class) yields

\[
Q(n) = 4^k Q\left(\frac{n}{2^k}\right) + k \frac{n^2}{2L} + (2^k - 1)n.
\]

- The minimum k for reaching the base case satisfies $\frac{n^2}{4^k} = \alpha Z$, that is, $4^k = \frac{n^2}{\alpha Z}$, that is, $k = \log_4\left(\frac{n^2}{\alpha Z}\right)$. This implies $2^k = \frac{n}{\sqrt{\alpha Z}}$ and thus

\[
Q(n) \leq \frac{n^2}{\alpha Z} \left(\alpha Z/L + \sqrt{\alpha Z}\right) + \log_4\left(\frac{n^2}{\alpha Z}\right) \frac{n^2}{2L} + \frac{n}{\sqrt{\alpha Z}} n
\]

\[
\leq n^2/L + 2 \frac{n^2}{\sqrt{\alpha Z}} + \log_4\left(\frac{n^2}{\alpha Z}\right) \frac{n^2}{2L}.
\]
A matrix transposition cache-oblivious algorithm (1/2)

- If $n \geq m$, the \texttt{Rec-Transpose} algorithm partitions

$$A = (A_1 \ A_2), \quad B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$$

and recursively executes $\texttt{Rec-Transpose}(A_1, B_1)$ and $\texttt{Rec-Transpose}(A_2, B_2)$.

- If $m > n$, the \texttt{Rec-Transpose} algorithm partitions

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad B = (B_1 \ B_2)$$

and recursively executes $\texttt{Rec-Transpose}(A_1, B_1)$ and $\texttt{Rec-Transpose}(A_2, B_2)$.
Recall that the matrices are stored in row-major layout.

Let α be a constant sufficiently small such that the following two conditions hold:

1. two sub-matrices of size $m \times n$ and $n \times m$, where $\max \{m, n\} \leq \alpha L$, fit in cache
2. even if each row starts at a different cache line.

We distinguish three cases for the input matrix A:

- Case I: $\max \{m, n\} \leq \alpha L$.
- Case II: $m \leq \alpha L < n$ or $n \leq \alpha L < m$.
- Case III: $m, n > \alpha L$.
Case I: $\max \{m, n\} \leq \alpha L$.

- Both matrices fit in $O(1) + 2mn/L$ lines.
- From the choice of α, the number of lines required for the entire computation is at most Z/L.
- Thus, no cache lines need to be evicted during the computation. Hence, it feels like we are simply scanning A and B.
- Therefore $Q(m, n) \in O(1 + mn/L)$.

Marc Moreno Maza

Cache Complexity in Computer Algebra
Case II: $m \leq \alpha L < n$ or $n \leq \alpha L < m$.

- Consider $n \leq \alpha L < m$. The **Rec-Transpose** algorithm divides the greater dimension m by 2 and recurses.
- At some point in the recursion, we have $\alpha L/2 \leq m \leq \alpha L$ and the whole computation fits in cache. At this point:
 - the input array resides in contiguous locations, requiring at most $\Theta(1 + nm/L)$ cache misses
 - the output array consists of nm elements in n rows, where in the **worst case** every row starts at a different cache line, leading to at most $\Theta(n + nm/L)$ cache misses.

- Since $m/L \in [\alpha/2, \alpha]$, the **total** cache complexity for this base case is $\Theta(1 + n)$, yielding the recurrence (where the resulting $Q(m, n)$ is a **worst case estimate**)

$$Q(m, n) = \left\{ \begin{array}{ll}
\Theta(1 + n) & \text{if } m \in [\alpha L/2, \alpha L], \\
2Q(m/2, n) + O(1) & \text{otherwise};
\end{array} \right.$$

whose solution satisfies $Q(m, n) = \Theta(1 + mn/L)$.
Case III: $m, n > \alpha L$.

