
ON THE PARALLELIZATION OF INTEGER POLYNOMIAL

MULTIPLICATION

Farnam Mansouri

fmansou3@csd.uwo.ca

Supervised by Dr. Marc Moreno Maza

April 30, 2014

Department of Computer Science

The University of Western Ontario

London, Ontario, Canada

© Farnam Mansouri 2014

mailto:{fmansou3@csd.uwo.ca}

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

. .
Dr. Marc Moreno Maza

Examiners:

. .
Dr. Shantanu Basu

. .
Dr. Roberto Solis-Oba

. .
Dr. Olga Veksler

The thesis by

Farnam Mansouri

entitled:

On The Parallelization Of Integer Polynomial Multiplication

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

.
Date

. .
Chair of the Thesis Examination Board

i

Abstract

With the advent of hardware accelerator technologies, multi-core processors and

GPUs, much effort for taking advantage of those architectures by designing parallel al-

gorithms has been made. To achieve this goal, one needs to consider both algebraic

complexity and parallelism, plus making efficient use of memory traffic, cache, and re-

ducing overheads in the implementations.

Polynomial multiplication is at the core of many algorithms in symbolic computation

such as real root isolation which will be our main application for now.

In this thesis, we first investigate the multiplication of dense univariate polynomials

with integer coefficients targeting multi-core processors. Some of the proposed methods

are based on well-known serial classical algorithms, whereas a novel algorithm is designed

to make efficient use of the targeted hardware. Experimentation confirms our theoretical

analysis.

Second, we report on the first implementation of subproduct tree techniques on many-

core architectures. These techniques are basically another application of polynomial

multiplication, but over a prime field. This technique is used in multi-point evaluation

and interpolation of polynomials with coefficients over a prime field.

Keywords. Parallel algorithms, High Performance Computing, multi-core machines,

Computer Algebra.

ii

Acknowledgments

First and foremost I would like to offer my sincerest gratitude to my supervisor, Dr

Marc Moreno Maza, who has supported me throughout my thesis with his patience and

knowledge. I attribute the level of my Masters degree to his encouragement and effort,

and without him, this thesis would not have been completed or written.

Secondly, I would like to thank Dr. Sardar Anisul Haque, Ning Xie, Dr. Yuzhen

Xie, and Dr. Changbo Chen for working along with me and helping me complete this

research work successfully. Many thanks to Dr. Jürgen Gerhard of Maplesoft for his help

and useful guidance during my internship. In addition, thanks to Svyatoslav Covanov

for reading this thesis and his useful comments.

Thirdly, all my sincere thanks and appreciation go to all the members from our

Ontario Research Centre for Computer Algebra (ORCCA) lab in the Department of

Computer Science for their invaluable support and assistance, and all the members of

my thesis examination committee.

Finally, I would like to thank all of my friends and family members for their consistent

encouragement and continued support.

I dedicate this thesis to my parents for their unconditional love and support through-

out my life.

Contents

List of Algorithms vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Integer polynomial multiplication on multi-core 2

1.1.1 Example . 4

1.2 Polynomial evaluation and interpolation on many-core 6

1.2.1 Example . 7

2 Background 9

2.1 Multi-core processors . 9

2.1.1 Fork-join parallelism model . 10

2.2 The ideal cache model . 13

2.3 General-purpose computing on graphics processing units 15

2.3.1 CUDA . 15

2.4 Many-core machine model . 18

2.4.1 Complexity measures . 19

2.5 Fast Fourier transform over finite fields . 20

2.5.1 Schönhage-Strassen FFT . 21

2.5.2 Cooley-Tukey and Stockham FFT . 21

3 Parallelizing classical algorithms for dense integer polynomial multi-

plication 26

3.1 Preliminary results . 27

3.2 Kronecker substitution method . 30

3.2.1 Handling negative coefficients . 31

3.2.2 Example . 33

iii

CONTENTS iv

3.3 Classical divide & conquer . 33

3.4 Toom-Cook algorithm . 36

3.5 Parallelization . 43

3.5.1 Classical divide & conquer . 43

3.5.2 4-way Toom-Cook . 44

3.5.3 8-way Toom-Cook . 47

3.6 Experimentation . 50

3.7 Conclusion . 54

4 Parallel polynomial multiplication via two convolutions on multi-core

processors 56

4.1 Introduction . 56

4.2 Multiplying integer polynomials via two convolutions 58

4.2.1 Recovering c(y) from C+(x, y) and C−(x, y) 62

4.2.2 The algorithm in pseudo-code . 64

4.2.3 Parallelization . 65

4.3 Complexity analysis . 66

4.3.1 Smooth integers in short intervals . 69

4.3.2 Proof of Theorem 1 . 70

4.4 Implementation . 71

4.5 Experimentation . 71

4.6 Conclusion . 74

5 Subproduct tree techniques on many-core GPUs 76

5.1 Introduction . 76

5.2 Background . 78

5.3 Subproduct tree construction . 81

5.4 Subinverse tree construction . 85

5.5 Polynomial evaluation . 90

5.6 Polynomial interpolation . 92

5.7 Experimentation . 95

5.8 Conclusion . 97

Curriculum Vitae 107

A Converting 108

A.1 Convert-in . 108

CONTENTS v

A.2 Convert-out . 109

B Good N Table 111

List of Algorithms

1 SchönhageStrassen . 21

2 Schoolbook(f, g,m,n) . 27

3 KroneckerSubstitution(f, g,m,n) . 31

4 Divide&Conquer(f, g,m,n, d) . 34

5 Recover(H,β, size) . 39

6 ToomCookK(f, g,m) . 39

7 Evaluate4(F) . 45

8 Interpolate4(c) . 46

9 SubproductTree(m0, . . . ,mn−1) . 79

10 Inverse(f, `) . 81

11 TopDownTraverse(f, i, j,Mn, F) . 85

12 OneStepNewtonIteration(f, g, i) . 87

13 EfficientOneStep(M ′
i,j,InvMi,j, i) . 88

14 InvPolyCompute(Mn,InvM, i, j) . 88

15 SubinverseTree(Mn,H) . 88

16 FastRemainder(a, b) . 93

17 LinearCombination(Mn, c0, . . . , cn−1) . 93

18 FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1) . 95

vi

List of Tables

2.1 Table showing CUDA memory hierarchy [56] 17

3.1 Intel node . 51

3.2 AMD node . 51

3.3 Execution times for the discussed algorithms. The size of the input poly-

nomials (s) equals to the number of bits of their coefficients (N). The error

for the largest input in Kronecker-substitution method is due to memory

allocation limits. (Times are in seconds.) . 51

3.4 Execution times for the discussed algorithms compared with Maple-17

which also uses Kronecker-substitution algorithm. 51

3.5 Cilkview analysis of the discussed algorithms for problems having differ-

ent sizes (The size of the input polynomials (s) equals to the number of

bits of their coefficients N). The columns work, and span are showing the

number of instructions, and the parallelism is the ratio of Work/Span. The

work and span of each algorithm are compared with those of Kronecker-

substitution method which has the best work. 53

3.6 Profiled execution times for different sections of the algorithm in the 4-way

Toom-Cook method. (Times are in seconds.) 54

3.7 Profiled execution times for different sections of the algorithm in the 8-way

Toom-Cook method. (Times are in seconds.) 54

4.1 Running time of four classical multiplication methods and the two-convolution

multiplication method . 72

4.2 Running time of four classical multiplication methods and the two-convolution

multiplication method for our faviorite examples 72

4.3 Running time of 3 sub-steps of the two-convolution multiplication method: I

refers to Lines 1-4, II refers Lines 5-8 and III refers Lines 9-11 of the pseudo-code

in Section 4.2.2 . 72

4.4 Running time of Bn,d(x) = 2d xd + .. + 2d . 73

4.5 Running time of Cn,d(x) = xd + d . 73

vii

LIST OF TABLES viii

4.6 Running time of Mignotte xd − 50x2 + 20x − 2 73

4.7 Running time of Chebycheff polynomials . 74

4.8 Running time of random polynomials with expected number of roots 74

4.9 Cilkview analysis for the proposed algorithm compared to KSs. 74

5.1 Computation time for random polynomials with different degrees (2K) and

points. All of the times are in seconds. 96

5.2 Effective memory bandwidth in (GB/S) . 96

5.3 Execution times of multiplication . 97

5.4 Execution times of polynomial evaluation and interpolation. 98

B.1 Good N,k = log2K,M using two 62-bits primes. 111

B.2 Good N,k = log2K,M using two 62-bits primes. (Continue) 112

B.3 Good N,k = log2K,M using two 62-bits primes. (Continue) 113

List of Figures

1.1 Subproduct tree for evaluating a polynomials of degree 7 at 8 points. . . . 7

1.2 Top-down remaindering process associated with the subproduct tree for

evaluating the example polynomial. The % symbol means mod operation.

Mi,j is the j-th polynomial at level i of the subproduct tree. 8

2.1 The ideal-cache model. 13

2.2 Scanning an array of n = N elements, with L = B words per cache line. . . 14

2.3 Illustration of the CUDA memory hierarchy [56] 16

5.1 Subproduct tree associated with the point set U = {u0, . . . , un−1}. 79

5.2 Our GPU implementation versus FLINT for FFT-based polynomial mul-

tiplication. 97

5.3 Interpolation lower degrees . 98

5.4 Interpolation higher degrees . 98

5.5 Evaluation lower degrees . 98

5.6 Evaluation higher degrees . 98

ix

Chapter 1

Introduction

Polynomial multiplication and matrix multiplication are at the core of many algorithms

in symbolic computation. Expressing, in terms of multiplication time, the algebraic

complexity of an operation like univariate polynomial division or the computation of a

characteristic polynomial is a standard practice, see for instance the landmark book [29].

At the software level, the motto “reducing everything to multiplication”1 is also common,

see for instance the computer algebra systems Magma2 [6], NTL3 or FLINT4.

With the advent of hardware accelerator technologies, multi-core processors and

Graphics Processing Units (GPUs), this reduction to multiplication is, of course, still

desirable, but becomes more complex since both algebraic complexity and parallelism

need to be considered when selecting and implementing a multiplication algorithm. In

fact, other performance factors, such as cache usage or CPU pipeline optimization, should

be taken into account on modern computers, even on single-core processors. These ob-

servations guide the developers of projects like SPIRAL5 [57] or FFTW6 [20].

In this thesis, we investigate the parallelization of polynomial multiplication on both

multi-core processors and many-core GPUs. In the former case, we consider dense poly-

nomial multiplication with integer coefficients. The parallelization of this operation was

recognized as a major challenge for symbolic computation during the 2012 edition of the

East Coast Computer Algebra Day7. A first difficulty comes from the fact that, in a

computer memory, dense polynomials with arbitrary-precision coefficients cannot be rep-

resented by a segment of contiguous memory locations. A second difficulty follows from

1Quoting a talk title by Allan Steel, from the Magma Project.
2Magma: http://magma.maths.usyd.edu.au/magma/
3NTL: http://www.shoup.net/ntl/
4FLINT: http://www.flintlib.org/
5http://www.spiral.net/
6http://www.fftw.org/
7https://files.oakland.edu/users/steffy/web/eccad2012/

1

http://magma.maths.usyd.edu.au/magma/
http://www.shoup.net/ntl/
http://www.flintlib.org/
http://www.spiral.net/
http://www.fftw.org/
https://files.oakland.edu/users/steffy/web/eccad2012/

1.1. Integer polynomial multiplication on multi-core 2

the fact that the fastest serial algorithm for dense polynomial multiplication are based

on Fast Fourier Transforms (FFT) which, in general, is hard to parallelize on multi-core

processors.

In the case of GPUs, our study shifts to parallel dense polynomial multiplication

over finite fields and we investigate how this operation can be integrated into high-

level algorithm, namely those based on the so-called subproduct tree techniques. The

parallelization of these techniques is also recognized as a challenge that, before our work

and to the best of our knowledge, has never been handled successfully. One reason is that

the polynomial products involved in the construction of a subproduct tree cover a wide

range of sizes, thus, making a naive parallelization hard, unless each of these products is

itself computed in a parallel fashion. This implies having efficient parallel algorithms for

multiplying small size polynomials as well as large ones. This latter constraint has been

realized on GPUs and is reported in a series of papers [53, 36].

We note that the parallelization of sparse (both univariate and multivariate) polyno-

mial multiplication on both multi-core processors and many-core GPUs has already been

studied by Gastineau & Laskard in [26, 27, 25], and by Monagan & Pearce in [51, 50].

Therefore, throughout this thesis, we focus on dense polynomials.

For multi-core processors, the case of modular coefficients was handled in [46, 47] by

techniques based on multi-dimensional FFTs. Considering now integer coefficients, one

can reduce to the univariate situation via Kronecker’s substitution, see for instance the

implementation techniques proposed by Harvey in [39]. Therefore, we concentrate our

efforts on the univariate case.

1.1 Integer polynomial multiplication on multi-core

A first natural parallel solution for multiplying univariate integer polynomials is to con-

sider divide-and-conquer algorithms where arithmetic counts are saved thanks to the use

of evaluation and interpolation techniques. Well-know instances of this solution are the

multiplication algorithms of Toom & Cook, among which Karatsuba’s method is a spe-

cial case. As we shall see with the experimental results of Section 3.6, this is a practical

solution. However, the parallelism is limited by the number of ways in the recursion.

Moreover, increasing the number of ways makes implementation quite complicated, see

the work by Bodrato and Zanoni for the case of integer multiplication [5, 69, 70]. As

in their work, our implementation includes the 4-way and 8-way cases. In addition, we

will see in Section 3 that the algebraic complexity of a k-way Toom-Cook algorithm is

not in the desirable complexity class of algorithms based on FFT techniques (which is in

1.1. Integer polynomial multiplication on multi-core 3

O(N logN) for the input size N).

