Design and Implementation of Multi-Threaded Algorithms in Polynomial Algebra

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics
University of Western Ontario, Canada

ISSAC 2021, Saint Petersburg, Russia, July 20
Acknowledgements

- Many thanks to the ISSAC 2021 organizers, in particular Ekaterina Shemyakova for her kind invitation and, Marc Mezzarobba for his help with the proceedings.
- I would have loved to visit Saint Petersburg and our Russian colleagues.
- This tutorial is based on research projects in which many of my former and current graduate students have played an essential role. By alphabetic order: Ali Asadi, Alexander Brandt, Changbo Chen, Xiaohui Chen, Svyatoslav Covano, Sardar Haque, Xin Li, Farnam Mansouri, Davood Mohajerani, Robert Moir, Wei Pan, Delaram Talaashrafi, Linxiao Wang, Ning Xie, Yuzhen Xie, Haoze Yuan.
- This tutorial is based on collaborations with MIT/CSAIL, Intel and IBM Canada, with funding support from IBM and NSERC of Canada.
- Special thanks go to Alexander Brandt who helped me put these notes together and who is leading the development of the Basic Polynomial Algebra Subprograms (BPAS) [1].
My journey in parallel computing (1/2)

- First experiences with the pthread library (with Xin Li, 2006) for computing normal forms and distributed computing (with Yuzhen Xie, 2006) for computing triangular decompositions.

- Visiting scholar at MIT/CSAIL (2008-2009) in the team of Charles Leiserson,
 - I discover Cilk and cache complexity,
 - Yuzhen Xie starts BPAS with multi-dimensional FFTs/TFTs

- First steps with NVIDIA CUDA, with Wei Pan in 2008-2011 then with Sardar Haque in 2009-2012.

- Return to Canada and collaboration with IBM, more interested in OpenMP than Cilk:
 - automatic translation between OpenMP and Cilk, see the Metafork (Xiaohui Chen & Ning Xie)
 - participation to the C++ committee, designing C++ 11.
In 2013, IBM Canada (and us 🧺) switches to automatic parallelization from C to CUDA:

- this culminates with KLARAPTOR, a tool for dynamically finding optimal kernel launch parameters targeting CUDA programs (Alex Brandt, Davood Mohajerani, Linxiao Wang)
- work on polyhedral geometry (Delaram Talaashrafi, Rui-Juan Jung Linxiao Wang) to support automatic parallelization.

With the arrival of Alexander Brandt, the BPAS library took off (see next slide):

- Key contributions from Svyatoslav Covanov (FFT) and Ali Asadi (subresultants)
- Ali Asadi, Alex Brandt and Robert Moir ported the algorithms of Maple’s RegularChains library to BPAS.
- Experimentation with pipelining (Alex Brandt, Delaram Talaashrafi)
Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
- Such as in Gröbner bases [5, 11, 18] and CAD [39]
- see the proceedings of CAP [15, 40] and PASCO [26, 27]

In the past 15 years, work on parallelism has been on low-level routines with regular parallelism:
- Polynomial arithmetic [22, 33]
- Modular methods for GCDs and factorization [29, 35]
- see the proceedings of PASCO [16, 19, 36, 37].

Recently, high-level algorithms are receiving attention again:
- The normalization algorithm of [6] finds components serially, then processes each component with a parallel map
- Today, parallel decomposition of polynomial systems is made (much) easier by multi/many-core processors, new concurrency platforms and libraries (e.g. C++ 11) and, of course, better algebraic algorithms 😊.
Tentative Plan

- We will not define multithreading, but I will show some pictures 😊.
- Part 1: Memory access patterns (45 min)
- Part 2: Parallel programming patterns (30 mins)
- Part 3: BPAS multi-threading (15 mins)
- Part 4: Extracting patterns (10 mins)
- The conclusions will be after Parts 1 and 2.
- I prefer to take questions between parts
The BPAS library

A high-performance polynomial algebra library
- Core of library written in C, wrapped in C++ interface for usability and object-oriented programming

Optimized algorithms and data structures, data locality, and parallelism
- Sparse multivariate polynomials [3], dense univariate and bivariate [38]
- Triangular decomposition of polynomial systems [2, 4]

User-friendly, object-oriented interface based on template meta-programming [9]
- A natural encoding of the algebraic hierarchy
- “Dynamic” creation of algebraic types through composition
- Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
In the 1980’s, a memory access and a CPU operation were both as slow as the other.

CPU frequency increased between 1985 and 2005 has reduced CPU op times much more than DRAM technology improvement could reduce memory access times.

Even after the introduction of multicore processors, the gap is still huge.
Multicore processor

- In the 1st Gen. Intel Core i7, each core had an L1 data cache and an L1 instruction cache, together with a unified L2 cache.
- The cores share an L3 cache.
- Note the sizes of the successive caches.
- Data moves in blocks (cache-lines, pages) between levels
- On the right, note the block sizes
- On the left, note the access times, sizes and prices.
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
The ideal cache model (1/5)

- Computer with a **two-level memory hierarchy**:
 - an ideal (data) cache of \(Z \) words partitioned into \(Z/L \) cache lines, where \(L \) is the number of words per cache line.
 - an arbitrarily large main memory.

- Data moved between cache and main memory are always cache lines.

- The cache is **tall**, that is, \(Z \) is much larger than \(L \), say \(Z \in \Omega(L^2) \).
The processor can only reference words that reside in the cache.

- If the referenced word belongs to a line already in cache, a **cache hit** occurs, and the word is delivered to the processor.
- Otherwise, a **cache miss** occurs, and the line is fetched and installed into the cache.
The ideal cache model (3/5)

- The ideal cache is **fully associative**: cache lines can be stored anywhere in the cache.
- The ideal cache uses the **optimal off-line strategy of replacing** the cache line whose next access is furthest in the future, and thus it exploits temporal locality perfectly.
For an algorithm with an input of size n, the ideal-cache model uses two complexity measures:

- the **work complexity** $W(n)$, which is its conventional running time in a RAM model.
- the **cache complexity** $Q(n; Z, L)$, the number of cache misses it incurs (as a function of the size Z and line length L of the ideal cache).
- When Z and L are clear from context, we simply write $Q(n)$ instead of $Q(n; Z, L)$.

![Diagram of CPU, cache, and memory.]
An algorithm is said to be **cache aware** if its behavior (and thus performances) can be tuned (and thus depend on) on the particular cache size and line length of the targeted machine.

Otherwise the algorithm is **cache oblivious**.

Cache oblivious naturally performs well on hierarchical memories.
Scanning

- Scanning \(n \) words stored in a contiguous segment of memory with cache-line size \(L \) costs at most \(\lceil n/L \rceil + 1 \) cache misses.
- If this vector of \(n \) words is aligned in memory, then this estimate is simply \(\lceil n/L \rceil \).

Proof.

- Let \((q, r) \) be the quotient and remainder in the integer division of \(n \) by \(L \).
- Let \(u \) (resp. \(w \)) be the total number of words stored in cache-lines fully (not fully) used by those \(n \) consecutive words. Thus, we have \(n = u + w \). Three cases arise.
 1. If \(w = 0 \) then \((q, r) = (\lceil n/L \rceil, 0) \) and the scanning costs exactly \(q \); thus the conclusion is clear since \(\lceil n/L \rceil = \lceil n/L \rceil \) in this case.
 2. If \(0 < w < L \) then \((q, r) = (\lceil n/L \rceil, w) \) and the scanning cost is at most \(q + 2 \); the conclusion is clear since \(\lceil n/L \rceil = \lceil n/L \rceil + 1 \) in this case.
 3. If \(L \leq w < 2L \) then \((q, r) = (\lceil n/L \rceil, w - L) \) and the scanning cost is at most \(q + 1 \); the conclusion is clear again.
Adding vectors

- Consider $m \geq 2$ vectors V_1, \ldots, V_m of size $n \geq 1$ aligned in memory.
- Consider $m - 1$ scalars $\alpha_1, \ldots, \alpha_{m-1}$, stored in a contiguous segment of memory in $m - 1$ words.
- Assume that the ideal cache has at least $\lceil m/L \rceil + 4$ cache-lines.
- Then, computing the linear combination $\alpha_1 V_1 + \cdots + \alpha_{m-1} V_{m-1}$ and writing it to V_m can be done in no more cache misses than those required for scanning $V_1, \ldots, V_m, \alpha_1, \ldots, \alpha_{m-1}$,
- thus, within $m\lceil n/L \rceil + \lceil m/L \rceil + 1$ cache misses.

Proof.

- We first load $\alpha_1, \ldots, \alpha_{m-1}$ into the cache, thus using at most $\lceil m/L \rceil + 1$ cache-lines.
- In the pseudo-code below, vector indexing starts at 0.

```
1 For b with 0 \leq b \leq \lceil n/L \rceil, for each j with 1 \leq j < m, for each i with 0 \leq i < L do:
   1 k := b * L + i,
   2 if k < n then V_m[k] := V_m[k] + \alpha_j V_j[k]
```

- Use the optimal replacement policy and the fact that vectors are aligned in memory.
Counting sort: the algorithm

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
 Count[key(x)] = Count[key(x)] + 1

total = 0
for i = 0, 1, ... k:
 c = Count[i]
 Count[i] = total
 total = total + c
allocate an output array Output[0..n-1]
for each input item x:
 store x in Output[Count[key(x)]]
 Count[key(x)] = Count[key(x)] + 1
return Output

- **Counting sort** takes as input a collection of n items, each of which known by a key in the range $0\ldots k$.
- The algorithm computes a *histogram* of the number of times each key occurs.
- Then performs a *prefix sum* to compute positions in the output.
Counting sort: poor spatial locality

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
 Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:
 c = Count[i]
 Count[i] = total
 total = total + c
allocate an output array Output[0..n-1]
for each input item x:
 store x in Output[Count[key(x)]]
 Count[key(x)] = Count[key(x)] + 1
return Output

- For \(n \) large enough: \(Q(n; Z, L) = 3n + \frac{3n}{L} + \frac{2k}{L} \) cache misses (worst case).
- The possibly random distribution of the input values creates possibly many non-cold misses, see counting_sort.pdf for an animation.
Counting sort: improved by a blocking strategy

allocate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:
 bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0
for i = 0, 1, ... m-1:
 c = bucketsize[i]
 bucketsize[i] = total
 total = total + c

allocate an array bucketedinput[0..n-1];
for each input item x:
 q := floor(key(x) m/(k+1))
 bucketedinput[bucketsize[q]] := key(x)
 bucketsize[q] := bucketsize[q] + 1
return bucketedinput

- Split the input value range into m buckets (given by well-chosen pivot values) so that counting sort can be applied in succession to several smaller input arrays, with smaller value ranges, incurring cold misses only, see counting_sort_bucket.pdf for an animation.

- This yields $Q(n; Z, L) = 9n/L + 3m/L + m + 2k/L$ (assuming $m < Z/(1 + L)$) improving on $3n + 3n/L + 2k/L$.

Marc Moreno Maza
Design, Implementation of Multi-Threaded Algs. for Polynomial Algebra
ISSAC 2021
Counting sort: experimentation

- Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has L2 cache of 8MB.
- CPU times in seconds for both classical and cache-friendly counting sort algorithm.
- The keys are random machine integers in the range $[0, n]$.

