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Abstract. In this paper, we describe progress on the development of algo-
rithms for triangular decomposition of approximate systems.

We begin with the treatment of linear, homogeneous systems with posi-
tive-dimensional solution spaces, and approximate coefficients. We use the
Singular Value Decomposition to decompose such systems into a stable form,
and discuss condition numbers for approximate triangular decompositions.
Results from the linear case are used as the foundation of a discussion on the
fully nonlinear case. We introduce linearized triangular sets, and show that we
can obtain useful stability information about sets corresponding to different
variable orderings. Examples are provided, experiments are described, and
connections with the works of Sommese, Verschelde, and Wampler are made.
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1. Introduction

Systems of polynomial equations frequently arise in applications, and it is often of
interest to determine their triangular forms. Such representations enable the ex-
pression of some of the variables as functions of the remaining (“free”) variables.
Already, methods exist which are designed to compute triangular sets for exact
systems whose varieties are of arbitrary dimension (43; 22; 28; 42). However, for
real world problems, the systems under consideration frequently have approximate
coefficients that are inferred from experimental data. This means that the stability
of these triangular representations is a valid concern. To be more clear, we are not
merely concerned with the sensitivity of the triangular representation to pertur-
bations in the original data, but we also want the solution set to be stable under
small changes in values taken by the free variables.
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In another paper, On Approzimate Triangular Decompositions I: Dimension
Zero (29), we gave a detailed treatment of approximate triangular decomposition
for systems with finitely many roots (zero-dimensional systems). That work fol-
lows the equiprojectable decomposition presented in (9) and also makes use of
the interpolation formulas recently proposed by Dahan and Schost (12). In this
second paper, we study the simplest class of positive dimensional systems: linear
homogeneous systems.

It is true that Gaussian elimination, with respect to a given variable ordering,
will transform any exact linear system provided as input into a triangular solved
form. Solutions are parameterized by free variables which are lower in the ordering
than the remaining variables. However, in the case of approximate systems, neither
replacement of floating point numbers with rational numbers nor use of Gaussian
elimination with full pivoting can be guaranteed to give orderings which are ideal
(see the standard text (21) for a discussion of these issues). Furthermore, such
methods may lead to approximate triangular representations which are practically
unstable, even in the case of exact systems.

The key idea for the portion of the current paper which deals with linear,
homogeneous systems, is to use stable methods from Numerical Linear Algebra.
Specifically we use the Singular Value Decomposition (SVD) to determine whether
a stable approximate triangular set exists for some variable ordering. We will show
that such a stable set and ordering always exists, but that a given ordering may
lead to an unstable representation. Furthermore, an interpretation of this set is
given in terms of an exact solution to some nearby (homogeneous) system.

From there we will further explore some local structure of nonlinear problems
with Linearized Approximate Triangular Decompositions. Applying results from
the treatment of linear problems to the linearization of nonlinear systems, vari-
able orderings for locally-stable approximate triangular sets can be determined.
To do this, we use the homotopy continuation methods of PHCpack (41) to gener-
ate generic points on each irreducible component of a given nonlinear polynomial
system (32; 34; 35; 33). A collection of certain results on the decomposition of
non-linear systems is also provided here. For example, for n variables, the interpo-
lation methods of Sommese, Verschelde, and Wampler give approximate triangular
representations of the (n — 1)-dimensional components.

The above results, together with certain results using the equiprojectable
decomposition (presented in our related work (29)), form an accessible bridge to
the study of the fully non-linear case. This will be described in a forthcoming work.

2. Approximate Triangular Sets for Positive Dimensional Linear
Systems
In this section we discuss triangular representations for linear systems. The foun-

dation of our treatment is the Singular Value Decomposition, and techniques that
have now become standard in Numerical Linear Algebra (21; 39).
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2.1. The Singular Value Decomposition and Variable Orderings

Suppose we are given a system of m linear homogeneous equations in n variables,
and that the solution space of the system has some positive dimension d. We wish
to express the solution with n — d variables in terms of d free variables.

Indeed, for reasons which will become clear, we worry that Gaussian elimi-
nation might produce an unstable (triangular) representation of the solution set.
Instead of Gaussian elimination, our main tool will be the Singular Value Decom-
position (SVD) of Numerical Linear Algebra.

Given A € F™*™ where F is R or C one can compute the SVD (21; 39):

A=UxV",

Here, ¥ is a diagonal matrix with the same dimensions as A, both U € F"™*™ and
V € F™*" are orthogonal matrices, and V! denotes the transpose of V if F = R
or the complex conjugate transpose if F = C. If the rank of A is r, then the last
n —r columns of V' form a basis for Null(A). The diagonal elements of ¥ are real,
and are called the singular values of A. Often, it is enough to take the number of
nonzero singular values as the numerical rank of A. For later purposes, it is useful
to mention that the singular values are the square roots of the eigenvalues of
matrices A'A and AA" (where the transpose is the Hermitian transpose if F = C).

Let P € F"*? be a matrix whose columns form a basis for Null(A). In par-
ticular, we can let P be composed of the last n —r columns of V' from the SVD of
A and define d :=n — r. Then

X = a1py +Q2ps + ...+ agpy

= Pa (2.1)

)

with o € F. Furthermore, the matrix P is stable with respect to changes in the
(approximate) coefficients of A. Indeed, adjoining aq, ..., ag as new indetermi-
nates we simply have the following;:

Remark 2.1. Equation (2.1) is a (normalized) triangular set in any ordering rank-
ing the variables {x1,...,z,} greater than the variables {a1,...,aq}.

