
MetaFork: A Metalanguage for Concurrency
Platforms Targeting Multicores

Xiaohui Chen, Marc Moreno Maza & Sushek Shekar

University of Western Ontario, Canada

WG14 C Standards Committee Meeting
October 1st, 2013



Our team and projects

Our team

Postdoctoral Fellow: Changbo Chen
PhD Students: Xiaohui Chen, Ning Xie, Parisa Alvandi, Sardar Anisul
Haque, Paul Vrbik
Master Students: Farnam Mansouri, Sushek Shekar

Our research subjects

Computer algebra: polynomial system solving, Maple’s solve command
Models of computation for HPC, optimization of multithreaded code
Parallel code generation (automatic parallelization, etc.)

Our projects

The RegularChains library, integrated into Maple
The cumodp (CUDA) and modpn (C code) libraries, part of Maple
The BPAS (CilkPlus) library, to be integrated into Maple
The MetaFork project, part of our IBM CAS project



Plan

1 Introduction

2 The MetaFork Language

3 Experimentation

4 Conclusion



Introduction

Plan

1 Introduction

2 The MetaFork Language

3 Experimentation

4 Conclusion



Introduction

Motivation

Hypothesis and objective

The same multithreaded algorithm (say based on the fork-join
parallelism model) implemented with two different concurrency
platforms could result in very different performance, often very hard
to analyze and improve.

We propose to identify performance bottlenecks by comparative
implementation.

Possible performance bottlenecks:

algorithm issues: low parallelism, high cache complexity

hardware issues: memory traffic limitation

implementation issues: true/false sharing, etc.

scheduling costs: thread/task management, etc.

communication costs: thread/task migration, etc.



Introduction

Comparative Implementation (1/2)

Code Translation:

Writing comparative multithreaded code based on different
concurrency platforms, say P1, P2, is clearly more difficult than
writing code in P1 only.

Thus, we propose automatic code translation between P1 and P2.

Solution 1:

Translate code from P1 to P2 directly:

unfortunately preserves wrong scheduling decisions

requires n(n−1)
2 mappings if n concurrency platforms P1, . . . , Pn are

involved.



Introduction

Comparative Implementation (2/2)

Solution 1 (recall):

Translate code from P1 to P2 directly:

unfortunately preserves wrong scheduling decisions

requires n(n−1)
2 mappings if n concurrency platforms P1, . . . , Pn are

involved.

Solution 2:

Use an intermediate high-level language (meta-language) abstracting from
scheduling decisions and focusing on algorithms:

requires only 2n mappings to support P1, . . . , Pn.

offers a well-defined language to express algorithms and,

an easier path between languages providing different forms of
concurrency (fork-join, SIMD, pipelining, etc.)



The MetaFork Language

Plan

1 Introduction

2 The MetaFork Language

3 Experimentation

4 Conclusion



The MetaFork Language

MetaFork

Definition

MetaFork is an extension of C/C++ and a multithreaded language
based on the fork-join parallelism model.

By its parallel programming constructs, this language is currently a
common denominator of CilkPlus and OpenMP.

However, this language does not compromise itself in any scheduling
strategies (work-stealing, work-sharing)

Thus, it makes no assumptions about the run-time system.

Motivations

MetaFork principles encourage a programming style limiting thread
communication to a minimum so as to

• prevent from data-races while preserving satisfactory expressiveness,
• minimize parallelism overheads.

The original purpose of MetaFork is to facilitate automatic
translations of programs between the above concurrency platforms.



The MetaFork Language

MetaFork basic Principles

Borrowed from CilkPlus

Similarly to CilkPlus, the semantics of a MetaFork program is
identical to those of its serial elision.

• in particular, a MetaFork function spawn is a C function, and
• in a MetaFork parallel for-loop, every variable is shared unless it is

declared within the for-loop.