<table>
<thead>
<tr>
<th>n</th>
<th>classical counting sort</th>
<th>cache-friendly counting sort (bucketing + sorting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000000</td>
<td>13.74</td>
<td>4.66 ($= 3.04 + 1.62$)</td>
</tr>
<tr>
<td>2000000000</td>
<td>30.20</td>
<td>9.93 ($= 6.16 + 3.77$)</td>
</tr>
<tr>
<td>3000000000</td>
<td>50.19</td>
<td>16.02 ($= 9.32 + 6.70$)</td>
</tr>
<tr>
<td>4000000000</td>
<td>71.55</td>
<td>22.13 ($= 12.50 + 9.63$)</td>
</tr>
<tr>
<td>5000000000</td>
<td>94.32</td>
<td>28.37 ($= 15.71 + 12.66$)</td>
</tr>
<tr>
<td>6000000000</td>
<td>116.74</td>
<td>34.61 ($= 18.95 + 15.66$)</td>
</tr>
</tbody>
</table>
Cache-friendly counting sort: extension to sample sort

1. Split the input array into \(\sqrt{n} \) contiguous subarrays of size \(\sqrt{n} \) and sort those subarrays recursively.
2. Choose \(m := \sqrt{n} - 1 \) “good” pivot values \(p_1 \leq p_2 \leq \cdots \leq p_m \).
3. Distribute subarrays into buckets \(B_1, \ldots, B_{m+1} \) according to pivots. Bucket \(B_i \) has size \(n_i \approx \sqrt{n} \), expectedly.
4. Recursively sort the buckets
5. Copy-concatenate the buckets back to the input array.

Cache complexity analysis of Sample sort

- Step 1 costs \(\sqrt{n}Q(\sqrt{n}) \), Step 4 (expectedly) costs \(\sqrt{n}Q(\sqrt{n}) \) also and Steps 2, 3, 5 cost \(\Theta(n/L) \). Thus, we have:

\[
Q(n) = \begin{cases}
\frac{n}{L} & \text{if } n < Z \quad \text{(base case)} \\
2\sqrt{n}Q(\sqrt{n}) + \Theta(n/L) & \text{if } n \geq Z \quad \text{(recurrence)}
\end{cases}
\]

- This yields \(Q(n) \in \Theta(\frac{n}{L} \log_Z(n)) \).
Transposition of a matrix

Assume that multi-dimensional arrays (and in particular dense rectangular matrices) are stored in memory using a row-major layout.

Assume that each array coefficient is stored on a single word.

Therefore, reading a $k \times k$ block may incur $k(\lceil k/L \rceil + 1)$ caches misses.

In this exercise sheet, determine the cache complexity of the proposed algorithms for transposing a square matrix of order n. Assume n large (say $n > Z$) and n is a power of 2.
Transposition of a matrix

Assume that multi-dimensional arrays (and in particular dense rectangular matrices) are stored in memory using a row-major layout.

Assume that each array coefficient is stored on a single word.

Therefore, reading a $k \times k$ block may incur $k(\lceil k/L \rceil + 1)$ caches misses.

In this exercise sheet, determine the cache complexity of the proposed algorithms for transposing a square matrix of order n. Assume n large (say $n > Z$) and n is a power of 2.

Algo 1: $\Theta(n^2)$. Algo 2: $\Theta(\log_2(\frac{n}{Z}) \frac{n^2}{L})$. Algo 3: $\Theta(n^2/L)$. Proofs and precise estimates below.
Matrix transposition: various algorithms

- **Matrix transposition problem:** Given an $m \times n$ matrix A stored in a row-major layout, compute and store A^T into an $n \times m$ matrix B also stored in a row-major layout.

- We shall describe a recursive cache-oblivious algorithm which uses $\Theta(mn)$ work and incurs $\Theta(1 + mn/L)$ cache misses, which is optimal.

- The straightforward algorithm employing doubly nested loops incurs $\Theta(mn)$ cache misses on one of the matrices when $m \gg Z/L$ and $n \gg Z/L$.

- We shall start with an apparently good algorithm and use complexity analysis to show that it is even worse than the straightforward algorithm.
Matrix transposition: a first divide-and-conquer (1/4)

- For simplicity, assume that our input matrix A is square of order n and that n is a power of 2, say $n = 2^k$.
- We divide A into four square quadrants of order $n/2$ and we have

\[
A = \begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}.
\]

- This observation yields an “in-place” algorithm:

1. If $n = 1$ then return A.
2. If $n > 1$ then
 1. recursively compute $\begin{pmatrix} t A_{1,1} & t A_{2,1} \\ t A_{1,2} & t A_{2,2} \end{pmatrix}$ in place as

 \[
 \begin{pmatrix}
 t A_{1,1} & t A_{1,2} \\
t A_{2,1} & t A_{2,2}
\end{pmatrix}
 \]

 2. exchange $t A_{1,2}$ and $t A_{2,1}$.

- What is the number $M(n)$ of memory accesses to A, performed by this algorithm on an input matrix A of order n?
Matrix transposition: a first divide-and-conquer (2/4)

- $M(n)$ satisfies the following recurrence relation

$$M(n) = \begin{cases}
0 & \text{if } n = 1 \\
4M(n/2) + 2(n/2)^2 & \text{if } n > 1.
\end{cases}$$

- Unfolding the tree of recursive calls or using the Master’s Theorem, one obtains:

$$M(n) = 2(n/2)^2 \log_2(n).$$

- This is worse than the straightforward algorithm (which employs doubly nested loops). Indeed, for this latter, we have $M(n) = n^2 - n$. Explain why!

- Despite of this negative result, we shall analyze the cache complexity of this first divide-and-conquer algorithm. Indeed, it provides us with an easy training exercise

- We shall study later a second and efficiency-optimal divide-and-conquer algorithm, whose cache complexity analysis is more involved.
Matrix transposition: a first divide-and-conquer (3/4)

- We shall determine $Q(n)$ the number of cache misses incurred by our first divide-and-conquer algorithm on a (Z, L)-ideal cache machine.
- For n small enough, the entire input matrix or the entire block (input of some recursive call) fits in cache and incurs only the cost of a scanning. Because of possible misalignment, that is, $n([n/L] + 1)$.
- **Important:** For simplicity, some authors write n/L instead of $[n/L]$. This can be dangerous.
- **However:** these simplifications are fine for asymptotic estimates, keeping in mind that n/L is a rational number satisfying

$$n/L - 1 \leq [n/L] \leq n/L \leq [n/L] \leq n/L + 1.$$

Thus, for a fixed L, the functions $[n/L]$, n/L and $[n/L]$ are asymptotically of the same order of magnitude.

- We need to translate “for n small enough” into a formula. We claim that there exists a real constant $\alpha > 0$ s.t. for all n and Z we have

$$n^2 < \alpha Z \implies Q(n) \leq n^2/L + n.$$
Matrix transposition: a first divide-and-conquer (4/4)

- $Q(n)$ satisfies the following recurrence relation

\[
Q(n) = \begin{cases}
 \frac{n^2}{L} + n & \text{if } n^2 < \alpha Z \\
 4Q(n/2) + \frac{n^2}{2L} + n & \text{if } n^2 \geq \alpha Z
\end{cases}
\]

(base case)
(recurrence)

- Indeed, **exchanging 2 blocks** amount to $2((n/2)^2/L + n/2)$ accesses.
- Unfolding the recurrence relation k times (more details in class) yields

\[
Q(n) = 4^k Q\left(\frac{n}{2^k}\right) + k \frac{n^2}{2L} + (2^k - 1)n.
\]

- The minimum k for reaching the base case satisfies $\frac{n^2}{4^k} = \alpha Z$, that is, $4^k = \frac{n^2}{\alpha Z}$, that is, $k = \log_4(\frac{n^2}{\alpha Z})$. This implies $2^k = \frac{n}{\sqrt{\alpha Z}}$ and thus

\[
Q(n) \leq \frac{n^2}{\alpha Z} \left(\alpha Z/L + \sqrt{\alpha Z}\right) + \log_4\left(\frac{n^2}{\alpha Z}\right) \frac{n^2}{2L} + \frac{n}{\sqrt{\alpha Z}} n
\leq n^2/L + 2\frac{n^2}{\sqrt{\alpha Z}} + \log_4\left(\frac{n^2}{\alpha Z}\right) \frac{n^2}{2L}.
\]
If \(n \geq m \), the \texttt{Rec-Transpose} algorithm partitions

\[
A = (A_1 \ A_2), \quad B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}
\]

and recursively executes \texttt{Rec-Transpose}(\(A_1, B_1\)) and \texttt{Rec-Transpose}(\(A_2, B_2\)).

If \(m > n \), the \texttt{Rec-Transpose} algorithm partitions

\[
A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad B = (B_1 \ B_2)
\]

and recursively executes \texttt{Rec-Transpose}(\(A_1, B_1\)) and \texttt{Rec-Transpose}(\(A_2, B_2\)).
Recall that the matrices are stored in row-major layout.

Let α be a constant sufficiently small such that the following two conditions hold:

(i) two sub-matrices of size $m \times n$ and $n \times m$, where $\max\{m, n\} \leq \alpha L$, fit in cache

(ii) even if each row starts at a different cache line.

We distinguish three cases for the input matrix A:

- **Case I**: $\max\{m, n\} \leq \alpha L$.
- **Case II**: $m \leq \alpha L < n$ or $n \leq \alpha L < m$.
- **Case III**: $m, n > \alpha L$.

Case I: $\max \{m, n\} \leq \alpha L$.

- Both matrices fit in $O(1) + 2mn/L$ lines.

- From the choice of α, the number of lines required for the entire computation is at most Z/L.

- Thus, no cache lines need to be evicted during the computation. Hence, it feels like we are simply scanning A and B.

- Therefore $Q(m, n) \in O(1 + mn/L)$.
Case II: \(m \leq \alpha L < n \) or \(n \leq \alpha L < m \).

- Consider \(n \leq \alpha L < m \). The \texttt{Rec-Transpose} algorithm divides the greater dimension \(m \) by 2 and recurses.
- At some point in the recursion, we have \(\alpha L/2 \leq m \leq \alpha L \) and the whole computation fits in cache. At this point:
 - the input array resides in contiguous locations, requiring at most \(\Theta(1 + nm/L) \) cache misses
 - the output array consists of \(nm \) elements in \(n \) rows, where in the worst case every row starts at a different cache line, leading to at most \(\Theta(n + nm/L) \) cache misses.
- Since \(m/L \in [\alpha/2, \alpha] \), the total cache complexity for this base case is \(\Theta(1 + n) \), yielding the recurrence (where the resulting \(Q(m, n) \) is a worst case estimate)

\[
Q(m, n) = \begin{cases}
\Theta(1 + n) & \text{if } m \in [\alpha L/2, \alpha L], \\
2Q(m/2, n) + O(1) & \text{otherwise};
\end{cases}
\]

whose solution satisfies \(Q(m, n) = \Theta(1 + mn/L) \).
Case III: $m, n > \alpha L$.

- As in Case II, at some point in the recursion both n and m fall into the range $[\alpha L/2, \alpha L]$.
- The whole problem fits into cache and can be solved with at most $\Theta(m + n + mn/L)$ cache misses.
- The **worst case cache miss estimate** satisfies the recurrence

$$ Q(m, n) = \begin{cases}
\Theta(m + n + mn/L) & \text{if } m, n \in [\alpha L/2, \alpha L], \\
2Q(m/2, n) + O(1) & \text{if } m \geq n, \\
2Q(m, n/2) + O(1) & \text{otherwise};
\end{cases} $$

whose solution is $Q(m, n) = \Theta(1 + mn/L)$.

