
Dense Arithmetic over Finite Fields with the
CUMODP Library

Sardar Anisul Haquen1, Xin Li2, Farnam Mansouri1, Marc Moreno Maza1,
Wei Pan3, and Ning Xie1

1 University of Western Ontario, Canada
{shaque4,fmansou3,moreno,nxie6}@csd.uwo.ca

2 Universidad Carlos III, Spain
xli@inf.uc3m.es

3 Intel Corporation, Canada
wei.pan@intel.com

Abstract. CUMODP is a CUDA library for exact computations with
dense polynomials over finite fields. A variety of operations like multi-
plication, division, computation of subresultants, multi-point evaluation,
interpolation and many others are provided. These routines are primarily
designed to offer GPU support to polynomial system solvers and a bivari-
ate system solver is part of the library. Algorithms combine FFT-based
and plain arithmetic, while the implementation strategy emphasizes re-
ducing parallelism overheads and optimizing hardware usage.

Keywords: Polynomial arithmetic, parallel processing, many-core GPUs

1 Overview

Polynomial multiplication and matrix multiplication are at the core of many al-
gorithms in symbolic computation. Expressing, in terms of multiplication time,
the algebraic complexity of an operation like univariate polynomial division or
the computation of a characteristic polynomial is a standard practice, see for in-
stance the landmark book [4]. At the software level, the motto “reducing every-
thing to multiplication”4 is also common, see for instance the computer algebra
systems Magma5 [1], NTL6 or FLINT7.

4 Quoting a talk title by Allan Steel, from the Magma Project.
5 Magma: http://magma.maths.usyd.edu.au/magma/
6 NTL: http://www.shoup.net/ntl/
7 FLINT: http://www.flintlib.org/



2 Haque-Li-Mansouri-Moreno Maza-Pan-Xie

With the advent of hardware accelerator technologies, multi-core processors
and Graphics Processing Units (GPUs), this reduction to multiplication is, of
course, still desirable, but becomes more complex since both algebraic complex-
ity and parallelism need to be considered when selecting and implementing a
multiplication algorithm. In fact, other performance factors, such as cache usage
or CPU pipeline optimization, should be taken into account on modern comput-
ers, even on single-core processors. These observations guide the developers of
projects like SPIRAL8 [16] or FFTW9 [3].

The CUMODP library provides arithmetic operations for dense matrices and
dense polynomials primarily with modular integer coefficients, targeting many-
core GPUs. Some operations are available for integer or floating point coefficients
as well. A large portion of the CUMODP library code is devoted to polynomial
multiplication and the integration of that operation into higher-level algorithms.

Typical CUMODP operations are matrix determinant computation, poly-
nomial multiplication (both plain and FFT-based), univariate polynomial divi-
sion, the Euclidean algorithm for univariate polynomial GCDs, subproduct tree
techniques for multi-point evaluation and interpolation, subresultant chain com-
putation for multivariate polynomials, bivariate system solving. The CUMODP
library is written in CUDA [15] and its source code is publicly available at
www.cumodp.org.

In this note, we give an overview of the implementation techniques of the
CUMODP library. In Section 2, we discuss a model of multithreaded computa-
tion, combining fork-join and single-instruction-multiple-data parallelisms, with
an emphasis on estimating parallelism overheads of programs written for mod-
ern many-core architectures. For each key routine of the CUMODP library this
model is used to minimize parallelism overheads by determining an appropriate
value range for a given program parameter, e.g. number of threads per block.
Experimentation confirms the effectiveness of this model.

Secondly, the design of the CUMODP library emphasizes the importance
of adaptive algorithms in the context of many-core GPUs, see Section 3. that
is, algorithms which adapt their behavior according to the available computing
resources. Based on these techniques, we have obtained the first GPU implemen-
tation of subproduct tree techniques for multi-point evaluation and interpolation
of univariate polynomials. Hence we compare our code against probably the best
serial C code, namely the FLINT library, for the same operations. For sufficiently
large input data and on NVIDIA Tesla C2050, our code outperforms its serial
counterpart by a factor ranging between 20 to 30.

We conclude in Section 4 by presenting an application of the CUMODP
library to bivariate system solving.

