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Abstract

The computation of triangular decompositions involves two fundamental
operations: polynomial GCDs modulo regular chains and regularity test mod-
ulo saturated ideals. We propose new algorithms for these core operations
based on modular methods and fast polynomial arithmetic. We rely on new
results connecting polynomial subresultants and GCDs modulo regular chains.
We report on extensive experimentation, comparing our code to pre-existing
MAPLE implementations, as well as more optimized MAGMA functions. In
most cases, our new code outperforms the other packages by several orders of
magnitude.

Keywords: Fast polynomial arithmetic, regular chain, regular GCD, subre-
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1 Introduction

A triangular decomposition of a set F' C k[z1, ..., x,] is a list of polynomial systems
Ti,...,T., called regular chains (or regular systems) and representing the zero set
V(F) of F. Each regular chain 7; may encode several irreducible components of
V(F') provided that those share some properties (same dimension, same free vari-
ables, ...).
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Triangular decomposition methods are based on a univariate and recursive vision of
multivariate polynomials. Most of their routines manipulate polynomial remainder
sequences (PRS). Moreover, these methods are usually “factorization free”, which
explains why two different irreducible components may be represented by the same
regular chain. An essential routine is then to check whether a hypersurface f =0
contains one of the irreducible components encoded by a regular chain 7. This is
achieved by testing whether the polynomial f is a zero-divisor modulo the so-called
saturated ideal of T. The univariate vision on regular chains allows to perform this
reqularity test by means of GCD computations. However, since the saturated ideal
of T may not prime, the concept of a GCD used here is not standard.

The first formal definition of this type of GCDs was given by Kalkbrener in [14].
But in fact, GCDs over non-integral domains were already used in several papers [9]
16, [12] since the introduction of the celebrated D5 Principle [7] by Della Dora,
Dicrescenzo and Duval. Indeed, this brilliant and simple observation allows one
to carry out over direct product of fields computations that are usually conducted
over fields. For instance, computing univariate polynomial GCDs by means of the
Euclidean Algorithm.

To define a polynomial GCD of two (or more) polynomials modulo a regular chain
T, Kalkbrener refers to the irreducible components that 7" represents. In order to
improve the practical efficiency of those GCD computations by means of subresul-
tant techniques, Rioboo and the second author proposed a more abstract definition
in [23]. Their GCD algorithm is, however, limited to regular chains with zero-
dimensional saturated ideals.

While Kalkbrener’s definition cover the positive dimensional case, his approach can-
not support triangular decomposition methods solving polynomial systems incre-
mentally, that is, by solving one equation after another. This is a serious limitation
since incremental solving is a powerful way to develop efficient sub-algorithms, by
means of geometrical consideration. The first incremental triangular decomposition
method was proposed by Lazard in [15], without proof nor a GCD definition. An-
other such method was established by the second author in [22] together with a
formal notion of GCD adapted to the needs of incremental solving. This concept,
called regular GCD, is reviewed in Section [2 in the context of regular chains. A
more abstract definition follows.

Let B be a commutative ring with unity. Let P, @, G be non-zero univariate poly-
nomials in B[y]. We say that G is a regular GCD of P,(Q if the following three



conditions hold:

(i) the leading coefficient of G is a regular element of B,
(i1) G lies in the ideal generated by P and @ in B[y], and

(737) if G has positive degree w.r.t. y, then G pseudo-divides both of P and @), that
is, the pseudo-remainders prem(P, G) and prem(Q), G) are null.

In the context of regular chains, the ring B is the residue class ring of a polynomial
ring A = k[z1,...,2,] (over a field k) by the saturated ideal sat(T") of a regular
chain T'. Even if the leading coefficients of P, () are regular and sat(7') is radical,
the polynomials P, () may not necessarily admit a regular GCD (unless sat(T") is
prime). However, by splitting 7" into several regular chains T1,...,T. (in a sense
specified in Section 2]) one can compute a regular GCD of P, @) over each of the ring
A/sat(T;), as shown in [22].

In this paper, we propose a new algorithm for this task, together with a theoretical
study and implementation report, providing dramatic improvements w.r.t. previous
work [14], 22]. Section 3] exhibits sufficient conditions for a subresultant polynomial
of P, @ € Aly| (regarded as univariate polynomials in y) to be a regular GCD of
P, Q w.r.t. T. Some of these properties could be known, but we could not find a
reference for them, in particular when sat(7") is not radical. These results reduce
the computation of regular GCDs to that of subresultant chains, see Section [ for
details.

Since Euclidean-like algorithms tend to densify computations, we consider an eval-
uation/interpolation scheme based on FFT techniques for computing subresultant
chains. In addition, we observe that, while computing triangular decomposition,
whenever a regular GCD of P and () w.r.t. T is needed, the resultant of P and
Q) w.r.t. y is likely to be computed too. This suggests to organize calculations in
a way that the subresultant chain of P and @) is computed only once. Moreover,
we wish to follow a successful principle introduced in [20]: compute in k[z1, ..., x,]
instead of k[zy,...,x,]/sat(T"), as much as possible, while controlling expression
swell. These three requirements targeting efficiency are satisfied by the implemen-
tation techniques of Section B.Il The use of fast arithmetic for computing regular
GCDs was proposed in [6] for regular chains with zero-dimensional radical saturated
ideals. However this method does not meet our other two requirements and does not



apply to arbitrary regular chains. We state complexity results for the algorithms of
this paper in Sections 5.1l and 5.2

Efficient implementation is the main objective of our work. We explain in Section [5.3]
how we create opportunities for using modular methods and fast arithmetic in oper-
ations modulo regular chains, such as regular GCD computation and regularity test.
The experimental results of Section [6]illustrate the high efficiency of our algorithms.
We obtain speed-up factors of several orders of magnitude w.r.t. the algorithms
of [22] for regular GCD computations and regularity test. Our code compares and
often outperforms packages with similar specifications in MAPLE and MAGMA.