- As in Case II, at some point in the recursion both n and m fall into the range $[\alpha L/2, \alpha L]$.
- The whole problem fits into cache and can be solved with at most $\Theta(m + n + mn/L)$ cache misses.
- The **worst case cache miss estimate** satisfies the recurrence
 \[
 Q(m, n) = \begin{cases}
 \Theta(m + n + mn/L) & \text{if } m, n \in [\alpha L/2, \alpha L], \\
 2Q(m/2, n) + O(1) & \text{if } m \geq n, \\
 2Q(m, n/2) + O(1) & \text{otherwise};
 \end{cases}
 \]
 whose solution is $Q(m, n) = \Theta(1 + mn/L)$.
- **Therefore, the Rec-Transpose algorithm has optimal cache complexity.**
- Indeed, for an $m \times n$ matrix, the algorithm must write to mn distinct elements, which occupy at least $[mn/L]$ cache lines.
1-D FFTs: classical cache friendly algorithm

Fits in cache

Does not fit

If the input vector does not fit in cache, a recursive algorithm is applied.

Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes over.

On an ideal cache of Z words with L words per cache line this yields a cache complexity of $\Omega(n/L(\log_2(n) - \log_2(Z)))$ which is not optimal.

Marc Moreno Maza

Cache Complexity in Computer Algebra
Cache optimal 1-D FFT

- Instead of processing row-by-row, one computes as deep as possible while staying in cache (resp. registers): this yields a blocking strategy.

- On the left picture, assuming $Z = 4$, on the first (resp. last) two rows, we successively compute the red, green, blue, orange 4-point blocks.

- On an ideal cache of Z words with L words per cache line the cache complexity drops to $O(n/L(\log_2(n)/\log_2(Z)))$ which is optimal.
1-D FFTs in BPAS

In addition to the above optimal blocking strategy, instruction level parallelism (ILP) is carefully considered: vectorized instructions are explicitly used and instruction pipeline usage is highly optimized.

BPAS 1-D FFT code automatically generated by configurable Python scripts.
Outline

1. Motivations

2. Memory Models
2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
Notations

- For two positive integers a, b, we write a/b instead of $\lfloor a/b \rfloor$.
- Let \mathbb{K} be a finite field so that each element of \mathbb{K} can be stored in a machine word.
- We assume that each polynomial P of $\mathbb{K}[x]$ is stored in a vector V_P of $d + 1$ words, aligned in memory, where d is the degree of P, and so that the coefficient of x^i in P is stored in the $(d - i)$-th slot of V_P, for $0 \leq i \leq d$.
- Let $A = \sum_{i=0}^{m-1} a_i x^i$ and $B = \sum_{i=0}^{n-1} b_i x^i$ be in $\mathbb{K}[x]$ with $m \geq n$.
Plain polynomial multiplication

- Recall $A = \sum_{i=0}^{m-1} a_i x^i$ and $B = \sum_{i=0}^{n-1} b_i x^i$ in $\mathbb{K}[x]$ with $m \geq n$.
- Counting cache misses, the plain multiplication incurs
 $$O((m/L + 1)n)$$
- This estimate can be substantially improved by performing the plain multiplication in a divide-and-conquer manner, following the scheme of the matrix multiplication algorithm of [9].
- This recursive algorithm is presented in [7]; it runs within
 $$O(mn/(ZL))$$
- It leads to clear gains on Graphics Processing Units (GPUs) due to the fine grained control of hardware resources.
- However, with a CPU implementation, for relatively small n and m, any plain multiplication algorithm is outperformed by an FFT-based polynomial multiplication.
Plain polynomial division

- Let $Q = \text{quo}(A, B)$ and $R = \text{rem}(A, B)$
- The schoolbook plain Euclidean division, using a two-loop nest, computes Q and R, within
 \[O\left((m - n + 1)(n/L + 3) \right) \]
- By means of a blocking strategy, this estimate can be improved to
 \[O\left(((2Z + 9L)(m - n + 1)(n/(Z^2L) + 1) \right) \]
 See [15, 16].
- This strategy is inspired by the Half-Gcd algorithm, see Lemma 11.1 in Chapter 11 of [11]. See [DBLP:conf/issac/Maza21].
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 ▪ The model
 ▪ Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
DAG encodings of computations

By computation, we mean the execution of a program, not a program itself, similarly to the instruction stream DAG of a Cilk program.