8 http://www.spiral.net/
9 http://www.fftw.org/



CUMODP 3

2 A many-core machine model for designing algorithms
with minimum parallelism overheads

Our model of multithreaded computation [9] extends the following previous
works for which we summarize key features and limitations. The PRAM (parallel
random access machine) model [5] supports data parallelism but not task par-
allelism. Moreover, this model cannot support memory traffic issues like cache
complexity and memory contention. The Queue Read Queue Write PRAM [6]
considers memory contention, however, it unifies in a single quantity time spent
in arithmetic operations and time spent in read/write accesses. We believe that
this unification is not appropriate for recent many-core processors, such as GPUs,
for which the ratio between one global memory read/write access and one floating
point operation can be in the 100’s. The TMM (Threaded Many-core Memory)
model [12] retains many important characteristics of GPU-type architectures,
however, the running time estimate on P cores is not given by a Graham-Brent
theorem [7]. We believe that, for the purpose of code optimization, this latter
theorem is an essential tool.

Our proposed many-core machine model (MMM) aims at optimizing algo-
rithms targeting implementation on GPUs. Our abstract machine possesses an
unbounded number of streaming multiprocessors (SMs). However, each SM has
a finite number of processing cores and a fixed-size local memory. An MMM
machine has a two-level memory hierarchy, comprising an unbounded global
memory with high latency and low throughput while SMs local memories have
low latency and high throughput. Similarly to a CUDA program, an MMM pro-
gram specifies for each kernel the number of thread-blocks and the number of
threads per thread-block. An MMM machine has two parameters:

U : time (expressed in clock cycles) to transfer one machine word between the
global memory and the local memory of any SM,

Z: size (expressed in machine words) of the local memory of any SM.

An MMM program P is a directed acyclic graph (DAG), called the kernel DAG,
whose vertices are kernels and edges indicate serial dependencies. Since each
kernel of the program P decomposes into a finite number of thread-blocks, we
map P to a second graph, called the thread-block DAG of P, whose vertex set
consists of all thread-blocks of P. We consider three complexity measures:

– the work W (P), which is the total number of local operations (arithmetic op-
eration, read/write requests in the local memory) performed by all threads,

– the span S(P), which is the longest path, counting the weight (span) of each
vertex (kernel), in the kernel DAG,

– the parallelism overhead O(P), which is the total data transfer time (between
global and local memories) of all its kernels.

Using these complexity measures, we derive a Graham-Brent theorem with par-
allelism overhead.



4 Haque-Li-Mansouri-Moreno Maza-Pan-Xie

Theorem 1. Let K be the maximum number of thread blocks along an anti-
chain of the thread-block DAG of P. Then the running time TP of the program
P satisfies:

TP ≤ (N(P)/K + L(P))C(P). (1)

where N(P), L(P) and C(P) are respectively: the number of vertices in the
thread-block DAG, the critical path length (where length of a path is the number
of edges in that path) in the thread-block DAG and the maximum running time
of local operations by a thread among all the thread-blocks.

We have applied the MMM model for optimizing the CUDA implementation
of operations like plain univariate polynomial division, plain univariate poly-
nomial multiplication and the Euclidean algorithm. for dense polynomials over
small prime fields. In each case, a program P(s) depends on a parameter s which
varies in a range S around an initial value s0, such that the work ratio Ws0/Ws

remains essentially constant meanwhile the parallelism overhead Os varies more
substantially, say Os0/Os ∈ Θ(s − s0). Then, we determine a value smin ∈ S
maximizing the ratio Os0/Os. Next, we use our version of Graham-Brent theo-
rem to check whether the upper bound for the running time of P(smin) is less
than that of P(so). If this holds, we view P(smin) as a solution of our problem
of algorithm optimization (in terms of parallelism overheads).

Fig. 1. Naive division algorithm of a
thread-block with s = 1: each kernel
performs 1 division step

Fig. 2. Optimized division algorithm a
thread-block with s > 1: each kernel
performs s division steps

For each operation, the program parameter s controls the amount of work
and parallelism overheads of a thread-block. Figures 1 and 2 illustrate the role
of this parameter in our implementation of plain division. See [9] for details.

Applying the optimization strategy described above lead us to determine an
optimum value of s among those implied by constraints like the size of the local
memory Z or the data transfer time U . For plain polynomial multiplication, this
analysis suggested to minimize s which was verified experimentally, as illustrated
by Figure 3. For the Euclidean algorithm, our analysis suggested to maximize
the program parameter s, which was again verified experimentally, as illustrated
by Figure 4. Our experimental results were obtained on a GPU card NVIDIA
Tesla C2050.