2 Preliminaries

Let k be a field and let k[x] = k[z1,...,x,] be the ring of polynomials with coeffi-
cients in k, with ordered variables #; < --- < z,. Let k be the algebraic closure of
k. If u is a subset of x then k(u) denotes the fraction field of k[u]. For F' C k[x],
we denote by (F') the ideal it generates in k[x| and by 1/ (F’) the radical of (F'). For
H € kx|, the saturated ideal of (F') w.r.t. H, denoted by (F) : H*, is the ideal
{Q € k[x] | Im € Ns.t. H"Q € (F)}. A polynomial P € k[x] is a zero-divisor
modulo (F') if there exists a polynomial @) such that PQ € (F), and neither P nor
@ belongs to (F'). The polynomial P is regular modulo (F) if it is neither zero, nor
a zero-divisor modulo (F'). We denote by V(F') the zero set (or algebraic variety) of
F ink". For a subset W C k", we denote by W its closure in the Zariski topology.

2.1 Regular chains and related notions

Main variable and initial. If P € k[x] is a non-constant polynomial, the largest
variable appearing in P is called the main variable of P and is denoted by mvar(P).
The leading coefficient of P w.r.t. mvar(P) is its initial, written init(P) whereas
le(P, v) is the leading coefficient of P w.r.t. v € x.

Triangular Set. A subset T" of non-constant polynomials of k[x] is a triangular set if
the polynomials in 7" have pairwise distinct main variables. Denote by mvar(T") the
set of all mvar(P) for P € T. A variable v € x is algebraic w.r.t. T if v € mvar(T);
otherwise it is free. For a variable v € x we denote by T, (resp. T-,) the subsets
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of T consisting of the polynomials with main variable less than (resp. greater than)
v. If v € mvar(T'), we denote by T, the polynomial P € T" with main variable v.
For T not empty, Ti,.x denotes the polynomial of 7" with largest main variable.

Quasi-component and saturated ideal. Given a triangular set 7" in k[x], denote
by hr the product of the init(P) for all P € T'. The quasi-component W (T') of T is
V(T)\ V(hr), that is, the set of the points of V(T") which do not cancel any of the
initials of 7. We denote by sat(T") the saturated ideal of T', defined as follows: if T’
is empty then sat(7") is the trivial ideal (0); otherwise it is the ideal (T') : h®.

Regular chain. A triangular set T is a regular chain if either T is empty, or
T \ {T):} is a regular chain and the initial of T,,,, is regular with respect to
sat(T \ {Timaz}). In this latter case, sat(7) is a proper ideal of k[x]. From now on
T C k[x] is a regular chain; moreover we write m = |T'|, 8 = mvar(7") and u = x\ 8.
The ideal sat(T") enjoys several properties. First, its zero-set equals W (T"). Second,
the ideal sat(7") is unmixed with dimension n—m. Moreover, any prime ideal p asso-
ciated to sat(T") satisfies pNk[u] = (0). Third, if n = m, then sat(7") is simply (7).
Given P € kx| the pseudo-remainder (resp. iterated resultant) of P w.r.t. T, de-
noted by prem(P,T') (resp. res(P,T)) is defined as follows. If P € k or no variables
of P is algebraic w.r.t. T, then prem(P,T) = P (resp. res(P,T) = P). Otherwise,
we set prem(P,T) = prem(R,T-,) (resp. res(P,T) = res(R,T.,)) where v is the
largest variable of P which is algebraic w.r.t. T and R is the pseudo-remainder
(resp. resultant) of P and T, w.r.t. v. We have: P is null (resp. regular) w.r.t.
sat(T") if and only if prem(P,T") = 0 (resp. res(P,T) # 0).

Regular GCD. Let I be the ideal generated by y/sat(7") in k(u)[8]. Then L(T) :=
k(u)[8]/I is a direct product of fields. It follows that every pair of univariate polyno-
mials P, Q) € L(T)[y] possesses a GCD in the sense of [23]. The following GCD no-
tion [22] is convenient since it avoids considering radical ideals. Let T' C k[z1, ..., x,]
be a regular chain and let P, @) € k[x, y] be non-constant polynomials both with main
variable y. Assume that the initials of P and @ are regular modulo sat(7"). A non-
zero polynomial G € k[x,y| is a reqular GCD of P,Q w.r.t. T if these conditions
hold:

(i) le(G,y) is regular with respect to sat(7);
(1) there exist u,v € k[x, y] such that g — up — vt € sat(7T);
(7i1) if deg(G,y) > 0 holds, then (P, Q) C sat(T U G).
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In this case, the polynomial G has several properties. First, it is regular with
respect to sat(7). Moreover, if sat(7") is radical and deg(G,y) > 0 holds, then the
ideals (P, Q) and (G) of L(T)[y] are equal, so that G is a GCD of (P,Q) w.r.t.
T in the sense of [23]. The notion of a regular GCD can be used to compute
intersections of algebraic varieties. As an example we will use Formula () which
follows from Theorem 32 in [22]. Assume that the regular chain 7" is simply {R}
where R =res(P,Q,y), for R € k, and let H be the product of the initials of P and
(. Then, we have:

V(P,Q)=W(R,G) U V(H,PQ). (1)

Splitting. Two polynomials P, ) may not necessarily admit a regular GCD w.r.t.
a regular chain 7', unless sat(7) is prime, see Example 1 in Section 8l However, if T’
“splits” into several regular chains, then P, ) may admit a regular GCD w.r.t. each
of them. This requires a notation. For non-empty regular chains 7 7},...,T, C
k[x] we write T — (T, ...,T,) whenever \/sat(T) = y/sat(Ty) N --- N /sat(T,),
mvar(7) = mvar(7;) and sat(7T) C sat(7;) hold for all 1 < ¢ < e. If this holds,
observe that any polynomial H regular w.r.t sat(7") is also regular w.r.t. sat(7;) for
all1 <1 <e.

2.2 Fundamental operations on regular chains

We list below the specifications of the fundamental operations on regular chains
used in this paper. The names and specifications of these operations are the same
as in the RegularChains library [18] in MAPLE.