Notations

From now on we consider a connected directed acyclic graph $G = (V, E)$:

- Each vertex represents an operation and its result.
- An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2.
- A vertex v of G is an input (resp. output) if it has no predecessors (resp, no successors).
- The sets of inputs and outputs are respectively denoted by $I(G)$ and $O(G)$. Note that these sets are disjoint.
The red-blue pebble game is played on a directed and connected acyclic graph $G = (V, E)$.

- At any point of the game, some vertices have red pebbles, others have blue, others have pebbles of both types, others have no pebbles.
- A configuration is a pair of subsets (R, B) of the vertex set V such that any vertex $v \in R$ (resp. $v \in B$) has a blue pebble (resp. red pebble).
- The initial configuration is the one given by $(\emptyset, I(G))$.
- The final configuration is the one given by $(\emptyset, O(G))$.
The rules of the red-blue pebble game are as follows.

(R₁) **Input rule:** A red pebble may be placed on any vertex that has a blue pebble.

(R₂) **Output rule:** A blue pebble may be placed on any vertex that has a red pebble.

(R₃) **Compute rule:** If all immediate predecessors of a vertex v have red pebbles then a red pebble may be placed on v.

(R₄) **Delete rule:** A pebble red or blue may be removed at any time from any vertex.
The Red-Blue Pebble Game (3/3)

Key concepts:

- A **transition** is an ordered pair of configurations, the second of which follows from the first according to one of the rules \((R_1)\) to \((R_4)\).

- A **calculation** is a sequence of configurations, each successive pair of which form a transition.

- A **complete calculation** is one that begins with the initial configuration and ends with the final configuration.
A DAg on which the red-blue pebble game is played can model a computation performed on a two-level memory structure, say, a fast memory (or cache) and a slow memory.

Recall: Each vertex represents an operation and its result.

Recall: An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2.

An operation can be performed only if all operands reside in cache (or fast memory).

The maximum allowable number of red (or blue) pebbles on the DAG at any point in the game corresponds to the number of words available for use in the fast (or slow) memory, respectively.
Application to cache complexity (2/4)

- Placing a red pebble using Rule (R_3) corresponds to performing an operation and storing the result in cache.

- Placing a blue pebble using Rule (R_2) corresponds to storing a copy of a result (currently in the fast memory) into the slow memory.

- Placing a red pebble using Rule (R_1) corresponds to retrieving a copy of a result (currently in the slow memory) into the fast memory.

- Removing a red or red or blue pebble using Rule (R_4) means freeing a memory location in the fast or slow memory respectively.
In what follows, the fast memory can only hold S words, where S is a constant, while the slow memory is arbitrarily large.

For any given connected DAG, we are interested in the I/O time, denoted by Q, which is the minimum number of transitions according to Rules (R_1) or (R_2) required by any complete calculation.

In the original work of (J.W. Hong, H.T. Kung, 1981) a “static problem” is associated with the red-blue pebble game, the S-Partitioning Problem. Then lower bounds for the S-Partitioning Problem lead to lower bounds for the red-blue pebble game.

To establish bounds like those (but weaker) of (J.W. Hong, H.T. Kung, 1981) a simpler approach due to J.E. Savage (see his book *Models of Computations*) [27] reducing to simpler the red pebble game.
Theorem. Assume $S \geq 3$. For the n-point FFT graph we have $Q \log(S) \in \Omega(n \log(n))$. Moreover, there is a pebbling strategy for which $Q \log(S) \in \Theta(n \log(n))$ holds.
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 ■ The model
 ■ Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
Overview

- In [24], the authors show that multiplying dense polynomials $f, g \in \mathbb{Z}/p\mathbb{Z}[x_1, \ldots, x_n]$ makes an optimal use of multicore processors when $n = 2$, $\deg(f, x_1) = \deg(g, x_1)$ and $\deg(f, x_2) = \deg(g, x_2)$.

- Under some assumption, the authors of [24] give a practical heuristic reducing multivariate multiplication to multiplying a balanced pair of bivariate polynomials. The authors of [25] relax their assumption.

Strategy

1. Since performance is, in practice, hardware-dependent, we focus on a specific architecture, namely multi-core processors.

2. We aim at optimizing the implementation of an algebraic algorithm in terms of parallelism and, thus in terms of memory accesses.

