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The algorithm could lack of parallelism . . .

The architecture could suffer from limitations . . .
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Why architectures will we discuss?

From multi to many cores

Multicore architectures have brought parallelism to the masses.

However, multithreaded programs are not always as efficient as
expected.

In fact, certain operations are not well suited for parallelization on
multicores.

GPUs have brought supercomputing to the masses.

GPUs are harder to program than multicores, though.

But they can provide better performances in terms of burdened
parallelism.
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What are the prerequisites?

Some familiarity with algorithms and their analysis.

Pascal Triangle, Euclidean Algorithm.

Ideas about multithreaded programming.

Some ideas about GPUs.

Visit http://uwo.sharcnet.ca/



What are the objectives of this tutorial?

1 Understand that concurrent execution has a cost which cannot be
captured by standard analysis of algorithms.

2 This cost is a separate issue from cache complexity, memory traffic,
inappropriate thresholds, etc.

3 This cost essentially corresponds to thread (and thread block)
scheduling, task migration (multi-cores), kennel launches (GPUs), etc.

4 We call this cost parallelization overheads.

5 We will see that parallelization overheads can be measured, and even
analyzed theoretically.

6 This can improve performances in a significant manner.

7 In some cases, this can help discovering that a concurrency platform
cannot support an algorithm.
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Multicore programming Multicore architectures

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.
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Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

Cores on a multi-core device can be coupled tightly or loosely:
• may share or may not share a cache,
• implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, hyper-threading, etc.
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Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)
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Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory
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Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory
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Cache Coherence (4/6)

x=3

Store …Store 
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5
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Cache Coherence (5/6)

x=3

Store …Store 
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache



Multicore programming Multicore architectures

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache



Multicore programming Multicore architectures

Multi-core processor (cntd)

Advantages:
• Cache coherency circuitry operate at higher rate than off-chip.
• Reduced power consumption for a dual core vs two coupled single-core

processors (better quality communication signals, cache can be shared)

Challenges:
• Adjustments to existing software (including OS) are required to

maximize performance
• Production yields down (an Intel quad-core is in fact a double

dual-core)
• Two processing cores sharing the same bus and memory bandwidth

may limit performances
• High levels of false or true sharing and synchronization can easily

overwhelm the advantage of parallelism
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From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/
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Cilk++ (and Cilk Plus)

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

Cilk++ includes the Cilkscreen race detector and the Cilkview

performance analyzer.
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Nested Parallelism in Cilk ++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

Cilk++ keywords cilk spawn and cilk sync grant permissions for
parallel execution. They do not command parallel execution.
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Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.
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The Cilk++ Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional 
Compiler

y b( );
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional 
Regression Tests

Parallel 
Regression Tests

Runtime 
System

4

Reliable Single-
Threaded Code

Exceptional 
Performance

Reliable Multi-
Threaded Code
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Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83
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So does the (tuned) cache-oblivious matrix multiplication
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The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)( ) ( );

else {
int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

( ) ( );
else {

int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor 
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.
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The fork-join parallelism model

Figure: Instruction stream DAG.

Tp is the minimum running time on
p processors.

T1 is the sum of the number of
instructions at each vertex in
the DAG, called the work.

T∞ is the minimum running time
with infinitely many processors,
called the span. This is the
length of a path of maximum
length from the root to a leaf.

T1/T∞ : Parallelism.

Work law: Tp ≥ T1/p.

Span law: Tp ≥ T∞.
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Speedup on p processors

T1/Tp is called the speedup on p processors

A parallel program execution can have:
• linear speedup: T1/TP = Θ(p)

• superlinear speedup: T1/TP = ω(p) (not possible in this model,
though it is possible in others)

• sublinear speedup: T1/TP = o(p)
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For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {

double temp = A[i][j];

A[i][j] = A[j][i];

A[j][i] = temp;

}

}

The iterations of a cilk for loop execute in parallel.
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Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a
divide-and-conquer implementation:

void recur(int lo, int hi) {

if (hi > lo) { // coarsen

int mid = lo + (hi - lo)/2;

cilk_spawn recur(lo, mid);

recur(mid+1, hi);

cilk_sync;

} else

for (int j=0; j<hi; ++j) {

double temp = A[hi][j];

A[hi][j] = A[j][hi];

A[j][hi] = temp;

}

}

}
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Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.

Span of loop control: Θ(log(n))

Max span of an iteration: Θ(n)

Span: Θ(n)

Work: Θ(n2)

Parallelism: Θ(n)
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For loops in the fork-join parallelism model: another example

cilk_for (int i = 1; i <= 8; i ++){

f(i);

}

A cilk for loop executes recursively as 2 for loops of n/2 iterations,
adding a span of Θ(log(n)).