Turning our attention to this latter class, we first considered combining Kronecker’s

substitution (so as to reduce multiplication in Z[x] to multiplication in Z) and the

algorithm of Schönhage & Strassen [58]. The GMP-library8 provides indeed a highly

optimized implementation of this latter algorithm [30]. Despite of our efforts, we could

not obtain much parallelism from the Kronecker substitution part of this approach. It

became clear at this point that, in order to go beyond the performance (in terms of arith-

metic count and parallelism) of our parallel 8-way Toom-Cook code, our multiplication

code had to rely on a parallel implementation of FFTs. These attempts to obtain an

efficient parallel algorithmic solution for dense polynomial multiplication over Z, from

serial algorithmic solutions, such as 8-way Toom-Cook, are reported in Chapter 3.1.

Based on the work of our colleagues from the SPIRAL and FFTW projects, and based

on our experience on the subject of FFTs [46, 47, 49], we know that an efficient way to

parallelize FFTs on multi-core architectures is the so-called row-column algorithms9 which

implies to view 1-D FFTs as multi-dimensional FFTs and thus abandon the approach of

Schönhage & Strassen.

Reducing polynomial multiplication in Z[y] to multi-dimensional FFTs over a finite

field, say Z/pZ, implies transforming integers to polynomials over Z/pZ. As we shall

see in Section 4.5, this change of data representation can contribute substantially to the

overall running time. Therefore, we decided to invest implementation efforts in that

direction. We refer the reader to our publicly available code10.

In Chapter 4, we propose an FFT-based algorithm for multiplying dense polynomials

with integer coefficients in a parallel fashion, targeting multi-core processor architectures.

This algorithm reduces univariate polynomial over Z to 2-D FFT over a finite field

of the form Z/pZ. This addresses the performance issues raised above. In addition,

in our algorithm, the transformations between univariate polynomials over Z and 2-

D arrays over Z/pZ require only machine word addition and shift operation. Thus,

our algorithm does not require to multiply integers at all. Our experimental results

show that, for sufficiently large input polynomials, on sufficiently many cores, this new

algorithm outperforms all other approaches mentioned above as well as the parallel dense

polynomial multiplication over Z implemented in FLINT. This new algorithm is presented

in a paper [10] accepted at the International Symposium on Symbolic and Algebraic

Computation (ISSAC 2014)11. This is a joint work with Changbo Chen, Marc Moreno

8https://gmplib.org/
9http://en.wikipedia.org/wiki/Fast_Fourier_transform

10BPAS library: http://www.bpaslib.org/
11http://www.issac-conference.org/2014/

https://gmplib.org/
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://www.bpaslib.org/
http://www.issac-conference.org/2014/

1.1. Integer polynomial multiplication on multi-core 4

Maza, Ning Xie and Yuzhen Xie. Our code is part of the Basic Polynomial Algebra

Subprograms (BPAS)12.

1.1.1 Example

We illustrate below the main ideas of this new algorithm for multiplying dense polyno-

mials with integer coefficients. Consider the following polynomials a, b ∈ Z[y]:

a(y) = 100 y8 − 55 y7 + 217 y6 + 201 y5 − 102 y4 + 225 y3 − 127 y2 + 84 y + 40

b(y) = −26 y8 − 85 y7 − 110 y6 + 9 y5 − 114 y4 + 51 y3 − y2 + 152 y + 104

We observe that each of their coefficients has a bit size less that than N = 10. We

write N = KM with K = 2 and M = 5, and define β = 2M = 32, such that the following

bivariate polynomials A,B ∈ Z[x, y] satisfying a(y) = A(β, y) and b(y) = B(β, y). In

other words, we chop each coefficient of a, b into K limbs. We have:

A(x, y) = (3x + 4) y8 + (−x − 23) y7 + (6x + 25) y6 + (6x + 9) y5 + (−3x − 6) y4+

(7x + 1) y3 + (−3x − 31) y2 + x + (2x + 20) y + 8

B(x, y) = −26 y8 + (−2x − 21) y7 + (−3x − 14) y6 + 9 y5 + (−3x − 18) y4+

(x + 19) y3 − y2 + 3x + (4x + 24) y + 8

Then we consider the convolutions

C−(x, y) ≡ A(x, y)B(x, y) mod ⟨xK−1⟩ and C+(x, y) ≡ A(x, y)B(x, y) mod ⟨xK+1⟩.

We compute C−(x, y) and C+(x, y) modulo a prime number p which is large enough such

that the above equations hold both over the integers and modulo p. Working modulo

this prime allows us to use FFT techniques. In our example, we obtain:

C+(x, y) = (−104 − 78x) y16 + (−45x + 520) y15 + (−143x − 216) y14 + (−392 − 222x) y13+

(−623 − 300x) y12 + (−16x + 695) y11 + (83 − 185x) y10 + (38x + 510) y9+

(−476 + 199x) y8 + (−441 − 183x) y7 + (567x + 1012) y6 + (−947 − 203x) y5+

(225 + 149x) y4 + (−614 − 112x) y3 + (10x + 225) y2 + (132x + 342) y + 32x + 61

12http://www.bpaslib.org/

http://www.bpaslib.org/

1.1. Integer polynomial multiplication on multi-core 5

C−(x, y) = (−104 − 78x) y16 + (−45x + 508) y15 + (−143x − 230) y14 + (−410 − 222x) y13+

(−701 − 300x) y12 + (−16x + 683) y11 + (35 − 185x) y10 + (38x + 480) y9+

(−426 + 199x) y8 + (−463 − 183x) y7 + (567x + 1122) y6 + (−953 − 203x) y5+

(261 + 149x) y4 + (−594 − 112x) y3 + (10x + 223) y2 + (132x + 362) y + 32x + 67

Now we observe that the following holds, as a simple application of the Chinese Remain-

dering Theorem:

A(x, y)B(x, y) = C(x, y) =
C+(x, y)

2
(xK − 1) +

C−(x, y)
2

(xK + 1),

where, in our case, we have:

C(x, y) = (−104 − 78x) y16 + (514 − 6x2 − 45x) y15 + (−143x − 223 − 7x2) y14+

(−9x2 − 222x − 401) y13 + (−39x2 − 662 − 300x) y12 + (689 − 6x2 − 16x) y11+

(−24x2 + 59 − 185x) y10 + (−15x2 + 495 + 38x) y9 + (−451 + 199x + 25x2) y8+

(−183x − 11x2 − 452) y7 + (1067 + 55x2 + 567x) y6 + (−3x2 − 950 − 203x) y5+

(149x + 243 + 18x2) y4 + (−604 − 112x + 10x2) y3 + (−x2 + 10x + 224) y2+

(352 + 132x + 10x2) y + 64 + 3x2 + 32x

Finally, by evaluating C(x, y) at x = β = 32, the final result is:

c(y) = −2600 y16 − 7070 y15 − 11967 y14 − 16721 y13 − 50198 y12 − 5967 y11

−30437 y10 − 13649 y9 + 31517 y8 − 17572 y7 + 75531 y6 − 10518 y5

+23443 y4 + 6052 y3 − 480 y2 + 14816 y + 4160

We stress the fact, that, in our implementation, the polynomial C(x, y) is actually not

computed at all. Instead, the polynomial c(y) is obtained directly from the convolutions

C−(x, y) and C+(x, y) by means of byte arithmetic. In fact, as mentioned above, our

algorithm performs only computations in Z/pZ and add/shift operations on byte vectors.

Thus we avoid manipulating arbitrary-precision integers and ensure that all data sets that

we generate are in contiguous memory location. As a consequence, and thanks to the 2-D

FFT techniques that we rely on, we prove that the cache complexity of our algorithm is

optimal.

1.2. Polynomial evaluation and interpolation on many-core 6

1.2 Polynomial evaluation and interpolation on many-

core

In the rest of this thesis, we investigate the use of Graphics Processing Units (GPUs) in

the problems of evaluating and interpolating polynomials by means of subproduct tree

techniques. Many-core GPU architectures were considered in [61] and [64] in the case of

numerical computations, with a similar purpose as ours, as well as the long term goal of

obtaining better support, in terms of accuracy and running times, for the development

of polynomial system solvers.

Our motivation is also to improve the performance of polynomial system solvers.

However, we are targeting symbolic, thus exact, computations. In particular, we aim

at providing GPU support for solvers of polynomial systems with coefficients in finite

fields, such as the one reported in [54]. This case handles problems from cryptography

and serves as a base case for the so-called modular methods [16], since those methods

reduce computations with integer number coefficients to computations with finite field

coefficients.

Finite fields allow the use of asymptotically fast algorithms for polynomial arithmetic,

based on FFTs or, more generally, subproduct tree techniques. Chapter 10 in the land-

mark book [28] is an overview of those techniques, which have the advantage of providing

a more general setting than FFTs. More precisely, evaluation points do not need to be

successive powers of a primitive root of unity. Evaluation and interpolation based on

subproduct tree techniques have “essentially” (i.e. up to log factors) the same alge-

braic complexity estimates as their FFT-based counterparts. However, and as mentioned

above, their implementation is known to be challenging.

In Chapter 5.1, we report on the first GPU implementation (using CUDA [55]) of

subproduct tree techniques for multi-point evaluation and interpolation of univariate

polynomials. In this context, we demonstrate the importance of adaptive algorithms.

That is, algorithms that adapt their behavior to the available computing resources. In

particular, we combine parallel plain arithmetic and parallel fast arithmetic. For the

former we rely on [36] and, for the latter we extend the work of [53]. All implementation

of subproduct tree techniques that we are aware of are serial only. This includes [9] for

GF (2)[x], the FLINT library[38] and the Modpn library [44]. Hence we compare our

code against probably the best serial C code (namely the FLINT library) for the same

operations. For sufficiently large input data and on NVIDIA Tesla C2050, our code

outperforms its serial counterpart by a factor ranging between 20 to 30. This is a joint

work with Sardar Anisul Haque and Marc Moreno Maza. Our code is part of the CUDA

1.2. Polynomial evaluation and interpolation on many-core 7

x8
+ 224x7

+ 9x6
+ 80x5

+ 235x4
+ 146x3

+ 203x2
+ 135x + 220

x4
+ 90x3

+ 32x2
+ 230x + 195

x2
+ 94x + 132

x − 63 x − 100

x2
+ 253x + 19

x − 148 x − 113

x4
+ 134x3

+ 253x2
+ 34x + 212

x2
+ 122x + 7

x − 109 x − 26

x2
+ 12x + 67

x − 39 x − 206× × × ×

× ×

×

Figure 1.1: Subproduct tree for evaluating a polynomials of degree 7 at 8 points.

Modular Polynomial (CUMODP)13.

1.2.1 Example

We illustrate below an example of evaluating a polynomial with the degree 7 at 8 points.

Here is the given polynomial over the prime filed 257:

P (x) = 92x7 + 89x6 + 24x5 + 82x4 + 170x3 + 179x2 + 161x + 250

We want to evaluate it at the points (63,100,148,113,109,26,39,206).

The corresponding subproduct tree which will be constructed using a bottom-up

approach is illustrated in Figure 1.1.

Then, we start the top-down approach for evaluating the polynomial in which, first, we

need to compute the remainder of P (x) over two children of the root of the subproduct

tree, and evaluate each of the results at 4 points, and so on (do this recursively). In

Figure 1.2, this remaindering process is shown.

The final results of the remaindering process will be the evaluated results of the

polynomial at the given points over the prime field (257 in this case).

For the reverse process, which is interpolating a polynomial over the prime 257 which

goes from 8 points (63,75), (100,101), (148,49), (113,74), (109,55), (26,159), (39,26), (206,169),

13http://www.cumodp.org/

http://www.cumodp.org/

1.2. Polynomial evaluation and interpolation on many-core 8

P (x)

201x3 + 46x2 + 198x + 77

91x + 253

75

%M0,0

101

%M0,1

%M1,0

36x + 118

49

%M0,2

74

%M0,3

%M1,1

%M2,0

87x3 + 37x2 + 137x + 150

39x + 173

55

%M0,4

159

%M0,5

%M1,2

224x + 28

26

%M0,6

169

%M0,7

%M1,3

%M2,1

Figure 1.2: Top-down remaindering process associated with the subproduct tree for eval-
uating the example polynomial. The % symbol means mod operation. Mi,j is the j-th
polynomial at level i of the subproduct tree.

we use Lagrange interpolation in which, first we evaluate the derivation of M(x) (the root

polynomial in the subproduct tree) at the 8 given points using the existing subproduct

tree. Then we apply the linear combination, which is basically similar to constructing

the subproduct tree.

Chapter 2

Background

In this chapter, we review basic concepts related to high performance computing. We

start with multi-core processors and the fork-join concurrency model. We continue with

the ideal cache model since cache complexity plays an important role for our algorithms

targeting multi-core processors. Then, we give an overview of GPGPU (general-purpose

computing on graphics processing units) followed by a model of computation devoted

to these many-core GPUs. We conclude this chapter by a presentation of FFT-based

algorithms, stated for vectors with coefficients in finite fields. Indeed, the algorithms of

Cooley-Tukey, Stockham, and Schönhage & Strassen play an essential role in our work.

2.1 Multi-core processors

A multi-core processor is an integrated circuit consisting of two or more processors.

Having multiple processors would enhance the performance by giving the opportunity of

executing tasks simultaneously. Ideally, the performance of a multi-core machine with

n processors, is n times that of a single processor (considering that they have the same

frequency).