3. To do so, we reshape the input data at a cost which is amortized by the performance benefits.
Recursive representation of multivariate polynomials

Example. Let $f \in \mathbb{K}[z > y > x]$ where $\mathbb{K} = \mathbb{Z}/41\mathbb{Z}$, with $d_x = d_y = 1$, $d_z = 3$. A recursive dense representation (RDR) of f is:

- the coefficients are stored in a contiguous array.
- the coefficient of the monomial $x^{e_1} y^{e_2} z^{e_3}$ has index $e_1 + s_x e_2 + s_x s_y e_3$, where s_x and s_y are integers satisfying $s_x > \text{deg}(f, x)$ and $s_y > \text{deg}(f, y)$.

■
Multi-dimensional TFTs and ITFTs (1/2)

To minimize algebraic complexity, our dense polynomial multiplication relies on TFTs and ITFTs.

Targeting multi-core processors, we need to extract coarse-grained parallelism, thus we apply the row-column algorithm (illustrated above) on multi-dimensional TFTs, thus $n \geq 2$.

To minimize cache complexity, we transpose the data between TFTs along x (resp. y) and TFTs along y (resp. z) in order to maintain spatial locality.
Let $T(s)$ be the number of cache misses for transposing a matrix of s elements using the (optimal) REC-TRANPOSE algorithm of [9] with an ideal cache of cache-line size L.

The cache complexity $Q(n, s)$ of n-D TFT satisfies

$$nT(s) + n\frac{s}{L+1} \leq Q(n, s) \leq nT(s) + 2n\frac{s}{L}.$$

For a fixed s, this estimate suggests to minimize n, so letting $n = 2$.

The parallelism $P(n, s)$ of n-D TFT satisfies $P(n, s) \geq \frac{s}{\max_{i=1\ldots n}(s_i)}$, where s_1, \ldots, s_n are the dimension sizes w.r.t. x_1, \ldots, x_n.

When $n = 2$, this estimate suggests $s_1 = s_2 = \sqrt{s}$. (Balanced case)
Balanced multiplication

1. Mapping monomials of $\mathbb{K}[x_1, \ldots, x_m, \ldots, x_n]$ to $\mathbb{K}[x_1, \ldots, x_u, x_v, \ldots, x_n]$:

$$x_1^{e_1} x_2^{e_2} \ldots x_n^{e_n} \mapsto x_1^{e_1} \ldots x_{m-1}^{e_{m-1}} x_u^{e_u} x_v^{e_v} x_{m+1}^{e_{m+1}} \ldots x_n^{e_n},$$

where:

- e_u and e_v are the quotient and the remainder in the Euclidean division of e_m by b,
- m and b are parameters to be determined later.

2. Mapping monomials of $\mathbb{K}[x_1, \ldots, x_u, x_v, \ldots, x_n]$ to $\mathbb{K}[x, y]$:

$$x_1^{e_1} \ldots x_{m-1}^{e_{m-1}} x_u^{e_u} x_v^{e_v} x_{m+1}^{e_{m+1}} \ldots x_n^{e_n} \mapsto x^{c_1} y^{c_2},$$

where:

- $c_1 = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_{m-1} e_{m-1} + \alpha_u e_u$
- $c_2 = \alpha_v e_v + \alpha_{m+1} e_{m+1} + \alpha_{m+2} e_{m+2} + \ldots + \alpha_n e_n$

with:

- $\alpha_1 = \alpha_{m+1} = 1$ and $\alpha_{i+1} = \alpha_i (d_i + d_i' + 1)$ otherwise.

so that the bivariate images of f, g form a (nearly) balanced pair.
Determination of the parameters m and b