Figure: DAG for a cilk for with 8 iterations.
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The work-stealing scheduler (1/11)
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call

spawn
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Call!
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The work-stealing scheduler (2/11)
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The work-stealing scheduler (3/11)
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The work-stealing scheduler (4/11)
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The work-stealing scheduler (5/11)
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The work-stealing scheduler (6/11)
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The work-stealing scheduler (7/11)
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The work-stealing scheduler (8/11)
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The work-stealing scheduler (9/11)
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The work-stealing scheduler (10/11)
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The work-stealing scheduler (11/11)
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Performances of the work-stealing scheduler

Assume that

each strand executes in unit time,

for almost all “parallel steps” there are at least p strands to run,

each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

TP = T1/p + O(T∞)
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Overheads and burden

Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make Tp larger in practice
than T1/p + T∞.

One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk++ program with its C++ elision
3 by estimating the costs of spawning and synchronizing

Cilk++ estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation
edges along the critical path.
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Cilkview

Work Law
(linear

Span 
Law(linear 

speedup)
Measured

Burdened

Measured 
speedup

Burdened 
parallelism

— estimates Parallelismestimates 
scheduling 
overheads

Cilkview computes work and span to derive upper bounds on
parallel performance

Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.
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The cilkview example from the documentation

Using cilk for to perform operations over an array in parallel:

static const int COUNT = 4;

static const int ITERATION = 1000000;

long arr[COUNT];

long do_work(long k){

long x = 15;

static const int nn = 87;

for (long i = 1; i < nn; ++i)

x = x / i + k % i;

return x;

}

int cilk_main(){

for (int j = 0; j < ITERATION; j++)

cilk_for (int i = 0; i < COUNT; i++)

arr[i] += do_work( j * i + i + j);

}



Multicore programming The fork-join model and its implementation in Cilk

1) Parallelism Profile

Work : 6,480,801,250 ins

Span : 2,116,801,250 ins

Burdened span : 31,920,801,250 ins

Parallelism : 3.06

Burdened parallelism : 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span : 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00

4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06
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A simple fix

Inverting the two for loops

int cilk_main()

{

cilk_for (int i = 0; i < COUNT; i++)

for (int j = 0; j < ITERATION; j++)

arr[i] += do_work( j * i + i + j);

}
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1) Parallelism Profile

Work : 5,295,801,529 ins

Span : 1,326,801,107 ins

Burdened span : 1,326,830,911 ins

Parallelism : 3.99

Burdened parallelism : 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99
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Timing

#cores = 1 #cores = 2 #cores = 4

version timing(s) timing(s) speedup timing(s) speedup

original 7.719 9.611 0.803 10.758 0.718
improved 7.471 3.724 2.006 1.888 3.957
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Example 1: a small loop with grain size = 1

Code:

const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()

{

#pragma cilk_grainsize = 1

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Expectations:

Parallelism should be large, perhaps Θ(N) or Θ(N/ logN).

We should see great speedup.
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Speedup is indeed great. . .
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. . . but performance is lousy
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Recall how cilk for is implemented

Source:

cilk_for (int i = A; i < B; ++i)

BODY(i)

Implementation:

void recur(int lo, int hi) {

if ((hi - lo) > GRAINSIZE) {

int mid = lo + (hi - lo) / 2;

cilk_spawn recur(lo, mid);

cilk_spawn recur(mid, hi);

} else

for (int i = lo; i < hi; ++i)

BODY(i);

}

recur(A, B);
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Default grain size

Cilk++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()

{

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Cilk++’s heuristic for the grain size:

grain size = min

{
N

8P
, 512

}
.

Generates about 8P parallel leaves.

Works well if the loop iterations are not too unbalanced.
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Speedup with default grain size
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Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()

{

#pragma cilk_grainsize = N

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Actually, no (except for noise):

Grain size Runtime

1 8.55 s
default (= 512) 2.44 s

N (= 108) 2.42 s
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Speedup with grain size = N
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Trade-off between grain size and parallelism

Use Cilkview to understand the trade-off:

Grain size Parallelism

1 6,951,154
default (= 512) 248,784

N (= 108) 1

In Cilkview, P = 1:

default grain size = min

{
N

8P
, 512

}
= min

{
N

8
, 512

}
.
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Lessons learned

Measure overhead before measuring speedup.
• Compare 1-processor Cilk++ versus serial code.

Small grain size ⇒ higher work overhead.

Large grain size ⇒ less parallelism.

The default grain size is designed for small loops that are reasonably
balanced.

• You may want to use a smaller grain size for unbalanced loops or loops
with large bodies.

Use Cilkview to measure the parallelism of your program.
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Example 2: A for loop that spawns

Code:

const int N = 10 * 1000 * 1000;

/* empty test function */

void f() { }

void for_spawn()

{

for (int i = 0; i < N; ++i)

cilk_spawn f();

}

Expectations:

I am spawning N parallel things.