In recent years, this family of processors has become popular and widely being used

due to their performance and power consumption compared to single-core processors. In

addition, because of the physical limitations of increasing the frequency of processors,

or designing more complex integrated circuits, most of the recent improvements were in

designing multi-core systems.

In different topologies for multi-core systems, the cores may share the main memory,

cache, bus, etc. Plus, heterogeneous multi-cores may have different cores, however in

most cases the cores are similar to each others.

In a multi-core system, we may have multi-level cache memories which can have a

9

2.1. Multi-core processors 10

huge impact on the performance. Having cache memories on each of the processors, gives

the programmers an opportunity of designing extremely fast memory access procedures.

Implementing a program which can take benefits from the cache hierarchy, with low cache

misses rates is known to be challenging.

There are numerous parallel programming models based on these architectures. There

are some challenges whether in the programming models or in the application develop-

ment layers. For instance, how to divide and partition the task, how to make use of

cache and memory hierarchy, how to distribute and manage the tasks, how the tasks can

communicate with each-other, what is the memory access for each task. Some of these

worries will be handled in the concurrent programming platform, and some need to be

handled by the developer. Some well-known examples of these concurrent programming

models are CilkPlus 1, OpenMP 2, MPI 3, etc.

2.1.1 Fork-join parallelism model

Fork-Join Parallelism Model is a multi-threading model for parallel computing. In this

model, execution of threaded programs is represented by DAG (directed acyclic graph)

in which the vertices correspond to threads, and edges (strands) correspond to relations

between threads (forked or Joined). Fork stands for ending one strand, and starting

a couple of new strands; whereas, join is the opposite operation in which a couple of

strands will end and one new strand begins.

1http://www.cilkplus.org/
2http://openmp.org/wp/
3http://en.wikipedia.org/wiki/Message_Passing_Interface

http://www.cilkplus.org/
http://openmp.org/wp/
http://en.wikipedia.org/wiki/Message_Passing_Interface

2.1. Multi-core processors 11

In the following diagram, a sample DAG is shown

in which the program starts with the thread 1.

Later, the thread 2 will be forked to two threads

3 and 13. Following the the division of the pro-

gram, the threads 15, 17 and 12 will be joined to

18.

CilkPlus is a C++based platform providing an

implementation of this model [43, 23, 19] using

work-stealing scheduling [3] in which every pro-

cessor has a stack of tasks, and all of the proces-

sors can steal tasks from others’ stacks when they

are idle. In CilkPlus extension, one can use the

keywords cilk spawn to fork, and cilk sync for join.

According to theory analysis, this framework has

minimal overhead for tasks scheduling; this helps

the developers to exploit their applications to the

maximum parallelism.

1start

2

3 13

4
6 14

16

5
7

9

8
10

11

12

15
17

18

For analyzing the parallelism in the fork-join model, we measure T1 and T∞ which

are defined as the following:

Work (T1): the total amount of time required to process all of the instructions of a

given program on a single-core machine.

Span (T∞): the total amount of time required to process all of the instructions of a

given program on a multi-core machine with an infinite number of processors. This is

called the critical path too.

Work/Span Law: the total amount of time required to process all of the instructions

of a given program using a multi-core machine with p processors (called Tp) is bounded

as the following:

Tp ≥ T∞ , Tp ≥
T1
p

Parallelism: the ratio of work to span (T1/T∞).

In the above DAG the work, span, and the parallelism are 18, 9, and 2 respectively.

(The critical path is highlighted.)

2.2. The ideal cache model 12

Greedy Scheduler A scheduler is greedy if it attempts to do as much work as possible

at every step. In any greedy scheduler, there are two types of steps: complete steps

in which there are at least p strands that are ready to run (then the greedy scheduler

selects any p of them and runs them), and incomplete step in which there are strictly

fewer than p threads that are ready to run (then the greedy scheduler runs them all).

Graham-Brent Theorem For any greedy scheduler, we have: Tp ≤ T1/p + T∞.

Programming in Cilkplus

Here is an example of programming in Cilkplus for transposing a given matrix:

void transpose(T *A, int lda, T *B, int ldb, int i0, int i1, int j0, int j1){

tail:

int di = i1 - i0, dj = j1 - j0;

if (di >= dj && di > THRESHOLD) {

int im = (i0 + i1) / 2;

cilk_spawn transpose(A, lda, B, ldb, i0, im, j0, j1);

i0 = im; goto tail;

} else if (dj > THRESHOLD) {

int jm = (j0 + j1) / 2;

cilk_spawn transpose(A, lda, B, ldb, i0, i1, j0, jm);

j0 = jm; goto tail;

} else {

for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

B[j * ldb + i] = A[i * lda + j];

}

}

In this implementation, we divide the problem into two subproblems based on the in-

put sizes. Then, the subproblems will be forked and executed in parallel. Note that when

the size of the problem is small enough, we execute the serial method; the THRESHOLD

would be decided based on the cache line size for which we make sure that the input and

output data would fit into the cache.

2.2. The ideal cache model 13
fathena,cel,prokop,sridharg@supertech.lcs.mit.edu

= () �
(+ =)

(+ (=)(+)) ()
� �

(+(+ +)= + =
p

)

(;)

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z=L Cache lines

Lines
of length L

CPU

W
work

>

= () ;

()

(;)

Figure 2.1: The ideal-cache model.

2.2 The ideal cache model

The cache complexity of an algorithm aims at measuring the (negative) impact of memory

traffic between the cache and the main memory of a processor executing that algorithm.

Cache complexity is based on the ideal-cache model shown in Figure 2.1. This idea

was first introduced by Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar

Ramachandran in 1999 [21]. In this model, there is a computer with a two-level memory

hierarchy consisting of an ideal (data) cache of Z words and an arbitrarily large main

memory. The cache is partitioned into Z/L cache lines where L is the length of each

cache line representing the amount of consecutive words that are always moved in a

group between the cache and the main memory. In order to achieve spatial locality, cache

designers usually use L > 1 which eventually mitigates the overhead of moving the cache

line from the main memory to the cache. As a result, it is generally assumed that the

cache is tall and practically that we have

Z = Ω(L2).

In the sequel of this thesis, the above relation is referred as the tall cache assumption.

In the ideal-cache model, the processor can only refer to words that reside in the

cache. If the referenced line of a word is found in cache, then that word is delivered

to the processor for further processing. This situation is literally called a cache hit.

Otherwise, a cache miss occurs and the line is first fetched into anywhere in the cache

before transferring it to the processor; this mapping from memory to cache is called full

2.2. The ideal cache model 14

BB

Figure 2.2: Scanning an array of n = N elements, with L = B words per cache line.

associativity. If the cache is full, a cache line must be evicted. The ideal cache uses the

optimal off-line cache replacement policy to perfectly exploit temporal locality. In this

policy, the cache line whose next access is furthest in the future is replaced [2].

Cache complexity analyzes algorithms in terms of two types of measurements. The

first one is the work complexity, W (n), where n is the input data size of the algorithm.

This complexity estimate is actually the conventional running time in a RAM model [1].

The second measurement is its cache complexity, Q(n;Z,L), representing the number of

cache misses the algorithm incurs as a function of:

� the input data size n,

� the cache size Z, and

� the cache line length L of the ideal cache.

When Z and L are clear from the context, the cache complexity can be denoted simply

by Q(n).

An algorithm whose cache parameters can be tuned, either at compile-time or at

runtime, to optimize its cache complexity, is called cache aware; while other algorithms

whose performance does not depend on cache parameters are called cache oblivious. The

performance of cache-aware algorithm is often satisfactory. However, there are many

approaches which can be applied to design optimal cache oblivious algorithms to run on

any machine without fine tuning their parameters.

Although cache oblivious algorithms do not depend on cache parameters, their anal-

ysis naturally depends on the alignment of data block in memory. For instance, due

to a specific type of alignment issue based on the size of block and data elements (See

Proposition 1 and its proof), the cache-oblivious bound is an additive 1 away from the

external-memory bound [40]. However, such type of error is reasonable as our main goal

is to match bounds within multiplicative constant factors.

Proposition 1 Scanning n elements stored in a contiguous segment of memory with

cache line size L costs at most ⌈n/L⌉ + 1 cache misses.

Proof. The main ingredient of the proof is based on the alignment of data elements

in memory. We make the following observations.

2.3. General-purpose computing on graphics processing units 15

� Let (q, r) be the quotient and remainder in the integer division of n by L. Let u

(resp. w) be the total number of words in fully (not fully) used cache lines. Thus,

we have n = u +w.

� If w = 0 then (q, r) = (⌊n/L⌋,0) and the scanning costs exactly q; thus the conclusion

is clear since ⌈n/L⌉ = ⌊n/L⌋ in this case.

� If 0 < w < L then (q, r) = (⌊n/L⌋,w) and the scanning costs exactly q + 2; the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋ + 1 in this case.

� If L ≤ w < 2L then (q, r) = (⌊n/L⌋,w −L) and the scanning costs exactly q + 1; the

conclusion is clear again.

2.3 General-purpose computing on graphics process-

ing units

General-purpose computing on graphics processing units (GPGPU) is a way of doing

typical computations on Graphical processing units (GPU). The architecture of GPU,

has known to be suitable for some kind of computations in which one can achieve highly

efficient computing power compared to traditional ways of computing on CPU.

The architecture of a typical GPU, consists of streaming multiple-processors (SM)

which have multiple (8, typically) streaming processors which are SIMD (single instruc-

tion, multiple data) processors targeted for executing light threads. In a SM, there is

a shared memory which is accessible by each of the streaming processors. In addition,

each of the streaming processors have their own local registers. Each of the SM s will be

targeted for executing a block of threads.

There are two dominant platforms for programming GPUs: OpenCL 4 and CUDA 5

(from Nvidia). Here we investigate (and later use) CUDA.

2.3.1 CUDA

CUDA is a parallel programming architecture and model created by NVIDIA, which is a

C/C++ extension providing specific instruction sets for programming GPUs. It naively

supports multiple computational interfaces such as standard languages and APIs, but

having low overheads. It also provides accessing different hierarchy of the memory.

The CUDA programming model consists of the host which is a traditional CPU, and

one or more computing devices that are massively data-parallel co-processors (GPUs).

4http://www.khronos.org/opencl/
5http://www.nvidia.com/object/cuda home new.html

2.3. General-purpose computing on graphics processing units 16

Figure 2.3: Illustration of the CUDA memory hierarchy [56]

Each device is equipped with a large number of arithmetic execution units that has its

own DRAM, and runs many threads in parallel.

To invoke calculations on the GPU one has to perform a kernel launch, which is

basically a function written with the intent of what each thread on the GPU is to perform.

The GPU has a specific architecture of threads where they are divided into blocks and

where blocks are divided into a grid, see Figure 2.3. The grid has two dimensions and

can contain up to 65536 blocks in each dimension. While each block contains threads

in three dimensions, and can contain up to 512 threads in two dimensions and 64 in the

third. When executing a kernel one specifies the dimensions of the grid and blocks to

specify how many threads will be executing the kernel.

GPU has its own DRAM which is used in communicating with the host system. To

accelerate calculations within the GPU itself there are several other layers of memory

such as constant, shared and texture. Table 2.1 shows the relation between these.

Programming in CUDA

Here is an example of programming in CUDA for transposing of a given matrix:

__global__ void transpose(float *odata, float *idata, int width, int height) {

2.3. General-purpose computing on graphics processing units 17

Memory Location Cached Access Scope in Architecture
Register On-chip No Read/Write Single thread

Local Off-chip No Read/Write Single thread
Shared On-chip No Read/Write Threads in a Block
Global On-chip No Read/Write All

Constant On-chip Yes Read All
Texture On-chip Yes Read All

Table 2.1: Table showing CUDA memory hierarchy [56]

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + yIndex * width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + yIndex * height;

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {

tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i*width];

}

__syncthreads();

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {

odata[index_out + i*height] = tile[threadIdx.x][threadIdx.y + i];

}

}

The global identifies that this function is a kernel which means it will be executed

on the GPU. The host will invoke this kernel by specifying the number of thread blocks,

and number of threads per block. Then, each of the threads will execute this function

having access to the shared memory allocated on the thread block and the global memory.

Note that each thread has different id (see threadIdx.x and threadIdx.y), as each thread

block has different id (see blockIdx.x and blockIdx.y).

In this implementation, tile is the allocated memory on the shared memory. Then,

in the first loop, we copy the elements of the matrix from global memory to the shared

2.4. Many-core machine model 18

memory. After synchronizing, which means to make sure that all of the memory-reading

are completed, we copy the elements of the transposed matrix from the shared memory

to the correct index in the global memory. So, each of the thread blocks are responsible

for transposing a tile of the matrix.

2.4 Many-core machine model

Many-core Machine Model (MMM) is a model of multi-threaded computation, combining

fork-join and single-instruction-multiple-data parallelisms, with an emphasis on estimat-

ing parallelism overheads of programs written for modern many-core architectures [35].

Using this model, one can minimize parallelism overheads by determining an appropriate

value range for a given program parameter.

Architecture An MMM abstract machine has a similar architecture as a GPU in which

we have infinite and identical number of streaming multiprocessors. Each of the SM has

a finite number of processing cores and a fixed-size local memory. Plus, it has 2-level

memory hierarchy: one unbounded global memory with high latency and low throughput,

and SM local memory having low latency and high throughput.

Program An MMM program is a directed acyclic graph (DAG) whose vertices are

kernels and where edges indicate dependencies. A kernel is a SIMD (single instruction

multi-threaded data) program decomposed into a number of thread-blocks. Each thread-

block is executed by a single SM and each SM executes a single thread-block at a time.