Borrowed from OpenMP

Similarly to OpenMP, MetaFork has parallel regions (these are
neither spawned function calls, nor parallel for loops):

• in this case, and in this case only, explicitly qualifying a variable shared
is possible;

• in fact, in MetaFork parallel regions, variables are private by default
as in OpenMP tasks.



The MetaFork Language

MetaFork constructs for parallelism

meta fork 〈function− call〉
• we call this construct a function spawn,
• on the contrary of CilkPlus, no implicit barrier is assumed at the end

of a function spawn.

meta for (start, end, stride) 〈loop− body〉
• we call this construct a parallel for-loop,
• there is an implicit barrier at the end of the parallel area;
• every variable is shared unless it has been declared within the meta for

loop

meta fork [shared(variable)] 〈body〉
• every variable is private unless it has been declared shared,
• we call this construct a parallel region,
• no equivalent in CilkPlus.

meta join
• this indicates a synchronization point.



The MetaFork Language

Counterpart directives in CilkPlus & OpenMP

CilkPlus

cilk spawn

no construct for parallel regions

cilk for

cilk sync

OpenMP

pragma omp task

pragma omp sections

pragma omp for

pragma omp taskwait



The MetaFork Language

Translation Strategy (1/2)

CilkPlus to MetaFork

Easy in principle, since CilkPlus is a subset of MetaFork.

However, implicit CilkPlus barriers need to be explicitly inserted in
the generated MetaFork code.

MetaFork to CilkPlus

Since CilkPlus has no constructs for parallel regions, we use the
outlining technique (widely used in OpenMP)

• to wrap the parallel region as a function, and then call that function
concurrently,

• this requires to record the variable information and the function name.

All other constructs are easy to translate.



The MetaFork Language

Translation Strategy (2/2)

OpenMP to MetaFork

To translate task manipulation:
• if function spawn, use the corresponding feature of MetaFork,
• otherwise, we use the parallel region feature of MetaFork.

A parallel section of OpenMP is translated using the corresponding
feature of MetaFork:

• but extra synchronization points are inserted;

Every variable specified private in an OpenMP parallel for loop is
declared in the parallel for loop of the MetaFork translation;

• we just ignore any shared attribute in an OpenMP parallel for loop.

MetaFork to OpenMP

Easy in principle, since MetaFork is a subset of OpenMP.

We decided to translate the function spawns (constructed with
meta fork) using OpenMP task.



The MetaFork Language

Original CilkPlus code and translated MetaFork code

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = cilk spawn fib parallel(n-1);

y = fib parallel(n-2);

cilk sync;
return (x+y);

}

}

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib parallel(n-1);

y = fib parallel(n-2);

meta join;
return (x+y);

}

}



The MetaFork Language

Original Meta code and translated OpenMP code

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib parallel(n-1);

y = fib parallel(n-2);

meta join;
return (x+y);

}

}

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

#pragma omp task shared(x)
x = fib parallel(n-1);

y = fib parallel(n-2);

#pragma omp taskwait
return (x+y);

}

}



The MetaFork Language

Original OpenMP code and translated Meta code

void parallel qsort(int* begin,

int* end,

int base)

{

int length;

length = end - begin;

if (length < base)

serial qsort(begin, end);

else if (begin != end)

{

--end;

int* middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

#pragma omp task
parallel qsort(begin,

middle, base);

parallel qsort(++middle, ++end, base);

#pragma omp taskwait
}

}

void parallel qsort(int* begin,

int* end,

int base)

{

int length;

length = end - begin;

if (length < base)

serial qsort(begin, end);

else if (begin != end)

{

--end;

int* middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

meta fork parallel qsort(begin,

middle, base);

parallel qsort(++middle, ++end, base);

meta join;
}

}



The MetaFork Language

Original Meta code and translated CilkPlus code

void parallel qsort(int* begin,

int* end,

int base)

{

int length;

length = end - begin;

if (length < base)

serial qsort(begin, end);

else if (begin != end)

{

--end;

int* middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

meta fork parallel qsort(begin,

middle, base);

parallel qsort(++middle, ++end, base);

meta join;
}

}

void parallel qsort(int* begin,

int* end,

int base)