- Consider multiplying $f, g \in \mathbb{K}[x_1, \ldots, x_n]$ and let $h = fg$.
- Let $h := fg$. We define $s_i^{(f)} := d_i + 1$ and $s_i^{(g)} := d'_i + 1$, so that we have $s_i^{(h)} := s_i \geq s_i^{(f)} + s_i^{(g)} - 1$, for $1 \leq i \leq n$. That is, h can be stored in an RDR with dimension sizes $s_1^{(h)}, s_2^{(h)}, \ldots, s_n^{(h)}$.
- The bivariate images of f and g will be represented with an s-RDR, where $s = (s_x, s_y)$, $s_x := s_u \prod_{i=1}^{m-1} s_i$, $s_y := s_v \prod_{i=m+1}^{n} s_i$, thus we have $s_xs_y = \frac{s_u s_v}{s_m} \prod_{i=1}^{n} s_i$.
- Define $\sigma_1 = \prod_{i=1}^{m-1} s_i^{(h)}$ and $\sigma_2 = \prod_{i=m+1}^{n} s_i^{(h)}$.
- The size difference w.r.t. x and y of the bivariate image of h is:
 $$D = s_x^{(h)} - s_y^{(h)} = s_u^{(h)} \sigma_1 - s_v^{(h)} \sigma_2.$$
- After simplification, we have:
 $$D = \sigma_1 (s_m^{(f)}/b + s_m^{(g)}/b - 1) - \sigma_2 (2b - 1).$$
- there is only one m satisfying
 $$\prod_{i=1}^{m-1} s_i^{(h)} < \sqrt{\prod_{i=1}^{n} s_i^{(h)}} \text{ and } \prod_{i=1}^{m} s_i^{(h)} \geq \sqrt{\prod_{i=1}^{n} s_i^{(h)}}.$$
- Then, there is one integer b making D is as close as possible to 0.
In this test, we multiply two 8-variate polynomials \(f \) and \(g \) where all partial degrees of are equal and the partial degrees range in \(1 \ldots 5 \).

Table: Performance analysis: Balanced bivariate multiplication Vs. 8-D TFT-based multiplication

<table>
<thead>
<tr>
<th>Method</th>
<th>Balanced bivariate</th>
<th>8-D TFT-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-cycles</td>
<td>69,321,767,227</td>
<td>255,290,461,510</td>
</tr>
<tr>
<td>Instructions</td>
<td>118,622,179,258</td>
<td>316,889,335,524</td>
</tr>
<tr>
<td>CPI</td>
<td>0.58</td>
<td>0.80</td>
</tr>
<tr>
<td>Branch miss rate</td>
<td>0.11%</td>
<td>0.69%</td>
</tr>
<tr>
<td>MPKI</td>
<td>1.07</td>
<td>1.28</td>
</tr>
</tbody>
</table>

MPKI stands for *misses per one thousand instructions.*
Test Case

Running time comparison on Intel Xeon multi-core (12 cores).

Balanced Multiplication vs 8-D TFT (8 variables)
In most of cases the proposed strategy outperforms the direct approach based on multi-dimensional TFTs.

The unfavourable cases happen when the number of variables is small, while

the most favourable cases occur when the number of variables increases and the input pair of polynomials is far from balanced.
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
Overview

- We present a model of *multithreaded computation* with an emphasis on estimating parallelism overheads of programs written for modern many-core architectures.

- We evaluate the benefits of our model with fundamental algorithms from scientific computing.
 - For two case studies, our model is used to minimize parallelism overheads by determining an appropriate value range for a given program parameter.
 - For the others, our model is used to compare different algorithms solving the same problem.

- In each case, the studied algorithms were implemented\(^1\) and the results of their *experimental comparison* are *coherent* with the *theoretical analysis* based on our model.

- This work is published in ParCo’15 as [15].

1Publicly available written in CUDA from http://www.cumodp.org/
Models of computation

The classical models of parallel computation, the fork-join concurrency model and the parallel random access machine (PRAM) model do not distinguish between the task-based and data-based parallelism.

Recent many-core machine models:
The MCM model

We propose a many-core machine (MCM) model which aims at

- tuning program parameters to minimize parallelism overheads of algorithms targeting GPU-like architectures as well as
- comparing different algorithms independently of the value of machine parameters of the targeted hardware device.

In the design of this model, we insist on the following features:

- Two-level DAG programs
- Parallelism overhead
- A Graham-Brent theorem
Characteristics of the abstract many-core machines (1/2)

- It has a global memory with high latency, while private memories have low latency.
Characteristics of the abstract many-core machines (2/2)

Figure: Overview of a many-core machine program, also called kernel DAG
Machine parameters of the abstract many-core machines

Z: Private memory size of any SM

It sets up an upper bound on several program parameters (number of threads of a thread-block, number of words in a data transfer between the global memory and the private memory of a SM).