- **Therefore, the Rec-Transpose algorithm has optimal cache complexity.**
- Indeed, for an $m \times n$ matrix, the algorithm must write to mn distinct elements, which occupy at least $\lceil mn/L \rceil$ cache lines.
1-D FFTs: classical cache friendly algorithm

Cache friendly 1-D FFT

- If the input vector does not fit in cache, a recursive algorithm is applied.
- Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes over.
- On an ideal cache of Z words with L words per cache line this yields a cache complexity of $\Omega(n/L(\log_2(n) - \log_2(Z)))$ which is not optimal.

```latex
\begin{align*}
\text{FFT}([a_0, a_1, \cdots, a_{n-1}], \omega) \\
\text{if } n \leq \text{HTHRESHOLD} \text{ then} \\
\quad \text{ArrayBitReversal}(a_0, a_1, \cdots, a_{n-1}) \\
\quad \text{return } \text{FFT\_iterative\_in\_cache}([a_0, a_1, \cdots, a_{n-1}], \omega) \\
\text{end if} \\
\quad \text{Shuffle}(a_0, a_1, \cdots, a_{n-1}) \\
\quad [a_0, a_1, \cdots, a_{n/2-1}] = \text{FFT}([a_0, a_1, \cdots, a_{n/2-1}], \omega^2) \\
\quad [a_{n/2}, a_{n/2+1}, \cdots, a_{n-1}] = \text{FFT}([a_{n/2}, a_{n/2+1}, \cdots, a_{n-1}], \omega^2) \\
\quad \text{return } [a_0 + a_{n/2}, a_1 + \omega \cdot a_{n/2+1}, \cdots, a_{n/2-1} - \omega^{n/2-1} \cdot a_{n-1}] 
\end{align*}
```
1-D FFTs: cache complexity optimal algorithm

Cache optimal 1-D FFT

- Instead of processing row-by-row, one computes as deep as possible while staying in cache (resp. registers): this yields a blocking strategy.
- On the left picture, assuming $Z = 4$, on the first (resp. last) two rows, we successively compute the red, green, blue, orange 4-point blocks.
- On an ideal cache of Z words with L words per cache line the cache complexity drops to $O(n/L(\log_2(n)/\log_2(Z)))$ which is optimal.
1-D FFTs in BPAS

In addition to the above optimal blocking strategy, instruction level parallelism (ILP) is carefully considered: vectorized instructions are explicitly used and instruction pipeline usage is highly optimized.

BPAS 1-D FFT code automatically generated by configurable Python scripts.
Notations

- For two positive integers a, b, we write a/b instead of $\lfloor a/b \rfloor$.
- Let \mathbb{k} be a finite field so that each element of \mathbb{k} can be stored in a machine word.
- We assume that each polynomial P of $\mathbb{k}[x]$ is stored in a vector V_P of $d + 1$ words, aligned in memory, where d is the degree of P, and so that the coefficient of x^i in P is stored in the $(d - i)$-th slot of V_P, for $0 \leq i \leq d$.
- Let $A = \sum_{i=0}^{m-1} a_i x^i$ and $B = \sum_{i=0}^{n-1} b_i x^i$ be in $\mathbb{k}[x]$ with $m \geq n$.
Plain polynomial multiplication

- Recall $A = \sum_{i=0}^{m-1} a_i x^i$ and $B = \sum_{i=0}^{n-1} b_i x^i$ in $k[x]$ with $m \geq n$.
- Counting cache misses, the plain multiplication incurs $O((m/L + 1)n)$.
- This estimate can be substantially improved by performing the plain multiplication in a divide-and-conquer manner, following the scheme of the matrix multiplication algorithm of [20].
- This recursive algorithm is presented in [14]; it runs within $O(mn/(ZL))$.
- It leads to clear gains on Graphics Processing Units (GPUs) due to the fine grained control of hardware resources.
- However, with a CPU implementation, for relatively small n and m, any plain multiplication algorithm is outperformed by an FFT-based polynomial multiplication.
Plain polynomial division

- Let $Q = \text{quo}(A, B)$ and $R = \text{rem}(A, B)$
- The schoolbook plain Euclidean division, using a two-loop nest, computes Q and R, within
 \[O((m - n + 1)(n/L + 3)) \]
- By means of a blocking strategy, this estimate can be improved to
 \[O(((2Z + 9L)(m - n + 1)(n/(Z^2L) + 1)) \]
 See [24, 25].
- This strategy is inspired by the Half-Gcd algorithm, see Lemma 11.1 in Chapter 11 of [23] and the next slide.
A naive approach consists in doing one division step (that is, a combination of two vectors) by one kernel.

That is, each thread (in thread-block) reads two coefficients (one from A and one from B), combines them and writes the result back to A.

This causes many memory transactions (equivalent to cache misses) between the global memory of the GPU and the local memories of the streaming multi-processors,
Each thread-block loads the \(s \) leading coefficients of both \(A \) and \(B \), and a segment of \(2s \) consecutive coefficients from both \(A \) and \(B \).

So that each thread-block can independently work on (possibly) \(s \) division steps.

The authors of [24, 25] show how to determine \(s \) in a way minimizing cache misses, which leads to the above complexity estimate.
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extacting patterns
Optimizing cache complexity

- For all results discussed above, the key towards cache-oblivious or cache optimal algorithms is a *blocking strategy*.
- This blocking strategy may take different forms: from the *buckets* of counting sort to *matrix blocks* in dense linear algebra.
- While blocking strategies naturally lead to recursive algorithms, the implementation of the latter are often made in the form of *for-loop nests*, which is more suitable for compiler optimization.
In the context of multi/many-core processors

- When multiple threads are cooperating, cores executing those threads share a common physical address space, causing a cache coherence problem.

- Two well-known consequences of this problem are true sharing and false sharing:
 - In the former, two cores are accessing the same memory address, with at least one of them for writing.
 - In the latter, two cores are accessing the same cache-line (but not the same memory address), with at least one of them for writing.

- Other parallel overheads should be watched like memory contention, scheduling and synchronization costs, which are very hard to take into account in complexity analysis [24, 28, 30].

- Nevertheless, on multicore processors, a good practical indication about what to expect in $W(n)/Q(n; Z, L)$, in addition to the more standard ration $T_1(n)/T_\infty(n)$.
Data reshaping

- Other performance degradation can come from *for-loop overheads*.
- If a loop has a few iterations, then overheads due to *branch misprediction* can have an impact, since a misprediction delay can be between 10 and 35 clock cycles [17].
- Trying to avoid those issues with for-loop nests has several advantages, including reducing overheads due to loop counter manipulation.

- In the context of dense multivariate polynomials over finite fields, this idea was studied in [31, 38] for *multi-threaded multi-dimensional FFTs (and TFTs)* and their application to polynomial multiplication.
- The authors systematically reduce multivariate polynomials to *balanced bivariate polynomials*. *Balanced* here means that partial degrees are equal or as close as possible.
- A theoretical study, supported by extensive experimentation, shows that this approach *minimizes cache misses* and *maximizes parallelism*.
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
As we saw, a blocking strategy extracts opportunities for improving data and spatial locality.

Similarly, a parallel programming pattern is a meta-algorithm or algorithmic structure used to organize code for efficient parallel computation.

Well-known parallel patterns are fork-join, parallel map, stencil, and pipeline.

We shall illustrate those patterns with two types of computations:

1. polynomial system solving via incremental triangular decomposition (Maple’s Triangularize command) [2, 4, 12],
2. power series arithmetic via lazy evaluation [7, 8, 10].
Preliminary observations

- Different parallel patterns may apply to the same algorithm:
 - the construction of Pascals’ Triangle can be done in a divide-and-conquer way (dividing the triangle into 2 triangles and a square), or
 - as a stencil pattern (in conjunction with a blocking strategy) to the formula, see [13]

- Keep in mind the targeted hardware:
 - the parallelization of vector addition on a CPU multicore processor is limited (and yields low speedup factors) because of various overheads (memory contention, etc.) while
 - it can implemented in a SIMD fashion on GPU with good speedup factors

- Keep in mind thread scheduling and synchronization costs
 - Doing $A\bar{v}$, for a triangular dense square matrix A, by computing concurrently all products of a row of A by \bar{v} would keep cores idle for (at least) half of the execution time, while
 - the fork-join pattern (applied to a divide-and-conquer approach) would make better use of resources.
Regular vs irregular tasks

- In our previous three examples, the work to be executed in parallel can be decomposed evenly and easily with predictable dependencies and predictable computing resource needs; one then uses the term *regular parallelism*.

- The term *irregular parallelism* refers to the opposite case, when the decomposition of work into tasks creates unbalanced work, dissimilar tasks, unpredictable dependencies or unpredictable computing resource needs.

- Decomposing polynomial systems (unless they have properties like *strongly unmixed* or *regular sequence*) fits in that second category:
 - Some systems never split
 - Some split only at the final step, leaving very little concurrency
 - Some split into one “main” component and several degenerative cases
Incremental solving: a toy example

\[
F = \begin{cases}
 y + w \\
 5w^2 + y \\
 xz + z^3 + z \\
 x^5 + x^3 + z
\end{cases}
\]

\[
F[1] \downarrow \{y + w\}
\]

\[
F[2] \downarrow \{5y + 1\}, \{y\} \uparrow \{5w - 1\}, \{w\}
\]

\[
F[3] \downarrow \{x + z^2 + 1\}, \{5y + 1\}, \{x + z^2 + 1\}, \{y\} \uparrow \{5w - 1\}, \{5w - 1\}
\]

\[
F[4] \downarrow \{x + z^2 + 1\}, \{x - z\}, \{x\}, \{x^2 + 1\}, \{x + z^2 + 1\}, \{x - z\} \uparrow \{5y + 1\}, \{5y + 1\}, \{5y + 1\}, \{5w - 1\}, \{5w - 1\}, \{5w - 1\}
\]
Incremental solving: tracing a non-toy example

- more parallelism exposed as more components found
- yet, work unbalanced between branches
- mechanism needed for dynamic parallelism: “workpile” or “task pool”
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Regular chains, notations

Let \(k \) be a perfect field, and \(k[X] \) have ordered vars. \(X = X_1 < \cdots < X_n \)

A triangular set \(T \) is a regular chain if either \(T \) is empty, or \(T_v^- \) is a regular chain and \(h \) is regular modulo \(\text{sat}(T_v^-) \)

\[
T_v = h v^d + \text{tail}(T_v) \\
T_v^- = \{ \}
\]

\(\subset k[X] \)

Example:

\[
T = \{ (2y + ba)x - by + a^2 \}
\]

\(\subset \mathbb{Q}[b < a < y < x] \)

Saturated ideal of a regular chain:

- \(\text{sat}(T) = (\text{sat}(T_v^-) + T_v) : h^\infty \)
- \(\text{sat}(\emptyset) = \langle 0 \rangle \)

Quasi-component of a regular chain:

- \(W(T) := V(T) \setminus V(h_T), \ h_T := \prod_{p \in T} h_p \)
- \(\overline{W(T)} = V(\text{sat}(T)) \)
Triangular decomposition algorithms

A **triangular decomposition** of an input system $F \subseteq k[X]$ is a set of regular chains T_1, \ldots, T_e such that:

(a) $V(F') = \bigcup_{i=1}^{e} W(T_i)$, in the sense of Kalkbrener, or

(b) $V(F') = \bigcup_{i=1}^{e} W(T_i)$, in the sense of Wu and Lazard

Triangular decomposition by incremental **intersection** has key subroutines:

Intersect. Given $p \in k[X], T \subset k[X]$, compute T_1, \ldots, T_e such that:

$V(p) \cap W(T) \subseteq \bigcup_{i=1}^{e} W(T_i) \subseteq V(p) \cap \overline{W(T)}$

Regularize: Given $p \in k[X], T \subset k[X]$, compute T_1, \ldots, T_e such that:

(i). $W(T) \subseteq \bigcup_{i=1}^{e} W(T_i) \subseteq W(T)$, and

(ii). $p \in \text{sat}(T_i)$ or p is regular modulo $\text{sat}(T_i)$, for $i = 1, \ldots, e$

RegularGCD: Given $p \in k[X]$ with main variable v, $T = \{T_v\} \cup T_v^-$, find pairs (g_i, T_i) such that:

(i). $W(T_v^-) \subseteq \bigcup_{i=1}^{e} W(T_i) \subseteq \overline{W(T_v^-)}$, and

(ii). g_i is a regular gcd of p, T_v w.r.t. T_i
Finding splittings: GCDs and Regularize

Let \(p \in k[X] \setminus k \) with main variable \(v \). Let \(T = T_v^- \cup T_v \). All are square free.