Parallelism should be Θ(N), right?
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“Speedup” of for spawn()
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Insufficient parallelism

PPA analysis:

PPA says that both work and span are Θ(N).

Parallelism is ≈ 1.62, independent of N .

Too little parallelism: no speedup.

Why is the span Θ(N)?

for (int i = 0; i < N; ++i)

cilk_spawn f();
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Alternative: a cilk for loop.

Code:

/* empty test function */

void f() { }

void test_cilk_for()

{

cilk_for (int i = 0; i < N; ++i)

f();

}

PPA analysis:

The parallelism is about 2000 (with default grain size).

The parallelism is high.

As we saw earlier, this kind of loop yields good performance and
speedup.



Multicore programming Detecting parallelization overheads and other issues

Lessons learned

cilk_for() is different from for(...) cilk_spawn.

The span of for(...) cilk_spawn is Ω(N).

For simple flat loops, cilk_for() is generally preferable because it
has higher parallelism.

(However, for(...) cilk_spawn might be better for recursively
nested loops.)

Use Cilkview to measure the parallelism of your program.
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Example 3: Vector addition

Code:

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i)

A[i] = B[i] + C[i];

}

Expectations:

Cilkview says that the parallelism is 68,377.

This will work great!
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Speedup of vector add()
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Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level daxpy bandwidth

L1 19.6 GB/s per core
L2 18.3 GB/s per core
L3 13.8 GB/s shared
DRAM 7.1 GB/s shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

A single core can generally saturate most of the memory hierarchy.

Multiple cores that access memory will conflict and slow each other
down.
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How do you determine if memory is a bottleneck?

Hard problem:

No general solution.

Requires guesswork.

Two useful techniques:

Use a profiler such as the Intel VTune.
• Interpreting the output is nontrivial.
• No sensitivity analysis.

Perturb the environment to understand the effect of the CPU and
memory speeds upon the program speed.
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How to perturb the environment

Overclock/underclock the processor, e.g. using the power controls.
• If the program runs at the same speed on a slower processor, then the

memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.
• If the program runs at the same speed on a slower DRAM, then the

memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

Run P independent copies of the serial program concurrently.
• If they slow each other down then memory is probably a bottleneck.
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Perturbing vector add()

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

fib(5); // waste time

}

}
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Speedup of perturbed vector add()
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Interpreting the perturbed results

The memory is a bottleneck:

A little extra work (fib(5)) keeps 8 cores busy. A little more extra
work (fib(10)) keeps 16 cores busy.

Thus, we have enough parallelism.

The memory is probably a bottleneck. (If the machine had a shared
FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

vector_add cannot be fixed in isolation.

You must generally restructure your program to increase the reuse of
cached data. Compare the iterative and recursive matrix
multiplication from yesterday.

(Or you can buy a newer CPU and faster memory.)
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Lessons learned

Memory is a common bottleneck.

One way to diagnose bottlenecks is to perturb the program or the
environment.

Fixing memory bottlenecks usually requires algorithmic changes.
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Example 4: Nested loops

Code:

const int N = 1000 * 1000;

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Expectations:

The inner loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 3.6.

We should see some speedup.
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“Speedup” of inner parallel()
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Interchanging loops

Code:

const int N = 1000 * 1000;

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Expectations:

The outer loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 4.

Same as the previous program, which didn’t work.
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Speedup of outer parallel()
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Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration overheads.

Depends upon:

How well we implement the Cilk++ scheduler.

How you express the parallelism in your program.

Cilkview prints the burdened parallelism:

0.29 for inner_parallel(), 4.0 for outer_parallel().

In a good program, parallelism and burdened parallelism are about
equal.
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What is the burdened parallelism?

Code:

A();

cilk_spawn B();

C();

D();

cilk_sync;

E();

Burdened critical path:

The burden is Θ(10000) cycles (locks, malloc, cache warmup, reducers,
etc.)
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The burden in our examples

Θ(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Θ(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}
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Lessons learned

Insufficient parallelism yields no speedup; high burden yields
slowdown.

Many spawns but small parallelism: suspect large burden.

Cilkview helps by printing the burdened span and parallelism.

The burden can be interpreted as the number of spawns/syncs on the
critical path.

If the burdened parallelism and the parallelism are approximately
equal, your program is ok.
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Summary and notes

We have learned to identify and (when possible) address these
problems:

High overhead due to small grain size in cilk_for loops.

Insufficient parallelism.

Insufficient memory bandwidth.

Insufficient burdened parallelism.
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Pascal Triangle
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Figure: Pascal Triangle.
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Divide and conquer: principle

I
II

II

I II

II III

Figure: Divide and conquer Taylor shift.
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Divide and conquer: work, span and parallelism

I
II

II

I II

II III

Figure: Divide and
conquer Taylor shift.