{

int length;

length = end - begin;

if (length < base)

serial qsort(begin, end);

else if (begin != end)

{

--end;

int* middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

cilk spawn parallel qsort(begin,

middle, base);

parallel qsort(++middle, ++end, base);

cilk sync;
}

}



The MetaFork Language

Original OpenMP code and translated Meta code

void main() {

int i, j;

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

i++;

}

#pragma omp section
{

j++;

}

}

}

}

void main()

{

int i, j;

{

meta fork shared(i)
{

i++;

}

meta fork shared(j)
{

j++;

}

meta join;
}

}



The MetaFork Language

Original Meta code and translated CilkPlus code

void main() {

int i, j;

{

meta fork shared(i)

{

i++;

}

meta fork shared(j)

{

j++;

}

meta join;
}

}

void fork func0(int* i)

{

(*i)++;

}

void fork func1(int* j)

{

(*j)++;

}

void main()

{

int i, j;

{

cilk spawn fork func0(&i);

cilk spawn fork func1(&j);

cilk sync;
}

}



Experimentation

Plan

1 Introduction

2 The MetaFork Language

3 Experimentation

4 Conclusion



Experimentation

Experimentation: set up

Source of code

OpenMP Microbenchmarks

http://people.sc.fsu.edu/∼jburkardt/c src/openmp/openmp.html

Cilk++ distribution examples

Students’ code

Architecture and compiler options

Intel Xeon 2.66GHz/6.4GT with 12 physical cores and
hyperthreading, sharing 48GB RAM

CilkPlus code compiled with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus

OpenMP code compiled with GCC 4.8 using -O2 -g -fopenmp

Measures

Running time on p = 1, 2, 4, 6, 8, . . . processors. Benchmarks were
repeated/verified on AMD Opteron 6168 48core nodes with 256GB RAM
and 12MB L3.



Experimentation

Experimentation: two experiences

Comparing two hand-written codes via translation

For each test-case, we have a hand-written OpenMP program and a
hand-written CilkPlus program
We observe that one program (written by a student) has a performance
bottleneck while its counterpart (written by an expert programmer) does
not.
We translate the efficient program to the other language, then check
whether the performance bottleneck remains or not, so as to narrow the
performance bottleneck in the inefficient program.

Automatic translation of highly optimized code

For each test-case, we have either a hand-written-and-optimized
CilkPlus program or a hand-written-and-optimized OpenMP program.
We want to determine whether or not the translated programs have
similar serial and parallel running times as their
hand-written-and-optimized counterparts.



Experimentation

Comparing hand-written codes (1/3)

Figure: Mergesort: n = 5 · 108

Different parallelizations of the same
serial algorithm (merge sort).
The original OpenMP code (written by
a student) misses to parallelize the
merge phase (and simply spawns the
two recursive calls) while the original
CilkPlus code (written by an expert)
does both.
On the figure, the speedup curve of
the translated OpenMP code is as
theoretically expected while the
speedup curve of the original OpenMP
code shows a limited scalability.
Hence, the translated OpenMP (and
the original CilkPlus program)
exposes more parallelism, thus
narrowing the performance bottleneck
in the original hand-written OpenMP

code.



Experimentation

Comparing two hand-written codes (2/3)

Figure: Matrix inversion: n = 4096

Here, the two original parallel
programs are based on different
serial algorithms for matrix
inversion.
The original OpenMP code uses
Gauss-Jordan elimination
algorithm while the original
CilkPlus code uses a
divide-and-conquer approach
based on Schur’s complement.
The code translated from
CilkPlus to OpenMP suggests
that the latter algorithm is more
appropriate for fork-join
multithreaded languages targeting
multicores.