A **regular GCD** \(g \) of \(p \) and \(T_v \) w.r.t. \(\text{sat}(T_v^-) \) has:

1. \(h_g \) is regular modulo \(\text{sat}(T_v^-) \)
2. \(g \in \langle p, T_v \rangle \) (every solution of \(p \) and \(T_v \) solves \(g \) as well)
3. if \(\deg(g, v) > 0 \), then \(g \) pseudo-divides \(p \) and \(T_v \).

Let \(q = p\text{quo}(T_v, g) \). In Regularize, \(g \) says where \(p \) vanishes or is regular:

\[
W(T) \subseteq W(T_v^- \cup g) \cup W(T_v^- \cup q) \cup (V(h_g) \cap W(T)) \subseteq \overline{W(T)}
\]

In Intersect, splittings are found via recursive calls:

\[
V(p) \cap W(T) \subseteq W(T_v^- \cup g) \cup (V(p) \cap (V(h_g) \cap W(T))) \subseteq V(p) \cap \overline{W(T)}
\]
The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a regular initial, regularizing finds splittings via a case discussion

- either the initial is regular, or it is not regular

\[f = (y + 1)x^2 - x \]

\[T = \begin{cases}
 y^2 - 1 = 0 \\
 z - 1 = 0
\end{cases} \]

\[f = x \quad T_1 = \begin{cases}
 y + 1 = 0 \\
 z - 1 = 0
\end{cases} \]

\[f = 2x^2 - x \quad T_2 = \begin{cases}
 y - 1 = 0 \\
 z - 1 = 0
\end{cases} \]
All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of mutually recursive functions do the heavy-lifting.

- In all cases, polynomials are forced to be regular and splittings are (possibly) found via Regularize
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Parallel map and workpile

Map is the possibly the most well-known parallel programming pattern

- execute a function on each item in a collection concurrently
- with multiple Maps, tasks must execute in *lockstep*

Workpile generalizes Map to a *queue of a tasks*, allowing tasks to add more tasks, thus enabling *load-balancing* as tasks start asynchronously

- one possible implementation of workpile is a *thread pool*
Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(F)

Input: a finite set $F \subseteq k[X]

Output: regular chains $T_1, \ldots, T_e \subseteq k[X]$ encoding the solutions of $V(F)$

1: $T := \{\emptyset\}$
2: for $p \in F$ do
3: $T' := \{\}$
4: for $T \in T$ Map ▶ map Intersect over the current components
5: $T' := T' \cup \text{Intersect}(p, T)$
6: $T := T'$
7: return RemoveRedundantComponents(T)

- **Coarse-grained parallelism**: each Intersect represents substantial work
- At each “level” there are $|T|$ components with which to intersect, yielding $|T|$ concurrent calls to intersect
- Performs a *breadth-first search*, with intersects occurring in lockstep
Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(F)

Input: a finite set $F \subseteq k[X]$

Output: regular chains $T_1, \ldots, T_e \subseteq k[X]$ encoding the solutions of $V(F)$

1. $Tasks \leftarrow \{ (F, \emptyset) \}$; $\mathcal{T} \leftarrow \{\}$
2. while $|Tasks| > 0$ do
3. \hspace{1em} $(P, T) \leftarrow$ pop a task from $Tasks$
4. \hspace{1em} Choose a polynomial $p \in P$; $P' \leftarrow P \setminus \{p\}$
5. \hspace{1em} for T' in $\text{Intersect}(p, T)$ do
6. \hspace{2em} if $|P'| = 0$ then $\mathcal{T} \leftarrow \mathcal{T} \cup \{T'\}$
7. \hspace{2em} else $Tasks \leftarrow Tasks \cup \{(P', T')\}$
8. return $\text{RemoveRedundantComponents}(\mathcal{T})$

- $Tasks$ is really a task scheduler augmented with a thread pool
- Tasks create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Generators and pipelines

Generators
- A generator function (i.e. iterator) yields data items one at a time, allowing the function’s control flow to resume on its next execution.

Asynchronous Generators, Producer-Consumer
- `async generators` can concurrently produce items while the generator’s caller is consuming items, creating a producer-consumer pair.

Pipeline
- By connecting many producer-consumer pairs we create a `pipeline`.
- Pipelines need not be linear, they can be `directed acyclic graphs`.
Algorithm 3 \textbf{Intersect}(p, T)

\textbf{Input:} \(p \in k[X] \setminus k \), \(v := \text{mvar}(p) \), a regular chain \(T \) s.t. \(T = T_v^+ \cup T_v^- \)

\textbf{Output:} regular chains \(T_1, \ldots, T_e \) satisfying specs.

1: \text{for} \ ((g_i, T_i) \in \text{RegularGCD}(p, T, v, T_v^-)) \text{ do}
2: \quad \text{if} \ \text{dim}(T_i) \neq \text{dim}(T_v^-) \text{ then}
3: \quad \quad \text{for} \ T_{i,j} \in \text{Intersect}(p, T_i) \text{ do}
4: \quad \quad \quad \text{yield} \ T_{i,j}
5: \quad \quad \text{else}
6: \quad \quad \quad \text{if} \ g_i \notin k \text{ and } \text{deg}(g_i, v) > 0 \text{ then}
7: \quad \quad \quad \quad \text{yield} \ T_i \cup \{g_i\}
8: \quad \quad \quad \text{for} \ T_{i,j} \in \text{Intersect}(\text{lc}(g_i, v), T_i) \text{ do}
9: \quad \quad \quad \quad \text{for} \ T' \in \text{Intersect}(p, T_{i,j}) \text{ do}
10: \quad \quad \quad \quad \quad \text{yield} \ T'

- \textbf{yield} "produces" a single data item, and then continues computation
- each \textbf{for} loop consumes a data item one at a time from the generator
Generators are both producers and consumers.

Algorithm 3 \textbf{Intersect} \((p, T)\)

1: \textbf{for} \((g_i, T_i) \in \text{RegularGCD}(p, T_v, T_v^-)\) \textbf{do}
2: \quad \textbf{if} \ dim(T_i) \neq dim(T_v^-) \textbf{then}
3: \quad \quad \textbf{for} \(T_{i,j} \in \text{Intersect}(p, T_i)\) \textbf{do}
4: \quad \quad \quad \textbf{yield} \(T_{i,j}\)
5: \quad \textbf{else}
6: \quad \quad \textbf{if} \ g_i \notin k \text{ and } \deg(g_i, v) > 0 \textbf{then}
7: \quad \quad \quad \textbf{yield} \(T_i \cup \{g_i\}\)
8: \quad \quad \textbf{for} \(T_{i,j} \in \text{Intersect}(\text{lcm}(g_i, v), T_i)\) \textbf{do}
9: \quad \quad \quad \textbf{for} \(T' \in \text{Intersect}(p, T_{i,j})\) \textbf{do}
10: \quad \quad \quad \quad \textbf{yield} \(T'\)

Algorithm 4 \textbf{Regularize} \((p, T)\)

1: \textbf{for} \((g_i, T_i) \in \text{RegularGCD}(p, T_v, T_v^-)\) \textbf{do}
2: \quad \text{▷ assume dim}(T_i) = \text{dim}(T_v^-)
3: \quad \textbf{if} \ 0 < \deg(g_i, v) < \deg(T_v, v) \textbf{then}
4: \quad \quad \textbf{yield} \(T_i \cup g_i\)
5: \quad \quad \textbf{yield} \(T_i \cup \text{pquo}(T_v, g_i)\)
6: \quad \quad \textbf{for} \(T_{i,j} \in \text{Intersect}(\text{lcm}(g_i, v), T_i)\) \textbf{do}
7: \quad \quad \quad \textbf{for} \(T' \in \text{Regularize}(p, T_{i,j})\) \textbf{do}
8: \quad \quad \quad \quad \textbf{yield} \(T'\)
9: \quad \textbf{else}
10: \quad \quad \textbf{yield} \(T_i\)

- Establishing mutually recursive functions as generators allows data to \textbf{stream} between subroutines; subroutines are effectively \textit{non-blocking}.
- Function call stack of generators creates a \textit{dynamic parallel pipeline}.
The subroutine pipeline

- All subroutines, as generators, allow the pipeline to evolve dynamically with the call stack.
- The call stack forms a **tree** if several generators are invoked by one consumer.
- This pipeline creates **fine-grained parallelism** since work diminishes with each recursive call.
- A thread pool is used and shared among all generators; generators run synchronously if the pool is empty.
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Divide-and-conquer and fork-join

- Divide a problem into sub-problems, solving each recursively
- Combine sub-solutions to produce a full solution
- **Fork**: execute multiple recursive calls in parallel (divide)
- **Join**: merge parallel execution back into serial execution (combine)
Removal of redundant components

After a system is solved, and many components found, we can remove components from the solution set that are contained within others.

- Follow a merge-sort approach; **spawn/fork** and **sync/join**

Algorithm 5 RemoveRedundantComponents(\mathcal{T})

Input: a finite set $\mathcal{T} = \{T_1, \ldots, T_e\}$ of regular chains

Output: an irredundant set \mathcal{T}' with the same algebraic set as \mathcal{T}

1. **if** $e = 1$ **then** return \mathcal{T}
2. $\ell \leftarrow \lceil e/2 \rceil$; $\mathcal{T}_{\leq \ell} \leftarrow \{T_1, \ldots, T_\ell\}$; $\mathcal{T}_{> \ell} \leftarrow \{T_{\ell+1}, \ldots, T_e\}$
3. $\mathcal{T}_1 :=$ **spawn** RemoveRedundantComponents($\mathcal{T}_{\leq \ell}$)
4. $\mathcal{T}_2 :=$ RemoveRedundantComponents($\mathcal{T}_{> \ell}$)
5. **sync**
6. $\mathcal{T}_1' := \emptyset$; $\mathcal{T}_2' := \emptyset$
7. **for** $T_1 \in \mathcal{T}_1$ **do**
 - **if** $\forall T_2 \in \mathcal{T}_2$ IsNotIncluded (T_1, T_2) **then** $\mathcal{T}_1' := \mathcal{T}_1' \cup \{T_1\}$
8. **for** $T_2 \in \mathcal{T}_2$ **do**
 - **if** $\forall T_1 \in \mathcal{T}_1'$ IsNotIncluded (T_2, T_1) **then** $\mathcal{T}_2' := \mathcal{T}_2' \cup \{T_2\}$
9. **return** $\mathcal{T}_1' \cup \mathcal{T}_2'$
Outline

1. Memory access patterns
1.1 Cache complexity estimates
1.2 Concluding remarks

2. Parallel Programming Patterns
2.1 Incremental triangular decompositions
2.2 Parallel map and workpile
2.3 Generators and pipelines
2.4 Divide-and-conquer and fork-join
2.5 Parallel incremental triangular decompositions: experimentation
2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
3.1 Multi-threading in C++
3.2 Implementing a thread pool
3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Experimentation setup

Thanks to Maplesoft, we have a collection of over 3000 real-world systems from: actual user data, the literature, bug reports. In this experimentation, we solve 2815 of these systems in under 2 hours.