The work for a tableau satisfies
Ws(n) = 4Ws(n/2) + Θ(1), thus:

Ws(n) = Θ(n2).

For a triangle region, we have
WT (n) = 2WT (n/2) + Ws(n/2), thus:

WT (n) = Θ(n2).

The span for a tableau satisfies
Ss(n) = 3Ws(n/2) + Θ(1), thus:

Ss(n) = Θ(nlog23).

For a triangle region, we have
ST (n) = ST (n/2) + Ss(n/2), thus:

ST (n) = Θ(nlog23).

The parallelism is Θ(n2−log23), so roughly
Θ(n0.45) which can be regarded as low
parallelism.
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Blocking strategy: principle
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Figure: Blocking scheme in Pascal Triangle construction.
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Blocking strategy: work, span and parallelism
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Figure: Blocking scheme in Pascal
Triangle construction.

Let B be the order of a block and n
be the number of elements.

The work (and the span) for
each block is Θ(B2).

The number of bands (or
diagonal rows) is n/B. Thus,
the number of blocks is
Θ((n/B)2).

The work for computing the
Pascal Triangle is Θ(n2).

While the span is Θ(Bn)

Therefore the parallelism
Θ(n/B) can still be regarded as
low parallelism, but better than
with the d’n’c scheme.
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Estimating parallelization overheads

The instruction stream DAG of the blocking strategy consists of n/B
binary tress T0, T1, . . . , Tn/B−1 such that

Ti is the instruction stream DAG of the cilk for loop executing the
i-th band

each leaf of Ti is connected by an edge to the root of Ti+1.

Consequently, the burdened span is

Sb(n) =

n/B∑
i=1

log(i) = log(

n/B∏
i=1

i) = log(Γ(
n

B
+ 1)).

Using Stirling’s Formula, we deduce

Sb(n) ∈ Θ
( n
B

log(
n

B
)
)
. (1)

Thus the burdened parallelism (that is, the ratio work to burdened span)
is Θ(Bn/log( n

B )), that is sublinear in n, while the non-burdened
parallelism is Θ(n/B).
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Summary and notes

Burdened parallelism

Parallelism after accounting for parallelization overheads (thread management,
costs of scheduling, etc.) The burdened parallelism is estimated as the ratio work
to burdened span.
The burdened span is defined as the maximum number of spawns/syncs on a
critical path times the cost for a cilk spawn (cilk sync) taken as 15,000 cycles.

Impact in practice: example for the Pascal Triangle
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Consider executing one band after
another, where for each band all B×B
blocks are executed concurrently.
The non-burdened span is in
Θ(B2n/B) = Θ(n/B).
While the burdened span is

Sb(n) =
∑n/B

i=1 log(i)

= log(
∏n/B

i=1 i)
= log(Γ( n

B + 1))
∈ Θ

(
n
B log( n

B )
)
.
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Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).
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Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks.

One kernel is executed at a time on the device.

Many threads execute each kernel.
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Heterogeneous programming (3/3)

The parallel code is written for a thread
• Each thread is free to execute a unique code path
• Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

Thus, each thread executes the same code on different data based on
its thread and block ID.
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Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4
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Example: increment array elements (2/2)
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Thread blocks (1/2)

A Thread block is a group of threads that can:
• Synchronize their execution
• Communicate via shared memory

Within a grid, thread blocks can run in any order:
• Concurrently or sequentially
• Facilitates scaling of the same code across many devices
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Thread blocks (2/2)

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks may coordinate but not synchronize
• they may share pointers
• they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:
• A kernel scales across any number of parallel cores

However, within a thread block, threads may synchronize with
barriers.

That is, threads wait at the barrier until all threads in the same
block reach the barrier.
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Blocks run on multiprocessors
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Streaming processors and multiprocessors
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Hardware multithreading

Hardware allocates resources to blocks:
• blocks need: thread slots, registers, shared memory
• blocks don’t run until resources are available

Hardware schedules threads:
• threads have their own registers
• any thread not waiting for something can run
• context switching is free every cycle

Hardware relies on threads to hide latency:
• thus high parallelism is necessary for performance.
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SIMT thread execution

At each clock cycle, a multiprocessor executes the same instruction
on a group of threads called a warp

• The number of threads in a warp is the warp size (32 on G80)
• A half-warp is the first or second half of a warp.