Regularize. For aregular chain 7' C k[x] and P in k[x], the operation Regularize( P, T")
returns regular chains 771, ..., T, of k[x| such that, for each 1 < i < e, P is either
zero or regular modulo sat(7;) and we have T— (11, ..., T.).

RegularGed. Let T be a regular chain and let P,@Q € k[x,y] be non-constant
with mvar(P) = mvar(Q)) ¢ mvar(7T') and such that both init(P) and init(Q) are
regular w.r.t. sat(7"). Then, the operation RegularGed(P, @, T') returns a sequence
(G1,Th),...,(Ge,T.), called a regular GCD sequence, where Gy, ..., G, are polyno-
mials and 71, . .., T, are regular chains of k[x|, such that T— (T, ..., T,) holds and
G is a regular GCD of P,Q w.r.t. T; for all 1 <1 <ee.



NormalForm. Let T be a zero-dimensional normalized regular chain, that is, a
regular chain whose saturated ideal is zero-dimensional and whose initials are all
in the base field k. Observe that T is a lexicographic Grobner basis. Then, for
P € k[x], the operation NormalForm(P,T") returns the normal form of P w.r.t. T in
the sense of Grobner bases.

Normalize. Let T be a regular chain such that each variable occurring in 7" belongs
to mvar(7T"). Let P € k[x| be non-constant with initial H regular w.r.t. (7).
Assume each variable of H belongs to mvar(7T"). Then H is invertible modulo (T')
and Normalize(P,T) returns NormalForm(H ' P,T) where H~' is the inverse of H
modulo (7).

2.3 Subresultants

We follow the presentation of [§], [25] and [10].

Determinantal polynomial. Let B be a commutative ring with identity and let
m < n be positive integers. Let M be a m x n matrix with coefficients in B. Let M;
be the square submatrix of M consisting of the first m — 1 columns of M and the
i-th column of M, for : = m---n; let det M; be the determinant of M;. We denote
by dpol(M) the element of B[y|, called the determinantal polynomial of M, given by

det M,,y" ™™ + det Mm+1y"_m_1 + -+ det M,,.

Note that if dpol(M) is not zero then its degree is at most n—m. Let Py, ..., P, be
polynomials of B[y| of degree less than n. We denote by mat(Py, ..., P,) the m xn
matrix whose i-th row contains the coefficients of P;, sorting in order of decreasing
degree, and such that P; is treated as a polynomial of degree n — 1. We denote by
dpol(Py, ..., P,) the determinantal polynomial of mat(Py, ..., Py,).

Subresultant. Let P,Q € B[y| be non-constant polynomials of respective degrees
p,q with ¢ < p. Let d be an integer with 0 < d < ¢q. Then the d-th subresultant of
P and @, denoted by Sy(P, @), is

deI(yq_d_1P7 yq_d_2p7 ct P? yp_d_1Q7 ct Q)'

This is a polynomial which belongs to the ideal generated by P and @ in B[y]. In
particular, So(P, Q) is res(P, @), the resultant of P and (). Observe that if Sy(P, Q@
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is not zero then its degree is at most d. When S;(P, Q) has degree d, it is said
non-defective or reqular; when Sy(P, Q) # 0 and deg(Sq(P, Q)) < d, Sy(P, Q) is said
defective. We denote by sy the coefficient of Sy(P,Q) in y¢. For convenience, we
extend the definition to the g-th subresultant as follows:

7(Q)Q, if p> q or 1¢(Q) € B is regular
undefined, otherwise

5,n.Q) = {

where 7(Q) = 1¢(Q)? "', Note that when p equals ¢ and lc(Q) is a regular element
in B, S,(P,Q) = 1(3(@)_1@ is in fact a polynomial over the total fraction ring of B.

We call specialization property of subresultants the following statement. Let D be
another commutative ring with identity and ¥ a ring homomorphism from B to I
such that we have ¥(lc(P)) # 0 and ¥(lc(Q)) # 0. Then we also have

Sa(¥(P), ¥(Q)) = ¥(5a(P, Q)).

Divisibility relations of subresultants. The subresultants S,_1(P, @), S;—2(P, Q),
..y So(P, Q) satisfy relations which induce an Euclidean-like algorithm for comput-
ing them. Following [§] we first assume that B is an integral domain. In the above,
we simply write Sy instead of Sy(P, @), for d = ¢—1,...,0. We write A ~ B for
A, B € B[y] whenever they are associated over fr(B), the field of fractions of B. For
d=q—1,...,1, we have:

(rg—1) Sy—1 = prem(P, —@Q), the pseudo-remainder of P by —@),

(reg—1) if S;—1 # 0, with e = deg(S,-1), then the following holds: prem(Q, —S,_1) =
lC(Q)(p_q)(q_e)+1 So_1,

(re) if Sg_1 # 0, with e = deg(S;_1) < d — 1, thus S;_; is defective, and we have

(i) deg(Sq) = d, thus S, is non-defective,
(13) Sg_1 ~ S and lc(Sd_l)d_e_lSd_l = 5,77¢71S,, thus S, is non-defective,

(#99) Sqg—o =Sq3="+"=Sey1 =0,

(re—1) if Sq and S;_; are nonzero, with respective degrees d and e, then we have
prem(Sg, —Sa_1) = le(Sa) Sy,



We consider now the case where B is an arbitrary commutative ring, following
Theorem 4.3 in [10]. If Sy, Sq—1 are non zero, with respective degrees d and e and
if s; is regular in B then we have lc(Sd_l)d_e_lSd_l = 54%7¢71S,; moreover, there
exists Cy € B[y] such that we have:

(—1)% Me(Sg-1)8¢54 + CaSa1 = 1¢(S4)*Se_s.

In addition Sy_9 = Sy_3 = -+ = Sey1 = 0 also holds.

3 Regular GCDs

Throughout this section, we assume n > 1 and we consider P,Q € klxy, ..., 241
non-constant polynomials with the same main variable y := x,,; and such that
p := deg(P,y) > q := deg(Q,y) holds. We denote by R the resultant of P and @
w.r.t. y. Let T C k[xy, ..., x,] be a non-empty regular chain such that R € sat(T)
and the initials of P, () are regular w.r.t. sat(7). We denote by A and B the rings
k[zy,...,2,] and k[z1,...,2,]/sat(T"), respectively. Let ¥ be both the canonical
ring homomorphism from A to B and the ring homomorphism it induces from Aly]
to Bly|. For 0 < j < ¢, we denote by S; the j-th subresultant of P, Q in Afy].