U: Data transfer time

- Time (expressed in clock cycles) to transfer one machine word between the global memory and the private memory of any SM.

- As an abstract machine, the MCM aims at capturing either the best or the worst scenario for data transfer time of a thread-block, that is,

\[T_D \leq (\alpha + \beta) U, \] if coalesced accesses occur;

or \[\ell (\alpha + \beta) U, \] otherwise,

where \(\alpha \) and \(\beta \) are the numbers of words respectively read and written to the global memory by one thread of a thread-block \(B \) and \(\ell \) be the number of threads per thread-block.
Complexity measures for the many-core machine model

For any kernel \mathcal{K} of an MCM program,

- **work** $W(\mathcal{K})$ is the total number of local operations of all its threads;
- **span** $S(\mathcal{K})$ is the maximum number of local operations of one thread;
- **parallelism overhead** $O(\mathcal{K})$ is the total data transfer time among all its thread-blocks.

For the entire program \mathcal{P},

- **work** $W(\mathcal{P})$ is the total work of all its kernels;
- **span** $S(\mathcal{P})$ is the longest path, counting the weight (span) of each vertex (kernel), in the kernel DAG;
- **parallelism overhead** $O(\mathcal{P})$ is the total parallelism overhead of all its kernels.
Characteristic quantities of the thread-block DAG

$N(\mathcal{P})$: number of vertices in the thread-block DAG of \mathcal{P},
$L(\mathcal{P})$: critical path length (where length of a path is the number of edges in that path) in the thread-block DAG of \mathcal{P}.

Figure: Thread-block DAG of a many-core machine program
Complexity measures for the many-core machine model

Theorem (A Graham-Brent theorem with parallelism overhead)

We have the following estimate for the running time \(T_\mathcal{P} \) of the program \(\mathcal{P} \) when executed on \(P \) SMs:

\[
T_\mathcal{P} \leq \left(\frac{N(\mathcal{P})}{P} + L(\mathcal{P}) \right) C(\mathcal{P})
\]

(1)

where \(C(\mathcal{P}) \) is the maximum running time of local operations (including read/write requests) and data transfer by one thread-block.

Corollary

Let \(K \) be the maximum number of thread-blocks along an anti-chain of the thread-block DAG of \(\mathcal{P} \). Then the running time \(T_\mathcal{P} \) of the program \(\mathcal{P} \) satisfies:

\[
T_\mathcal{P} \leq \left(\frac{N(\mathcal{P})}{K} + L(\mathcal{P}) \right) C(\mathcal{P})
\]

(2)
Plain univariate polynomial multiplication (1/3)

Tuning the parameter s

Multiplication phase: every coefficient of a is multiplied with every coefficients of b; each thread accumulates s partial sums into an auxiliary array M.

Addition phase: these partial sums are added together repeatedly to form the polynomial f.
Plain univariate polynomial multiplication (2/3)

The work, span and parallelism overhead ratios between \(s_0 = 1 \) (initial program) and an arbitrary \(s \) are, respectively\(^2\),

\[
\frac{W_1}{W_s} = \frac{n}{n + s - 1},
\]

\[
\frac{S_1}{S_s} = \frac{\log_2(m) + 1}{s \left(\log_2\left(\frac{m}{s}\right) + 2s - 1 \right)},
\]

\[
\frac{O_1}{O_s} = \frac{n s^2 (7m - 3)}{(n + s - 1) (5ms + 2m - 3s^2)}.
\]

- Let \(m \) escape to infinity with \(m \leq n \).
- **Increasing** \(s \) **leaves work essentially constant**, while **span increases** and **parallelism overhead decreases** in the same order when \(m \to \infty \).
- **Hence, should** \(s \) **be large or close to** \(s_0 = 1 \)?