Within a warp, threads
• share instruction fetch/dispatch
• some become inactive when code path diverges
• hardware automatically handles divergence

Warps are the primitive unit of scheduling:
• each active block is split into warps in a well-defined way
• threads within a warp are executed physically in parallel while warps

and blocks are executed logically in parallel.
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Four principles

Expose as much parallelism as possible

Optimize memory usage for maximum bandwidth

Maximize occupancy to hide latency

Optimize instruction usage for maximum throughput
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Expose Parallelism

Structure algorithm to maximize independent parallelism

If threads of same block need to communicate, use shared memory
and syncthreads()

If threads of different blocks need to communicate, use global
memory and split computation into multiple kernels

Recall that there is no synchronization mechanism between blocks

High parallelism is especially important to hide memory latency by
overlapping memory accesses with computation

Take advantage of asynchronous kernel launches by overlapping CPU
computations with kernel execution.
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Optimize Memory Usage: Basic Strategies

Processing data is cheaper than moving it around:
• Especially for GPUs as they devote many more transistors to ALUs

than memory

Basic strategies:
• Maximize use of low-latency, high-bandwidth memory
• Optimize memory access patterns to maximize bandwidth
• Leverage parallelism to hide memory latency by overlapping memory

accesses with computation as much as possible
• Write kernels with high arithmetic intensity (ratio of arithmetic

operations to memory transactions)
• Sometimes recompute data rather than cache it
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Minimize CPU < − > GPU Data Transfers

CPU < − > GPU memory bandwidth much lower than GPU memory
bandwidth

Minimize CPU < − > GPU data transfers by moving more code from
CPU to GPU

• Even if sometimes that means running kernels with low parallelism
computations

• Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

Group data transfers: One large transfer much better than many
small ones.
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Optimize Memory Access Patterns

Effective bandwidth can vary by an order of magnitude depending on
access pattern:

• Global memory is not cached on G8x.
• Global memory has High latency instructions: 400-600 clock cycles
• Shared memory has low latency: a few clock cycles

Optimize access patterns to get:
• Coalesced global memory accesses
• Shared memory accesses with no or few bank conflicts and
• to avoid partition camping.
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A Common Programming Strategy

1 Partition data into subsets that fit into shared memory

2 Handle each data subset with one thread block

3 Load the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism.

4 Perform the computation on the subset from shared memory.

5 Copy the result from shared memory back to global memory.
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A Common Programming Strategy

Partition data into subsets that fit into shared memory
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A Common Programming Strategy

Handle each data subset with one thread block
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A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.
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A Common Programming Strategy

Perform the computation on the subset from shared memory.
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A Common Programming Strategy

Copy the result from shared memory back to global memory.
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A Common Programming Strategy

Carefully partition data according to access patterns

If read only, use constant memory (fast)

for read/write access within a tile, use shared memory (fast)

for read/write scalar access within a thread, use registers (fast)

R/W inputs/results cudaMalloc’ed, use global memory (slow)
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polynomial division

Plain univariate polynomial division

Input: univariate polynomials a = Σm
0 aix

i and b = Σn
0 bix

i in R[x]
with respective degrees m and n such that m ≥ n ≥ 0 and
bn is a unit.

Output: the quotient q and the remainder r of a w.r.t. b. Hence
a = bq + r and deg r < n.

r := a
for i = m− n,m− n− 1, . . . , 0 repeat

if deg r = n + i then
qi := leadingCoefficient(r) / bn
r := r − qix

ib
else qi := 0

q := Σm−n
0 qix

i

return (q, r)
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polynomial division

Plain univariate polynomial division on the GPU

Notations

Consider two univariate polynomials over a finite field

a = amxm + · · ·+ a1x + a0 and b = bnx
n + · · ·+ b1x + b0, with m ≥ n,

stored in arrays A and B such that A[i] (resp. B[i]) contains ai (resp. bi).

Objective, challenges and key idea

Our aim is to implement the plain division of A by B.
Thus we have no other choices than parallelizing each division step.
Each thread block must know the leading coefficient of the current
remainder at the beginning of each division step.
In order to minimize data transfer (and synchronization) we will let each
thread block work on several consecutive division steps without
synchronizing.
For this to be possible, each thread block within a kernel computes the
the leading coefficient of the current remainder.



GPU programming
Anticipating parallelization overheads: plain

polynomial division

Division: data mapping

Key idea, more precisely

Let s > 1 be an integer.
After each kernel call either the current intermediate remainder has
become zero or its degree has decreased at least by s.
Moreover, each kernel call performs at most s division steps.

Data mapping

The grid and each thread block are 1-D.
Initially, the k-th thread block has a window on

• the s leading terms of A and the s leading terms of B.
• 2s consecutive coefficients am−(2k+1)s · · · am−(2k+3)s+1 of A
• 3s consecutive coefficients bn−(2k+1)s+g0 · · · am−(2k+4)s+1+g0 of B where

g0 = deg(a)− deg(b).