Let d be an index in the range 1---¢ such that S; € sat(7) for all 0 < j < d.
Lemma [3] and Lemma [ exhibit conditions under which Sy is a regular GCD of P
and @ w.r.t. 7. Lemma [Il and Lemma [2 investigate the properties of S; when
le(Sy, y) is regular modulo sat(7') and lc(Sy, y) € sat(T') respectively.

Lemma 1 If lc(Sy,y) is reqular modulo sat(T), then the polynomial Sy is a non-
defective subresultant of P and @ over A. Consequently, V(Sy) is a non-defective
subresultant of V(P) and ¥(Q) in Bly|.

Proor. When d = ¢ holds, we are done. Assume d < ¢q. Suppose Sy is defective,
that is, deg(Sg,y) = e < d. According to item (r.) in the divisibility relations of
subresultants, there exists a non-defective subresultant Sy.; such that

le(Sa, y)* S = s47¢8S.,

where s4.1 is the leading coefficient of Sy, in y. By our assumptions, S, belongs
to sat(T), thus le(Sg, y)* ¢Sy € sat(T) holds. It follows from the fact le(Sy,y) is
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regular modulo sat(7") that S, is also in sat(7"). However the fact that lc(Sg, y)
init(S,) is regular modulo sat(7") also implies that Sy is regular modulo sat(7).
contradiction.

O

Lemma 2 [flc(Sy,y) is contained in sat(T), then all the coefficients of Sq regarded
as a uniwariate polynomial in y are nilpotent modulo sat(T).

PRrOOF. If the leading coefficient 1c(Sg, ) is in sat(7"), then lc(Sq, y) € p holds for all
the associated primes p of sat(7"). By the Block Structure Theorem of subresultants
(Theorem 7.9.1 of [21]) over an integral domain k[xy,...,x,_1]/p, Sq must belong
to p. Hence we have S; € y/sat(T"). Indeed, in a commutative ring, the radical of
an ideal equals the intersection of all its associated primes. Thus Sy is nilpotent
modulo sat(7"). It follows from Exercise 2 of [1] that all the coefficients of Sy in y
are also nilpotent modulo sat(7T'). O

Lemma 2] implies that, whenever lc(Sy,y) € sat(T') holds, the polynomial Sy will
vanish on all the components of sat(7T) after splitting 7" sufficiently. This is the key
reason why Lemma [Il can be applied for computing regular GCDs. Indeed, up to
splitting via the operation Regularize, one can always assume that either lc(Sy, y)
is regular modulo sat(7") or lc(Sy, y) belongs to sat(7'). Hence, from Lemma 2] and
up to splitting, one can assume that either lc(Sy, y) is regular modulo sat(T") or Sy
belongs to sat(T"). Therefore, if Sy & sat(T), we consider the subresultant Sy as a
candidate regular GCD of P and () modulo sat(7T").

Example 1 Iflc(Sy,y) is not reqular modulo sat(T) then Sd may be defective. Con-
sider for instance the polynomials P = x3x3 —x} and Q = z3x3 — 23 in Q[zy, 29, 23].

We have prem(P,—Q) = (2% — 25) and R = (2§ — 25)%. Let T = {R}. The last
subresultant of P,Q modulo sat(T') is prem(P, —Q), which has degree 0 w.r.t x3,

although its index is 1. Note that prem(P, —Q) is nilpotent modulo sat(T).

In what follows, we give sufficient conditions for the subresultant S; to be a regular
GCD of P and @ w.r.t. T. When sat(T) is a radical ideal, Lemma [] states that
the assumptions of Lemma [I] are sufficient. This lemma validates the search for a
regular GCD of P and () w.r.t. T in a bottom-up style, from Sy up to S, for some ¢.
Lemma [3] covers the case where sat(T") is not radical and states that Sy is a regular
GCD of P and Q modulo T, provided that S, satisfies the conditions of Lemma, [I]
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and provided that, for all d < k < ¢, the coefficient s; of y* in S}, is either null or
regular modulo sat(7T").

Lemma 3 We reuse the notations and assumptions of Lemma [d. Then Sy is a
reqular GCD of P and @ modulo sat(T), if for all d < k < q, the coefficient sy of
y* in Sy is either null or reqular modulo sat(T).

Proor. There are three conditions to satisfy for S; to be a regular ged of P and @)
modulo sat(7):

(1) 1c(Sq) is regular modulo sat(7);
(2) there exists polynomials v and v such that Sy — uP — vQ € sat(T); and
(3) both P and @ are in Z := sat(T U {Ss}).

We will prove the lemma in three steps. We write W(r) as 7 for brevity [

Claim 1: If @ and S,_; are in sat(7"), then Sy is a regular ged of P and ) modulo
sat(7T).

Indeed, the properties of S; imply Conditions (1) and (2) and we only need to show
that the Condition (3) also holds. If d = ¢ holds, then S, € sat(T") and we are
done. Otherwise, S, ; = prem(P, —Q) is not null modulo sat(7), because S, 1 = 0
implies that all subresultants of P and @ with index less than ¢ vanish over B. If
both S, := @ and S,_; = prem(P, —()) are in Z, then P is also in Z, since lc(Q) is
regular modulo sat(7") and hence is regular modulo Z. This completes the proof of
Claim 1.

In order to prove that @ and S,_; are in sat(7"), we define the following set of indices
J={jld<j<q,coeff(S;y’) ¢ sat(T)}.

By assumption, coeff(S}, /) is regular modulo sat(7T') for each j € J. Our arguments
rely on the Block Structure Theorem (BST) over an arbitrary ring [10] and Ducos’
subresultant algorithm [, 22] along with the specialization property of subresultants.

