
Parallel Integer Polynomial Multiplication

Parallel Integer Polynomial Multiplication

Changbo Chen1 Svyatoslav Covanov2,3 Farnam Mansouri2
Marc Moreno Maza2 Ning Xie2 Yuzhen Xie2

1Chinese Academy of Sciences, China
2University of Western Ontario, Canada
3LORIA, Universté de Lorraine, France

SYNASC, West University of Timisoara, September 24, 2016
Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication

SYNASC, West University of Timisoara, September 24, 2016 1
/ 19



Overview

▸ Polynomial multiplication is at the core of many algorithms in symbolic
computation.

▸ Classical (but asymptotically fast) algorithms for multiplying dense integer
polynomials (Toom-Cook, Schönaghe-Strassen) are hard to parallelize on
multi-core architectures

▸ It is, therefore, natural to consider reducing computations from Z[x] to
Fp[x , y], which allows to use 2D FFTs.

▸ For a well-chosen prime number p, this strategy leads not only to a
practically efficient parallel algorithm but also to a nice complexity estimate
for the work (i.e. arithmetic count).

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 2

/ 19



Plan

1 Dense polynomial multiplication: classical algorithms

2 The two-convolution method

3 Experimentation

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 3

/ 19



Schönaghe-Strassen via Kronecker’s substitution

0 Input: f = ∑
n
i=0 fi x i and g = ∑

m
i=0 gi x i

1 Choose: 2`
≥ ∣∣f ∣∣∞ + ∣∣g ∣∣∞ +max(n,m) + 1

2 Evaluation: Zf = ∑
n
i=0 fi 2i` and Zg = ∑

m
i=0 gi 2i`;

3 Multiplying: Zh = Zf × Zg , using GMP library;
4 Unpacking: hi from Zh = ∑

n+m
i=0 hi 2i`.

5 Return: f g = ∑
n+m
i=0 hi x i

▸ its work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is
the maximum bit-size of f or g ;

▸ purely serial due to the difficulties of parallelizing 1-D FFTs on multicore
processors.

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 4

/ 19



D-n-C with reduction to GMP’s integer multiplication

1 Division: f (x) = f0(x) + f1(x) xn/2 and g(x) = g0(x) + g1(x) xn/2;
2 Execute recursively:

Store f0 × g0 & f1 × g1 in the result array;
Store f0 × g1 & f1 × g0 in the auxiliary arrays;

3 Addition: add the auxiliary arrays to the result one.

▸ use (one or) two levels of recursion, then use the KS+SS algorithm;
▸ its work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is
the maximum bit-size of f or g , but the constant has been multiplied
approximately by 4;

▸ static parallelism (close to 16).

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 5

/ 19



k-way Toom-Cook algorithms

1 Division: f (x) = f0(x) + f1(x) xn/k
+ ⋅ ⋅ ⋅ + fk−1(x) x (k−1)n/k and

g(x) = g0(x) + g1(x) xn/k
+ ⋅ ⋅ ⋅ + gk−1(x) x (k−1)n/k ;

2 Conversion: Set X = xn/k and obtain F(X) = Zf0 + Zf1 X + ⋅ ⋅ ⋅ + Zfk−1 X k−1

and G(X) = Zg0 + Zg1 X + ⋅ ⋅ ⋅ + Zgk−1 X k−1;
3 Evaluation: Evaluate f , g at 2 k − 1 points: (0,X1, . . . ,X2 k−3,∞);
4 Multiplying: (w0, . . . ,w2 k−2) = (F(0) ⋅G(0), . . . ,F(∞) ⋅G(∞));
5 Interpolation: Recover (Zh0 ,Zh1 , . . . ,Zh2 k−2) where

H(X) = f (X)g(X) = Zh0 + Zh1 X + ⋅ ⋅ ⋅ + Zh2 k−2 X 2 k−2

6 Conversion: Recover polynomial coefficients from Zh0 , . . . ,Zh2 k−2 , obtaining
h(x) = h0(x) + h1(x) xn/k

+ ⋅ ⋅ ⋅ + h2 k−2(x) x (2 k−2)n/k .

▸ work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is the
maximum bit-size of f or g , but the constant has been multiplied
approximately by 2 for k = 8;

▸ 4-way & 8-way Toom-Cook are available;
▸ static parallelism (about 7 and 13 when k = 4 and k = 8, resp).

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 6

/ 19



Plan

1 Dense polynomial multiplication: classical algorithms

2 The two-convolution method

3 Experimentation

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 7

/ 19



From Z[x] to Fp[x , y] allowing 2D FFT

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 8

/ 19



Cyclic and nega-cyclic convolutions to recover coefficients

1. Convert a(y), b(y) to bivariate A(x , y), B(x , y) s. t. a(y) = A(β, y) and
b(y) = B(β, y) hold at β = 2M , K = deg(A, x) = deg(B, x), where KM is
essentially the maximum bit size of a coefficient in a and b.

2. Consider C+
(x , y) ≡ A(x , y)B(x , y) mod < xK

+ 1 > and
C−

(x , y) ≡ A(x , y)B(x , y) mod < xK
− 1 >, then compute C+

(x , y) and
C−

(x , y) modulo a (sufficiently large) prime so as to use efficient 2-D FFTs.
3. Consider C(x , y) = C+(x ,y)

2 (xK
− 1) + C−(x ,y)

2 (xK
+ 1), then evaluate C(x , y)

at x = β, which finally yields the product c(y) ∶= a(y)b(y).
Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication

SYNASC, West University of Timisoara, September 24, 2016 9
/ 19



Complexity estimates (1/3)

Notations
▸ a(y),b(y) ∈ Z[y] with d = max(deg(a),deg(b)) + 1.
▸ N ∈ N s.t. each coefficient of a(y),b(y) writes within N bits
▸ K ,M ∈ N s.t. N = KM.