A = | am · · · am−s+1 | | am−s · · · am−3s+1 | · · · | · · · a00 · · · 0
B = | bn · · · bn−s+1 | | bn−s+g0 · · · am−4s+1+g0 | · · · | · · · b00 · · · 0
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Anticipating parallelization overheads: plain

polynomial division

Division: data mapping

Key idea, more precisely

Let s > 1 be an integer.
After each kernel call either the current intermediate remainder has
become zero or its degree has decreased at least by s.
Moreover, each kernel call performs at most s division steps.
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Anticipating parallelization overheads: plain

polynomial division

Division: algorithm

Data mapping (recall)

A = | am · · · am−s+1 | | am−s · · · am−3s+1 | · · · | · · · a00 · · · 0
B = | bn · · · bn−s+1 | | bn−s+g0 · · · am−4s+1+g0 | · · · | · · · b00 · · · 0

Algorithm

Let a(j) be the j-th intermediate remainder, with a(0) = a.

Let `j = lc(a(j)), gj = deg(aj)− deg(b) and a
(j)
i = coeff(a(j), xi). We

have

a
(j)
i = a

(j−1)
i − `j−1

bn
bi−gj .

Each thread block computes `j until the degree of the intermediate
remainder has decreased at least by s.

During the execution of a kernel call A[i] stores successively a
(0)
i , a

(1)
i , . . .,

that is, the coefficient of degree i of the intermediate remainder.
At the end of a kernel call, the k-th thread block has the coefficients of
the current remainder in degree m− (2k + 1)s, . . . ,m− (2k + 3)s + 1.
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Anticipating parallelization overheads: plain

polynomial division

Division: complexity analysis

Work

The number of kernel calls is at most dm−ns e
The number of thread blocks per kernel call is d n2se
The number of arithmetic operations per thread block is at most 6s2

Thus the work is in O((n−m)n), as expected.
However, there is an increase of work w.r.t. a serial division by a constant
factor in order to keep synchronization overhead low.

Span

The number of kernel calls is at most dm−ns e
The number of division steps per kernel call is at most s
Thus the span is in O(m− n), as expected.

In practice

On our GPU card s = 29.
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Anticipating parallelization overheads: Euclidean

Algorithm

GCD: setting

Notations

Consider two univariate polynomials over a finite field

a = amxm + · · ·+ a1x + a0 and b = bnx
n + · · ·+ b1x + b0, with m ≥ n,

stored in arrays A and B such that A[i] (resp. B[i]) contains ai (resp. bi).

Objective, challenges and key idea

Our aim is to implement the Euclidean Algorithm for computing
gcd(A,B).
Again, we have no other choices than parallelizing each division step.
Once again, in order to minimize data transfer (and granularity) we will
let each thread block work on several consecutive division steps without
synchronizing.
For this to be possible, each thread block within a kernel computes the
the leading coefficients of the current pairs.
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Anticipating parallelization overheads: Euclidean

Algorithm

GCD: algorithm and data mapping

Algorithm

Let s > 1 be an integer.
Each kernel call replaces (A,B) by a GCD preserving pair (A′, B′) such
that max(deg(A),deg(B))−max(deg(A′), deg(B′)) ≥ s
Moreover, each kernel call performs at most s division steps.
If initially | deg(A)− deg(B) |≥ s we can call simply use the kernel for s
division step with a fixed divisor.
If initially | deg(A)− deg(B) |≥ s, we need to increase the window on A
(or B) since the divisor may change after each division step.

Data mapping for | deg(A)− deg(B) |≥ s

The grid and each thread block are 1-D.
Initially, the k-th thread block has a window on

• the s leading terms of A and the s leading terms of B.
• 3s consecutive coefficients am−(2k+1)s · · · am−(2k+4)s+1 of A
• 3s consecutive coefficients bn−(2k+1)s+g0 · · · am−(2k+4)s+1+g0 of B where

g0 = deg(a)− deg(b) ≥ 0.

A = | am · · · am−s+1 | | am−s · · · am−4s+1 | · · · | · · · a00 · · · 0
B = | bn · · · bn−s+1 | | bn−s+g0 · · · am−4s+1+g0 | · · · | · · · b00 · · · 0
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Anticipating parallelization overheads: Euclidean

Algorithm

GCD: complexity analysis

Work

Assume m ≥ n.
The number of kernel calls is at most dms e
The number of thread blocks per kernel call is at most dm2se
The number of arithmetic operations per thread block is at most 6s2

Thus the work is in O(m2), as expected.
However, there is an increase of work w.r.t. a serial GCD computation by
a constant factor in order to keep the granularity low.
Moreover, there is an increase of memory consumption w.r.t. the GPU
division computation by a constant factor due to the case where the
degree gap is small.

Span

The number of kernel calls is at most dms e
The number of division steps per kernel call is at most s
Thus the span is in O(m), which as good as in the case of systolic arrays
(H.T. Kung & C.E. Leiserson, 1974).