1'We note that the degree of S may be less than the degree of Sy, since its leading coefficient
could be in sat(7"). Hence, lc(Sk) may differ from lc(Sy). We carefully distinguish them when the
leading coeflicient of a subresultant is not regular in B.
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Claim 2: If 7 = (), then S; € Z holds for all d < i < q.

Indeed, the BST over B implies that there exists af most one subresultant S; such
that d < j < ¢ and S; ¢ sat(T"). Therefore all but S,_; are in sat(7"), and thus S,_;
is defective of degree d. More precisely, the BST over B implies

1c(S,-1)"S,-1 =1¢(S,)°Sy mod sat(T) (2)

for some integer e > 0. According to Relation (), lc(S;-1) is regular in B. Hence,
we have S,_; € Z. From the definition of Sy, we have prem(S,, —S,_1,y) € sat(T).
This implies S, € Z. This completes the proof of Claim 2.

Now we consider the case J # (). Write J explicitly as J = {jo, j1,---,Je—1}, with
¢ =|J| and we assume jy < j; < --- < jy_1. For convenience, we write j, := ¢q. For
each integer k satisfying 0 < k < ¢ we denote by Pj the following property:

SZ'EI, for all d<2§jk

Claim 3: The property Py holds for all 0 < k < /.

We proceed by induction on 0 < k < £. The base case is k = 0. We need to show
S; € T for all d < i < jy. By the definition of jy, S}, is a non-defective subresultant
of P and Q, and coeff(S;,y") is in sat(T) for all d < i < jo. By the BST over B,
there is at most one d < i < jy such that S; ¢ sat(7T"). If no such a subresultant
exists, then we know that prem(S;,, —Sy) is in sat(T). Consequently, S;, € Z holds,
which implies S; € Z for all d < i < jy. On the other hand, if S;, is not in sat(7T’)

for some d < iy < jo, then Sy, is similar to Sy over B. To be more precise, we have
1c(S;, ) Si, = 1e(S;,)°Sq mod sat(T) (3)

for some integer e > 0. With the same reasoning as in the case J = (), we know

that 1c(Sy,) is regular modulo sat(7T") and we deduce that S;, € Z holds. Also, we

have prem(S;,, —S;,) € sat(T"), by definition of S;. This implies Sj, € Z from the
fact that lc(S;,) is regular modulo sat(7") (and thus regular modulo 7). Hence, we
have S; € 7T for all d < 7 < jg, as desired. Therefore the property Py holds for k£ = 0.

Now we assume that the property Pr_; holds for some 1 < k < ¢. We prove that
Py also holds. According to the BST over B, we know that there exists at most one

subresultant between Sj, , and Sj,, both of which are non-defective subresultants

of P and Q. If S; € sat(7T) holds for all j,_; < i < ji, then we have

prem(S;,, —S;, ) =1c(S;,)°S, mod sat(T)
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for some d < u < jx_; and some integer e > 0. Thus, we have prem(S;,, =5, ,) € Z
by our induction hypothesis, and consequently, S;, € Z holds. On the other hand,
if all subresultants S; (for jx_; < i < j) but Siy (for some index i such that

Je—1 < i < jx) are in sat(7T), then S;, is similar to S;,_, over B, that is, we have

1e(S;,) S, = 1¢(S;,)°S; mod sat(7) (4)

k—1

for some integer e > 0. By Relation (), lc(S;,) is regular modulo sat(7"), and thus
is regular modulo Z. Using Relation (@) again, we have S;, € Z, since S;, , is in 7.
Also, we have

k—1

prem(S;,, —S;,) =1c(S;,)°S, mod sat(T)

for some d < w < jr—1 and some integer e > 0. By the induction hypothesis, we
deduce S, € Z, which implies S;, € T together with the fact that lc(S;,) is regular
modulo Z. This shows that S; € Z holds for all d < i < ji. Therefore, property P

holds.

kJ

Finally, we apply Claim 3 with k£ = ¢, leading to S; € Z for all d < ¢ < j, = ¢, which
completes the proof of our lemma. O

The consequence of the above corollary is that we ensure that Sy is a regular ged
after checking that the leading coefficients of all non-defective subresultants above
Sa, are either null or regular modulo sat(7"). Therefore, one may be able to conclude
that Sy is a regular GCD simply after checking the coefficients “along the diagonal”
of the pictorial representation of the subresultants of P and @, see Figure [Il

Lemma 4 With the assumptions of Lemmald, assume sat(T') radical. Then, Sy is
a reqular GCD of P,Q w.r.t. T.

ProoF. As for Lemma [3] it suffices to check that P and @) belong to sat(7'U {S4}).
Let p be any prime ideal associated with sat(7"). Define D = kxy,...,y]/p and let
L be the fraction field of the integral domain . Clearly Sy is the last subresultant
of P, @ in D[y] and thus in L[y]. Hence S; is a GCD of P, @ in L[y]. Thus Sy
divides P, @ in L[y] and pseudo-divides P, @ in D[y]. Therefore prem(P, Sy) and
prem(Q, Sy) belong to p. Finally prem(P, S;) and prem(Q), S;) belong to sat(T).
Indeed, sat(T') being radical, it is the intersection of its associated primes. O]
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Q=57 = Q=257
Se Se

Ss

Sa = 34

So Gy

. s . 3,

Figure 1: A possible configuration of the subresultant chain of P and . In the left,
P and @ have five nonzero subresultants over k[x], four of which are non-defective
and one of which is defective. Let T be a regular chain in k[x| such that lc(P)
and lc(Q) are regular modulo sat(7"). Further, we assume that lc(S;) and le(Sy)
are regular modulo sat(7"), however, 1c(Sg) is in sat(7'). The right hand side is a
possible configuration of the subresultant chain of P and Q. In the proof of Claim
3, the set J is {jo = 4} and j; = 7, whereas iy = 2 and i¢; = 6 are the indices of
defective subresultants over k[x]/sat(T"). In this case, S is a regular ged of P and
@ modulo sat(T).
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4 A regular GCD algorithm

Following the notations and assumptions of Section [l we propose an algorithm for
computing a regular GCD sequence of P, () w.r.t. T. as specified in Section
Then, we show how to relax the assumption R € sat(7T").