Scheduling and synchronization At run time, an MMM machine schedules thread-

blocks onto the SMs, based on the dependencies among kernels and the hardware re-

sources required by each thread-block. Threads within a thread-block cooperate with

each other via the local memory of the SM running the thread-block. Thread-blocks

interact with each other via the global memory

Memory access policy All threads of a given thread-block can access simultaneously

any memory cell of the local memory or the global memory. Read/Write conflicts are

handled by the CREW (concurrent read exclusive write) policy.

For the purpose of analyzing program performance, we define two machine parame-

ters:

2.4. Many-core machine model 19

� U: Time (expressed in clock cycles) spent for transferring one machine word be-

tween the global memory and the local memory of any SM (so-called shared mem-

ory).

� Z: Size (expressed in machine words) of the local memory of SM.

Kernel DAG Each MMM program P is modeled by a directed acyclic graph (K,e) ,

called the kernel DAG of P , where each node represents a kernel, and each edge represents

a kernel call which must precede another kernel call. (a kernel call can be executed

whenever all its predecessors in the DAG completed their execution)

Since each kernel of the program P decomposes into a finite number of thread-blocks,

we map P to a second graph, called the thread block DAG of P , whose vertex set B(P)

consists of all thread-blocks of the kernels of P , such that (B1,B2) is an edge if B1 is a

thread-block of a kernel preceding the kernel of B2 in P .

2.4.1 Complexity measures

Work The work of a thread-block is defined as the total number of local operations

performed by the threads in that block. The work of a kernel k is defined as the sum of

the works of its thread-blocks (W (k)). The work of an entire program P is defined as

W (P) which is defined as the total work of all its kernels:

W (P) = ∑
k∈K

W (k)

Span The span of a thread-block is defined as the maximum number of local operations

performed by the threads in that block. The span of a kernel k is defined as the maximum

span of its thread-blocks (S(k)). The span of the path γ if defined as the sum of the

span of all kernels in that path: S(γ) = ∑k∈γ S(k)

The span of an entire program P is defined as:

S(P) = max
γ

S(γ)

Overhead The overhead of a thread-block B is defined as (r+w)U , assuming that each

thread of B reads (at-most) r words and writes (at-most) w words to the global memory.

The overhead of a kernel k is defined as the sum of the overheads of its thread-blocks

(O(k)). The overhead of an entire program P is defined as O(P) which is defined as the

2.5. Fast Fourier transform over finite fields 20

total overhead of all its kernels:

O(P) = ∑
α

O(α)

Graham-Brent Theorem for MMM We have the following estimate for the running

time Tρ of the program ρ when executing it on p Streaming Multiprocessors:

Tp ≤ (N(ρ)/p +L(ρ)) . C(ρ)

where N(ρ) is the number of vertices in the thread-block DAG of ρ, L(ρ) is the critical

path length (the length of the longest path) in the thread-block DAG of ρ, and C(ρ) =

maxB′ ∈ B(ρ) (S(B′) +O(B′)).

2.5 Fast Fourier transform over finite fields

Most multiplication algorithm such as Karatsuba, Toom-Cook, and FFT use evaluation-

interpolation approach. The fast Fourier transform (FFT) is also based on this approach

in which the evaluation and interpolation are done on specific points (roots of unity)

which is relatively efficient compared to its counterparts.

Definition let R be a ring, and K ≥ 2 ∈ N, and ω be the Kth root of unity in R; this

means that ωK = 1 and ∑
K−1
j=0 ωij = 0 for 1 ≤ i < K. The Fourier transform of a vector

A = [A0, . . . ,AK−1] from R is Â = [Â0, . . . , ˆAK−1] where for 0 ≤ i <K: Âi = ∑
K−1
j=0 wijAj.

Fourier transform computing Â in the naive way, takes O(K2), but using fast Fourier

transform which is a divide & conquer algorithm, it takes O(K logK).

Inverse Fourier transform is the reverse operation of Fourier transform which com-

putes the vector A by having Â as an input. The complexity of this operation is also

O(K logK). It can be proven that the inverse transform is the same operation as the

transform, but the points of the vector are shuffled.

Multiplication given input polynomials f and g of degreeK defined as f(x) = ∑
K
i=0 fixi

and g(x) = ∑
K
i=0 gixi.

1. Say ω is the 2Kth root of unity. Then, we evaluate both polynomials at points

ω0, . . . , ω2K−1 which is equivalent to computing the Fourier transform which was

2.5. Fast Fourier transform over finite fields 21

defined above. This step is called Discrete Fourier Transform.

2. Point-wise multiplication: (f(ω0).g(ω0), . . . , f(ω2K−1).g(ω2K−1)).

3. Interpolating the result polynomial using inverse Fourier transform.

The overall cost of multiplication using FFT algorithm is O(K logK).

2.5.1 Schönhage-Strassen FFT

The Schönhage-Strassen [58] FFT algorithm which is known to be asymptotically the

best multiplication algorithm with complexity O(n logn log logn) (until Fürer’s algo-

rithm [24]) works on the ring Z/(2n + 1)Z. Algorithm 1 (this algorithm is from [8,

Section 2.3]) is the Schönhage-Strassen approach for multiplying two integers having at-

most n bits. Note that in the Algorithm 1, if the chosen n′ is large, we call the algorithm

recursively.

Algorithm 1: SchönhageStrassen

Input: 0 ≤ A,B < 2n + 1, K = 2k, n =MK
Output: C = A.B mod (2n + 1)
A = ∑

K−1
j=0 aj2j

M
, B = ∑

K−1
j=0 bj2j

M
where 0 ≤ aj, bj < 2M ;

choose n′ ≥ 2n/K + k which is multiple of K;
θ = 2n

′/K , ω = θ2;
for j = 0 . . . k − 1 do

aj = θjaj mod (2n
′

+ 1);
bj = θjbj mod (2n

′

+ 1);

a = FFT(a,ω,K);
b = FFT(b, ω,K);
for j = 0 . . . k − 1 do

cj = ajbj mod (2n
′

+ 1);

c = InverseFFT(c, ω,K);
for j = 0 . . . k − 1 do

cj = cj/(Kθj) mod (2n
′

+ 1);
if cj ≥ (j + 1)22M then

cj = cj − (2n
′

+ 1);

C = ∑
K−1
j=0 cj2j

M
;

return C;

2.5. Fast Fourier transform over finite fields 22

2.5.2 Cooley-Tukey and Stockham FFT

This section reviews the Fast Fourier Transform (FFT) in the language of tensorial cal-

culus, see [45] for an extensive presentation. Throughout this section, we denote by K a

field. In practice, this field is often a prime field Z/pZ where p is a prime number greater

than 2.

Basic operations on matrices

Let n,m, q, s be positive integers and let A,B be two matrices over K with respective

dimensions m × n and q × s. The tensor (or Kronecker) product of A by B is an mq × ns

matrix over K denoted by A⊗B and defined by

A⊗B = [ak`B]k,` with A = [ak`]k,` (2.1)

For example, let

A =

⎡
⎢
⎢
⎢
⎢
⎣

0 1

2 3

⎤
⎥
⎥
⎥
⎥
⎦

and B =

⎡
⎢
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎥
⎦

. (2.2)

Then their tensor products are

A⊗B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and B ⊗A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.3)

Denoting by In the identity matrix of order n, we emphasize two particular types of

tensor products, In ⊗Am and An ⊗ Im, where Am (resp. An) is a square matrix of order

m (resp, n) over K.

I4 ⊗DFT2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

1 1

1 −1

1 1

1 −1

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and can be viewed as an opportunity for vector-parallelism as illustrated below:

2.5. Fast Fourier transform over finite fields 23

DFT2 ⊗ I4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

1

1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The direct sum of A and B is an (m + q) × (n + s) matrix over K denoted by A⊕B

and defined by

A⊕B =

⎡
⎢
⎢
⎢
⎢
⎣

A 0

0 B

⎤
⎥
⎥
⎥
⎥
⎦

. (2.4)

More generally, for n matrices A0, . . . ,An−1 over K, the direct sum of A0, . . . ,An−1 is

defined as ⊕n−1i=0 Ai = A0 ⊕ (A1 ⊕ (⋯ ⊕ An−1)⋯). The stride permutation matrix Lmnm

permutes an input vector x of length mn as follows

x[im + j] ↦ x[jn + i], (2.5)

for all 0 ≤ j < m, 0 ≤ i < n. If x is viewed as an n ×m matrix, then Lmnm performs a

transposition of this matrix.

Discrete Fourier transform

We fix an integer n ≥ 2 and an n-th primitive root of unity ω ∈ K. The n-point Discrete

Fourier Transform (DFT) at ω is a linear map from the K-vector space Kn to itself,

defined by x z→ DFTn x with the n-th DFT matrix

DFTn = [ωk`]0≤k, `<n. (2.6)

In particular, the DFT of size 2 corresponds to the butterfly matrix

DFT2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎦

. (2.7)

The well-known Cooley-Tukey Fast Fourier Transform (FFT) [14] in its recursive form

is a procedure for computing DFTn x based on the following factorization of the matrix

2.5. Fast Fourier transform over finite fields 24

DFTn, for any integers q, s such that n = qs holds:

DFTqs = (DFTq ⊗ Is)Dq,s(Iq ⊗DFTs)L
qs
q , (2.8)

where Dq,s is the diagonal twiddle matrix defined as

Dq,s =
q−1
⊕
j=0

diag(1, ωj, . . . , ωj(s−1)), (2.9)

Formula (2.10) illustrates Formula (2.8) with DFT4:

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗DFT2)L2
2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ω

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 ω −1 −ω

1 −1 1 −1

1 −ω −1 ω

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.10)

Assume that n is a power of 2, say n = 2k. Formula (2.8) can be unrolled so as to

reduce DFTn to DFT2 (or a base case DFTm, where m divides n) together with the

appropriate diagonal twiddle matrices and stride permutation matrices. This unrolling

can be done in various ways. Before presenting one of them, we introduce a notation.

For integers i, j, h ≥ 1, we define

∆(i, j, h) = (Ii ⊗DFTj ⊗ Ih) (2.11)

which is a square matrix of size ijh. For m = 2` with 1 ≤ ` < k, the following formula

holds:

DFT2k = (
k−`
∏
i=1

∆ (2i−1,2,2k−i) (I2i−1 ⊗D2,2k−i))∆ (2k−`,m,1)(
1

∏
i=k−`

(I2i−1 ⊗L
2k−i+1

2)) .

(2.12)

Therefore, Formula (2.12) reduces the computation of DFT2k to composing DFT2, DFT2` ,

diagonal twiddle endomorphisms and stride permutations. Another recursive factoriza-

2.5. Fast Fourier transform over finite fields 25

tion of the matrix DFT2k is

DFT2k = (DFT2 ⊗ I2k−1)D2,2k−1L
2k

2 (DFT2k−1 ⊗ I2), (2.13)

from which one can derive the Stockham FFT [59] as follows

DFT2k =
k−1
∏
i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L
2k−i

2 ⊗ I2i). (2.14)

This is a basic routine which is implemented in our library (CUMODP 6) as the FFT

over a finite field (prime) targeted GPUs [53].

6http://cumodp.org/

http://cumodp.org/

Chapter 3

Parallelizing classical algorithms for

dense integer polynomial

multiplication

For a given algorithmic problem, such as performing dense polynomial multiplication over

a given coefficient ring, there are at least two natural approaches for obtaining an efficient

parallel solution. The first one is to start from a good serial solution and parallelize it, if

possible. The second one is to start from a good parallel solution of a related algorithmic

problem and transform it into a good parallel solution of the targeted problem.

In this chapter, for the question of performing dense polynomial multiplication over

the integers, we follow the first approach, reserving the second one for the next chapter.

To be more specific, we consider below standard sequential algorithms and discuss their

parallelization in CilkPlus targeting multi-core systems.

Interpreting experimental performance results of a parallel program is often a chal-

lenge, since many phenomena may interfere with each other: the underlying algorithm,

its implementation, issues related to the hardware or to the concurrency platform exe-

cuting the program. Complexity estimates of the underlying algorithms can help with

this interpretation. However, it is essential not to limit algorithm analysis to arithmetic

count. To this end, we review those algorithms and analyze their algebraic complexity

in Sections 3.2 through 3.4. Then, we discuss their parallelization and analyze the cor-

responding complexity measures in Section 3.5. Experimental results are reported and

analyzed in Section 3.6.

This is a joint work with M. Moreno Maza.

26

3.1. Preliminary results 27

3.1 Preliminary results

Notation 1 We consider two polynomials f, g ∈ Z[x] written as follows:

f(x) =
m−1
∑
i=0

fix
i , g(x) =

n−1
∑
i=0

gix
i (3.1)

where n, m ∈ N>0 and, for 0 ≤ i <m and 0 ≤ j < n, we have fi , gj ∈ Z together with

∣fi∣ ≤ 2bf and ∣gj ∣ ≤ 2bg , for some bf , bg ∈ N. We want to compute the polynomial h ∈ Z[x]

defined by:

h(x) =
n+m−2
∑
i=0

hix
i = f(x) × g(x). (3.2)

Algorithm 2: Schoolbook(f, g,m,n)

Input: f, g ∈ Z[x] and m,n ∈ N>0 as in Notation 1.
Output: h ∈ Z[x] such that h = f.g.
for i = 0 . . .m − 1 do

for j = 0 . . . n − 1 do
hi+j = hi+j + fi . gj;

return h;

One naive solution for computing the product h is the so-called schoolbook method

(Algorithm 2) which requires O(nm) arithmetic operation on the coefficients. If the

coefficients are all of small size in comparison to n and m, then this upper bound can be

regarded as a running time estimate, in particular if the coefficients are of machine word

size. However, if the coefficients are large, it becomes necessary to take their size into

account when estimating the running time of Algorithm 2. This explains the introduction

of Assumption 1.