Definition 2.2. A triangular representation of the form

Xpon-free = MXfrees (2.2)

where M is a matrix with entries in IF, is practically stable if the condition number
of M is reasonable. Thus, small changes in the free variables of a practically stable
solution will not induce huge changes in the non-free variables.
Remark 2.3. The triangular set (2.1) is practically stable. We write
[[0x]| |dcx]|
= < IPHIPHIS—F (2.3)
x| ]

to estimate the sensitivity of the solution x (the non-free variables) to small per-
turbations of e (the free variables), given the matrix P. Since P is not a square
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matrix, the usual inverse has been replaced with the pseudo-inverse P (see Re-
mark 2.8 for more details), and the condition number of the triangular solution
(2.1) can still be expressed in terms of the singular values of P. Since the columns
of P are orthogonal, the matrix P!P is the identity matrix, whose eigenvalues are
all equal to 1. Thus, every singular value of P is equal to 1, and so its condition
number

1
IPllal|Pll2 = 01— = 1. (2.4)
0d

This result is independent of the condition number of the given matrix A.

We will now further our development by investigating approximate linear
triangular sets with respect to orderings of the variables {z1,...,z,} alone. It
is natural to ask why we should investigate such sets, given that, by Remark
2.1, the SVD already directly yields the triangular set (2.1). One reason is that
in applications we are often interested in expressing some variables in terms of
others. Another, more mathematical, reason is that we wish to use the linear case
as our guide in the study of the positive dimensional nonlinear case where such
orderings on the variables {z1,...,x,} are often used.

To obtain triangular sets in the variables {xi,...,2,} alone, we need to
eliminate the variables {aq,...,aq4} in (2.1) in favor of d free variables suitably
chosen from {z1,...,2,}. The remaining n — d variables will then be expressed
as functions of these free variables instead of the a’s. If we can find an invertible
sub-matrix @ of P, then

Xfree = Qv (2.5)
and consequently
a = Q_leree' (2.6)

Denoting by R the matrix composed of the n — d rows of P that do not appear in
@, the remaining variables may be expressed as

X = Ra

= RQ™ Xfree- (2.7)

non-free

Theorem 2.4. For every A € F™*™ with dimension d =n —1r # 0, there is always
an ordering of the variables {x1,xza,...,x,} which can be used to produce a stable
triangular representation of the linear system Ax = 0.

Proof. An invertible d x d sub-matrix of P will always exist since P has rank d.
Moreover, the SVD guarantees that the computation of P is stable with respect to
small perturbations in the coefficients of A. Thus, we will always have an ordering:
{Xpon-free} = {Xfree) With which we can write the solutions to Ax = 0 in the
form of (2.7). (The practical stability of (2.7) will be discussed in Section 2.3.) O
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2.2. Backward Error Analysis for Positive Dimensional Linear Homogeneous
Systems

If the matrix A, with a positive dimensional null space, consists of entries which
are approximate, a numerical solution to Ax = 0 will not likely solve this given
problem exactly. However, it is standard to say that this solution exactly solves
some nearby problem. We will present some such results on backward error analysis
for the triangular solutions described in this paper. (For some interesting works
on backward error analysis in both very general and applied settings, see (38) and
references therein.)

If the solution that we find is x*, it does not make sense to say that we
have solved Ax* = e exactly for some nonzero vector of constants e. Here are two
reasons why:

(1) The residual is really of the form e(x), a vector which depends on all of the
variables {1, x2,...,Zn};

(2) Since our problem is homogeneous, the nearby problem which we have solved
should also be homogeneous.

So, we want to say that we have solved Ax* = 0 where x* = Xx, X € F**"_ and
[|A — A]| is small. In the context of the development in Section 2.1, we can find a
triangular solution of the form x,,\ free = RQfleree. So the problem that we
have solved can be written as
RQ™1
A {T} Xfree = EXfree- (2.8)

Here the columns of A have simply been rearranged so that {%jl} may be used

to denote the n x d matrix with first (top) n — d rows formed by the n — d rows
of RQ™!, and the remaining (lowest) d rows are a suitable permutation of the
identity matrix. The right hand side of (2.8) is non-zero because we are unlikely to
find the exact solution to the original (approximate) problem. Presumably, there
is some perturbation matrix 6 A with which we can write

RQ™1
(A—46A4) {T} Xfree = 0. (2.9)
With Equations (2.8) and (2.9), we can see that
—1
A [RC; ] —E. (2.10)

Proposition 2.5. Given an approzimate, linear, homogeneous equation Ax = 0,
and a triangular representation for its solutions, there exists a perturbation to the
coefficients of A so that this triangular solution exactly solves the perturbed system

(A —05A). Furthermore, we have ||0A| < || E].
Proof. Transposing (2.10) gives
[RQ*1|I~} SA' = B, (2.11)
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and we are free to choose the top n —d rows of 5At~t~o be zero rows. The remaining
d rows are then a permutation of E! such that IE! = E. With this choice, we
have ||0A| = ||E||. There may also be alternative better choices of §A for which
[6A[l < [I£]- O

2.3. Some Stability Results: in Theory and in Practice

In Section 2.1, we had claimed that there is an invertible d x d sub-matrix of
P. However, this is a theoretical result which, in the approximate case, is rather
subtle.

If P was exact, it would then contain exactly d linearly independent rows
and n — d linearly dependent rows. Furthermore, any particular row is linearly
dependent on the other rows if and only if it is able to be expressed as an exact
linear combination of them. In our case, the entries of P are approximate, and it is
often quite unlikely that any row is an exact linear combination of the others. Thus,
we cannot speak of having exactly d linearly independent and n — d dependent
rows. However, we are still guaranteed a d x d sub-matrix of P which is invertible,
but there will likely be more than one such sub-matrix. So, our goal is to select
for our Q the “best” d x d sub-matrix of P.

Theorem 2.6. Given a matriz A = UXV? ¢ Fmxn» with rank r, the closest singular
matriz to A has rank r —1 and can be constructed as A = U?Vt, where X is equal
to ¥ with o, replaced by zero. Furthermore, we have ||A — Al = 0.

Proof. See Trefethen and Bau (39) for an even more general result and proof. [

Remark 2.7. The theorem about the approximation of a given matrix by another
of lower rank is usually attributed to Eckart and Young (13), and is often called the
Eckart-Young theorem. However, the theorem was first proved by Schmidt (1907)
for integral operators, and was later generalized by Mirsky (1960) to all unitarily
invariant norms.