There are three main ideas behind this algorithm. First, the subresultants of P, Q)
in Afy| are assumed to be known. We explain in Section [l how we compute them
in our implementation. Secondly, we rely on the Regularize operation specified in
Section 2221 Lastly, we inspect the subresultant chain of P, @ in A[y] in a bottom-up
manner. Therefore, we view Sy, Ss,... as successive candidates and apply either
Lemma [l (if sat(7") is known to be radical) or Lemma 3

Case where R € sat(T). By virtue of Lemma [I] and Lemma [2] there exist regular
chains Ty, ...,T. C k[x] such that T — (T},...,T,) holds and for each 1 <i <e
there exists an index 1 < d; < ¢ such that the leading coefficient lc(Sy,,y) of the
subresultant Sy, is regular modulo sat(7") and S; € sat(7;) for all 0 < j < d;. Such
regular chains can be computed using the operation Regularize. If each sat(7;) is
radical then it follows from Lemma [ that (Sg,,74), ..., (S4,,T¢) is a regular GCD
sequence of P,@ w.r.t. T. In practice, when sat(7) is radical then so are all
sat(T;), see [2]. If some sat(T;) is not known to be radical, then one can compute
regular chains 7;,...,T;., C k[x] such that T; — (T}1,...,T;.,) holds and for
each 1 < /; < e; there exists an index 1 < d;, < ¢ such that Lemma [3] applies
and shows that the subresultant Sdzi is regular GCD of P,@Q w.r.t. T;,. Such
computation relies again on Regularize.

Case where R ¢ sat(T). We explain how to relax the assumption R € sat(T)
and thus obtain a general algorithm for the operation RegularGed. The principle is
straightforward. Let R = res(P,@Q,y). We call Regularize(R,T') obtaining regular
chains Ti,...,T, such that " — (7T31,...,T.). For each 1 < ¢ < e we compute
a regular GCD sequence of P and @ w.r.t. 7T; as follows: If R € sat(7;) holds
then we proceed as described above; otherwise R ¢ sat(7;) holds and the resultant
R is actually a regular GCD of P and @) w.r.t. T; by definition. Observe that
when R € sat(T;) holds the subresultant chain of P and @ in y is used to compute
their regular GCD w.r.t. T;. This is one of the motivations for the implementation
techniques described in Section [Bl

15



5 Implementation and Complexity

In this section we address implementation techniques and complexity issues. We
follow the notations introduced in Section [8l However we do not assume that R =
res(P, @, y) belongs to the saturated ideal of the regular chain 7.

In Section [5.1] we describe our encoding of the subresultant chain of P, Q) in k[x][y].
This representation is used in our implementation and complexity results. For sim-
plicity our analysis is restricted to the case where k is a finite field whose “charac-
teristic is large enough”. The case where k is the field Q of rational numbers could
be handled in a similar fashion, with the necessary adjustments.

One motivation for the design of the techniques presented in this paper is the solv-
ing of systems of two equations, say P = ) = 0. Indeed, this can be seen as a
fundamental operation in incremental methods for solving systems of polynomial
equations, such as the one of [22]. We make two simple observations. Formula [I]
p. [l shows that solving this system reduces “essentially” to computing R and a
regular GCD sequence of P, ) modulo {R}, when R is not constant. This is par-
ticularly true when n = 2 since in this case the variety V(H, P, Q) is likely to be
empty for “generic” polynomials P, (). The second observation is that, under the
same genericity assumptions, a regular GCD G of P,Q w.r.t. {R} is likely to exist
and have degree one w.r.t. y. Therefore, once the subresultant chain of P, () w.r.t.
y is calculated, one can obtain G “essentially” at no additional cost. Section 5.2
extends these observations with complexity results.

In Section B.3]an algorithm for Regularize and its implementation are discussed. We
show how to create opportunities for using fast polynomial arithmetic and modular
techniques, thus bringing significant improvements w.r.t. other algorithms for the
same operation, as shown in Section [l

5.1 Subresultant chain encoding

Following [5], we evaluate (xy,...,z,) at sufficiently may points such that the sub-
resultants of P and @ (regarded as univariate polynomials in y = x,.1) can be
computed by interpolation. To be more precise, we need some notations. Let d; be
the maximum of the degrees of P and @) in x;, for all+ =1,...,n+ 1. Observe that
b; :== 2d,d,, is an upper bound for the degree of R (or any subresultant of P and @)
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in x;, for all i. Let B be the product (by +1)--- (b, + 1).

We proceed by evaluation / interpolation; our sample points are chosen on an n-
dimensional rectangular grid. We call “Scube” the values of the subresultant chain
of P, on this grid, which is precisely how the subresultants of P, () are encoded
in our implementation. Of course, the validity of this approach requires that our
evaluation points cancel no initials of P or ). Even though finding such points
deterministically is a difficult problem, this created no issue in our implementation.
Whenever possible (typically, over suitable finite fields), we choose roots of unity
as sample points, so that we can use FFT (or van der Hoeven’s Truncated Fourier
Transform [13]); otherwise, the standard fast evaluation / interpolation algorithms
are used. We have O(d,,+1) evaluations and O(d?_,) interpolations to perform. Since
our sample points lie on a grid, the total cost becomes

0 (Bdi—l—l ilog(bi)> or O (BdiH zn: w> ,

i=1 =1

depending on the choice of the sample points (see e.g. [24] for similar estimates).
Here, as usual, M(b) stands for the cost of multiplying polynomials of degree less
than b, see [L1, Chap. 8]. Using the estimate M(b) € O(blog(b) loglog(b)) from [3],
this respectively gives the bounds

O(d?.,Blog(B)) and O(d2.,Blog*(B)loglog(B)).

These estimates are far from optimal. A first important improvement (present in
our code) consists in interpolating in the first place only the leading coefficients of
the subresultants, and recover all other coefficients when needed. This is sufficient
for the algorithms of Section [Bl For instance, in the FFT case, the cost is reduced

to
O(d? . B + dyn41Blog(B)).