This phenomenon occurs frequently with the univariate polynomials resulting from

solving multivariate polynomials systems of equations and inequalities. In such case, the

resulting univariate polynomials are often dense in the sense that the bit size of each

coefficient is the same order of magnitude as the degree, thus implying bf ∈ Θ(n).

For us, these polynomials are of great interest since isolating their real roots is a key

step in the process of solving polynomials systems. At the same time, the size of these

coefficients makes real root isolation an extremely expensive task in terms of computing

resources, leading to the use of high-performance computing techniques, such as parallel

processing [11] and asymptotically fast algorithms [65].

3.1. Preliminary results 28

Assumption 1 The implementation of all the algorithms studied in this work relies on

the GNU Multi-Precision (GMP) library 1. The purpose of Proposition 2 is to give an

asymptotic upper bound for GMP’s integer multiplication. We will use this estimate in the

analysis of our algorithms for dense polynomial multiplication with integer coefficients.

Proposition 2 Multiplying two integers X and Y , with bX and bY bits, amounts at most

to Cmul (bX + bY) log (bX + bY) log (log (bX + bY)) bit operations, for some constant Cmul

(that we shall use in our later estimates).

Proof. The GMP library relies on different algorithms for multiplying integers [32].

For the largest input sizes, the FFT-based Schönhage and Strassen algorithms (SSA) is

used. These sizes are often reached in the implementation of our algorithms for dense

polynomial multiplication with integer coefficients. The bit complexity for SSA to mul-

tiply two integers with a N -bit result is O(N logN log logN) [32, Chapter 16]. The

conclusion follows from the fact that the product X × Y has N = bX + bY bits. ◻

Proposition 3 Multiplying two integers X and Y , with bX and bY bits, assuming Y of

machine word size, amounts at most to C ′
mul bX bit operations, for some constant C ′

mul

(that we shall use in our later estimates).

Proof. Indeed, under the assumption that Y is of machine word size, the GMP

library relies on schoolbook multiplication [32]. The conclusion follows. Note that C ′
mul

depends on the machine word size. ◻

Remark 1 In Proposition 2, the cost is calculated in bit operations. In other circum-

stances, counting machine-word operations will be more convenient. For us, the bit size

of a machine word is a “small” constant, denoted by MW, which, in practice is either 32

or 64 bits. Hence, we will state our algebraic cost estimates either in bit operations or in

machine-word operations, whichever works best in the context of the estimate,

Notation 2 For all real number X ≥ 2, we define

G(X) = CmulX logX log logX.

Consequently, the estimate stated in Proposition 2 becomes G(bX + bY).

Remark 2 The algebraic complexity of adding two integers, each of at most h bits, is at

most Cadd h, for some constant Cadd (that we shall use in our later estimates).

1https://gmplib.org/

3.1. Preliminary results 29

Proposition 4 Adding p ≥ 2 integers, each of at most h bits, amounts at most to Cadd hp

bit operations.

Proof. Up to adding zero items in the input, we can freely assume that p is a power

of 2. At first, we are adding p/2 pairs of integers having at most h bits which produce

p/2 integers having at most h+1 bits. Then we will have p/4 pairs of integers which their

results will have h + 2 bits. By continuing in this manner and using Remark 2 we have:

Cadd (
p
2 h +

p
22 (h + 1) +⋯ +

p

2log2 p (h + log2 p − 1)) = Cadd (ph ∑
log2 p
i=1

1
2i
+ p ∑

log2 p
i=1

i−1
2i

)

= Cadd (ph (2log2 p−1
2log2 p) + h (

2log2 p−log2 p−2
2log2 p))

= Cadd (ph (
p−1
p) + h (

p−log2 p−2
p))

= Cadd (h (p − 1) + h (1 − log2 p+2
p))

≤ Cadd (h (p − 1) + h)

= Cadd ph

◻

Assumption 2 For simplicity, we assume that m ≤ n holds in all subsequent results.

Proposition 5 The number of bit operations performed by Algorithm 2 is at most:

mnG(bf + bg) +Caddmn (bf + bg)

Proof. We have m×n multiplications of two integers with maximum sizes bx and by,

respectively. Using Proposition 2, this gives us the first term of the desired complexity

estimate. For the additions, assuming that m ≤ n holds, we need to add m integers

with the maximum size of bx + by in order to obtain the coefficient of xi in f × g, for

m− 1 ≤ i ≤ n− 1. For 0 ≤ i <m− 1, the coefficient of xi requires adding i+ 1 integers with

bx+by bits. Similarly, for n ≤ i ≤m+n−2, the degree of xi requires adding (n+m−2)−i+1

integers with bx + by bits. Therefore, the total cost for the additions sums up to:

Cadd (m ((n − 1) − (m − 1) + 1) + 2
m−2
∑
i=0

(i + 1)) (bx + by) = Caddmn (bx + by)

◻

Assumption 3 For the purpose of our application to real root isolation, we shall assume

that the degrees of the input polynomials are equal, that is, n =m. Furthermore, we shall

assume that the maximum number of bits for representing any coefficient of an input

3.2. Kronecker substitution method 30

polynomial is of the same order as the degree of that polynomial. This implies that, for

all 0 ≤ i < n, we have ∣fi∣ ∈ Θ(2n) and ∣gi∣ ∈ Θ(2n).

Corollary 1 Under Assumption 3, the complexity estimate of Algorithm 2 becomes

2Cmul n3 log(2n) log log(2n) + 2Cadd n3.

3.2 Kronecker substitution method

In this section, we investigate an algorithm for doing polynomial multiplication which

takes advantage of integer multiplications. For this purpose, we convert polynomials to

relatively large integers, do the integer multiplication, then convert back the result into

a polynomial. This method is an application of the so-called Kronecker substitution,

see [29, Section 8.3] and [18].

As in Section 3.1, we assume that f and g are univariate polynomials over Z with

variable x and with respective positive degrees m and n, see Notation 1. Furthermore,

we start by assuming that all of the coefficients of f and g are non-negative. The case of

negative coefficients is handled in Section 3.2.1.

With this latter assumption, we observe that every coefficient in the product f(x)⋅g(x)

is strictly bounded over by H = min(m,n)HfHg + 1 where Hf and Hg are the maximum

value of the coefficients in f and g, respectively. Recall that the binary expansion of a

positive integer A has exactly b(A) = ⌊log2(A)⌋ + 1 bits. Thus, every coefficient of f, g,

and f ⋅ g can be encoded with at most β bits, where β = b(H).

Here are the steps of Kronecker substitution for doing integer polynomial multiplica-

tion:

1. Convert-in: we respectively map the input polynomials f(x) and g(x) to the

integers Zf and Zg defined as:

Zf = ∑
0≤i<m

fi 2
β i and Zg = ∑

0≤i<n
gi 2

β i. (3.3)

2. Multiplying: multiply Zf and Zg: Zfg = Zf . Zg.

3. Convert-out: retrieve coefficients of the product (f.g) from Zfg.

One can regard 2β as a variable, and thus, Zf and Zg are polynomials in Z[2β]. By

definition of H, each coefficient of Zf ⋅ Zg (computed in Z[2β]) is in the range [0,H).

Thus, each such coefficient is encoded with at most β bits. Therefore, one can compute

3.2. Kronecker substitution method 31

the product Zfg of Zf and Zg as an integer number and retrieve the coefficients of the

polynomial f ⋅g from the binary expansion of Zfg. This trick allows us to take advantage

of asymptotically fast algorithms for multi-precision integers, such as those implemented

in the GMP-library.

3.2.1 Handling negative coefficients

We apply a trick which was proposed by R. Fateman [18] in which for each of the neg-

ative coefficients (starting from the least significant one), 2β is borrowed from the next

coefficient. For instance, assuming

f(x) = f0 +⋯ + fix
i + fi+1xi+1 +⋯ + fdx

d (3.4)

where fi < 0 holds, we replace f(x) by

f0 +⋯ + (2β − fi)x
i + (fi+1 − 1)xi+1 +⋯ + fdx

d. (3.5)

There’s only one special case to his procedure: when the leading coefficient itself is

negative. In this situation, the polynomial f(x) is replaced by −f(x) and Zfg by −Zfg.

Since Fateman’s trick may increment each coefficient of f or g by 1, it is necessary to

replace β by β′ = β + 1 in the above algorithm.

For the Convert-out step, if the most significant bit of a 2β
′

-digit is 1, then it repre-

sents a negative coefficient and it should be adjusted by subtracting from 2β
′

. Otherwise,

it is a positive coefficient, and no adjustment is required. Algorithm 3 below sketches

integer polynomial via Kronecker substitution.

Algorithm 3: KroneckerSubstitution(f, g,m,n)

Input: f, g ∈ Z[x] and m,n ∈ N are the sizes respectively.
Output: h ∈ Z[x] such that h = f.g.
β = DetermineResultBits(f, g,m,n);
Zf = ConvertToInteger(f,m,β);
Zg = ConvertToInteger(g, n, β);
Zfg = Zf ×Zg;
h = ConvertFromInteger(Zfg, β,m + n − 1);
return h;

Remark 3 Using the bound H which was discussed earlier, the function call Determine-

3.2. Kronecker substitution method 32

ResultBits(f, g,m,n) is computed as follows:

β = bf + bg + log2(min(m,n)) + 2, (3.6)

where bf = ⌊log2Hf ⌋ + 1) and bg = ⌊log2Hg⌋ + 1 are the maximum numbers of bits required

for representing all of the coefficients of the input polynomials f(x) and g(x), respectively.

In addition, 1 more bit is considered for handling negative coefficients as discussed above.

The following lemma is an elementary observation and we skip its proof.

Lemma 1 The cost for converting a univariate integer polynomial into a big integer or

converting an integer into a univariate integer polynomial, according to Algorithm 3, is

at most Cconv s b bit operations, where s is the number of terms of the polynomial, b is

the number of bits required for representing each of the coefficients and C is a constant.

Proposition 6 The number of bit operations performed by Algorithm 3 is at most:

Cconv . 2(m + n)β +G ((m + n)β) . (3.7)

where Cconv is the constant introduced in Lemma 1 and β = bf +bg+log2m is as defined

in Remark 3.

Proof. By using Lemma 1, the cost of the Convert-in step for the polynomials f(x)

and g(x) into Zf and Zg are at most Cconvmβ and Cconv nβ respectively. In addition, the

cost of the Convert-out step for Zf.g into h(x) is at most Cconv (m+n−1)β. The number

of bits of the integers Zf and Zg are mβ and nβ, respectively. Using Proposition 2, the

cost for multiplying these two integers is at most G ((m + n)β). Summing all of these

helps us to conclude the final estimate. ◻

Corollary 2 Using Assumption 3, the algebraic complexity estimate of Algorithm 3 be-

comes:

Cmul (4n
2 + 2n logn) log(4n2 + 2n logn) log log(4n2 + 2n logn) +Cconv (8n

2 + 4n logn)

Remark 4 Corollaries 1 and 2 imply that, under Assumption 3, Algorithm 3 is asymp-

totically faster than Algorithm 2 by one order of magnitude. Indeed, Corollaries 1 and 2

bring the respective asymptotic upper bounds O(n3 log(n) log log(n)) and O(n2 log(n) log log(n)).

3.3. Classical divide & conquer 33

3.2.2 Example

We illustrate an example showing how Kronecker substitution algorithm works.

We have the given polynomials f(x) and g(x) with integer coefficients as follows:

f(x) = 41x3 + 49x2 + 38x + 29, g(x) = 19x3 + 23x2 + 46x + 21

For simplicity, we consider our computations in the base 10. Thus, the maximum

value of the result polynomial would be less than 104 (this is equivalent to 2β defined

earlier). In the convert-in step, we evaluate both polynomials at the point 104:

Zf = f(104) = 41004900380029, Zg = g(104) = 19002300460021

Then, we multiply the large integers:

Zh = h(104) = Zf ×Zg = 779187437354540344421320609

Finally, we have to retrieve the coefficients of the result polynomial from the large

integer. This can be done easily, since we know each 4 digits represent one coefficient of

the polynomial:

h(x) = 779x6 + 1874x5 + 3735x4 + 4540x3 + 3444x2 + 2132x + 609

3.3 Classical divide & conquer

We sketch below the classical Divide & Conquer approach in which we divide each of

the polynomials into 2 polynomials with half of the sizes of the original polynomials and

solve the 4 sub-problems, before merging the results together:

1. Division: divide each of the input polynomials into 2 polynomials with half sizes.

f(x) = ∑0≤i<m fi xi = F1(x)xm/2 + F0(x)

g(x) = ∑0≤i<n gi xi = G1(x)xn/2 +G0(x),

where F1(x), F0(x) (resp. G1(x),G0(x)) are the quotient and remainder in the

Euclidean division of f(x) (resp. g(x)) by xm/2 (resp. xn/2).

3.3. Classical divide & conquer 34

2. Sub-Problems: compute the four polynomial products F0(x)⋅G0(x), F1(x)⋅G1(x),

F0(x) ⋅G1(x) and F1(x) ⋅G0(x) recursively.

3. Merge: compute

F1(x)G1(x)x
(n+m)/2 + F1(x)G0(x)x

m/2 + F0(x)G1(x)x
n/2 + F0(x)G0(x), (3.8)

which requires to perform coefficient addition.

Remark 5 With respect to the method based on Kronecker substitution, this divide-and-

conquer algorithm provides opportunities for concurrency by means of the four recursive

calls which can be executed independently of each other. Those recursive calls themselves

may be executed by the same divide-and-conquer procedure. Of course, after a few levels

of recursion, it is necessary to use a serial base-case algorithm.