This means that for any d x d sub-matrix @ with singular values {01, 09, ..,
o4}, there exists a singular matrix within distance o4 of Q. In lieu of Theorem
2.6, our initial inclination was to claim that the “best” @ is the d x d sub-matrix
of P which has the largest o4. Actually, the choice of the best @ is not quite that
simple. It is true that we want a nonsingular @, but, unfortunately, the () which is
farthest from singular may not give us the RQ ! which is most practically stable.

Before going further, we wish to state some well-known results which will be
used in an explanation of the conjecture which concludes this section.

Remark 2.8. Tt is well-known that for any given matrix A = UXV!, ||All2 = o1.
For any invertible matrix A € F**", we have A~! = VX ~!U, and so the singular
values of A~1 are {1, -1 .,0—11}7 and |[A7!]; = --. If A is not square, then

On’ Op-1'""
its pseudo-inverse AT = VXU can be computed instead of the inverse. For our
purposes, we regard A as having full rank, and then the diagonal elements of ¥t
are still {%, Un{l et 0'_11} See, for example, (21) for more information on the

pseudo-inverse.
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Remark 2.9. Without proof we state the known result that if M is any sub-matrix
of a given matrix A, then ||M]|, < ||A||, for any matrix p-norm.

A stable solution will have continuous dependence on its input data. However,
it may be very sensitive to changes in the values substituted for the free variables.
The acceptable magnitude of the condition number will depend on the particular
application that is involved, and will determine if the triangular representation
is practically stable. We introduce the notation: og and op for the last (d'")
singular values of Q and R respectively. Simply, using Remarks 2.8 and 2.9, and
the fact that ||P|2 = 1 (shown in Remark 2.3), we have the following bound for
the condition number of RQ~1:

Cond(RQ™") = |RQ™"[|2I(RQ™")~"l2

< RI1Q 2l QlI B2
1 1
< APl — 1Pl
Q OR
1 1
= — . —. (2.12)
0Q OR

By maximizing the product og - or, we will have minimized the bound on
Cond(RQ~1). In our experiments, we have observed that choosing @ and R such
that @ is non-singular, and og - or is maximal, yielded a solution for which the
condition number was minimal. Simply choosing @ such that it is the d x d sub-
matrix which is farthest from singular does not guarantee the best solution (see
the example in Section 3).

Conjecture 2.10. For every A € F™*" with dimension d = n — r # 0, we can
write X on_free = RQ?leree' By choosing @ non-singular and such that og - or
is maximal, we will have found ordered sets {X; o1 free} = {Xfree) for which the

stable triangular representation of this linear system is most practically stable.

2.4. Some Notes on Computation

To find an invertible sub-matrix @ of P, and corresponding sub-matrix R, is one
challenging step in computing a practically stable triangular representation. It is
considerably more difficult still to find the “best” combination of  and R. An
ideal algorithm would be one which fulfills the following two criteria:

(1) The output variable ordering is optimal;

(2) The method is efficient.
This is not a straight-forward problem. Of course there exists an algorithm which
will fulfill criterion (1): simply use brute force to try all (%) combinations of d rows
taken from P. This is a sensible strategy for small problems, but the expense of
trying to solve systems which admit large P is unsatisfactory. We also note that
there may be several optimal choices (e.g. consider x + y + z = 0, where every
ordering is optimal).

Employing randomness can give us (2), but not necessarily (1). We can ran-

domly select d rows from P. For large P, we are not likely to select the best @
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(and R), but we can also expect not to obtain the worst combination. For an even
better solution, one could repeat this a number of times, and take the best result.
For further study, one would like to know more about the distribution of the o4
for all d x d and n —d x d sub-matrices of P. Furthermore, thought on this strategy
raises another question: if we are not guaranteed an optimal solution, what may
be accepted as a “sufficient” solution?

3. A Linear Example

In this example, we use the 10 x 15 Hilbert Matrix, which has full rank and has
as each entry h; ; = % We will denote this exact matrix by H. and its floating
point approximation by H.

First, we want to point out that the issue of stability is encountered in both
numerical and exact approaches. The stability of a triangular representation for
the solutions of an ezact system may also be ordering-dependent. Suppose that
we are given a system of linear, homogeneous polynomials P = {p1,...,pm} €
Q € [x1,...,2,], and that we want a triangularization of the solutions to Px =0
in the form of (2.7). The coefficients in the solution may be computed exactly (say,
using exact Gaussian elimination). However, the solutions to the system are still
real. The substitution of real values for the free variables admits the possibility of
practical instability.

Using Gaussian elimination to solve H.x = 0 with x = (x1,...,215), we
achieve the variable ordering {z11, 212, %13, 14, %15} < {*1,Z2,...,2Z9,210}. This
is as expected as H, has (exactly) full rank. The condition number of this (trian-
gular) solution is &~ 2.66 x 10°. Using the SVD, we can check that this solution
corresponds to one for which o A~ 0.11 x 1072, so Q is not singular. Also, we have
or ~0.35 x 1072

Another suitable solution strategy for linear polynomial solving is to use
Gaussian elimination on the floating point system. This, instead of doing exact
computation, can yield a considerable speed up, at least, due to a decrease in
required storage and intermediate computations. With partial pivoting, Gauss-
ian elimination does not re-order the columns of a given dimension—d matrix A.
Thus, generally, a solution will be achieved for which the free variables will be
those associated with the last d columns of A. Gaussian elimination with full piv-
oting, however, will exchange the order of the columns. Although this strategy
may consistently yield solutions for which the residual is small, the triangular
representation may be unstable, or at least not guaranteed to be optimal.