Another desirable improvement would of course consist in using fast arithmetic based
on Half-GCD techniques [11], with the goal of reducing the total cost to O™ (d,+1B),
which is the best known bound for computing the resultant, or a given subresultant.
However, as of now, we do not have such a result, due to the possible splittings.
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5.2 Solving two equations

Our goal now is to estimate the cost of computing the polynomials R and G in
the context of Formula [ p. [Bl. We propose an approach where the computation of
G essentially comes come free, once R has been computed. This is a substantial
improvement compared to traditional methods, such as [14, 22], which compute G
without recycling the intermediate calculations of R. With the assumptions and
notations of Section [5.J], we saw that the resultant R can be computed in at most
O(dy+1Blog(B) + d2,,B) operations in k. In many cases (typically, with random
systems), G has degree one in y = x,,,1. Then, the GCD G can be computed within
the same bound as the resultant. Besides, in this case, one can use the Half-GCD
approach instead of computing all subresultants of P and (). This leads to the
following result in the bivariate case; we omit its proof here.

Corollary 1 With n = 2, if V(H, P,Q) is empty and deg(G,y) = 1, then solving
the input system P = Q = 0 can be done in O~(d3d,) operations in k.

5.3 Implementation of Regularize

The operation Regularize specified in Section 2.1l is a core routine in methods com-
puting triangular decompositions. It has been used in the algorithms presented in
Section [l Algorithms for this operation appear in [14] 22].

The purpose of this section is to show how to realize efficiently this operation. For
simplicity, we restrict ourselves to regular chains with zero-dimensional saturated
ideals, in which case the separate operation of [14] and the regularize operation [22]
are similar. For such a regular chain 7" in k[x] and a polynomial P € k[x| we
denote by RegularizeDimO(P,T") the function call Regularize(P,T"). In broad terms,
it “separates” the points of V(7T') that cancel P from those which do not. The output
is a set of regular chains {77,...,T.} such that the points of V(7T') which cancel p
are given by the 7;’s modulo which p is null.

Algorithm [I] differs from those with similar specification in [I4], 22] by the fact it
creates opportunities for using modular methods and fast polynomial arithmetic.
Our first trick is based on the following result (Theorem 1 in [4]): the polynomial p
is invertible modulo 7" if and only if the iterated resultant of P with respect to T is
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non-zero. The correctness of Algorithm [Ilfollows from this result, the specification of
the operation RegularGed and an inductive process. Similar proofs appear in [14] 22].
A proof and complexity analysis of Algorithm [l will be reported in another article.

The main novelty of Algorithm [ is to employ the fast evaluation/interpolation
strategy described in Section Bl In our implementation of Algorithm [II, at Step
(6), we compute the “Scube” representing the subresultant chain of ¢ and C,,. This
allows us to compute the resultant r and then to compute the regular GCDs (g, F)
at Step (12) from the same “Scube”. In this way, intermediate computations are
recycled. Moreover, fast polynomial arithmetic is involved through the manipulation
of the “Scube”.

Algorithm 1

Input: T a normalized zero-dimensional reqular chain and P a polynomial, both in
k[zq,...,2,].

Output: See specification in Section [2.2.

RegularizeDimO(P,T) ==
1) Results := ();
for (¢, C) € RegularizelnitDim0(P,T") do
if ¢ € k then
Results := {C} U Results
else v := mvar(q)
r :=res(q, Cy,v)
for D € RegularizeDimO(r,C-,) do
s := NormalForm(r, D)
if s # 0 then
U:={DU{C,}UCs,}
Results :== {U} U Results
else for (g, F) € RegularGed(q, C,, D) do
g := NormalForm(g, E)
U:= {EU {g} U D>v}
Results := {U} U Results
¢ := NormalForm(quo(C,, g), E)
if deg(c,v) > 0 then

— N N N —
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(18) Results := RegularizeDim0(q, E U ¢ U C'sv) U Results
(19) return Results

In Algorithm [I, a routine RegularizelnitialDim0 is called, whose specification is given
below. See [22] for an algorithm.

Input: T a normalized zero-dimensional regular chain and p a polynomial, both in
k[zy,. .., 2]

Output: A set of pairs {(p;, ;) | i = 1---e}, in which p; is a polynomial and T; is
a regular chain, such that either p; is a constant or its initial is regular modulo
sat(T;), and p = p; mod sat(7;) holds; moreover we have T' — (T4, ..., T,).

6 Experimentation

We have implemented in C language all the algorithms presented in the previous sec-
tions. The corresponding functions rely on the asymptotically fast arithmetic opera-
tions from our modpn library [19]. For this new code, we have also realized a MAPLE
interface, called FastArithmeticTools, which is a new module of the RegularChains
library [1§].

In this section, we compare the performance of our FastArithmeticTools com-
mands with MAPLE’s and MAGMA’s existing counterparts. For MAPLE, we use its
latest release, namely version 13; For MAGMA we use Version V2.15-4, which is the
latest one at the time of writing this paper. However, for this release, the MAGMA
commands TriangularDecomposition and Saturation appear to be some time
much slower than in Version V2.14-8. When this happens, we provide timings for
both versions.

We have three test cases dealing respectively with the solving of bivariate systems,
the solving of systems of two equations and the regularity testing of a polynomial
w.r.t. a zerodimensional regular chain. In our experimentation all polynomial coef-
ficients are in a prime field whose characteristic is a 30bit prime number. For each
of our figure or table the “degree” is the total degree of any polynomial in the input
system. All the benchmarks were conducted on a 64bit Intel Pentium VI Quad CPU
2.40 GHZ machine with 4 MB cache and 3 GB main memory.
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For the solving of bivariate systems we compare the command Triangularize of the
RegularChains library to the command BivariateModularTriangularize of the
module FastArithmeticTools. Indeed both commands have the same specification
for such input systems. Note that Triangularize is a high-level generic code which
applies to any type of input system and which does not rely on fast polynomial arith-
metic or modular methods. On the contrary, BivariateModularTriangularize is
specialized to bivariate systems (see Section [5.2] and Corollary [I]) is mainly im-
plemented in C and is supported by the modpn library. BivariateModularTri-
angularize is an instance of a more general fast algorithm called FastTrian-
gularize; we use this second name in our figures.