Assumptions
▸ K ∈ Θ(d) and,
▸ M ∈ Θ(log d).

Results
The two-convolution method multiplies a(y) and b(y) with

▸ a work of O(dKM log(dK) log log(log(d))) word operations,
▸ a span of O(log2(d)KM) word operations and,
▸ incurs O(1 + (dMK/L)(1 + logZ(dMK))) cache misses.

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 10

/ 19



Complexity estimates (2/3)

Recall
Assuming:

▸ a(y),b(y) ∈ Z[y] with d = max(deg(a),deg(b)) + 1,
▸ each coefficient of a(y),b(y) writes within N = K M bits,
▸ K ∈ Θ(d) and M ∈ Θ(log d).

Then, a(y) and b(y) can be multiplied
▸ within O(dKM log(dK) log log(log(d))) word operations,
▸ thus within O(d N log(d2

) log log(log(d)))

Comments
▸ The assumptions K ∈ Θ(d) and M ∈ Θ(log d) can be met by balancing

techniques (generalization of Kronecker’s substitution) see (M. Moreno Maza
& Y. Xie, Int. J. Found. Comput. Sci., 2011)

▸ Our result is better than that of Schönhage & Strassen which gives here
O(d N log(dN) log(log(dN))).

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 11

/ 19



Complexity estimates (3/3)

Key argument in the analysis
Let w be the bit-size of a machine word. Then, one can choose p (and thus
e ∶= ⌊logw(p)⌋ + 1) such that computing an FFT of a vector of size s over Fp [x],
amounts to

Fword(e, s) ∈ O(s e log(s) log log(e)) (1)

machine-word operations, whenever e ∈ Θ(log s) holds and p is a generalized
Fermat prime, e.g. (263

+ 234
)

8
+ 1.

In practice . . .
▸ We have e ≥ ⌈

2+⌈log2(d K)⌉+2M
w ⌉.

▸ Efficiently implementing arithmetic operations in Fp [x] for a generalized
Fermat prime p is work in progress on multi-core architectures (while already
successful on GPUs).

▸ Using Fourier primes instead of generalized Fermat primes (on multi-core
architectures) makes the work of the two-convolution slightly higher than
that of Schönhage & Strassen, which is verified experimentally.

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 12

/ 19



Plan

1 Dense polynomial multiplication: classical algorithms

2 The two-convolution method

3 Experimentation

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 13

/ 19



Implementation

▸ The two-convolution methods (as well as KS + SS, D-n-C, Toom4, Toom8)
are implemented in CilkPlus targeting multi-core architectures.

▸ Moreover, those algorithms are combined in an adaptive algorithm.
▸ We compare this latter against FLINT and Maple.
▸ From e ≥ ⌈

2+⌈log2(d K)⌉+2M
w ⌉, it follows that on today’s computers (say for

input data size in order of giga-bytes) it is sufficient to have 1 ≤ e ≤ 8.
▸ In our implementation, we use machine-word size Fourier primes together
with the CRA instead of using a single generalized Fermat prime: fixing this
limitation is work in progress.

www.bpaslib.org

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 14

/ 19

www.bpaslib.org


Large degrees and coefficients

Figure: BPAS (parallel) vs FLINT (serial) vs Maple 2015 (serial) with logarithmic scale in radix
2 of the maximum bit-size of an input polynomial as the horizontal axis

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 15

/ 19



Large coefficients only

Figure: BPAS (parallel) vs FLINT (serial) vs Maple 2015 (serial) with logarithmic scale in radix
2 of the maximum bit-size of an input polynomial as the horizontal axis

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 16

/ 19



Timings for polynomial multiplication with d = N .

d, N CVL2
p DnCp Toom4

p Toom8
p KSs FLINTs Maple18

s

29 0.152 0.049 0.022 0.026 0.018 0.005 0.054
210 0.139 0.11 0.046 0.059 0.057 0.016 0.06
211 0.196 0.17 0.17 0.17 0.25 0.067 0.201
212 0.295 0.58 0.67 0.64 1.37 0.42 0.86
213 0.699 2.20 2.79 2.73 5.40 1.671 3.775
214 1.927 8.26 10.29 8.74 20.95 7.178 17.496
215 9.138 30.75 35.79 33.40 92.03 32.112 84.913
216 33.04 122.1 129.4 115.9 *Err. 154.69 445.67

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 17

/ 19



The two-convolution scales well
The adaptive algorithm based on the input size and available resources

▸ Very small: Plain multiplication
▸ Small or Single-core: Kronecker substitution + Schönhage & Strassen
▸ Big but a few cores: 4-way Toom-Cook
▸ Big: 8-way Toom-Cook
▸ Very big: Two-convolution method

Figure: The htop screenshot of multiplying two large integer polynomials in BPAS

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 18

/ 19



Conclusions

▸ We have proposed a new algorithm for multiplying dense integer polynomials
▸ Via a transformation from Z[x] to Fp[x , y], this algorithm essentially relies
on 2D FFTs, which parallelize nicely on multi-core architectures.

▸ Using for p a generalized Fermat prime (together with ideas borrowed from
Fürer’s algorithm), this new algorithm outperforms that of Schönhage &
Strassen in terms of algebraic complexity

▸ Our multi-core experimentation shows promising results, though simply using
Fourier primes for the moment.

www.bpaslib.org

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, INRIA, UWO)Parallel Integer Polynomial Multiplication
SYNASC, West University of Timisoara, September 24, 2016 19

/ 19

www.bpaslib.org

	Dense polynomial multiplication: classical algorithms
	The two-convolution method
	Experimentation