If for the base-case we choose to reach n = m = 1, the whole procedure performs

O(nm) recursive calls leading to an algorithm which, clearly, is less efficient than the

method based on Kronecker substitution in terms of algebraic complexity. Therefore, in

practice, we use a small number of recursion levels, denoted by d. In our implementation,

this integer d is either 2 or 3. In the base-case, we call Algorithm 3. This design is taken

account in Algorithm 4 below.

Algorithm 4: Divide&Conquer(f, g,m,n, d)

Input: f, g ∈ Z[x] with the sizes m,n ∈ N, and d ∈ N is the number of recursions.
Output: h ∈ Z[x] such that h = f.g.
BASE = m/2d;
if n < BASE or m < BASE then

return KroneckerSubstitution(f,g,m,n);
else

H0 = Divide&Conquer(F0,G0,m/2, n/2, d − 1);
H3 = Divide&Conquer(F1,G1,m/2, n/2, d − 1);
H2 = Divide&Conquer(F0,G1,m/2, n/2, d − 1);
H1 = Divide&Conquer(F1,G0,m/2, n/2, d − 1);
return H3(x)x(n+m)/2 + H2(x)xm/2 + H1(x)xn/2 +H0(x)

As mentioned, in Algorithm 4, the recursive calls can be executed in parallel fashion.

For this purpose, auxiliary memory space are used in order to store intermediate results

and reduce memory space usage. However, for the sake of simplicity, we do not reflect

that in Algorithm 4.

3.3. Classical divide & conquer 35

Lemma 2 Having G defined as in Notation 2, we have:

G(
X

2d
) ≤

G(X)

2d

Proof. By virtue of Notation 2, we have:

G(X
2d
) = Cmul

X
2d

log (X
2d
) log log (X

2d
)

= Cmul
X
2d

(logX − d) log (logX − d)

≤ Cmul
X
2d

logX log logX =
G(X)
2d

◻

Proposition 7 The number of bit operations necessary to run Algorithm 4 is at most:

2d (Cconv 2 (m + n) (β − d) +G ((m + n) (β − d))) +Cadd (m + n) (β − d)

where d = log2 (m/BASE) is the number of recursion levels and Cconv, Cadd, β are as in

Section 3.2.

Proof. Elementary calculations lead to the following relation:

T (n,m) = 4dT ′(n/2d,m/2d) +Cadd (m + n) (β − d)

where T ′(n′,m′) is the cost for multiplying two polynomials with degrees n′ = n/2d and

m′ = m/2d. Note that the number of bits of the result of the Kronecker substitution

algorithm for these sizes will be bf + bg + log2(m/2d) = bf + bg + log2m − d which is equal

to β − d. Using the result of Proposition 6 to evaluate T ′(n′,m′), we have:

T (n,m) = 4d (Cconv 2(
m + n

2d
) (β − d) +G((

m + n

2d
) (β − d))) +Cadd (m + n) (β − d)

The second term is due to copying the intermediate results from the auxiliary arrays to

the final result: using Proposition 4 and the fact that we have 2 (m/2+n/2−1) additions

of integers with size of β − d, explains this second term. Moreover, using Lemma 2 we

obtain:

G((
m + n

2d
) (β − d)) <

G ((m + n) (β − d))

2d

The desired result follows after elementary simplifications. ◻

Corollary 3 Using Assumption 3, Proposition 7 and Remark 3, we have the following

3.4. Toom-Cook algorithm 36

algebraic complexity estimate for Algorithm 4:

Cconv 2d+2 (2n2 + n log2 n − dn) +Cadd 2 (2n2 + n log2 n − dn)+

Cmul 2
d (2n2 + n log2 n − dn) log (2n2 + n log2 n − dn) log log (2n2 + n log2 n − dn)

Remark 6 From Corollary 3, we observe that the arithmetic count of the divivide & con-

quer algorithm is roughly 2d times that of algorithm based on Kronecker-Substitution (see

Corollary 2).

3.4 Toom-Cook algorithm

The famous Toom-Cook algorithm, which is credited to Toom [62] and Cook [13], is based

on the same approach as Karatsuba’s trick [41], in which polynomial multiplication is

divided into small sub-problems by means of polynomial evaluation, which are recombined

via interpolation and linear combination of terms. In this section, we propose an approach

combining Toom-Cook algorithm and Kronecker substitution, as stated in Algorithm 6.

Assumption 4 The basic Toom-Cook algorithm works when the degree of the input poly-

nomials are equal. Here, we assume that n = m holds too (see Notation 1). The case

where the input polynomials are not balanced is an on-going research topic, see [70] for

instance.

Remark 7 As a result of Assumption 4, when our implementation of Toom-Cook algo-

rithm is called on two polynomials with different degrees, “zero leading coefficients” are

added to the smaller polynomial of degree in order to “equalize degrees”.

Our method is explained below:

1. Convert-in: convert each of the polynomials into so-called Toom-polynomials with

degree k. For this, first we divide each of the polynomials into k sub-polynomials.

Note that we can assume that m is multiple of k (otherwise, we add “zero leading

coefficients” so as the number of coefficients becomes a multiple of k):

f(x) =
k−1
∑
i=0
Fi(x)(x

m/k)i , g(x) =
k−1
∑
i=0
Gi(x)(x

m/k)i, (3.9)

where, for 0 ≤ i < k, the polynomials Fi,Gi ∈ Z[x] have degree at most m/k − 1.

3.4. Toom-Cook algorithm 37

Then, we apply Kronecker Substitution to produce ZFi
, ZGi

∈ Z corresponding to

Fi(x), Gi(x), for 0 ≤ i < k, and we define:

F (x′) =
k−1
∑
i=0
ZFi

x′i , G(x′) =
k−1
∑
i=0
ZGi

x′i. (3.10)

In the above equation, xm/k is replaced by x′.

2. Multiplying using k-way Toom-Cook: compute H(x′) = F (x′) × G(x′) =

∑
2k−2
i=0 ZHi

x′i using k-way Toom-Cook. In this step, first, we evaluate the poly-

nomials F (x′) and G(x′) at 2k − 1 distinct points v0, . . . , v2k−2 where vi ∈ Q, for

0 ≤ i < 2k − 1. Thus, we define:

Ai ∶= F (vi) and Bi = G(vi). (3.11)

Then we do point-wise multiplications.

(C0, . . . ,C2k−2) = (H(v0), . . . ,H(v2k−2)) = (A0 ×B0, . . . ,A2k−2 ×B2k−2) (3.12)

At last, we recover the coefficients ZH0 , . . . , ZH2k−2
of H(x′) from the 2k − 1 pairs

(Ci, vi), for 0 ≤ i < 2k − 1. In practice, 2 trivial points are chosen, namely v0 = 0

and v2k−2 = ∞. This helps to minimize the number of arithmetic operations for

evaluation and interpolation parts of the algorithm.

3. Convert-out: We recover the polynomial product h(x) ∶= f(x) g(x) from the

integers ZH0 , . . . , ZH2k−2
. This requires to convert these integers to polynomials

H0(x), . . . ,H2k−2(x), each of degree at most 2m/k − 2, such that we have:

h(x) =
2k−2
∑
i=0

Hi(x)(x
m/k)

i
→ h(x) =

2m−2
∑
i=0

hix
i. (3.13)

As it can be seen in the above formula that, some of the expressions Hi(x)(xm/k)i

may have terms of the same degree, implying some necessary additions. In our

implementation we have used auxiliary arrays for handling those overlapping ex-

pressions: this helps executing all conversions and additions concurrently. This

implies that all of the His will be computed in a parallel fashion; and at last, we

have to iterate over the auxiliary arrays to add their elements to the final result

array, see Algorithm 5.

3.4. Toom-Cook algorithm 38

Toom-Cook Matrices. One can view the evaluation and interpolation phases of

Toom-Cook algorithm as the computation of three matrix products [5, 4]:

� Evaluation: we define the vector containing the values of the polynomials F and

G, as A and B respectively. The Toom matrix for evaluating the polynomials is

called Mk which is depicted below. Then this evaluation process is obtained as the

matrix-vector product Mk × F .

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F (0)

F (v1)

.

.

.

F (v2k−3)

F (∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

v01 v11 . . . vk−11

.

.

.

v02k−3 v12k−3 . . . vk−12k−3
0 0 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZF0

ZF1

.

.

.

ZFk−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=Mk × F

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G(0)

G(v1)

.

.

.

G(v2k−3)

G(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

v01 v11 . . . vk−11

.

.

.

v02k−3 v12k−3 . . . vk−12k−3
0 0 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZG0

ZG1

.

.

.

ZGk−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=Mk ×G

(3.14)

� Interpolation: we define the vector containing the coefficients of the polynomial

H as C. The Toom matrix M2k−1 for interpolating H is depicted below. Then this

interpolation process is obtained as the matrix-vector product M−1
2k−1 ×C.

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZH0

ZH1

.

.

.

ZH2k−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

v01 v11 . . . v2k−21

.

.

.

v02k−3 v12k−3 . . . v2k−22k−3
0 0 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0

C1

.

.

.

C2k−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=M−1
2k−1 ×C (3.15)

3.4. Toom-Cook algorithm 39

Algorithm 5: Recover(H,β, size)

Input: H ∈ Z[x] with the size of 2k − 1.
β ∈ N is the number of bits per coefficient.
size ∈ N is the size of the result polynomial.
Output: h ∈ Z[x].
for i = 0 . . . k − 1 do

H2i = CovertFromInteger(ZH2i
, β, size/k);

tmpH2i+1
= CovertFromInteger(ZH2i+1

, β, size/k);

for i = 0 . . .2k − 1 do
add Hi and tmpHi

to h;

return h;

Algorithm 6: ToomCookK(f, g,m)

Input: f, g ∈ Z[x] with the size of m ∈ N and the evaluation points.
Output: h ∈ Z[x] such that h = f.g.
β = DetermineResultBits(f, g,m,m);
Chop f, g into k sub-polynomials;
for i = 0 . . . k − 1 do

ZFi
= Fi (β);

ZGi
= Gi (β);

A = Evaluate(F, points);
B = Evaluate(G,points);
for i = 0 . . .2k − 1 do

C[i] = A[i] ×B[i];

H = Interpolate(C,points);
h = Recover(H,β,2m − 1);
return h;

3.4. Toom-Cook algorithm 40

Complexity analysis An algebraic complexity estimate of multiplying two polynomi-

als with degree n by applying k-way Toom-Cook recursively is O(nlogk(2k−1)) coefficient

operations, see [42, p. 280]. However this estimate considers only the costs for the

point-wise multiplications which are known to dominate the whole algorithm. Yet, the

algebraic complexity of the evaluation and interpolation steps of the algorithm grow as k

increases. Both our experimentation and theoretical analysis confirm that, by choosing

relatively large k, the evaluation and interpolation steps start to dominate the whole

algorithm.

In our proposed method (Algorithm 6), we are not applying the Toom-Cook trick

recursively. Moreover, we present a more precise analysis for Algorithm 6 by computing

its number of arithmetic operations. We analyze the span (in the sense of the fork-join

model, see Section 2.1.1) of the algorithm when applying the parallel implementation in

Section 3.5.

Assumption The size of each element of the Toom-matrix (or its inverse) are relatively

small, namely in the order of a machine-word size MW. In our complexity estimates, we

assume that they all have the same size MW.

Lemma 3 The number of bit operations for converting the input polynomials into the

Toom-polynomials is at most 2Cconv βm, where Cconv is the constant introduced in Lemma 1

and β is as defined in Remark 3.

Proof. The number of bits for coefficients of the Toom-polynomial for polynomial

F (x′) and G(x′) is m/k β. Thus, by using Lemma 1, the number of operations for

converting both polynomials would be (2m/k β) k. ◻

Lemma 4 The number of bit operations for evaluating the polynomials F (x′) and G(x′)

at 2k−1 points is at most (where Cadd, C ′
mul are constants, and β as defined in Remark 3):

2 (2k − 3) (C ′
mul +Cadd) mβ. (3.16)

Proof. We estimate the algebraic complexity for one polynomial, say F (x′): each of

the point evaluation is equivalent of a vector multiplication: (v0i , . . . , v
k−1
i)×(ZF0 , . . . , ZFk−1

).

As a result, we have k multiplications of integers with the size of m/k β and relatively

small integers (in the order of machine-word integers MW), plus k − 1 additions of those

intermediate result. Using Propositions 3, the cost for all of the multiplications is:

C ′
mul k (m/k β) = C ′

mulmβ. In addition, by using Proposition 4, the cost for additions is

Cadd k (m/kβ) = Caddmβ.

3.4. Toom-Cook algorithm 41

Considering that we have 2k−1 points of evaluating in which 2 points are trivial, the

cost for evaluating F will be: (2k − 3) (C ′
mulmβ +Caddmβ).

Considering the cost of evaluating G(x′), and putting them all together, helps us to

estimate the overall cost as it is stated above. ◻

Remark 8 The number of bits of the evaluated values for F and G are m/kβ + MW +

log2(k − 1). We can consider them as m/kβ + log2 k.

Remark 9 The number of bits of the evaluated values of the result Toom-polynomial

(ZHi
for 0 ≤ i < 2k − 1) is 2m/kβ + 2MW + 2 log2(k − 1). For simplicity, we ignore the

constant term, leading to the new estimate as 2m/kβ + 2 log2 k.

Lemma 5 The number of bit operations in the point-wise multiplications in the algorithm

is at most:

(2k − 1)G(
2m

k
β + 2 log2 k)

where β = bf + bg + log2m from Remark 3.