Applying Gaussian elimination with full pivoting to solve Hx = 0, yields the
ordering {x2, x3, 24, T5, T} < {T1,2T7,...,T14, 215}, and |[|E| p = 6.82 x 1071 So,
at first glance, we appear to have found a good solution. However, the approximate
triangular form is practically unstable, with computed condition number ~ 1.29 x
108. Again using the SVD, we find that this corresponds to selecting a @ for which
og =~ 5.97 x 1079, and R such that o ~ 0.79.
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The solution for which @ is farthest from singular, with og ~ 0.55, has
Xfree = 127, %9, T11, T12,T14 }. Here, Cond(RQ~1) ~ 11.70, so that this is close to
the optimal solution, below.

There is (at least) one choice for @ and R such that Cond(RQ™!) is minimized
at ~ 7.64. We have found one such partitioning with og ~ 0.46, or ~ 0.24, and
corresponding to Xf..e = {Z6, T8, T10, T12, T14}-

We have seen that, for the purpose of finding practically stable triangular
representations, both Gaussian elimination on exact systems and Gaussian elim-
ination with full pivoting on approximate systems may indeed provide a poor
variable ordering. Finally, it is interesting to note that, given an efficient and reli-
able method of computing an optimal ordering, one might think about using it to
find practically stable triangular solutions even for exact systems.

4. Approximate Linearized Triangular Decompositions and
Numerical Algebraic Geometry

In Section 4.1 we introduce triangular sets, linearized about points on the variety
of a polynomial system (linearized triangular sets). The approximate points about
which we linearize are computed using the methods of Numerical Algebraic Ge-
ometry due to Sommese, Verschelde, and Wampler. We discuss some background
on this material in Section 4.2.

4.1. Approximate Linearized Triangular Decompositions

In this section we will make use of the results from our study of the linear case
to introduce Linearized Triangular Sets. Suppose that we are given a nonlinear
polynomial system p = {p1,p2,...,pm} in n variables x = (x1,...,2,). Then the
affine variety of the system over C is defined as

V(p) ={z € C":p(x) =0}. (4.1)
The key idea of this section is to linearize about some given nonsingular point
x¥ = (29,...,22) on the variety of the system and let v = (z; —29,... 2, —20)%.
This will yield the linear system
9j (0
— =0. 4.2
Dy XV (42)

If p generates a radical ideal, it is easy to show that this linearized system is the
tangent space of V(p) at x° (7). We know the tangent space has the same dimension
as the variety at this point. To avoid rank deficiency, the condition number of the
Jacobian matrix at x° must be considered. An extremely large condition number
will either mean that this point is a multiple root, or that the polynomial system
is ill-conditioned.

It is natural to use this linearization to study the fully non-linear positive
dimensional case.
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4.2. Numerical Algebraic Geometry

In order to achieve the linearization above we need to determine points x° € V (p).
The tools we use to determine approximations of such so-called “witness” points
are the homotopy continuation methods of Sommese, Verschelde, and Wampler
(37; 33).

n (37), Sommese and Wampler outlined the development of a new field
“Numerical Algebraic Geometry,” which led to the development of homotopies to
describe all irreducible (or the weaker equidimensional) components of the solution
set of a polynomial system.

An irreducible affine variety V is an affine variety that can not be expressed
as a finite union of proper sub-varieties. A well-known result is that that any
affine variety can be expressed uniquely as a union of finitely many irreducible
affine varieties. The dimension of these irreducible components can vary from 0 to
n — 1

n—1 n—1
Vip)=2= U Zi = U U Zij, (4.3)
i=0 i=0 j€T;

where Z; is the union of all i-dimensional components, Z;; are the irreducible
components and Z; are index sets with finitely many entries. See Section 5 for an
example.

Definition 4.1. Given a polynomial system p(xz) = 0 having a decomposition Z
into irreducible components Z;; or more weakly into equidimensional components
Z; in (4.3), a witness set W is a set of points of the form

n—1 n—1
W .= U W; = U U Wi, (4.4)
=0

i=0 jeT;
where

1. W;; is a finite sub-set of Z;; (i.e. W;; C Zi5),

2. W;j contains no points from any other Zy, (i.e. Wi; N Zye = 0 for (i, ) #
(k,0)),

3. W;; contains degZ;; points, each occurring v;; times for some integer v;; > p1;;
where f1;; is the multiplicity of Z;; as an irreducible component of p~1(0).
Moreover, if p;; = 1 then v;; = 1.

See Section 5 for an example. The W; above are the witness sets for the
equidimensional decomposition and W;; are the witness sets for the irreducible
decomposition. Approximate points for these can be determined by numerical ho-
motopy continuation methods. It is important to note that the witness sets for an
equidimensional decomposition can be computed more cheaply than that for the
irreducible decomposition.

4.3. Results for Approximate Triangular Decomposition

Examples illustrating the results of this section can be found in Section 5.



278 Moreno Maza, Reid, Scott and Wu

Since the witness points computed for the zero-dimensional case each have
the form z1 = a1, 29 = ao,...,x, = a,, it follows that:

Remark 4.2. For an exactly given input system of polynomials over C, the (exact)
witness point representation of the set of isolated points Zy is a collection of
triangular representations over C.

The homotopy continuation methods of (33) give a method for approximating
all such isolated points, provided a small enough tolerance is used, which rely
for their stability on Bernstein’s theorem (1). Certification that the tolerance is
small enough for Newton’s method using approximate arithmetic to be certified
as converging to an exact solution of the original exact system requires use, for
example, of Shub and Smale’s 7 theory (2). We note that the case of approximate
input systems is more involved, and is the subject of current research.

In our previous paper, we reassembled this collection of approximate trian-
gular representations to give an approximate equiprojectable decomposition of the
Zy (which is an equidimensional decomposition). That triangular decomposition
can be regarded as an approximation of the decomposition that is obtained by
exact methods.

For the positive (n — 1)-dimensional case, the witness set characterization
(33) can be regarded as an exact, probability 1, non-algorithmic construction using
exact complex arithmetic. In addition an exact interpolation process can be given,
leading us to:

Remark 4.3. For systems with n variables, each such interpolating polynomial for
each irreducible component of dimension n — 1 constitutes a triangular represen-
tation for that irreducible component. In the equi (n — 1)-dimensional case the
single interpolation polynomial is also a triangular representation.