\(^2\)See the detailed analysis in the form of executable Maple worksheets of three applications: http://www.csd.uwo.ca/~nxie6/projects/mcm/
Plain univariate polynomial multiplication (3/3)

Applying our version of the Graham-Brent theorem, the ratio R of the estimated running times on $\Theta\left(\frac{(n+s-1)m}{\ell s^2}\right)$ SMs is

$$R = \frac{(m \log_2(m) + 3m - 1) (1 + 4U)}{(m \log_2\left(\frac{m}{s}\right) + 3m - s) (2Us + 2U + 2s^2 - s)},$$

which is asymptotically equivalent to $\frac{2U \log_2(m)}{s(s+U) \log_2(m/s)}$. This latter ratio is less than 1 for $s > 1$, since $U > 0$.

Figure: Running time of the plain polynomial multiplication algorithm with polynomials a $(\deg(a) = n - 1)$ and b $(\deg(b) = m - 1)$ and the parameter s on GeForce GTX 670.
The Euclidean algorithm

Let $s > 0$. We proceed by repeatedly calling a subroutine which

- takes as input a pair (a, b) of polynomials and
- returns another pair (a', b') of polynomials such that
 $\gcd(a, b) = \gcd(a', b')$ and, either $b' = 0$ or we have
 $\deg(a') + \deg(b') \leq \deg(a) + \deg(b) - s$.

- When $s = \Theta(\ell)$ (the number of threads per thread-block), the work is increased by a constant factor and the parallelism overhead will reduce by a factor in $\Theta(s)$.
- Further, the estimated running time ratio T_1/T_s on $\Theta(m/\ell)$ SMs is greater than 1 if and only if $s > 1$.

![Graph showing the time (sec) vs. number of polynomials processed with different values of s.]
Fast Fourier Transform (FFT) (1/3)

Let f be a vector with coefficients in a field (either a prime field like $\mathbb{Z}/p\mathbb{Z}$ or \mathbb{C}) and size n, which is a power of 2. Let ω be a n-th primitive root of unity.

The n-point **Discrete Fourier Transform (DFT)** at ω is the linear map defined by $x \mapsto \text{DFT}_n x$ with

$$\text{DFT}_n = [\omega^{ij}]_{0 \leq i,j < n}.$$

We are interested in comparing popular algorithms for computing DFTs on many-core architectures:

- Cooley & Tukey FFT algorithm
- Stockham FFT algorithm
FFT: Cooley & Tukey vs Stockham (2/3)

The work, span and parallelism overhead ratios between Cooley & Tukey’s and Stockham’s FFT algorithms are, respectively,

\[
\frac{W_{ct}}{W_{sh}} \sim \frac{4n (34 \log_2(n) \ell \log_2(\ell) + 47 \log_2(n) \ell)}{172n \log_2(n) \ell + n + 48 \ell^2},
\]

\[
\frac{S_{ct}}{S_{sh}} \sim \frac{34 \log_2(n) \log_2(\ell) + 47 \log_2(n)}{43 \log_2(n) + 16 \log_2(\ell)},
\]

\[
\frac{O_{ct}}{O_{sh}} = \frac{8n (4 \log_2(n) + \ell \log_2(\ell) - \log_2(\ell) - 15)}{20n \log_2(n) + 5n - 4\ell},
\]

where ℓ is the number of threads per thread-block.

- Both the work and span of the algorithm of Cooley & Tukey are increased by $\Theta(\log_2(\ell))$ factor w.r.t their counterparts in Stockham algorithm.
The ratio $R = \frac{T_{ct}}{T_{sh}}$ of the estimated running times (using our Graham-Brent theorem) on $\Theta\left(\frac{n}{\ell}\right)$ SMs is\(^3\):

$$R \sim \frac{\log_2(n)\left(2U\ell + 34 \log_2(\ell) + 2U\right)}{5 \log_2(n)\left(U + 2 \log_2(\ell)\right)},$$

when n escapes to infinity. This latter ratio is greater than 1 iff $\ell > 1$.

Table: Running time (secs) with input size n on GeForce GTX 670.