Of these 2815 systems, 300 require greater than 0.1s to solve

- Non-trivial systems to warrant the overheads of parallelism

1739 of these 2815 systems do not split at all

- No speed-up expected; some slow-down is expected in these cases
- However, we include them to ensure that slow-down is minimal

These experiments are run on a node with 2x6-core Intel Xeon X560 processors (24 physical threads with hyperthreading)
Comparing the runtime performance of triangular decomposition in the RegularChains library of Maple 2020 against the serialized implementation in BPAS.
Speedup obtained from tasks and fork-join

The parallel-speedup obtained from using parallel triangularize tasks and parallel removal of redundant components (RRC) together for solving in Kalkbrener and Lazard modes.
Timings for a few well-known systems

<table>
<thead>
<tr>
<th>System</th>
<th>Kalkbrener Serial Time (s)</th>
<th>Speed-Up</th>
<th>Maple Ratio</th>
<th>Lazard Serial Time (s)</th>
<th>Speed-Up</th>
<th>Maple Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leykin-1</td>
<td>1.01</td>
<td>1.82</td>
<td>4.64</td>
<td>1.71</td>
<td>2.00</td>
<td>4.50</td>
</tr>
<tr>
<td>Sys2873</td>
<td>1.01</td>
<td>4.97</td>
<td>4.13</td>
<td>1.01</td>
<td>4.97</td>
<td>4.13</td>
</tr>
<tr>
<td>Gonnet</td>
<td>1.15</td>
<td>4.75</td>
<td>2.47</td>
<td>1.14</td>
<td>4.48</td>
<td>2.51</td>
</tr>
<tr>
<td>Sys1792</td>
<td>1.17</td>
<td>2.65</td>
<td>3.99</td>
<td>1.18</td>
<td>2.59</td>
<td>2.70</td>
</tr>
<tr>
<td>Sys2946</td>
<td>1.24</td>
<td>4.41</td>
<td>0.70</td>
<td>1.57</td>
<td>3.09</td>
<td>0.91</td>
</tr>
<tr>
<td>Sys2647</td>
<td>1.27</td>
<td>2.65</td>
<td>3.51</td>
<td>2.62</td>
<td>3.89</td>
<td>3.06</td>
</tr>
<tr>
<td>Pappus</td>
<td>1.27</td>
<td>3.01</td>
<td>3.08</td>
<td>5.65</td>
<td>3.88</td>
<td>4.15</td>
</tr>
<tr>
<td>Sys2945</td>
<td>1.30</td>
<td>3.57</td>
<td>2.77</td>
<td>1.29</td>
<td>3.48</td>
<td>2.82</td>
</tr>
<tr>
<td>W33</td>
<td>1.38</td>
<td>2.59</td>
<td>1.93</td>
<td>1.63</td>
<td>2.46</td>
<td>1.80</td>
</tr>
<tr>
<td>Sys3011</td>
<td>1.51</td>
<td>2.19</td>
<td>1.68</td>
<td>1.55</td>
<td>2.23</td>
<td>1.88</td>
</tr>
<tr>
<td>Sys2916</td>
<td>1.52</td>
<td>2.22</td>
<td>1.65</td>
<td>1.55</td>
<td>2.22</td>
<td>1.88</td>
</tr>
<tr>
<td>MontesS16</td>
<td>1.56</td>
<td>4.20</td>
<td>2.21</td>
<td>1.58</td>
<td>3.98</td>
<td>2.23</td>
</tr>
<tr>
<td>Wu-Wang</td>
<td>1.61</td>
<td>1.91</td>
<td>2.41</td>
<td>2.04</td>
<td>2.24</td>
<td>1.90</td>
</tr>
<tr>
<td>Hairer-2-BGK</td>
<td>1.80</td>
<td>3.33</td>
<td>1.47</td>
<td>1.60</td>
<td>2.52</td>
<td>1.83</td>
</tr>
<tr>
<td>Sys2353</td>
<td>2.16</td>
<td>4.35</td>
<td>3.84</td>
<td>2.23</td>
<td>4.62</td>
<td>3.76</td>
</tr>
<tr>
<td>W2</td>
<td>2.19</td>
<td>1.87</td>
<td>2.96</td>
<td>2.50</td>
<td>2.16</td>
<td>2.50</td>
</tr>
<tr>
<td>ald-3-5</td>
<td>2.22</td>
<td>2.68</td>
<td>4.09</td>
<td>2.22</td>
<td>2.68</td>
<td>4.09</td>
</tr>
<tr>
<td>Sys2875</td>
<td>2.44</td>
<td>6.23</td>
<td>3.17</td>
<td>2.44</td>
<td>6.23</td>
<td>3.17</td>
</tr>
<tr>
<td>8-3-config-Li</td>
<td>2.49</td>
<td>4.70</td>
<td>3.47</td>
<td>9.63</td>
<td>4.52</td>
<td>4.15</td>
</tr>
<tr>
<td>Sys2128</td>
<td>3.37</td>
<td>7.91</td>
<td>4.53</td>
<td>3.29</td>
<td>7.75</td>
<td>4.54</td>
</tr>
<tr>
<td>Sys2881</td>
<td>3.60</td>
<td>5.57</td>
<td>2.87</td>
<td>3.60</td>
<td>5.57</td>
<td>2.87</td>
</tr>
<tr>
<td>Sys2885</td>
<td>3.70</td>
<td>7.82</td>
<td>2.33</td>
<td>3.69</td>
<td>8.48</td>
<td>2.39</td>
</tr>
<tr>
<td>Sys2297</td>
<td>4.40</td>
<td>4.73</td>
<td>3.52</td>
<td>4.34</td>
<td>4.80</td>
<td>3.35</td>
</tr>
<tr>
<td>W5</td>
<td>6.96</td>
<td>5.83</td>
<td>3.89</td>
<td>6.99</td>
<td>5.88</td>
<td>3.36</td>
</tr>
<tr>
<td>Reif</td>
<td>7.81</td>
<td>5.74</td>
<td>1.96</td>
<td>7.81</td>
<td>5.74</td>
<td>1.96</td>
</tr>
<tr>
<td>Sys2161</td>
<td>8.80</td>
<td>7.91</td>
<td>5.40</td>
<td>8.67</td>
<td>7.85</td>
<td>4.99</td>
</tr>
<tr>
<td>W44</td>
<td>10.14</td>
<td>8.61</td>
<td>2.08</td>
<td>10.67</td>
<td>8.67</td>
<td>1.88</td>
</tr>
<tr>
<td>Mehta3</td>
<td>10.19</td>
<td>7.65</td>
<td>1.75</td>
<td>9.84</td>
<td>1.89</td>
<td>4.75</td>
</tr>
<tr>
<td>Sys2449</td>
<td>10.54</td>
<td>8.47</td>
<td>4.86</td>
<td>10.85</td>
<td>8.84</td>
<td>4.17</td>
</tr>
<tr>
<td>Sys2882</td>
<td>12.50</td>
<td>5.29</td>
<td>2.51</td>
<td>16.69</td>
<td>6.06</td>
<td>2.50</td>
</tr>
<tr>
<td>Sys2943</td>
<td>17.25</td>
<td>2.60</td>
<td>1.17</td>
<td>21.90</td>
<td>2.65</td>
<td>1.35</td>
</tr>
<tr>
<td>dgp6</td>
<td>29.04</td>
<td>8.49</td>
<td>2.76</td>
<td>37.38</td>
<td>10.27</td>
<td>2.03</td>
</tr>
<tr>
<td>Sys2880</td>
<td>56.57</td>
<td>10.10</td>
<td>4.32</td>
<td>57.37</td>
<td>10.47</td>
<td>3.60</td>
</tr>
<tr>
<td>Sys2874</td>
<td>70.43</td>
<td>10.22</td>
<td>5.39</td>
<td>70.93</td>
<td>10.17</td>
<td>3.06</td>
</tr>
<tr>
<td>Sys3270</td>
<td>149.11</td>
<td>3.72</td>
<td>1.04</td>
<td>149.11</td>
<td>3.72</td>
<td>1.04</td>
</tr>
<tr>
<td>Sys3283</td>
<td>167.82</td>
<td>3.46</td>
<td>1.90</td>
<td>167.82</td>
<td>3.46</td>
<td>1.90</td>
</tr>
<tr>
<td>Sys3281</td>
<td>214.47</td>
<td>3.07</td>
<td>1.22</td>
<td>214.47</td>
<td>3.07</td>
<td>1.22</td>
</tr>
<tr>
<td>KdV</td>
<td>456.08</td>
<td>3.68</td>
<td>1.38</td>
<td>462.34</td>
<td>3.63</td>
<td>1.37</td>
</tr>
<tr>
<td>Themos-net</td>
<td>1098.57</td>
<td>1.01</td>
<td>2.77</td>
<td>1098.57</td>
<td>1.01</td>
<td>2.77</td>
</tr>
<tr>
<td>tryme</td>
<td>3100.90</td>
<td>1.18</td>
<td>0.75</td>
<td>3100.90</td>
<td>1.18</td>
<td>0.75</td>
</tr>
<tr>
<td>childDraw-2</td>
<td>4409.91</td>
<td>1.25</td>
<td>0.32</td>
<td>4409.91</td>
<td>1.25</td>
<td>0.32</td>
</tr>
<tr>
<td>Sys1651</td>
<td>4792.44</td>
<td>1.16</td>
<td>1.39</td>
<td>4792.44</td>
<td>1.16</td>
<td>1.39</td>
</tr>
<tr>
<td>Sys2984</td>
<td>4793.55</td>
<td>1.16</td>
<td>1.39</td>
<td>4793.55</td>
<td>1.16</td>
<td>1.39</td>
</tr>
</tbody>
</table>
Inspecting the geometry: Sys2691

- Bottom “main” branch is majority of the work.
- Little overlap with the quickly-solved degenerative branches
- 2.13× speedup achieved; 88% efficient compared to work/span ratio
Inspection the geometry: Sys3295

- Up to 11 active branches at once, but overlap is only for 0.1s
- 4.94× speedup; 75% efficient
- Could consider other parallelism in “main” branch once all other tasks have finished and released resources (poly arithmetic, subresultants)
Incremental decomposition: conclusion

We have tackled irregular parallelism in a high-level algebraic algorithm

- our solution dynamically finds and exploits opportunities for concurrency
- uses dynamic parallel task management, async. generators, and DnC
- DnC is also used to construct subresultant chains via evaluation/interpolation techniques
- While async. generators do not help much (because the corresponding tasks became too fine-grained as we were optimizing polynomial arithmetic) they did help in the past (ISSAC 2021).
- All our parallel patterns (task management, async. generators, and DnC) are part of the BPAS library and do not rely on any other concurrency plafform;
- The benefit is that all those parallel patterns rely on the same scheduler.
Incremental decomposition: future work

Further parallelism can be found through:

- solving over a prime field, which produces more splittings;
- then lifting to solutions over the rational numbers, which can be done by evaluation/interpolation techniques.