Since a triangular decomposition can be regarded as a “factored” lexicographic
Grobner basis we also benchmark the computation of such bases in MAPLE and
MAGMA.

1.2 T —
Lex Basis - - - ;
Fast Triangularize

0.8

0.6

Time

0.4 -

0.2 r

0 5 10 15 20 25 30
Degree

F igure 2: Generic dense bivariate systems.

Figure 2] compares FastTriangularize and (lexicographic) Groebner:-Basis in
MAPLE on generic dense input systems. On the largest input example the former
solver is about 20 times faster than the latter. Figure [l compares FastTrian-
gularize and (lexicographic) Groebner: -Basis on highly non-equiprojectable dense
input systems; for these systems the number of equiprojectable components is about
half the degree of the variety. At the total degree 23 our solver is approximately
100 times faster than Groebner:-Basis. Figure [ compares FastTriangularize,
GroebnerBasis in MAGMA and TriangularDecomposition in MAGMA on the same
set of highly non-equiprojectable dense input systems. Once again our solver out-
performs its competitors.
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Figure 3: Highly non-equiprojectable bivariate systems.
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Figure 4: Highly non-equiprojectable bivariate systems.

For the solving of systems with two equations, we compare FastTriangularize (im-
plementing in this case the algorithm described in Section [5.2)) with GroebnerBasis
in MAGMA. On Figure Bl these two solvers are simply referred as MAGMA and
MAPLE. For this benchmark the input systems are generic dense trivariate systems.

Figures[@], [7 and [§ compare our fast regularity test algorithm (Algorithm [I) with the
RegularChains library Regularize and its MAGMA counterpart. More precisely, in
MAGMA, we first saturate the ideal generated by the input zerodimensional regular
chain T" with the input polynomial P using the Saturation command. Then the
TriangularDecomposition command decomposes the output produced by the first
step. The total degree of the input ¢-th polynomial in 7T is d;. For Figure [0l and
Figure[d the input 7" and P are random such that the intermediate computations do
not split. In this “non-splitting” cases, our fast Regularize algorithm is significantly
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Figure 5: Generic dense trivariate systems.

faster than the other commands.

For Figure[§ the input 7" and P are built such that many intermediate computations
need to split. In this case, our fast Regularize algorithm is slightly slower than
its MAGMA counterpart, but still much faster than the “generic” (non-modular and
non-supported by modpn) Regularize command of the RegularChains library. The
slow down w.r.t. the MAGMA code is due to the (large) overheads of the C - MAPLE
interface, see [19] for details.

d1 | d2 | Regularize | Fast Regularize | Magma
2 0.052 0.016 0.000

4 6 0.236 0.016 0.010
6 | 10 0.760 0.016 0.010
8| 14 1.968 0.020 0.050
10 | 18 4.420 0.052 0.090
12 | 22 8.784 0.072 0.220
14 | 26 15.989 0.144 0.500
16 | 30 27.497 0.208 0.990
18 | 34 44.594 0.368 1.890
20 | 38 69.876 0.776 3.660
22 | 42 107.154 0.656 6.600
24 | 46 156.373 1.036 10.460
26 | 50 220.653 2.172 17.110
28 | 54 309.271 1.640 25.900
30 | 58 434.343 2.008 42.600
32 | 62 574.923 4.156 57.000
34 | 66 746.818 6.456 | 104.780

Figure 6: 2-variable random dense case.
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d2 | d3 | Regularize | Fast Regularize | Magma

1
2 2 3 0.240 0.008 0.000
3 4 6 1.196 0.020 0.020
4 6 9 4.424 0.032 0.030
5 8 | 12 12.956 0.148 0.200
6 | 10 | 15 33.614 0.360 0.710
7| 12| 18 82.393 1.108 2.920
8 14 | 21 168.910 2.204 8.250
9|16 | 24 332.036 14.764 23.160
10 | 18 | 27 >1000 21.853 61.560
11 | 20 | 30 >1000 57.203 | 132.240
12 | 22 | 33 >1000 102.830 | 284.420
Figure 7: 3-variable random dense case.
d1 | d2 | d3 | Regularize | Fast Regularize | V2.15-4 | V2.14-8
2 2 3 0.184 0.028 0.000 0.000
3 4 6 0.972 0.060 0.000 0.010
4 6 9 3.212 0.092 >1000 0.030
5 8 | 12 8.228 0.208 >1000 0.150
6 | 10 | 15 21.461 0.888 | 807.850 0.370
7112 | 18 51.751 3.836 >1000 1.790
8 14 | 21 106.722 9.604 >1000 2.890
9| 16 | 24 207.752 39.590 >1000 10.950
10 | 18 | 27 388.356 72.548 >1000 19.180
11 | 20 | 30 703.123 138.924 >1000 56.850
12 | 22 | 33 >1000 295.374 >1000 76.340

Figure 8: 3-variable dense case with many splittings.

7 Conclusion

The concept of a regular GCD extends the usual notion of polynomial GCD from
polynomial rings over fields to polynomial rings modulo saturated ideals of regular
chains. Regular GCDs play a central role in triangular decomposition methods. Tra-
ditionally, regular GCDs are computed in a top-down manner, by adapting standard
PRS techniques (Euclidean Algorithm, subresultant algorithms, ...).

In this paper, we have examined the properties of regular GCDs of two polynomials
w.r.t a regular chain. The theoretical results presented in Section [3] show that one
can proceed in a bottom-up manner. This has three benefits described in Section
First, this algorithm is well-suited to employ modular methods and fast polynomial
arithmetic. Secondly, we avoid the repetition of (potentially expensive) intermediate
computations. Lastly, we avoid, as much as possible, computing modulo regular
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chains and use polynomial computations over the base field instead, while controlling
expression swell. The experimental results reported in Section [0] illustrate the high
efficiency of our algorithms.

8
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