CUMODP 5

Fig. 3. Plain polynomial multiplication:
varying the program parameter s

Fig. 4. Euclidean algorithm: varying the
program parameter s

Fig. 5. CUMODP plain polynomial divi-
sion vs NTL FFT-based (asymptotically
fast) polynomial division.

Fig. 6. CUMODP plain Euclidean al-
gorithm vs NTL FFT-based polynomial
GCD.

Figures 5 and 6 show that the optimized CUMODP implementation of the
plain division and the Euclidean algorithm outperforms the NTL implemen-
tation of the FFT-based plain division and polynomial GCD computation. Of
course, CUMODP code is multithreaded while NTL code is serial. On the other
hand, NTL uses asymptotically fast algorithms. The key observation is that
optimized implementation of multithreaded plain algorithms provide useful al-
ternative to any serial code. In fact, as we will see in the next section, multi-
threaded plain algorithms play an essential in higher-level applications targeting
many-core GPUs.

3 Adaptive algorithms

Up to our knowledge, the CUMODP library offers the first GPU implementation
of subproduct tree techniques [4][Chapter 10] for multi-point evaluation and
interpolation of univariate polynomials. The parallelization of those techniques
raises the following challenges on hardware accelerators.

1. The divide-and-conquer formulation of operations on subproduct-trees is not
sufficient to provide enough parallelism and one must also parallelize the
underlying polynomial arithmetic operations, in particular polynomial mul-
tiplication.

2. During the course of the execution of a subproduct tree operation (con-
struction, evaluation, interpolation), the degrees of the involved polynomials



6 Haque-Li-Mansouri-Moreno Maza-Pan-Xie

vary greatly; thus, so does the work load of the tasks, which makes those
algorithms complex to implement on many-core GPUs.

To address the first challenge on many-core GPUs, we combine parallel plain
arithmetic and parallel fast arithmetic. For the former we rely on [8] and, for the
latter we extend the work of [13]. Indeed, parallel fast arithmetic alone would not
suffice to provide good speedup factors since subproduct tree operations require
lots of calculations with low-degree polynomials.

To address the second challenge, we employ adaptive algorithms. That is,
algorithms that adapt their behavior according to the available computing re-
sources. For instance, each plain multiplication is performed by a single stream-
ing multiprocessor (SM), since plain arithmetic is used for input polynomials of
small sizes. Meanwhile, each FFT-based multiplication is computed by a kernel
call, thus using several SMs. In fact, this kernel computes a number of FFT-based
products concurrently.

Evaluation Interpolation
Deg. CUMODP FLINT SpeedUp CUMODP FLINT SpeedUp

212 0.1361 0.02 0.1468 0.1671 0.03 0.1794
213 0.1580 0.07 0.4429 0.1963 0.09 0.4584
214 0.2034 0.17 0.8354 0.2548 0.22 0.8631
215 0.2415 0.41 1.6971 0.3073 0.53 1.7242
216 0.3126 0.99 3.1666 0.4026 1.26 3.1294
217 0.4285 2.33 5.4375 0.5677 2.94 5.1780
218 0.7106 5.43 7.6404 0.9034 6.81 7.5379
219 1.0936 12.63 11.5484 1.3931 15.85 11.3768
220 1.9412 29.2 15.0420 2.4363 36.61 15.0268
221 3.6927 67.18 18.1923 4.5965 83.98 18.2702
222 7.4855 153.07 20.4486 9.2940 191.32 20.5851
223 15.796 346.44 21.9321 19.6923 432.13 21.9441

Table 1. Multi-point evaluation and interpolation: FLINT vs CUMODP.

To evaluate our implementation of subproduct tree techniques, we measured
the effective memory bandwidth of our GPU code for parallel multi-point evalua-
tion and interpolation on a card with a theoretical maximum memory bandwidth
of 148 GB/S, our code reaches peaks at 64 GB/S. Since the arithmetic intensity
of our algorithms is high, we believe that this is a promising result.

All implementation of subproduct tree techniques that we are aware of are
pure serial code. This includes [2] for GF (2)[x], the FLINT library[10] and the
Modpn library [11]. Hence we compare our code against probably the best serial
C code (namely the FLINT library). For sufficiently large input data, running
on NVIDIA Tesla C2050, our code outperforms its serial counterpart by a factor
ranging between 20 to 30. Experimental data can be found in Table 1.