The methods of Sommese, Verschelde, and Wampler, regarded exactly, gener-
ate enough generic points to exactly interpolate each such irreducible component
by a single polynomial in the variables xi, 2, ..., x,. In addition, by these
methods a single interpolation polynomial can be obtained for Z,_1, ie. for the
components of dimension n — 1 in the equidimensional decomposition. In the case
of approximate arithmetic, the zero-dimensional systems arising in the above pro-
cess again require certification for convergence, and algorithmic certification (in
the sense of Shub and Smale) is an interesting topic of current research.

The interpolation procedure applied in Remark 4.3 incrementally increases
the interpolation degree from 1 until the minimum degree where interpolation is
successful is obtained, and yields triangular representations which generate radical
ideals.

From Remarks 4.2 and 4.3 we have:

Remark 4.4. Approximate triangular representations can be obtained for each
irreducible (and each equidimensional) component of a bivariate system of poly-
nomials.
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An easy consequence of Remark 2.4 is:

Remark 4.5. Given x° € V(p), an ordering of the variables can be determined so
that there is a stable linearized triangular representation of the polynomial system
about x°.

Such linearized triangular systems give information on the existence and con-
struction of associated nonlinear triangular systems. Again we add the cautionary
remarks that the above statements are true as exact statements of C, and care
must be taken in approximate counterparts of such statements.

5. An Example of Sommese, Verschelde and Wampler

Consider the system, which is used as an illustrative example by (33):

(y —2?)(a® +y* + 22 —1)(z — 0.5)
p= (z—2®)(2® +y?+22—-1)(y —0.5) | = 0. (5.1)
(y — ) (2 — 2%)(2® + y? + 22 = 1)(2 — 0.5)
In this illustrative example, it is easy to find the decomposition
V(p) = ZQ U Zl U ZO = {Zgl} U {Z11 U Zlg U Z13 U 214} U {Z01}7 (52)
where
1. Zy; is the sphere 22 4+ y? + 22 —1 =0,
Zy1 is the line (x = 0.5,z = 0.5%),
Z15 is the line (z = v/0.5,y = 0.5),
Z13 is the line (z = —/0.5,y = 0.5),
Z14 is the twisted cubic (y — 22 =0,z — 23 = 0),
6. Zo1 is the point (x = 0.5,y = 0.5,z = 0.5).
For the example above, which is executed by the algorithm IrreducibleDecom-
position in (33), the witness set W, the degrees d;; and multiplicity bounds v;;
are

Ot N

W = WQ U W1 @] WO = {W21} U {Wn U W12 U W13 U W14} U {W()l}, (53)
where
W51 contains 2 points, do; = 2 and 191 = 1,
W11 contains 1 point, di; =1 and 17 =1,
contains 1 point, di2 = 1 and v12 = 1,
W13 contains 1 point, d13 =1 and V13 = 1,
W14 contains 3 points, di4 = 3 and v14 = 1,
6. Wy is a non-singular point.

S o
=
no

See Section 7.2 of (33) for the execution summary of this example.

Consider the system p from (5.1), with decomposition (5.2), and the description of
the witness points and their degrees given above. As previously noted, the possible
dimensions of the irreducible components are 0, 1, and n — 1 = 2.
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Zero-Dimensional Components: Using the methods of (33) yields one single iso-
lated point of degree 1: x = 0.5, y = 0.5, z = 0.5. This, of course, is a triangular
set (and is also equiprojectable).

One-Dimensional Components: The methods of (33) predict 3 one-dimensional
degree 1 (linear) components, and 1 one-dimensional degree 3 component. Im-
mediately, the linearized triangular set method of Section 4.1 can be applied to
approximate the linear one-dimensional components. Here is a sketch of the details.

First, from (33), we can determine an approximate generic point, x°, on each
linear component: a € Z11, b € Z15, ¢ € Z13. Then, we can make use of the SVD
to achieve linearized triangular representations of the form

x =x" + aw, aeC, (5.4)

where x° € {a,b, c} and w € {w,, Wy, w.} are the corresponding basis vectors given
by the SVD. Here, « is regarded as an additional indeterminate with {z,y, z} = «.
Recalling (2.7), if wi, # 0 we can choose xj, as a free variable and rewrite (5.4) as

W
xj =)+ w—i (zr — ) (5.5)

where all other z; (j # k) are the two non-free variables.
We used for x° (respectively for each of the 3 linear 1-dimensional compo-
nents):

o
Q

[0.50 +2.08 x 10 '14,1.00 + 1.64 x 107 '"4,0.125 — 7.13 x 10—11i}t ,
[0.71 4+ 4.10 x 107'"4,0.50 — 9.30 x 10~ '"4,1.00 + 2.92 x 10*”1‘}t ,
~ [~0.71 - 9.68 x 107114,0.50 — 4.28 x 107114, 1.00 — 8.51 x 10~1i]".

The corresponding vectors w obtained by applying the SVD to the linearized
systems about x0 are

w, ~ [-2.50 x 1071% — 0.4,0.68 4- 0.744,3.37 x 1070 — 6.32 x 10~ 1%)*,
[<5.22 x 10710 +0.4,1.73 x 1071 + 3.54 x 1071%, —0.85 + 0.53i]",

D01l x 10777 +0.2,1.39 x 107~ 4+ 3. x 107, —0.73 — 0.692
[1.51 x 10719 +0.4,1.39 x 107 4 3.64 x 107'%, —0.73 — 0.694]",
where we have rounded the above results to two decimal places (and 0. is used to

denote floating point zero). The next step is to find the stable orderings of {z, y, z}
on each linear component.

oh
Q

o0

Q

Wb

Q

We

Z11: For the one-dimensional case, we do want to find the invertible d x d sub-
matrix Q of w, which has greatest d*" singular value. Since here we have d = 1,
the singular values of each of the three 1 x 1 sub-matrix of w, are simply the
magnitudes of each complex entry itself. This means that we are looking for the
entry of w, with greatest magnitude, and this will tell us which of {x,y, z} will be
the best free-variable. We find a single stable choice:

Xfree — {y}a

Xpon-free = 12}
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which corresponds to either of the orderings: y < x < z, or y < z < x.
Geometrically, this can be interpreted as follows: the linear component Z1; is
exactly a line perpendicular to the zz-plane. Because the numerical approximation
to this component contains errors (due in part to the inexact point a), it is a line
which is not exactly perpendicular to the zz-plane. Solving for y, z in terms of z,
or x, y in terms of z, are unstable choices. A small change in x would then cause a
change in y roughly on the order of 10° (in the first case), or a change in z would
cause a change in y which would also be around the order of 10° (in the second
case).
The (only) stable approximate linearized triangular representation is
T = Gy — (1.69 x 10719 — 1.84 x 107"%)(y — a,),
z = a,— (237 x 1071 + 6.76 x 107 "%)(y — ay).

Z19: As for Zy1, we find just one stable choice of free variables:

Xfree = 17}
Xpon-free = (% ¥}
which corresponds to either of the orderings: z < = < y, or z < y < z. This
corresponds to the approximate solution
= by + (443 x 10710 42,76 x 1071%) (2 — b.),
y = by + (4.07 x 10711 = 3.92 x 10719%) (2 — b,).

Z13: Here the stable choice of free variables is

Xfree = 17}
Xpon-free = (% ¥},

which corresponds to either of the orderings: z < x < y, or z < y < x. The stable
approximate solution is

T = & — (1.10 x 10719 — 1.04 x 1071%) (2 — &),

y = & — (2.60 x 1071° 4+ 2.55 x 1071%) (2 — &,),
It is both interesting and important to note that for exact triangular decomposi-
tion, one can set a single order for the entire computation. However, here there

is no single stable choice of {X,,,,_free} and {Xfee} Which covers all three cases
(Z11, Z12, and Z33).

Z14 (Twisted Cubic): Consider the linearization of p about the (random) point x°
on the twisted cubic given by

d ~ [0.50 +4.16 x 107'14,0.25 + 3.41 x 107'%4,0.125 + 9.63 x 10~ 4]

Applying the SVD to the linearization of the system about x° = d yields w given
by
wg ~ [0.48 + 0.,0.80 4+ 0.10i, 0.36 — 4.30 x 10~ %]’
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Then the method above yields the most stable choice

Xfree = {9}
Xnon-free = {52}

which corresponds to either y < = < z, or y < z < z. We obtain the following
linearized triangular decomposition:

= dy— (590 x 1071 = 0.76 x 10744 (y — d,,),
2z =d, — (443 x 1071 = 0.57 x 1074 (y — d,,).

However, we are more interested in what can be said about the triangular decom-
position of the original non-linear problem.

First, we mention that the methods of (33) interpolate this one-dimensional
curve as the intersection of n + 1 = 4 hyper-surfaces, which are in fact ruled sur-
faces. These ruled surfaces correspond to random (generic) projections. Lemma
5.3 in (33) expresses the fact that the irreducible component, corresponding to
this one-dimensional curve, is precisely cut out by the intersection of these 4 ruled
hyper-surfaces. Equivalently in terms of generic coordinates X, Y, Z, which are
random linear combinations of x, y, z, the irreducible component is defined in terms
of 4 polynomials in X, Y, Z. Three of the polynomials are bivariate polynomials
(of (X,Y), (X, Z), and (Y, Z) respectively) and correspond to projections onto the
generic coordinate hyperplanes. Triangular decomposition of this one-dimensional
curve should require only 2 rather than 4 polynomials. However, approximate
triangular representations in the generic coordinates can be extracted by choos-
ing subsystems of 2 polynomials from the 3 bivariate polynomials. Note that, in
general, such triangular representations will have excess components (removed by
intersection with the remaining polynomials). In some cases, excess components
do not occur (a fact that can be checked in a number of ways, e.g. by numerical
membership testing, or testing numerically for irreducibility). In this case, a tight
generic triangular representation is determined.

We now briefly discuss the task of finding triangular decompositions in terms
of the original coordinates z, y, z, rather than the generic coordinates. It is clear
from our comments above, in the linear case, that we need an ordering of the
variables that is numerically stable, and should be applicable even in the non-
linear case. Here, we require a projection that maps the nonlinear curve onto
one which has the same dimension. The linearization shows that any projection
will have this property. This projection can be interpolated, so the degree of the
interpolated curve is important. The approach of (33) determines that the degree
of the curve is 3, and this can only drop upon projection. So a second obvious
property for a ‘good’ projection is that this degree not be diminished.

A possible alternative approach is to bootstrap from the zero-dimensional
case. The general idea of reducing a positive dimensional system to a zero-dimen-
sional one goes back to Van der Waerden (40) for primary decomposition, and was
later made algorithmic by Gianni, Trager, and Zacharias (17), among others. The
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most recent work is due to Schost (31) and Dahan, et al. (11), where triangular
decompositions are obtained for exact positive dimensional systems.

It is interesting to investigate how these methods might be adapted to approx-
imate systems. Here is a sketch of this method. First, the numerical irreducible
decomposition would be performed, and each irreducible component would be
treated separately. The witness points for a component would be used to determine
a stable ordering for the linearized system. Setting the free variables to random
values yields a zero-dimensional system, to which the approximate equiprojectable
decomposition (29) would be applied. The triangular sets so-obtained involve only
the non-free variables. The dependence on the free variables could be determined,
through choosing different random values for them, by interpolation. However,
we caution that there are serious stability issues that need to be resolved, and
also note that the interpolation process involving rational function reconstruction
needs to be developed before such an approach can be realized.