Our parallel techniques could be employed in further high-level algorithms.

- e.g. factorization: pipelining between square-free, distinct-degree, and equal-degree factorization
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Notations

\(\mathbb{A} = k[[X_1, \ldots, X_n]] \) is the ring of multivariate power series over an algebraically closed field. Its maximal ideal is \(\mathcal{M} = \langle X_1, \ldots, X_n \rangle \).

\(f = \sum_{e \in \mathbb{N}^n} a_e X^e \in k[[X_1, \ldots, X_n]] \)

\(X^e = X_1^{e_1} \cdots X_n^{e_n}, \quad |e| = e_1 + \cdots + e_n \)

\(f(k) = \sum_{|e|=k} a_e X^e \) is the \textbf{homogeneous part} of \(f \) of degree \(k \)

\(f(k) \in \mathcal{M}^k \setminus \mathcal{M}^{k+1} \)

The units of \(\mathbb{A} \) are \(\{u \mid u \notin \mathcal{M}\} \)

\(\mathbb{A}[Y] \) is the ring of Univariate Polynomials over Power Series (UPoPS)

\(f = \sum_{i=0}^{d} a_i Y^i, \quad a_i \in \mathbb{A}, \quad a_d \neq 0 \) is a UPoPS of degree \(d \)

Denote degree of \(f \) in \(Y \) by \(\deg f = d \)
Lazy evaluation for power series arithmetic

Power series implemented using a lazy evaluation scheme allow for terms to be computed on demand, increasing precision as needed.

Our lazy power series require:
1. an update function to compute homogeneous parts of a given degree
2. capturing parameters required for the update function
3. storing previously computed homogeneous parts

Where update parameters are power series, they are called ancestors.

Addition, $f = g + h$
- $f(k) = g(k) + h(k)$

Multiplication $f = gh$
- $f(k) = \sum_{i=0}^{k} g(i) h(k-i)$
Ancestry example

\[p = f g + ab \]

\[f = \]
\[1 + x + y z + \ldots \]
\[g = \]
\[1 + z + y + \ldots \]
\[a = \]
\[1 + y + x^2 + \ldots \]
\[b = \]
\[1 + y z + x z + \ldots \]
\[h = \]
\[1 + z + y + x + y z + x z + x y + \ldots \]
\[c = \]
\[1 + y + y z + x z + x^2 + \ldots \]
\[p = \]
\[2 + z + 2 y + x + 2 y z + 2 x z + x y + x^2 + \ldots \]
Theorem (Weierstrass preparation)

Let \(f \in k[[X_1, \ldots, X_n]][Y] \) and assume \(f \not\equiv 0 \mod \mathcal{M}[Y] \). Write \(f = \sum_{i=0}^{d+m} a_i Y^i \in k[[X_1, \ldots, X_n]][Y] \), where \(d \geq 0 \) is the smallest integer such that \(a_d \notin \mathcal{M} \) and \(m \in \mathbb{Z}^+ \).

Then, there exists a unique pair \(p, \alpha \) satisfying the following:

1. \(f = p \alpha \),
2. \(\alpha \) is an invertible element of \(k[[X_1, \ldots, X_n]][[Y]] \),
3. \(p \) is a monic polynomial of degree \(d \),
4. writing \(p = Y^d + b_{d-1} Y^{d-1} + \cdots + b_1 Y + b_0 \), we have \(b_{d-1}, \ldots, b_0 \in \mathcal{M} \).

Theorem (Algebraic complexity for Weierstrass)

For \(f = p \alpha \in k[[X_1]][Y] \), \(\deg p = d \), \(\deg \alpha = m \), computing \(p \) and \(\alpha \) to precision \(k \) requires \(d(m + 1)k^2 + dmk \) operations in \(k \).
Weierstrass preparation by lazy evaluation

Let \(f = \sum_{\ell=0}^{d+m} a_{\ell} Y^{\ell}, \quad p = Y^d + \sum_{j=0}^{d-1} b_j Y^j, \quad \alpha = \sum_{i=0}^{m} c_i Y^i \) be UPoPS.

\(\iff \) \(a_\ell, b_j, c_i \) are power series

\(f = \alpha p \implies \)

\[
\begin{align*}
a_0 &= b_0 c_0 \\
a_1 &= b_0 c_1 + b_1 c_0 \\
\vdots \\
a_{d-1} &= b_0 c_{d-1} + b_1 c_{d-2} + \cdots + b_{d-2} c_1 + b_{d-1} c_0 \\
a_d &= b_0 c_d + b_1 c_{d-1} + \cdots + b_{d-1} c_1 + c_0 \\
\vdots \\
a_{d+m-1} &= b_{d-1} c_m + c_{m-1} \\
a_{d+m} &= c_m
\end{align*}
\]

We update \(p \) and \(\alpha \) by solving these equations modulo \(\mathcal{M}^k \), \(k = 1, 2, \ldots \)

modulo \(\mathcal{M} \) we have:

\(1 \) \(b_j \equiv 0 \mod \mathcal{M}, \ j = 0, \ldots, d-1 \quad 2 \) \(c_i \equiv a_i \mod \mathcal{M} \) for \(i = 0, \ldots, m. \)
Lazy Weierstrass Phase 1: update p

Let $f = \sum_{\ell} a_\ell Y^\ell$, $p = Y^d + \sum_j b_j Y^j$, $\alpha = \sum_i c_i Y^i$ be UPoPS.

|\downarrow a_ℓ, b_j, c_i are power series

|\downarrow $b_j \in \mathcal{M}$ for $j = 0, \ldots, d - 1$

\[
\begin{align*}
a_0 &= b_0 c_0 \\
a_1 - b_0 c_1 &= b_1 c_0 \\
a_2 - b_0 c_2 - b_1 c_1 &= b_2 c_0 \\
&\vdots \\
a_{d-1} - b_0 c_{d-1} - b_1 c_{d-2} + \cdots - b_{d-2} c_1 &= b_{d-1} c_0
\end{align*}
\]

- let $F_j = a_j - \sum_{i=0}^{j-1} b_i c_{j-i}$
- with power series division we can solve $F_j = b_j c_0$ from $j = 0$ to $d - 1$

|\downarrow $b_j^{(k)} = \frac{1}{c_0^{(0)}} \left(F_j^{(k)} - \sum_{i=1}^{k-1} b_j^{(i)} c_0^{(k-i)} \right)$

- each F_j lazily updated through lazy power series arithmetic
Lazy Weierstrass Phase 2: update α

Let $f = \sum_{\ell}^{d+m} a_{\ell}Y^\ell$, $p = Y^d + \sum_{j}^{d-1} b_j Y^j$, $\alpha = \sum_{i}^{m} c_i Y^i$ be UPoPS.

\downarrow a_{ℓ}, b_j, c_i are power series

\[
\begin{align*}
c_m &= a_{d+m} \\
c_{m-1} &= a_{d+m-1} - b_{d-1}c_m \\
c_{m-2} &= a_{d+m-2} - b_{d-2}c_m - b_{d-1}c_{m-1} \\
&\vdots \\
c_0 &= a_d - b_0c_d - b_1c_{d-1} - \cdots - b_{d-1}c_1
\end{align*}
\]

- $c_{m-i}(k) = a_{d+m-i}(k) - \sum_{j=1}^{i} (b_{d-j}c_{m-i+j})(k)$, for $i \leq d$
- each c_{m-i} lazily updated through lazy power series arithmetic
- $(b_{d-j}c_{m-i+j})(k)$ only requires up to $c_{m-i+j}(k-1)$ since $b_{d-j}(0) = 0$
- each c_{m-i} can thus be updated simultaneously
Parallelization opportunities in Weierstrass

parallel map-reduce or **parallel for** loops

In phase 1: \(b_{j(k)} = \frac{1}{c_0(0)} \left(F_j(k) - \sum_{i=1}^{k-1} b_{j(i)} c_0(k-i) \right) \), with

\[
F_j = a_j - \sum_{i=0}^{j-1} b_i c_{j-i}
\]

- compute summation using map-reduce:
 \[
 \sum_{i=1}^{k} b_{j(i)} c_0(k-i)
 \]

- notice in multivariate case, e.g., \(b_{j(1)} c_0(k-1) \) is less work than \(b_{j(k/2)} c_0(k-k/2) \)

In phase 2: \(c_{m-i(k)} = a_{d+m-i(k)} - \sum_{j=1}^{i} \left(b_{d-j} c_{m-i+j} \right)_{(k)} \)

- compute each \(c_{m-i(k)} \), \(0 \leq i \leq m \) simultaneously, and/or
- compute product homogeneous parts using a map-reduce:
 \[
 \left(b_{d-j} c_{m-i+j} \right)_{(k)} = \sum_{\ell=1}^{k} b_{d-j(\ell)} c_{m-i+j(k-\ell)}
 \]

- load-balance issue again in the multivariate case
Algorithm 6 \texttt{UpdateToDegParallel}(k, f, t)

\begin{itemize}
 \item \textbf{Input: } $k \in \mathbb{Z}^+$, $f \in k[[X_1, \ldots, X_n]]$ known to at least precision $k - 1$. If f has ancestors, it is the result of a binary operation. $t \in \mathbb{Z}^+$ for the number of threads to use.
 \item \textbf{Output: } f is updated to precision k, in place.
\end{itemize}

1: $g, h \leftarrow \text{FirstAncestor}(f), \text{SecondAncestor}(f)$
2: \texttt{UpdateToDegParallel}(k, g, t);
3: \texttt{UpdateToDegParallel}(k, h, t);
4: \textbf{if } f is a product \textbf{then}
5: \hspace{1em} $\mathcal{V} \leftarrow [0, \ldots, 0]$
6: \hspace{1em} \textbf{parallel_for } $j \leftarrow 0$ to $t - 1$
7: \hspace{2em} \textbf{for } $i \leftarrow jk/t$ to $(j+1)k/t - 1$ \textbf{while } $i \leq k$ \textbf{do}
8: \hspace{3em} $\mathcal{V}[j] \leftarrow \mathcal{V}[j] + g(i)h(k-i)$
9: \hspace{1em} $f(k) \leftarrow \sum_{j=0}^{t-1} \mathcal{V}[j]$ \hspace{1em} \textbf{end for}
10: \textbf{else if } f is a p from a Weierstrass preparation \textbf{then}
11: \hspace{1em} \texttt{WeierstrassPhase1Parallel}(k, g, f, h, \texttt{WeierstrassData}(f), t)
12: \textbf{else if } f is an α from a Weierstrass preparation \textbf{then}
13: \hspace{1em} \texttt{WeierstrassPhase2Parallel}(k, g, h, f, t)
14: \textbf{else}
15: \hspace{1em} \texttt{UpdateToDeg}(k, f)
\end{itemize}
Hensel’s Lemma

Theorem (Hensel’s Lemma)

Let \(f = Y^d + \sum_{i=0}^{d-1} a_i Y^i \) be a monic polynomial in \(k[[X_1, \ldots, X_n]][Y] \). Let \(\bar{f} = f(0, \ldots, 0, Y) = (Y - c_1)^{d_1}(Y - c_2)^{d_2}\cdots(Y - c_r)^{d_r} \) for \(c_1, \ldots, c_r \in k \) and positive integers \(d_1, \ldots, d_r \). Then, there exists \(f_1, \ldots, f_r \in k[[X_1, \ldots, X_n]][Y] \), all monic in \(Y \), such that:

1. \(f = f_1 \cdots f_r \),
2. \(\deg f_i, Y = d_i \) for \(1 \leq i \leq r \), and
3. \(\bar{f}_i = (Y - c_i)^{d_i} \) for \(1 \leq i \leq r \).