CUMODP 7

4 Application

In [14], two of the co-authors of this note reported on the implementation of a
bivariate polynomial system solver (based on the theory of regular chains and
working with coefficients in small prime fields) partially written in CUDA and
partially written in C. In that implementation, polynomial subresultant chains
were calculated in CUDA while univariate polynomial GCDs were computed in
C either by means of the plain Euclidean algorithm or an asymptotically fast
algorithm).

The authors observed that about 90% of the overall running time of their
solver was spent in univariate GCD computations. They also noted that most of
these GCD calculations were using the plain algorithm since the degrees of the
input polynomials were not large enough for using the FFT-based algorithm.

System Pure C Mostly CUDA code SpeedUp

dense-70 5.22 0.50 10.26
dense-80 6.63 0.77 8.59
dense-90 8.39 1.16 7.19
dense-100 19.53 1.80 10.79
dense-110 21.41 2.57 8.33
dense-120 25.71 3.48 7.39
sparse-70 0.89 0.31 2.81
sparse-80 3.64 1.18 3.09
sparse-90 3.13 0.92 3.40
sparse-100 8.86 1.20 7.38

Table 2. Bivariate system solving over a small prime field: timings in sec.

These observations have lead to a CUDA implementation of the plain Eu-
clidean algorithm which is reported in [8]. More recently, the same authors have
put together in a single CUDA application the work reported in [14] and [8], lead-
ing to a bivariate polynomial system solver which is mostly written in CUDA.
Table 2 compares this latter with an implementation of our bivariate system
solver (presented in [14]) entirely written in C. Some of the input systems are
random dense and the others are sparse. The number attached to each system
name is the total degree of each input polynomial. For each system, the total
number of solutions is essentially the square of that degree.

One can see that for a complex application like a polynomial system solver,
a CUDA implementation can provide substantial benefit w.r.t. a pure C imple-
mentation. We should also point out that our CUDA implementation can be
further improved. In particular, the top-level algorithm is still implemented in C
and lots of data transfers are still taking place between the host (CPU) and the
device (GPU). This performance bottleneck can be removed by using the latest
programming model of CUDA.



8 Haque-Li-Mansouri-Moreno Maza-Pan-Xie

References

1. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

2. R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplication in
gf(2)[x]. In Proceedings of the 8th international conference on Algorithmic number
theory, ANTS-VIII’08, pages 153–166, Berlin, Heidelberg, 2008. Springer-Verlag.

3. M. Frigo and S. G. Johnson. The design and implementation of FFTW3. 93(2):216–
231, 2005.

4. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, New York, NY, USA, 2 edition, 2003.

5. P. B. Gibbons. A more practical PRAM model. In Proc. of SPAA, pages 158–168,
1989.

6. P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write
PRAM model: Accounting for contention in parallel algorithms. SIAM J. on Com-
put., 28(2):733–769, 1998.

7. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. on Applied
Mathematics, 17(2):416–429, 1969.

8. S. A. Haque and M. Moreno Maza. Plain polynomial arithmetic on GPU. In J. of
Physics: Conf. Series, volume 385, page 12014. IOP Publishing, 2012.

9. S. A. Haque, M. Moreno Maza and N. Xie. A Many-core Machine Model for De-
signing Algorithms with Minimum Parallelism Overheads. In Computing Research
Repository, vol. abs/1402.0264, 2014. http://arxiv.org/abs/1402.0264

10. W. B. Hart. Fast library for number theory: An introduction. In Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathemati-
cal Software - ICMS 2010, Proceedings, volume 6327 of Lecture Notes in Computer
Science, pages 88–91. Springer, 2010.

11. X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing
fast polynomial arithmetic into maple. J. Symb. Comput., 46(7):841–858, July
2011.

12. L. Ma, K. Agrawal, and R. D. Chamberlain. A memory access model for highly-
threaded many-core architectures. In Proc. of ICPADS, pages 339–347, 2012.

13. M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a gpu. J. of Physics:
Conference Series, 256, 2010.

14. M. Moreno Maza and W. Pan. Solving bivariate polynomial systems on a gpu. J.
of Physics: Conference Series, 341, 2011.

15. J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. Queue, 6(2):40–53, 2008.

16. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adaptation”, 93(2):232– 275,
2005.