Two-Dimensional Components: There is one single component of p, predicted by
(33) which has dimension n — 1 = 2 and degree 2. Homotopy continuation can
be used to generate enough points from which a single polynomial of degree 2 in
x, i, z can be interpolated. This interpolation can be carried out automatically
by PHCPack (41). This is a triangular set for the component. Note also that
the minimality of the degree ensures that the ideal is radical (one property of a
triangular set). It is equivalent to a multiple of 2 + %2+ 22 —1 = 0, which is easily
seen independently here, but, of course, the method will work on examples where
such a property and an expression cannot be so easily extracted.

6. Discussion

Exact triangular decomposition methods for representing exact polynomials sys-
tems (see for example (43; 24; 28; 22; 42)) have proved valuable in applications
(5; 23; 14; 31; 16), and there are well-developed algorithms (28; 9) for their con-
struction. There have also been considerable recent improvements (12; 10) in the
complexity of algorithms for their construction. Such representations are desir-
able, not only because of their triangular solved-form structure, but also because
(in comparison with other exact methods) they give the minimum number of
polynomials required to form a description of the equidimensional decomposition
components of such systems.

The goal of our research is to extend such methods to approximate sys-
tems of polynomials. Our previous paper (29) gave a detailed treatment of zero-
dimensional systems, and in this current paper we have studied linear positive
dimensional systems using methods from Numerical Linear Algebra.

The methods of (33) enable approximate generic points on the solution com-
ponents of polynomial systems to be computed by numerical homotopy continu-
ation. These witness points give the layout of the decomposition as well as the
number of witness points on a component, which is its degree. As we indicate in
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this paper, the zero-dimensional components, computed by the methods of (33)
are a solved form (explicitly giving the coordinates of the zero sets), and constitute
a collection of triangular sets (each being an isolated root). However, these sets do
not directly correspond to the triangular representation computed by exact meth-
ods. Also, if n is the number of variables, each irreducible component of dimension
n — 1 (hyper-surfaces) can have additional generic points generated by homotopy
continuation, and interpolated by a single polynomial. This representation, which
is automatically generated by PHCPack of (41; 33), is again, as we note, trivially,
a triangular set.

In the d-dimensional case where 0 < d < n — 1, the methods of (33) also
generate additional points on each irreducible component, and give interpolating
polynomials to represent the component. Each interpolating polynomial corre-
sponds to a random projection of the component in C" to a (d + 1)-dimensional
affine space. In general, n+1 generic projections (and n+1 interpolating polynomi-
als) are used in that approach to precisely describe the component (see especially
Lemma 5.3 of (33) for the theoretical justification). Such a representation is not
triangular, since a triangular representation would only require n — d polynomials.
However, a triangular sub-system of n — d polynomials can be extracted in generic
coordinates (e.g. as discussed for the twisted cubic example). Although a numer-
ical test for irreducibility can be applied, such generic triangular sub-systems are
not generally irreducible. Their chance of irreducibility can be enhanced by adding
random linear combinations of the remaining d + 1 polynomials to the triangular
system, while maintaining its triangular structure.

Given a point x° on a d-dimensional irreducible component of a polyno-
mial system computed using SVW, we compute a local linearization of the form
x = x° 4+ Pa, where P is computed using the SVD, and the a’s are d newly intro-
duced parameters. In the case of linear varieties this is actually a triangular repre-
sentation. Secondly, by eliminating <, and provided certain stability-invertibility
properties are satisfied, stable triangular representations in the variables x can
be obtained for the linearization. We note that both of these representations in-
volve n — d linear polynomials. For linear components, (33) gives a non-triangular
representation, also only requiring n — d linear polynomials.

In future work, we will extend the results of this paper and (29) to the
construction of triangular sets for positive dimensional systems of polynomials.

References

[1] D.N. Bernstein. The Number of Roots of a System of Equations. Functional
Anal. Appl., 9(3): 183-185. Translated from Funktsional. Anal. i Prilozhen.,
9(3): 1-4, 1975.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Compu-
tation. Springer-Verlag, New York, 1997.



3]

[4]

[10]

[11]

[12]
[13]
[14]

[15]

REFERENCES 285

G. Cheze. Absolute Polynomial Factorization in Two Variables and the
Knapsack Problem. J. Gutierrez, editor, Proc. ISSAC 2004, pages 87-94.
ACM Press, 2004.

G. Cheze and A. Galligo. Four Lectures on Polynomial Absolute Factor-
ization. Solving Polynomial Equations: Foundations, Algorithms, and Ap-
plications, vol. 14 of Algorithms and Computation in Mathematics, pages
339-392. Springer-Verlag, 2005.

S.-C. Chou. Mechanical Geometry Theorem Proving. D. Reidel Publ. Comp.,
Dordrecht, 1988.

R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt. A Geometric-
Numeric Algorithm for Factoring Multivariate Polynomials. Proc. ISSAC
2002, pages 37-45. ACM Press, 2002.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-
Verlag, New York, 2nd edition, 1997.

R.M. Corless, P.M. Gianni, B. M. Trager, and S.M. Watt. The Singular
Value Decomposition for Polynomial Systems. Proc. ISSAC ’95, pages 96—
103, ACM Press, 1995.

X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Fquiprojectable
Decompositions of Zero-Dimensional Varieties. Proc. ICPSS, pages 69-71.
University of Paris 6, France, 2004.

X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting Tech-
niques for Triangular Decompositions. Proc. ISSAC 2005, pages 108-115.
ACM Press, 2005.

X. Dahan, X. Jin, M. Moreno Maza and E. Schost. Change of Ordering
for Regular Chains in Positive Dimension. Accepted by Maple Conference,
Canada, 2006.

X. Dahan and E. Schost. Sharp Estimates for Triangular Sets. Proc. ISSAC
2004, pages 103-110. ACM Press, 2004.

C. Eckart and G. Young. The Approxzimation of one Matriz by Another of
Lower Rank. Psychometrika, vol. 1: 211-218, 1936.

M. V. Foursov and M. Moreno Maza. On Computer-Assisted Classification
of Coupled Integrable Equations. J. Symb. Comput., 33: 647-660, 2002.