<table>
<thead>
<tr>
<th>n</th>
<th>Cooley & Tukey</th>
<th>Stockham</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{14}</td>
<td>0.583296</td>
<td>0.666496</td>
</tr>
<tr>
<td>2^{15}</td>
<td>0.826784</td>
<td>0.7624</td>
</tr>
<tr>
<td>2^{16}</td>
<td>1.19542</td>
<td>0.929632</td>
</tr>
<tr>
<td>2^{17}</td>
<td>2.07514</td>
<td>1.24928</td>
</tr>
<tr>
<td>2^{18}</td>
<td>4.66762</td>
<td>1.86458</td>
</tr>
<tr>
<td>2^{19}</td>
<td>9.11498</td>
<td>3.04365</td>
</tr>
<tr>
<td>2^{20}</td>
<td>16.8699</td>
<td>5.38781</td>
</tr>
</tbody>
</table>

\(^3\ell\) is the number of threads per thread-block.
Univariate polynomial multiplication: Plain vs FFT-based

Polynomial multiplication can be done either via the long (= plain) scheme or via FFT computations. Let n be the largest size of an input polynomial and ℓ be the number of threads per thread-block.

- The theoretical analysis of our model indicates that the plain multiplication performs more work and parallelism overhead.
- However, on $O\left(\frac{n^2}{\ell}\right)$ SMs, the ratio T_{plain}/T_{fft} of the estimated running times is essentially constant.
- On the other hand, the running time ratio T_{plain}/T_{fft} on $\Theta\left(\frac{n}{\ell}\right)$ SMs suggests FFT-based multiplication outperforms plain multiplication for n large enough.

![Graph showing comparison between Plain and FFT-based methods](image-url)
Outline

1. Motivations

2. Memory Models
 2.1 The Ideal Cache Model
 - The model
 - Using the ideal cache model in computer algebra
 2.2 The I/O Complexity Model

3. A case study targeting multi-cores

4. Multi-measure models targeting many-cores

5. Concluding remarks
For all results discussed above, the key towards cache-oblivious or cache optimal algorithms is a blocking strategy.

This blocking strategy may take different forms: from the buckets of counting sort to matrix blocks in dense linear algebra.

While blocking strategies naturally lead to recursive algorithms, the implementation of the latter are often made in the form of for-loop nests, which is more suitable for compiler optimization.
In the context of multi/many-core processors

- When multiple threads are cooperating, cores executing those threads share a common physical address space, causing a cache coherence problem.

- Two well-known consequences of this problem are true sharing and false sharing:
 - In the former, two cores are accessing the same memory address, with at least one of them for writing.
 - In the latter, two cores are accessing the same cache-line (but not the same memory address), with at least one of them for writing.

- Other parallel overheads should be watched like memory contention, scheduling and synchronization costs, which are very hard to take into account in complexity analysis [15, 18, 21].

- Nevertheless, on multicore processors, a good practical indication about what to expect in $W(n)/Q(n; Z, L)$, in addition to the more standard ration $T_1(n)/T_\infty(n)$.

Marc Moreno Maza
Cache Complexity in Computer Algebra
École Polytechniques
Data reshaping

- Other performance degradation can come from for-loop overheads.
- If a loop has a few iterations, then overheads due to branch misprediction can have an impact, since a misprediction delay can be between 10 and 35 clock cycles [8].
- Trying to avoid those issues with for-loop nests has several advantages, including reducing overheads due to loop counter manipulation.
- In the context of dense multivariate polynomials over finite fields, this idea was studied in [22, 24] for multi-threaded multi-dimensional FFTs (and TFTs) and their application to polynomial multiplication.
- The authors systematically reduce multivariate polynomials to balanced bivariate polynomials. Balanced here means that partial degrees are equal or as close as possible.
- A theoretical study, supported by extensive experimentation, shows that this approach minimizes cache misses and maximizes parallelism.
Multi-measure models for many-core machines

- Two types of models:
 - predictor models (TMM, MCM) which can be used to design the implementation of a many-core programs; these models estimate running times from DAG characteristics.
 - profiler models (MWP-CWP) which can be used to understand performance issues; these models estimate running times from performance counters.

- Of course, those models (and their usage described above) have limitations that users should be aware of.

- Nevertheless, they can help understand experimental observations.
Thank You!

http://www.bpaslib.org/
References