In practice

On our GPU card s = 28.
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Plain multiplication: setting

Notations

Consider two univariate polynomials over a finite field

a = amxm + · · ·+a1x+a0 and b = bnx
n + · · ·+ b1x+ b0, with m ≥ n,

stored in arrays A and B such that A[i] (resp. B[i]) contains ai (resp. bi).
For simplicity we assume n = m in what follows.

Objective, challenges and key idea

Computing A×B using the plain algorithm the way we learned it in
primary school.

First we construct all the terms concurrently, thus essentially in time
O(1).

Secondly, we sum the terms concurrently, using a parallel reduction,
thus essentially in time O(log(n)).
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Plain multiplication: data mapping (1/4)

Given two polynomials of degree 19, thus of (dense) size 20:

A := X X X X X X X X X X X X X X X X X X X X

B := X X X X X X X X X X X X X X X X X X X X

the multiplication space is

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X
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Plain multiplication: data mapping (2/4)

Let r > 1 be an integer dividing n + 1. We partition the multiplication space horizontally
(n + 1)/r bands.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Plain multiplication: data mapping (3/4)

Let t > 1 be an integer dividing n + 1. We partition each horizontal band into (n + 1)/t
polygons

1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6

3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7

4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8

4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8

4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8

4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8

4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8
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Plain multiplication: data mapping (4/4)

The leftmost and rightmost polygons are padded with zeros such each polygon becomes a
rectangle.

0 0 0 0 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 0

0 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 0 0

0 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 0 0

0 0 0 0 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0 0

0 0 0 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 0

0 0 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 6 0 0

0 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 0 0 0 0

0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7

0 0 0 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 0

0 0 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 0 0

0 3 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 0 0 0

3 3 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 0 0 0 0

0 0 0 0 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8

0 0 0 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 0

0 0 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 0 0

0 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 0 0 0

4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 0 0 0 0
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Plain multiplication: in colors!
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Plain multiplication: algorithm

Multiplication phase

We have now n+1
r

n+1
t rectangular tiles.

Each tile requires t + r − 1 coefficients from A and r from B.
Each tile is computed by a thread block, where each thread is in charge of
s consecutive columns. Clearly, the grid is 2-D.
The i-th horizontal band is mapped to an array Ci of size 2n− 1.
Each thread on the i-th horizontal band sums the elements of a column in
the appropriate coefficient of Ci.

Addition phase

The vectors C0, C1, . . . , Cw, with w = n/r, are added such that terms of
the same degree are added together.
For i = 0, 2, 4, . . ., the vectors Ci and Ci+1 are added into Ci.
For i = 0, 4, 8, . . ., the vectors Ci and Ci+2 are added into Ci.
Etc.
In Θ(log(w)) parallel steps all vectors C0, C1, . . . , Cw are added together
yielding the final result.
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Plain multiplication: complexity analysis

Multiplication phase

We have n+1
r

n+1
t thread blocks.

Each thread block has a work of 2r(t + r − 1) and a span sr.

Thus the work is essentially Θ(n2) while the parallelism is Θ(n2/sr).

For our GPU card r = t = 2 ∗ 9 and s ∈ {4, 6}.

Addition phase

The work is essentially is 2nw, with w = n/r.

The span is log(w).

Thus the overall parallelism is Θ(n2/log(w))
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The plain multiplication algorithm on the GPU

degree GPU Plain multiplication GPU FFT based multiplication

210 0.00049 0.0044136
211 0.0009 0.004642912
212 0.0032 0.00543696
213 0.01 0.00543696
214 0.045 0.00709072
215 0.26 0.006796512

The GPU card is Tesla 2050 (two years old) and the CPU is an i7
(same desktop).

All computations (plain ones and fast ones) of univariate products are
done on the GPU.

Both codes are highly optimized.
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GPU plain division vs NTL serial fast division (part 1)

m n CUDA NTL (9001) NTL (7) NTL (469762049)

1000 500 0.0013567 0 0 0
2000 500 0.00394246 0.004 0.004 0.008
2000 1500 0.00135683 0.004 0 0.004
3000 500 0.00652643 0.004 0.004 0.008
3000 1500 0.00394755 0.008 0.004 0.008
3000 2500 0.00135741 0 0.004 0
4000 500 0.00911792 0.004 0.004 0.012
4000 1500 0.00653302 0.012001 0.016001 0.020001
4000 2500 0.00394336 0.008 0.008 0.012
4000 3500 0.00135872 0.004 0.004 0.004
5000 500 0.0117174 0.008 0.004 0.012001
5000 1500 0.00911808 0.012 0.012 0.020001
5000 2500 0.00653037 0.016001 0.016001 0.024001
5000 3500 0.00394688 0.008 0.008 0.012001
5000 4500 0.00135827 0 0.004 0.004
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GPU plain division vs NTL serial fast division (part 2)

m n CUDA NTL (9001) NTL (7) NTL (469762049)