A. Galligo and D. Rupprecht. Irreducible Decomposition of Curves. J. Symb.
Comput., 33(5): 661-677, 2002.

X.-S. Gao and Y. Luo. A Characteristic Set Algorithm for Difference Poly-
nomaal Systems. Proc. ICPSS, pages 28-30. University of Paris 6, France,
2004.

P. Gianni, B. Trager, and G. Zacharias. Grébner Bases and Primary De-
composition of Polynomial Ideals. J. Symb. Comput., 6(2-3): 149-167, 1988.
M. Giusti and J. Heintz. La Détermination de la Dimension et des Points
Isolés d’une Variété Algébrique Peuvent S’effectuer en Temps Polynomial.
D. Eisenbud and L. Robbiano, editors, Computational Algebraic Geome-
try and Commutative Algebra, Cortona 1991, volume XXXIV of Symposia



286

[28]

[29]

REFERENCES

Mathematica, pages 216-256. Cambridge University Press, 1993.

M. Giusti and J. Heinz. Kronecker’s Smart, Little Black Boxes, London
Mathematical Society Lecture Note Series, vol. 284, pages 69-104. Cam-
bridge University Press, 2001.

M. Giusti, G. Lecerf, and B. Salvy. A Grébner Free Alternative for Polyno-
mial System Solving. J. Complexity, 17(1): 154-211, 2001.

G. Golub and C.V. Loan. Matriz Computations. John Hopkins University
Press, 3rd edition, 1996.

M. Kalkbrener. A Generalized Euclidean Algorithm for Computing Triangu-
lar Representations of Algebraic Varieties. J. Symb. Comput., 15: 143-167,
1993.

I.A. Kogan and M. Moreno Maza. Computation of Canonical Forms for
Ternary Cubics. Teo Mora, editor, Proc. ISSAC 2002, pages 151-160. ACM
Press, 2002.

D. Lazard. Solving Zero-Dimensional Algebraic Systems. J. Symb. Comput.,
13: 117-133, 1992.

G. Lecerf. Computing the Equidimensional Decomposition of an Algebraic
Closed Set by Means of Lifting Fibers. J. Complexity, 19(4): 564-596, 2003.
F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains Library.
Proc. Maple Conference 2005, pages 355-368, 2005. Distributed software
with Maple 10, Maplesoft, Canada.

A. Leykin and J. Verschelde. Phcmaple: A Maple Interface to the Numerical
Homotopy Algorithms in PHCpack. Proc. ACA ’04, pages 139-147, Univer-
sity of Texas at Beaumont, USA, 2004.

M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties.
Technical Report 4/99, NAG, UK. Presented at the MEGA-2000 Conference,
Bath, UK, 2000. http://www.csd.uwo.ca/~moreno.

M. Moreno Maza, G. Reid, R. Scott, and W. Wu. On Approximate Trian-
gular Decompositions I: Dimension Zero. Proc. SNC 2005, pages 250275,
2005.

T. Sasaki. Approzimate Multivariate Polynomial Factorization Based on
Zero-Sum Relations. B. Mourrain, editor, Proc. ISSAC 2001, pages 284—
291. ACM Press, 2001.

E. Schost. Complexity Results for Triangular Sets. J. Symb. Comput., 36(3-
4): 555-594, 2003.

A.J. Sommese and J. Verschelde. Numerical Homotopies to Compute
Generic Points on Positive Dimensional Algebraic Sets. J. Complexity,
16(3): 572-602, 2000.

A.J. Sommese, J. Verschelde, and C. W. Wampler. Numerical Decomposition
of the Solution Sets of Polynomial Systems into Irreducible Components.
SIAM J. Numer. Anal., 38(6): 2022-2046, 2001.

A.J. Sommese, J. Verschelde, and C. W. Wampler. Using Monodromy to De-
compose Solution Sets of Polynomial Systems into Irreducible Components.



[35]

[36]

REFERENCES 287

C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, editors, Applica-
tion of Algebraic Geometry to Coding Theory, Physics and Computation,
pages 297-315. Kluwer Academic Publishers, 2001.

A.J. Sommese, J. Verschelde, and C. W. Wampler. Symmetric Functions Ap-
plied to Decomposing Solution Sets of Polynomial Systems. STAM J. Numer.
Anal., 40(6): 2026-2046, 2002.

A.J. Sommese, J. Verschelde, and C. W. Wampler. Numerical Irreducible
Decomposition Using PHCpack. Algebra, Geometry, and Software Systems,
pages 109-130. Springer-Verlag, 2003.

A.J. Sommese and C. W. Wampler. Numerical Algebraic Geometry. J. Rene-
gar, M. Shub, and S. Smale, editors, Proc. AMS-STAM Summer Seminar in
Applied Mathematics, vol. 32 of Lectures in Applied Mathematics, 1995.
H.J. Stetter. The Nearest Polynomial with a Given Zero, and Similar Prob-
lems. ACM SIGSAM Bulletin, 33(4): 2-4, 1999.

L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial
& Applied Mathematics, Philadelphia, 3rd edition, 1997.

B.L. Van der Waerden. Modern Algebra. Frederick Ungar Publishing Co.,
New York, 2nd edition, 1953.

J. Verschelde. PHCpack: A General-Purpose Solver for Polynomial Systems
by Homotopy Continuation. ACM Transactions on Mathematical Software,
25(2): 251-276, 1999.

D. Wang. Elimination Methods. Springer-Verlag, Wein, New York, 2001.
W.-T. Wu. On Zeros of Algebraic Equations — An Application of Ritt
Principle. Kexue Tongbao, 31(1): 1-5, 1986.

Marc Moreno Maza
e-mail: moreno@orcca.on.ca

Greg Reid

e-mail: reid@uwo.ca

Robin Scott
e-mail: rscott2@uwo.ca

Wenyuan Wu
e-mail: wwu250@uwo.ca

ORCCA

Department of Computer Science
University of Western Ontario
London, Canada