Proof. Considering Remark 9, having 2k−1 point-wise multiplications, and by using

Proposition 2, the overall cost can be computed as stated above ◻

Lemma 6 The number of bit operations in the interpolation of the polynomial by having

2k − 1 points and their evaluated values is at most:

4 (2k − 3) (C ′
mul +Cadd) (mβ + k log2 k) , (3.17)

where Cadd and C ′
mul are constants and β = bf + bg + log2m from Remark 3.

Proof. We calculate the number of operations as we did for the evaluation. For

each of the rows, we have 2k − 1 multiplications of an integer with 2m/k β + 2 log2 k (see

Remark 9) bits and a relatively small and constant number of bits and 2k − 2 additions.

Using Proposition 4, the cost for additions is:

Cadd (2k − 1) (
2m

k
β + 2 log2 k) < Cadd (4mβ + 4k log2 k)

Using Proposition 3, the cost for multiplications is:

C ′
mul (2k − 1) (

2m

k
β + 2 log2 k) < C

′
mul (4mβ + 4k log2 k)

By simplifying formulas we can conclude. ◻

3.4. Toom-Cook algorithm 42

Lemma 7 The number of bit operations for converting out and recovering the result is

at most:

2Cconv (2m − k) β

where Cconv is the constant introduced in Lemma 1 and β is as defined in Remark 3.

Proof. The converting out is a linear algorithm where we want to extract the

coefficients of the result polynomial which have β (see Remark 3) bits, with the size of

2m/k−1. Using Lemma 1 and having 2k−1 intermediate results which we have to recover

from we will have:

Cconv (2k − 1) (2m/k − 1)β < Cconv 2 (2m − k) β

◻

Proposition 8 The number of bit operations of Algorithm 6 is at most:

Cconv β (6m − 2k) + (2k − 1)G(
2m

k
β + 2 log2 k) + (2k − 3)(C ′

mul +Cadd) (6mβ + 4 log2 k) ,

where Cconv, C ′
mul, Cadd are constants and β from Remark 3.

Proof. We sum up the costs in Lemmas 3, 4, 5, 6, 7 to compute the cost. The

first term is for converting the representations, the second term is for doing point-wise

multiplications, and the third one is due to evaluations/interpolation. ◻

Corollary 4 Using Assumption 3, Proposition 8, and replacing β by using Remark 3,

the complexity of the Algorithm 6 will become:

Cconv (12n2 + 6n log2 n − 4k n − 2k log2 n) + (2k − 1)G(
4n2 + 2n log2 n

k
+ 2 log2 k)+

(2k − 3)(C ′
mul +Cadd) (12n2 − 6n log2 n + 4 log2 k)

Remark 10 From Corollary 4, we observe that when k is fixed, the term n2 logn log logn

dominate the arithmetic count. However when k grows, the terms coming from the

Convert-in and Convert-out (which are easily identified by the constants Cconv, C ′
mul,

Cadd) will grow. As a result, one should not expect much progress in implementing this

algorithm for larger k than 8, as we, and others, did not.

3.5. Parallelization 43

3.5 Parallelization

In this section, we describe the parallelization of the algorithms presented in Sections 3.2

through 3.4. For the purpose of our parallel computations on multi-core processors,

our code is written in Cilkplus 2 [43] and is part of the Basic Polynomial Algebra

Subprograms (BPAS)3. As mentioned before, our implementation relies on the GMP-

library 4 for computing with multi-precision integer numbers.

3.5.1 Classical divide & conquer

In our classical divide and conquer implementation, we have used 2 levels of recursion

(d = 2), and then calling Kronecker substitution for the base cases. This means that we

divide the input problem into 16 subproblems (4d = 16) with the sizes of n/4 and m/4.

These 16 subproblems are run concurrently.

Corollary 5 Using Proposition 7 and the fact that d = 2, the work of the Algorithm 4

becomes at-most:

4 (2Cconv (m + n) β +G ((m + n)β)) +Cadd (m + n)β,

where Cconv is the constant introduced in Lemma 1 and β is as defined in Remark 3.

Proposition 9 The span of Algorithm 4 is at most:

2Cconv (m + n) β +G ((m + n)β)

4
+Cadd (m + n)β,

where Cconv is the constant introduced in Lemma 1 and β is as defined in Remark 3.

Proof. Since we will be executing each subproblem in parallel, we have:

T (n,m) = T ′(n/2d,m/2d) +Cadd (m + n)β,

in where T ′(n′,m′) is the cost for multiplying two polynomials with the degree of n′ = n/4

and m′ = m/4 using the Kronecker-Substitution algorithm. By replacing T ′ from the

result of Proposition 6 we can conclude the result. Note that the additions are not

parallelized, since they are considered to be cheap operations. ◻

2https://www.cilkplus.org/
3http://www.bpaslib.org
4https://gmplib.org/

http://www.bpaslib.org

3.5. Parallelization 44

3.5.2 4-way Toom-Cook

Points. The points considered for the 4-way Toom-Cook in our implementations are

(0,1,−1,1/2,−1/2,2,∞).

These points will cause the Toom-Cook matrices to be appropriate in the sense of algebraic

complexity, see [5].

Evaluation. The Toom-Cook matrix for k = 4 looks like:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

1 1 1 1

1 −1 1 −1

8 4 2 1

8 −4 2 −1

1 2 4 8

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZF0

ZF1

ZF2

ZF3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=M4 × F

Note that we have multiplied Rows 4 and 5 by 8 for simplicity. This means that we are

computing 8×F (1/2) and 8×F (−1/2), respectively. In the interpolation phase, this will

be taken into account by multiplying Rows 4 and 5 by 64 in M7, which means that we

recover from 64 ×H(1/2) and 64 ×H(−1/2), see Section 3.5.3.

Remark 11 When evaluating a polynomial at 1/2i (or −1/2i) in the k-way Toom-Cook

algorithm, we multiply the corresponding row in Mk by 2k−1 which is equivalent to com-

puting 2k−1F (1/2i) (or 2k−1F (−1/2i)). For recovering the result polynomial in the in-

terpolation, we must know that we have computed 22 (k−1)H(1/2i) (or 22 (k−1)H(−1/2i));

therefore, we multiply the corresponding row of the matrix M2k−1 in the interpolation with

22 (k−1).

The pseudo-code for evaluating a polynomial in 4-way Toom-Cook are in Algorithm 7.

Consider that for each row of M4, we have a complementary row which has same

elements and negative elements with respect to the original row. Having this helps us

to reuse some intermediate results which has been taken into account in Algorithm 7.

Moreover, evaluating each of the polynomials are independent tasks and can be executed

with different cores as it is written in Algorithm 6.

3.5. Parallelization 45

Algorithm 7: Evaluate4(F)

Input: F ∈ Z[x′]: F (x′) = ZF0 +ZF1x
′ +ZF2x

′2 +ZF3x
′3.

Output: A is the vector of evaluated points.
tmp0 = ZF0 + ZF2 ;
tmp1 = ZF1 + ZF3 ;
tmp2 = 8 . ZF0 + 2 . ZF2 ;
tmp3 = 4 . ZF1 + ZF3 ;
A0 = ZF0 ;
A1 = tmp0 + tmp1;
A2 = tmp0 − tmp1;
A3 = tmp2 + tmp3;
A4 = tmp2 − tmp3;
A5 = ZF0 + 2 . ZF1 + 4 . ZF2 + 8 . ZF3 ;
A6 = ZF3 ;
return A;

Interpolation. Given the 7 evaluated points, we have to find a polynomial with a

degree of 7 which goes from those points. Using Remark 11, the interpolation step

becomes:

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0

1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1

64 32 16 8 4 2 1

64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64

0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0

C1

C2

C3

C4

C5

C6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=M−1
7 ×C

M. Bodrato and A. Zanoni investigated the optimal so-called Inversion-Sequence for

converting the Toom-Cook M7 into the identity matrix by proposing an optimality crite-

ria [5], based on the algebraic complexity of this conversion. We have implemented their

approach and the optimal Inversion-Sequence which converts M7 to the identity matrix

I7 is shown in Algorithm 8.

Other parallelism We have implemented Algorithm 6 for k = 4 and adapting it to

fork-join parallel model in CilkPlus. For this, all of the conversions of sub-polynomials

into large integers (coefficients of the Toom polynomial) are executed in parallel, for

both input polynomials. As a result, for this step, we will have 8 concurrent processes.

Furthermore, the point-wise multiplications (7 multiplications in 4-way Toom-cook) is

3.5. Parallelization 46

Algorithm 8: Interpolate4(c)

Input: C is a vector of evaluated points.
Output: The coefficients of the polynomial H (In-Place, ZHi

= Ci).
C5+ = C3; C4+ = C3; C4/ = 2; C2+ = C1; C2/ = 2; C3− = C4;
C1− = C2; C5− = 65 ∗C2; C2− = C6; C2− = C0;
C5+ = 45 ∗C2; C4− = C6; C4/ = 4; C3/ = 2; C5− = 4 ∗C3;
C3− = C1; C3/ = 3; C4− = 16 ∗C0; C4− = 4 ∗C2; C4/ = −3; C2− = C4;
C5/ = 30; C1− = C5; C1− = C3; C1/ = −3; C3− = 5 ∗C1; C5+ = C1;

executed in parallel fashion. At last, the recovering step of the algorithm is parallelized

based on Algorithm 5 by executing each of the conversions in parallel (the first loop in

Algorithm 5).

Corollary 6 Using Proposition 8 and the fact that k = 4, the work of the 4-way Toom-

Cook becomes at most:

6Cconv βm + 7 G(
m

2
β) + 30 (C ′

mul +Cadd)mβ

Proposition 10 The span of 4-way Toom-Cook is at most:

3

4
Cconv βm +G(

m

2
β) +

47

4
Caddmβ + 5C ′

mulmβ

Proof. The Convert-in will be executed in parallel for both polynomials (so is

Convert-out), and we will have the parallelism of 8. The 7 point-wise multiplications

will be executed concurrently too with the parallelism of 7. (The first 2 terms)

For the evaluation, in the Algorithm 7, we have 11 additions, and 6 multiplication

of integers with size roughly m/4 β using Remark 9. Plus, evaluating for each of the

polynomials will be executed in parallel. Then, the span for this part of the algorithm

will be:

11Cadd
m

4
β + 6C ′

mul (
m

4
β)

For the interpolation, in Algorithm 8, it can be seen that we have 18 additions, and

7 shifts and multiplications:

18Cadd (
m

2
β) + 7C ′

mul (
m

2
β)

Summing up these intermediate results helps us to conclude. ◻

Corollary 7 Comparing Lemmas 4 and 6 for k = 4, and the results in the proof of

Proposition 10, we can see that the parallelism for evaluation and interpolation steps of

3.5. Parallelization 47

the algorithm is roughly 4-5. Moreover, the parallelism for the point-wise multiplications

and converting steps are 7 and 8 respectively.

3.5.3 8-way Toom-Cook

Points. The points considered for the 8-way Toom-Cook in our implementations are:

(0,1,−1,1/2,−1/2,2,−2,1/4,−1/4,4,−4,1/8,−1/8,8,∞).

These points will cause the Toom-Cook matrices to be appropriate in the sense of arith-

metic calculations and algebraic complexity. Recall Remark 11 which will be used in

generating the Toom matrix for k = 8.

Evaluation. The Toom matrix for evaluation is well-structured as it is shown below.

Hence, we can use some tricks to have an efficient parallel implementation of it. Here are

some ideas that were taken into account in our implementation:

� First & last evaluation points chosen to be 0 and ∞ respectively.

� Since the coefficients of the polynomial are extremely large, we somehow need

to manage efficient reading in order to avoid memory contention. For this, we

consider one core to be responsible for multiplying even indexes of the coefficients

with the corresponding elements of the Toom matrix. In the picture, all of the blue

elements will be handled by 1 core (so will the red ones). We call the intermediate

sum/multiply result of blue elements of row i as Xi (and Yi for red ones).

� For each one of the other rows, we have a complimentary row with some negative

elements to each row, so we can compute the common factors only once. Consider-

ing this, we have reused each of Xis and Yis for the two final results. Each of these

sums will be handled by a single core. This, again, makes the memory accesses

more efficient.

� Finally, like 4-Way Toom-Cook, evaluating each of the polynomials are independent

tasks and can be executed with different cores.

3.5. Parallelization 48

A =

f0

X1 + Y1

X1 − Y1

X2 + Y2

X2 − Y2

X3 + Y3

X3 − Y3

X4 + Y4

X4 − Y4

X5 + Y5

X5 − Y5

X6 + Y6

X6 − Y6

X7 + Y7

f7

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

27 26 25 24 23 22 2 1

27 −26 25 −24 23 −22 2 −1

1 2 22 23 24 25 26 27

1 −2 22 −23 24 −25 26 −27

214 212 210 28 26 24 22 1

214 −212 210 −28 26 −24 22 −1

1 22 24 26 28 210 212 214

1 −22 24 −26 28 −210 212 −214

221 218 215 212 29 26 23 1

221 −218 215 −212 29 −26 23 −1

1 23 26 29 212 215 218 221

0 0 0 0 0 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

ZF0

ZF1

ZF2

ZF3

ZF4

ZF5

ZF6

ZF7

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M8×F

Interpolation. The inverse matrix (M−1
15) is not well-structured; furthermore, by our

experimental observation, the generated Inversion-Sequence could not help us to beat

our parallel code. Here are some tricks that were taken to account in our parallel imple-

mentation:

� The first and last row of the inverse matrix would be the same as M15.