6000 2000 0.0103908 0.012001 0.012 0.016001
6000 4000 0.00523638 0.008 0.008 0.012001
6000 5000 0.00264752 0.004 0.004 0.008
7000 2000 0.0129791 0.012001 0.012001 0.020001
7000 4000 0.00781933 0.016001 0.012 0.024001
7000 6000 0.00264899 0.004 0.004 0.004
8000 2000 0.0155647 0.016001 0.016001 0.024001
8000 4500 0.00910278 0.016001 0.016001 0.024002
8000 7000 0.00265875 0.004 0.004 0.008
9000 2000 0.01815 0.016001 0.016001 0.024001
9000 5000 0.0103951 0.016001 0.016001 0.004
9000 8000 0.00265123 0.004 0.004 0.004

10000 2000 0.0207235 0.016001 0.016001 0.024002
10000 5500 0.0116883 0.028001 0.036002 0.052003
10000 9000 0.00264813 0.004 0.004 0.008001
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GPU plain GCD vs NTL serial fast GCD (part 1)

m n CUDA NTL (9001) NTL (7) NTL (469762049)

1000 500 0.0104428 0.004 0.004 0.004
2000 500 0.0178581 0.004 0.004 0.004
2000 1500 0.0247671 0.024001 0.024001 0.024001
3000 500 0.0232968 0.004 0.008 0.008
3000 1500 0.0321629 0.028002 0.024001 0.036002
3000 2500 0.0393252 0.056003 0.060003 0.056003
4000 500 0.0319935 0.008 0.004 0.012001
4000 1500 0.0384393 0.036002 0.032002 0.044003
4000 2500 0.0474535 0.056003 0.056003 0.056003
4000 3500 0.0533327 0.060003 0.072004 0.072005
5000 500 0.0375882 0.008 0.008 0.016001
5000 1500 0.047392 0.036002 0.032002 0.040002
5000 2500 0.0523071 0.052003 0.052003 0.056004
5000 3500 0.060711 0.092006 0.096006 0.100006
5000 4500 0.0692999 0.112007 0.096006 0.116007
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GPU plain GCD vs NTL serial fast GCD (part 2)

m n CUDA NTL (9001) NTL (7) NTL (469762049)

6000 2000 0.0400133 0.040002 0.044002 0.048003
6000 4000 0.0518378 0.096006 0.104006 0.128008
6000 5000 0.0565259 0.124008 0.136008 0.148009
7000 2000 0.0456542 0.044003 0.040002 0.052003
7000 4000 0.0568928 0.116007 0.108007 0.116007
7000 6000 0.0666983 0.152009 0.152009 0.16801
8000 2000 0.0527113 0.044002 0.044003 0.040003
8000 4500 0.0627832 0.136008 0.112006 0.128008
8000 7000 0.0767803 0.156009 0.16001 0.200013
9000 2000 0.0578016 0.048003 0.048003 0.052003
9000 5000 0.0714158 0.140009 0.152009 0.168011
9000 8000 0.0876858 0.16801 0.216013 0.264017

10000 2000 0.0635697 0.16801 0.040002 0.05200
10000 5500 0.0796034 0.180011 0.16001 0.200013
10000 9000 0.0976259 0.232014 0.244015 0.264017
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GPU plain GCD

n n CUDA with s = 512 CUDA with s = 1

1000 500 0.010 0.024
2000 1500 0.024 0.058
3000 2500 0.039 0.108
4000 3500 0.053 0.158
5000 4500 0.069 0.203
6000 5000 0.056 0.235
7000 6000 0.066 0.282
8000 7000 0.076 0.324
9000 8000 0.087 0.367

10000 9000 0.097 0.411

We observe that trick with leading coefficients is necessary to achieve
our 3 to 4 time speedup factor w.r.t NTL.

In other words, controlling parallelization overheads (due here to
synchronization) is necessary to reach a positive result.
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Summary and notes

The GPU plain division running times grows (essentially) linearly with
m− n, as for systolic arrays.

The GPU plain GCD running times grows (essentially) linearly with
max(n,m), as for systolic arrays.

This degree range of 5,000 to 10,000 for which the GPU plain
arithmetic is clearly better is what we need for solving challenging
polynomial systems (but not yet for cryptosystems).

With more recent and more powerful cards the gap between the GPU
plain arithmetic and the FFT-based arithmetic should greatly increase
in favor of the former.

With CUDA, parallel for-loop overheads are low by design. By
minimizing synchronization overheads, we had a (parallel) quadratic
algorithm beating a (serial) quasi-linear one.

Did I use a harmer to beat a fly? Not really.

Algebraic complexity is clearly no longer the main complexity measure!

Yes, GPUs bring supercomputing to the masses!
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