Experimentation

Comparing two hand-written codes (3/3)

Figure: Matrix transpose: n = 32768

The original programs implement
different algorithms for matrix
transposition, which is a
challenging operation on multicore
architectures.
Without doing complexity
analysis, discovering that the
OpenMP code (written by a
student) runs in O(n2 log(n)) bit
operations instead of O(n2) as the
CilkPlus (written by Matteo
Frigo) is very subtle.
Here again, the translation
narrows the algorithmic issue.



Experimentation

Automatic translation of highly optimized code (1/6)

(a) Fibonacci: 45 (b) Fibonacci: 50

Figure: Speedup curve on Intel node

About the algorithm (Fibonacci computation): high parallelism, no
data traversal

CilkPlus (original) and OpenMP (translated) codes scale well



Experimentation

Automatic translation of highly optimized code (2/6)

(a) DnC MM: 4096 (b) DnC MM: 8192

Figure: Speedup curve on intel node

About the algorithm (divide-and-conquer matrix multiplication): high
parallelism, data-and-compute-intensive, optimal cache complexity

CilkPlus (original) and OpenMP (translated) codes scale well



Experimentation

Automatic translation of highly optimized code (3/6)

(a) Prefix sum: n = 5 · 108 (b) Prefix sum: n = 109

Figure: Speedup curve on Intel node

About the algorithm (prefix sum): high parallelism, low
work-to-memory-access ratio (O(log(n)) traversals for a O(n) work.
CilkPlus (original) and OpenMP (translated) codes scale well and at
almost the same rate.



Experimentation

Automatic translation of highly optimized code (4/6)

Figure: Mandelbrot set for a 500× 500
grid and 2000 iterations.

Nearly
embarrassingly
parallel. This
application is
compute-intensive
and does not
traverse large
data.
OpenMP (original)
and CilkPlus

(translated) codes
scale well and at
the same rate.



Experimentation

Automatic translation of optimized code (5/6)

Figure: Linear system solving (dense
method).

Lots of parallelism.
However, minimizing
parallelism overheads and
memory traffic is a
challenge for this
operation.
OpenMP (original) and
CilkPlus (translated)
codes scale well up to 12
cores; recall that we are
experimenting on a Xeon
node with 12 physical
cores with hyperthreading
turned on.



Experimentation

Automatic translation of highly optimized code (6/6)

Figure: FFT over the complex in size 225.

Low work-to-
memory-access
ratio: challenging
to implement
efficiently on
multicores
OpenMP (original)
and CilkPlus

(translated) codes
scale well up to 8
cores.



Conclusion

Plan

1 Introduction

2 The MetaFork Language

3 Experimentation

4 Conclusion



Conclusion

Concluding remarks (1/2)

Summary

We have realized a platform for translating programs between
multithreaded languages based on the fork-join parallelism model.

Currently the supported languages are CilkPlus and OpenMP.

Translations are performed via a meta-language, called MetaFork.
which is a common denominator of the parallel constructs of
CilkPlus and OpenMP, without compromising in any scheduling
decisions.

Experimentation shows that this platform can be used to narrow
performance bottlenecks. More precisely, for each of our test cases,
the overall trend of the performance results can be used to narrow
causes for low performance.

Moreover, the translation process seems not to add any overheads on
the tested examples.



Conclusion

Concluding remarks (2/2)

Future works for our team

Define a model for analyzing the overheads of various scheduling
strategies, as it was done for the randomized work-stealing scheduling
strategy (Leiserson & Blumofe).

Integrate Intel’s TBB into the MetaFork family.

A proposal submitted to the WG14 Committee

Extend the C language with parallel constructs similar to
MetaFork’s constructs meta fork, meta join, meta for, with
names like fork, join, parallel for.

This would provide a bridge between popular concurrency platforms
based on fork-join parallelism such as OpenMP and CilkPlus, with
benefits like comparative implementation, library collaboration.



Conclusion

Demo

./autotest.sh cilk compile cilk_examples

./autotest.sh openmp compile openmp_examples

./autotest.sh cilk verify cilk_examples

./autotest.sh openmp verify openmp_examples


	Introduction
	The MetaFork Language
	Experimentation
	Conclusion