Proof:

Let \(g = f(X_1, \ldots, X_n, Y + c_r) = Y^d + \sum_{i=0}^{d-1} b_i Y^i \), sending \(c_r \) to the origin. By construction, \(b_0, \ldots, b_{d_r-1} \in M \) and Weierstrass preparation can be applied to produce \(g = p \alpha \) with \(\deg p = d_r \), \(\deg \alpha = d - d_r \).

Reversing the shift, \(f_r = p(Y - c_r) \).

Induction on \(\hat{f} = \alpha(Y - c_r) \) completes the proof.
Hensel Factorization

Algorithm 7 $\text{HENSELFACOTORIZATION}(f)$

Input: $f = Y^d + \sum_{i=0}^{d-1} a_i Y^i, a_i \in k[[X_1, \ldots, X_n]]$.

Output: f_1, \ldots, f_r satisfying Theorem 3.

1. $\bar{f} = f(0, \ldots, 0, Y)$
2. $(c_1, \ldots, c_r), (d_1, \ldots, d_r) \leftarrow$ roots and their multiplicities of \bar{f}
3. $c_1, \ldots, c_r \leftarrow \text{SORT}([c_1, \ldots, c_r])$ by increasing multiplicity
4. $f_1 \leftarrow f$
5. for $i \leftarrow 1$ to $r - 1$ do
6. $g_i \leftarrow f_i(Y + c_i)$
7. $p_i, \alpha_i \leftarrow \text{WEIERSTRASSPREPARATION}(g)$
8. $f_i \leftarrow p_i(Y - c_i)$
9. $\hat{f}_{i+1} \leftarrow \alpha_i(Y - c_i)$
10. $f_r \leftarrow \hat{f}_r$
11. return f_1, \ldots, f_r
Parallel Opportunities in Hensel

- The output of one Weierstrass becomes input to another
- \(f_{i+i(k)} \) relies on \(f_{i(k)} \)
- Can compute \(f_{i(k+1)} \) and \(f_{i+i(k)} \) concurrently in a **pipeline**

<table>
<thead>
<tr>
<th></th>
<th>Stage 1 ((f_1))</th>
<th>Stage 2 ((f_2))</th>
<th>Stage 3 ((f_3))</th>
<th>Stage 4 ((f_4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>(f_1(1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 2</td>
<td>(f_1(2))</td>
<td>(f_2(1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 3</td>
<td>(f_1(3))</td>
<td>(f_2(2))</td>
<td>(f_3(1))</td>
<td></td>
</tr>
<tr>
<td>Time 4</td>
<td>(f_1(4))</td>
<td>(f_2(3))</td>
<td>(f_3(2))</td>
<td>(f_4(1))</td>
</tr>
<tr>
<td>Time 5</td>
<td>(f_1(5))</td>
<td>(f_2(4))</td>
<td>(f_3(3))</td>
<td>(f_4(2))</td>
</tr>
<tr>
<td>Time 6</td>
<td>(f_1(6))</td>
<td>(f_2(5))</td>
<td>(f_3(4))</td>
<td>(f_4(3))</td>
</tr>
</tbody>
</table>

\[f + c_1 \rightarrow g_1 \rightarrow \alpha_1 \rightarrow \hat{f}_2 \rightarrow g_2 \rightarrow \alpha_2 \rightarrow \hat{f}_3 \rightarrow c_3 \rightarrow g_3 \rightarrow \alpha_3 \rightarrow f_4 \]
Parallel Challenges and Composition

Degrees and computational work diminish with each stage
\[\deg g_1 = d, \quad \deg g_2 = d - d_1, \quad \deg g_3 = d - d_1 - d_2, \ldots \]

To load-balance each stage, give a decreasing number of threads to each stage to be used within Weierstrass preparation.

From Theorem 1: updating \(f_i \) requires \(O(d_i \hat{d}_{i+1} k^2) \) operations

Assign \(t_i \) threads to stage \(i \) so that \(d_i \hat{d}_{i+1}/t_i \) is equal for each stage.

Better still, update a group of successive factors per stage.
\[\text{To each stage } s \text{ assign factors } f_{s_1}, \ldots, f_{s_2} \text{ and } t_s \text{ threads so that } \sum_{i=s_1}^{s_2} d_i \hat{d}_{i+1}/t_s \text{ is roughly equal for each stage.} \]
Hensel Pipeline Algorithm

Algorithm 8 \textsc{HenselPipeStage}(k, f_i, t, gen)

\textbf{Input:} \(k \in \mathbb{Z}^+, f_i \) a UPoPS, \(t \in \mathbb{Z}^+ \) the number of threads to use within this stage. \(\text{GEN} \) a generator for the previous pipeline stage.

\textbf{Output:} a sequence of integers \(j \) signalling \(f_i \) is known to precision \(j \); the sequence ends at \(k \).

\begin{align*}
1: & \quad p \leftarrow \text{Precision}(f_i) \quad \triangleright \text{current precision of } f_i \\
2: & \quad \textbf{do} \\
3: & \quad \textbf{A blocking function call until } \text{GEN} \text{ yields} \\
4: & \quad k' \leftarrow \text{GEN}() \\
5: & \quad \textbf{for } j \leftarrow p \text{ to } k' \textbf{ do} \\
6: & \quad \quad \text{UPDATEToDegParallel}(j, f_i, t) \\
7: & \quad \quad \text{yield } j \\
8: & \quad p \leftarrow k' \\
9: & \quad \textbf{while } k' < k \\
\end{align*}

Algorithm 9 \textsc{HenselFactorizationPipeline}(k, \mathcal{F}, \mathcal{T})

\textbf{Input:} \(k \in \mathbb{Z}^+, \mathcal{F} = \{f_1, \ldots, f_r\} \) the output of \textsc{HenselFactorization}. \(\mathcal{T} \in \mathbb{Z}^r \) a 0-indexed list of the number of threads to use in each stage, \(\mathcal{T}[r-1] > 0 \).

\textbf{Output:} \(f_1, \ldots, f_r \) updated in-place to precision \(k \).

\begin{align*}
1: & \quad \text{GEN} \leftarrow (\) \rightarrow \{\text{yield } k\} \\
2: & \quad \textbf{for } i \leftarrow 0 \text{ to } r - 1 \textbf{ do} \\
3: & \quad \quad \textbf{if } \mathcal{T}[i] > 0 \textbf{ then} \\
4: & \quad \quad \quad \triangleright \text{Capture function as a function object, passing the previous } \text{GEN} \text{ as input} \\
5: & \quad \quad \quad \text{HenselPipeStage}, k, f_{i+1}, \mathcal{T}[i], \text{GEN}) \\
6: & \quad \quad \quad \text{yield } j \\
7: & \quad \quad \textbf{while } k' < k \\
\end{align*}
Hensel Pipeline Example

\[f = (Y - 1)(Y - 2)(Y - 3)(Y - 4) + X_1(Y^3 + Y) \]
\[\tilde{f}_1 = Y - 1, \quad \tilde{f}_2 = Y - 2, \quad \tilde{f}_3 = Y - 3, \quad \tilde{f}_4 = Y - 4 \]

<table>
<thead>
<tr>
<th>factor (f_i)</th>
<th>serial time (s)</th>
<th>shift time (s)</th>
<th>(d_i \hat{d}_{i+1})</th>
<th>Complexity-est. threads</th>
<th>parallel time (s)</th>
<th>wait time (s)</th>
<th>Time-est. threads</th>
<th>parallel time (s)</th>
<th>wait time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>18.1989</td>
<td>0.0012</td>
<td>1 \cdot 3</td>
<td>6</td>
<td>4.5380</td>
<td>0.0000</td>
<td>7</td>
<td>3.5941</td>
<td>0.0000</td>
</tr>
<tr>
<td>(f_2)</td>
<td>6.6681</td>
<td>0.0666</td>
<td>1 \cdot 2</td>
<td>4</td>
<td>4.5566</td>
<td>0.8530</td>
<td>3</td>
<td>3.6105</td>
<td>0.6163</td>
</tr>
<tr>
<td>(f_3)</td>
<td>3.4335</td>
<td>0.0274</td>
<td>1 \cdot 1</td>
<td>1</td>
<td>4.5748</td>
<td>1.0855</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(f_4)</td>
<td>0.0009</td>
<td>0.0009</td>
<td>1 \cdot 0</td>
<td>1</td>
<td>4.5750</td>
<td>4.5707</td>
<td>2</td>
<td>3.6257</td>
<td>1.4170</td>
</tr>
</tbody>
</table>

- \(f_4 \) requires at least one thread so that it (the last factor) gets updated
- work estimates based on complexity results okay, but does not account for, e.g., coefficient size or data locality.
- can also use serial time to suggest thread assignments
Parallel Speed-up Hensel Factorization 1

Parallel Speedup vs Precision, Hensel Factorization x_r

Parallel Speedup

Precision (k)

$x_r = \prod_{i=1}^{r} (Y - i) + X_1(Y^3 + Y)$

num. factors, num. threads

- $r=4$, $t=12$
- $r=4$, $t=12$, opt
- $r=6$, $t=12$
- $r=6$, $t=12$, opt
- $r=8$, $t=12$
- $r=8$, $t=12$, opt
- $r=10$, $t=12$
- $r=10$, $t=12$, opt
Parallel Speed-up Hensel Factorization 2

\[z_r = \prod_{i=1}^{r} (Y + X_1 + X_2 - i) + X_1 X_2 (Y^3 + Y) \]
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Compiler-Level automatic parallelization

- **Cilk** and **OpenMP** provide automatic parallelization though compiler extensions

- Very easy but flexibility more challenging

```c
void mergeSort(int *A, int i, int j) {
    //... base case, k
    cilk_spawn mergeSort(A, i, k);
    mergeSort(A, k, j);
    cilk_sync
    merge(A, i, k, j);
}
```

```c
void mergeSort(int* A, int i, int j) {
    //... base case, k
    #pragma omp parallel
    num_threads(2)
    {
        #pragma omp sections
        {
            #pragma omp section
            {
                mergeSort(A, i, k);
            }
            #pragma omp section
            {
                mergeSort(A, k, j);
            }
        }
        #pragma omp sections
        {
            #pragma omp section
            {
                mergeSort(A, i, k);
            }
            #pragma omp section
            {
                mergeSort(A, k, j);
            }
        }
    }
    merge(A, i, k, j);
}
```
Fork-Join parallelism with BPAS

- Object-oriented
- Standard C++, no compiler extensions
- Extends the *Thread Support Library of C++11*

```cpp
void mergeSort(int* A, int i, int j) {
    //... base case, k
    threadID id;
    ExecutorThreadPool& pool =
        ExecutorThreadPool::getThreadPool();

    pool.obtainThread(id);
    pool.executeTask(id, std::bind(mergeSort, A, i, k));
    mergeSort(A, k, j);

    pool.returnThread(id);

    merge(A, i, k, j);
}
```
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Threading primitives

C++11 introduced the *Thread Support Library*

- **std::thread**
 - C++ class encapsulating a thread (often a pthread) and its low-level spawn and join

- **std::mutex**
 - shared object between threads to indicate *mutual exclusion* to a *critical region.*
 - mutex is *locked* or *owned* by at most one thread at a time.

- **std::lock_guard, std::unique_lock**
 - temporary object wrapping a mutex whose object lifetime automatically locks and unlocks the mutex.
 - the constructor **blocks** and only returns once the shared mutex is successfully owned by the calling thread.

- **std::condition_variable**
 - blocks the current thread and temporarily releases a lock
 - receives notification from another thread to awaken the blocked thread
std::function

Functors, function objects, callable objects

- First-class objects which are callable using normal function syntax
- Are often constructed by passing function names, function pointers
- `std::bind` binds arguments to a function or function object, returning a function object which requires fewer arguments

```cpp
void printInteger(int a) {
    std::cout << a << std::endl;
}

// Function object from function name
std::function<void(int)> f_printInt(printInteger);
f_printInt(12);

// Function object binding arguments to function name
std::function<void()> f_print42(std::bind(printInteger, 42));
f_print42();
```
Parallel overheads

Creating and managing multiple threads of execution can be expensive

- Every thread spawn requires non-insignificant amount of time
- If more threads are active than the hardware supports, **over-subscription** occurs and repeated **context switching** slows down the program
- Thread synchronization, locking **mutexes**, accessing critical regions require special care

Thread pools mitigate the first two, by supplying a fixed number of long-running threads.

Parallel programming patterns are algorithmic designs for efficient thread scheduling and minimizing locking
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Long-Running threads

Threads typically terminate once their assigned function/code block finishes.

In order to implement and benefit from a thread pool, we require a mechanism which allows threads to:

1. Remain active until explicitly told to exit (or the entire program exits)
2. Receive new code blocks to execute on demand

`FunctionExecutorThreads` are such long-running threads which receive functions or code blocks and executes them asynchronously.
FunctionExecutorThread usage

```cpp
int A[N];
int* ret = new int();
FunctionExecutorThread t;

t.sendRequest( [=]() void -> {
    int s = 0;
    for (int i = 0; i < N; ++i) {
        s += A[i];
    }
    *ret = s;
});

doSomethingElse();

// make sure result is available before continuing

t.waitForThread();

std::cout << "sum: " << *ret << std::endl;
```
Object streams

The key to the implementation of `FunctionExecutorThread` is the `AsyncObjectStream` class. It provides:

1. a queue for tasks (or any object) and
2. a blocking mechanism to keep the `FunctionExecutorThread` alive and idle when waiting for tasks

- Actually a class template for any kind of object being passed between two threads
- Implements a queue satisfying the **producer-consumer problem**
- A `std::queue` combined with a mutex and condition variable
Thread pools

A **thread pool** manages a collection of long-running threads and a queue of tasks

- spawn all threads once at the beginning of program
- idle threads receive and execute tasks as required
- if all threads busy, tasks are added to queue

![Diagram of thread pool](image)
ExecutorThreadPool

- A thread pool built using FunctionExecutorThreads
- An internal queue of tasks and queue of threads
- When threads are busy, they are temporarily removed from the pool
- When all threads busy, tasks are added to task queue

```cpp
class ExecutorThreadPool {

private:
    std::deque<FunctionExecutorThread*> threadPool;
    std::deque< std::function<void()>> taskPool;
    std::mutex m_mutex;
    std::condition_variable m_cv; // used in waitForThreads

    void tryPullTask();
    void putBackThread(FunctionExecutorThread* t);

public:
    void addTask( std::function<void()> f);
    void waitForThreads();
}
```
ExecutorThreadPool: flexible usage

- In support of certain parallel patterns, clients can (temporarily) obtain ownership of threads from the pool, rather than using addTask.
- Abstract away actual threads through thread IDs.
- Once thread obtained, repeat Steps 2–3 as often as necessary.

```cpp
class ExecutorThreadPool {
    // Storage for threads removed from pool by obtainThread
    std::vector<FunctionExecutorThread*> occupiedThreads;

    // Step 1: obtain a thread’s ID, removing it from the pool
    void obtainThread(threadID& id);

    // Step 2: execute a task on a particular thread
    void executeTask(threadID id, std::function<void()> f);

    // Step 3 (optional): wait for thread to become idle
    void waitForThread(threadID id);

    // Step 4: return thread to pool (waits before returning)
    void returnThread(threadID id);
};
```
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Fork-Join with ExecutorThreadPool

```c
void mergeSort(int* A, int i, int j) {
    if (j <= i) { return; }
    int k = i + (j-1)/2;
    mergeSort(A, i, k);
    mergeSort(A, k, j);
    merge(A, i, k, j);
}
```

```c
void mergeSort(int* A, int i, int j) {
    if (j <= i) { return; }
    int k = i + (j-1)/2;
    threadID id;
    ExecutorThreadPool & pool = getThreadPool();
    pool.obtainThread(id);
    pool.executeTask(id, std::bind(mergeSort, A, i, k));
    mergeSort(A, k, j);
    pool.returnThread(id);
    merge(A, i, k, j);
}
```
Workpile with ExecutorThreadPool

```cpp
void processInt(std::queue<int> B, int a) {
    a -= 10;
    if (a > 0) {
        getThreadPool().addTask(std::bind(processInt, B, a));
    } else {
        B.push(a);
    }
}

void WorkpileExample(std::queue<int> B, std::queue<int> A) {
    ExecutorThreadPool& pool = getThreadPool();
    while (!A.empty()) {
        pool.addTask(std::bind(processInt, B, A.front()));
        A.pop();
    }
    pool.waitForAllThreads();
}
```
AsyncGenerator and AsyncObjectStream

We want an *object-oriented* approach to create and use generators.

AsyncObjectStream already solves the producer-consumer problem.

- It provides a queue which blocks and notifies the consumer as data is produced, implemented using a condition variable
- As a class template, can be used within AsyncGenerator to yield any type of object

```cpp
template <class Object>
class AsyncObjectStream {
    void addResult(Object&& res); // Producer

    void resultsFinished(); // Producer

    bool getNextObject(Object& res); // Consumer

    void streamEmpty(); // Consumer
};
```
AsyncGenerator

AsyncGenerator is itself a class template, templated by Object, the type of object to generate.

- The AsyncGenerator acts as interface between producer and consumer

- The consumer constructs the AsyncGenerator, passing the constructor the producer’s function and arguments

- The producer’s signature should be:

```c
1 void producerFunction(..., AsyncGenerator<Object>&);
```

- The AsyncGenerator being constructed inserts itself into the producer’s list of arguments so that it has reference to the generator object
AsyncGenerator example

```cpp
void FibonacciGen(int n, AsyncGenerator<int>& gen) {
    int Fn_1 = 0;
    int Fn = 1;
    for (int i = 0; i < n; ++i) {
        gen.generateObject(Fn_1); // yield Fn_1 and continue
        Fn = Fn + Fn_1;
        Fn_1 = Fn - Fn_1;
    }
    gen.setComplete();
}

void Fib() {
    int n;
    std::cin >> n;
    AsyncGenerator<int> gen(FibonacciGen, n);

    int fib;
    // get one integer at a time until generator is finished
    while (gen.getNextObject(fib)) {
        std::cerr << fib << std::endl;
    }
}
```
Cooperative parallelism

With several simultaneous clients of ExecutorThreadPool (workpile, fork-join, generators), some tasks should be given priority.

- Some tasks are more coarse-grained, offer more potential speed-up
- Some tasks may expose more parallelism and should be executed first

Often, parallelism coming from Fork-Join or Map is preferred over Producer-Consumer.

- **Goal**: allow Fork-Join and Map to access thread pool threads over Producer-Consumer while still keeping the latter possible when there are idle threads
- **Solution**: priority tasks

- `addTask()` vs `addPriorityTask()`
- If all threads busy, `addPriorityTask()` temporarily spawns new thread to start execution immediately
Outline

1. Memory access patterns
 1.1 Cache complexity estimates
 1.2 Concluding remarks

2. Parallel Programming Patterns
 2.1 Incremental triangular decompositions
 2.2 Parallel map and workpile
 2.3 Generators and pipelines
 2.4 Divide-and-conquer and fork-join
 2.5 Parallel incremental triangular decompositions: experimentation
 2.6 Hensel’s lemma in a pipeline

3. Implementing and using parallel patterns
 3.1 Multi-threading in C++
 3.2 Implementing a thread pool
 3.3 Parallel patterns with ExecutorThreadPool

4. Extracting patterns
Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

```c
for(i=0; i<=n; i++){
    c[i] = 0; c[i+n] = 0;
    for(j=0; j<=n; j++)
        c[i+j] += a[i] * b[j];
}
```

Dependence analysis suggests to set $t(i, j) = n - j$ and $p(i, j) = i + j$.

Asynchronous parallel dense univariate polynomial multiplication

```c
parallel_for (p=0; p<=2*n; p++){
    c [ p ] =0;
    for (t=max(0,n-p); t<= min(n,2*n-p);t++)
        C [ p ] = C [ p ]
        + A [ t+p-n ] * B [ n-t ];
}
```
Generating parametric code & use of tiling techniques

```c
parallel_for (p=0; p<=2*n; p++){
    c [ p ] =0;
    for (t=max(0,n-p); t<= min(n,2*n-p);t++)
        C [ p ] = C [ p ]
            + A [ t+p-n ] * B [ n-t ] ;
}
```

Improving the parallelization

- The above generated code is not practical for multicore implementation: the number of processors is in $\Theta(n)$. (Not to mention poor locality!) and the work is unevenly distributed among the workers.
- We group the virtual processors (or threads) into 1D blocks, each of size B. Each thread is known by its block number b and a local coordinate u in its block.
- Blocks represent good units of work which have good locality property.
- This yields the following constraints: $0 \leq u < B$, $p = bB + u$.
Generating parametric code: using tiles

We apply RegularChains:-QuantifierElimination on the left system (in order to get rid off \(i, j\)) leading to the relations on the right:

\[
\begin{align*}
&0 < n \\
&0 \leq i \leq n \\
&0 \leq j \leq n \\
&t = n - j \\
&p = i + j \\
&0 \leq b \\
&o \leq u < B \\
&b > 0 \\
&n > 0 \\
&0 \leq b \leq 2n/B \\
&0 \leq u < B \\
&0 \leq u \leq 2n - Bb \\
&p = bB + u,
\end{align*}
\]

From where we derive the following program:

```c
for (p=0; p<=2*n; p++) c [ p ] = 0;
parallel_for (b=0; b<= 2* n / B; b++) {
    parallel_for (u=0; u<=min(B-1, 2*n - B * b); u++) {
        p = b * B + u;
        for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)
            c [ p ] = c [ p ] + a [ t+p-n ] * b [ n-t ];
    }
}
```

Marc Moreno Maza
Design, Implementation of Multi-Threaded Algs. for Polynomial Algebra
ISSAC 2021
Thank You!

http://www.bpaslib.org/
References

Marc Moreno Maza Design, Implementation of Multi-Threaded Algs. for Polynomial Algebra ISSAC 2021 127 / 128