� We parallelize multiplying the matrix by dividing it into 4-columns-M−1
15 /4-elements

C. This is due to avoid concurrent memory access to the same data, since elements

of C are extremely large (because they are large integers corresponding to some

polynomials with large coefficients).

� After computing intermediate results, we can merge/add them in a trivial concur-

rent fashion.

The work devision is shown in the matrix below:

3.5. Parallelization 49

H =

1 0 0 . . . 0

1 1 1 . . . 1

1 −1 1 . . . 1

214 213 212 . . . 1
.

1 8 82 . . . 814

0 0 0 . . . 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× C =

.
.
. . . .
. . . .
. . . .
.
.

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

×

C0
.

C3

C4
.

C7

C8
.

C11

C12
.

C14

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M−1
15 ×C

Additional comments on the parallelization of 8-way Toom-Cook We have

implemented Algorithm 6 for k = 8 and adapting it to fork-join parallel model. For

this purpose as it was discussed for the 4-way Toom-Cook, all of the converting sub-

polynomials into large integers and converting back (based on the Algorithm 5) will be

executed in parallel. Furthermore, the point-wise multiplications (15 multiplications in

8-way Toom-cook) will be executed in parallel fashion.

Corollary 8 Using Proposition 8 and the fact that k = 8, the work of the 8-way Toom-

Cook becomes at most:

6Cconv βm + 15 G(
m

4
β) + 78 (C ′

mul +Cadd)mβ

Proposition 11 The span of 8-way Toom-Cook is at most:

3

8
Cconv βm +G(

m

4
β) +

213

16
Caddmβ +

79

4
C ′
mulmβ

Proof. The Convert-in will be executed in parallel for both polynomials (so is

Convert-out), and we will have the parallelism of 16. The 15 point-wise multiplications

will be executed concurrently too with the parallelism of 15. (The first 2 terms)

For the evaluation, as it were discussed on how we parallelize them, we have 21

multiplications and 28 additions for each of the blue and red elements which will be

executed in parallel. Plus 14 another additions for using these intermediate results will

be executed using 7 processes simultaneously. The span for this part of the algorithm

3.6. Experimentation 50

will be:

21C ′
mul (

m

8
β) + 28Cadd (

m

8
β) +

1

2
Cadd (

m

8
β)

For the interpolation, for each of 4 columns, there will be 28 multiplications, and 39

additions. Plus, for computing each of the final results, 4 additions would be needed.

Then the span for the interpolation will be:

29C ′
mul (

m

4
β) + 39Cadd (

m

4
β)

Summing up these intermediate results helps us to conclude. ◻

Corollary 9 Comparing Lemmas 4 and 6 for k = 8, and the results in the proof of

Proposition 11, we can see that the parallelism for evaluation and interpolation steps of

the algorithm is roughly 8. Plus, the parallelism for the point-wise multiplications and

converting steps are 15 and 16 respectively.

3.6 Experimentation

Execution times for the different algorithms, that were discussed in this chapter, can

be found in Table 3.3. In these benchmarks, the number N of bits of the generated

coefficients for both input polynomials are equal to the size s (i.e. the degree plus one) of

the polynomial (see Assumption 3). We have executed our benchmarks on two different

machines:

1. Intel X5650 having 12 Cores (24 Cores with Hyper-Threading) with frequency of

2.67GHz.

2. AMD Opteron Processor 6168 having 48 cores with frequency of 1.9GHz.

In the Table 3.5 the data from Cilkview, the performance analysis tool of CilkPlus

are gathered. There are some interesting points that can be interpreted from these data:

� 8-way Toom-Cook has the best span and work as it is computed in Proposition 11

and Corollary 8. In the benchmarks on the Intel node, this algorithm is slower

because this node has only 12 physical cores, which is not sufficient to expose all

the parallelism of this algorithm. Indeed, this algorithm can split into 16 parallel

processes. We can see that 8-way Toom-Cook outperforms the other algorithms

on the AMD nodes, which has 48 physical cores.

3.6. Experimentation 51

N,s KS DnC Toom-4 Toom-8
128 0.001 0.015 0.006 0.01
256 0.004 0.023 0.008 0.019
512 0.008 0.027 0.015 0.016
1024 0.033 0.066 0.033 0.038
2048 0.147 0.114 0.078 0.1
4096 0.834 0.491 0.278 0.366
8192 3.138 2.129 1.298 1.497
16384 11.895 8.15 4.529 6.175
32768 52.388 30.202 17.487 23.498
65536 *Err. 140.657 75.06 89.6

Table 3.1: Intel node

KS DnC Toom-4 Toom-8
0.002 0.064 0.007 0.012
0.009 0.061 0.01 0.017
0.022 0.049 0.021 0.025
0.06 0.136 0.042 0.062
0.252 0.261 0.132 0.179
1.378 0.82 0.623 0.658
5.421 3.412 2.85 2.491
20.773 9.047 10.569 8.974
91.843 31.081 35.756 34.499
*Err. 125.024 128.938 117.374

Table 3.2: AMD node

Table 3.3: Execution times for the discussed algorithms. The size of the input polyno-
mials (s) equals to the number of bits of their coefficients (N). The error for the largest
input in Kronecker-substitution method is due to memory allocation limits. (Times are
in seconds.)

0 2 4 6

⋅104

0

200

400

600

Degree

T
im

e
(s

)

Maple-17
KS

D-&-C
Toom-4
Toom-8

Table 3.4: Execution times for the discussed algorithms compared with Maple-17 which
also uses Kronecker-substitution algorithm.

3.6. Experimentation 52

� The span of 4-way Toom-Cook and Divide & Conquer algorithms are the

same as it can be seen in our theoretical estimates in Propositions 10 and 9 which

suggests it should be around 4-times better than Kronecker substitution’s work.

But 4-way Toom-Cook has significantly less work (see Corollary 6 and 5). Con-

sidering that the Divide & Conquer approach has 16 sub-problems, whereas

4-way Toom-Cook has only 7 subproblems, we can justify why the execution

time of 4-way Toom-Cook is much better on the Intel node. On an ideal ma-

chine having a large number of cores, these two algorithms should perform very

similarly.

� In any case, the work of Kronecker substitution is the best as it can be seen

by comparing the estimates in Propositions 6, 7 and 8 (for instance, the work of

the Divide & Conquer is almost 4 times larger for d = 2 which is consistent with

Remark 6). This means that in the serial execution, the Kronecker substitution

approach is the best. The reason is that in the integer multiplication of the GMP

library relies on FFT-based algorithms which are asymptotically superior in term of

algebraic complexity to all the other algorithms presented in this chapter. However,

by dividing the work (even having a worse algebraic complexity), the other three

algorithms can take advantage of parallel execution and outperform Kronecker

substitution on both Intel and AMD nodes.

� The parallelism measured for the Divide & Conquer algorithms is close to 16 as

it was predicted by Proposition 9 and Corollary 5; considering that there will be 16

sub-problems for d = 2, it shows we are almost reaching the linear speedup which

suggest that our implementation is effective.

� Considering that we have 7 sub-problems in 4-way Toom-Cook, and challenging

evaluation/interpolation steps (in terms of parallelization), the measured paral-

lelism (i.e. speedup factor) of 6.5 is satisfying (see Corollary 7). It is the same for

8-way Toom-Cook having 15 sub-problems, but having a more complex evalua-

tion/interpolation phase in the sense of algebraic complexity, see Corollary 9.

� Kronecker substitution is the fastest algorithm when the sizes of the input polyno-

mials are less than 210. This is because there is not enough work for the parallel

algorithms to beat Kronecker substitution.

4-Way-Toom-Cook Profiled execution times for the different stages of the 4-Way-

Toom-Cook algorithm are being shown in Table 3.6. Note that the dominant part of

3.6. Experimentation 53

N,s Algorithm Parallelism Work Span Work/ks-work Span/ks-work
KS 1 795549545 795549545 1 1

2048 DnC 15.6 2706008620 173354669 3.401 0.218
Toom-4 6.12 1107493602 180724889 1.392 0.227
Toom-8 11.1 1165853687 104043963 1.465 0.131

KS 1 4302927423 4302927423 1 1
4096 DnC 15.76 12587108834 798637458 2.925 0.186

Toom-4 6.27 5213499242 831848170 1.211 0.193
Toom-8 11.6 5211756088 448107503 1.211 0.104

KS 1 16782031611 16782031611 1 1
8192 DnC 15.86 67219963043 4237361827 4.005 0.252

Toom-4 6.46 28289524380 4382446030 1.686 0.261
Toom-8 12.08 24448581048 2023752279 1.457 0.121

KS 1 63573232166 63573232166 1 1
16384 DnC 15.87 253683811232 15980189635 3.990 0.251

Toom-4 6.43 106591330172 16575876924 1.677 0.261
Toom-8 12.58 121566206661 9662331241 1.912 0.151

KS 1 269887534779 269887534779 1 1
32768 DnC 15.88 1003739269119 63197112068 3.719 0.234

Toom-4 6.43 420041846756 65345935194 1.556 0.242
Toom-8 12.49 462974961591 37063888492 1.715 0.137

Table 3.5: Cilkview analysis of the discussed algorithms for problems having different
sizes (The size of the input polynomials (s) equals to the number of bits of their coeffi-
cients N). The columns work, and span are showing the number of instructions, and the
parallelism is the ratio of Work/Span. The work and span of each algorithm are compared
with those of Kronecker-substitution method which has the best work.

3.7. Conclusion 54

N,s Division-&-Conversion Evaluation Integer Multiplication Interpolation Conversion-&-Merge

4096 0.056 0.01 0.119 0.026 0.064
8192 0.171 0.042 0.765 0.12 0.186
16384 0.603 0.155 2.612 0.518 0.627
32768 2.16 0.547 11.058 1.975 2.317
65536 6.511 2.08 49.328 8.179 8.724

Table 3.6: Profiled execution times for different sections of the algorithm in the 4-way
Toom-Cook method. (Times are in seconds.)

N,s Division-&-Conversion Evaluation Integer Multiplication Interpolation Conversion-&-Merge

4096 0.074 0.038 0.102 0.124 0.067
8192 0.289 0.189 0.522 0.475 0.175
16384 0.686 0.543 2.806 1.619 0.604
32768 2.218 2.251 9.843 6.14 2.29
65536 7.258 7.258 39.158 24.639 7.869

Table 3.7: Profiled execution times for different sections of the algorithm in the 8-way
Toom-Cook method. (Times are in seconds.)

the algorithm is the integer-multiplication which is takes about 60% of the total running

time.

8-Way-Toom-Cook Profiled execution times for the different stages of the 8-Way-

Toom-Cook algorithm are being shown in Table 3.7. Comparing these results with

Table 3.6 indicates that the conversion stages are almost the same as before, whereas the

evaluation and interpolation parts are much worse which confirms the theory analysis

in Lemmas 6 and 4, and Propositions 10 and 11. However the multiplication times are

better than that of 8-Way-Toom-Cook, since the sizes of the sub-problems are smaller,

see Lemma 5.

3.7 Conclusion

We investigated different methods for multiplying dense univariate polynomials with

relatively large integer coefficients. Numerous tricks for parallelizing well-known methods

and utilizing multi-core architectures have been used in our implementation, and large

speed-up factors over the best known serial implementation have been observed. Besides,

we presented precise algebraic complexity estimates for different algorithms (as well as

span estimates) which confirm our experimental observations. However, all of these

algorithms have a “static” parallelism, meaning that we divide the problem to a fixed

3.7. Conclusion 55

number of sub-problems. Thus, these algorithms cannot scale on an (ideal) machine

with a large (infinite) number of cores. Moreover, we are relying on GMP’s integer

multiplication in all of our algorithm which causes us some overheads in data conversion.

In Section 4 we investigate an FFT-based approach which has a dynamic parallelism and

which does not rely on integer multiplication at all!

The source of the algorithms discussed in this chapter are freely available at the web

site of the website of Basic Polynomial Algebra Subprograms (BPAS-Library) 5.

5http://bpaslib.org/

http://bpaslib.org/

Chapter 4

Parallel polynomial multiplication

via two convolutions on multi-core

processors

We propose an FFT-based algorithm for multiplying dense polynomials with integer

coefficients in a parallel fashion, targeting multi-core processor architectures. Complexity

estimates and experimental results demonstrate the advantage of this new approach. We

also show how parallelizing integer polynomial multiplication can benefit procedures for

isolating real roots of polynomial systems.

This chapter is a joint work with M. Moreno Maza, C. Chen, N. Xie, and Y. Xie.

The corresponding paper [10] is accepted at ISSAC 20141

4.1 Introduction

Let a(y), b(y) ∈ Z[y] with degree at most d−1, for an integer d ≥ 1. We aim at computing

the product c(y) ∶= a(y)b(y). We propose an algorithm whose principle is sketched below.

A precise statement of this algorithm is given in Section 4.2, while complexity results

and implementation techniques appear in Sections 4.3 and 4.4.

1. Convert a(y), b(y) to bivariate polynomials A(x, y),B(x, y) over Z (by converting

the integer coefficients of a(y), b(y) to univariate polynomials of Z[x], where x is

a new variable) such that a(y) = A(β, y) and b(y) = B(β, y) hold for some β ∈ Z
(and, of course, such that we have deg(A,y) = deg(a) and deg(B,y) = deg(b)).

2. Letm > 4H be an integer, whereH is the maximum absolute value of the coefficients

1http://www.issac-conference.org/2014/papers.html

56

http://www.issac-conference.org/2014/papers.html

4.1. Introduction 57

of the integer polynomial C(x, y) ∶= A(x, y)B(x, y). The integer m and the polyno-

mialsA(x, y),B(x, y) are built such that the polynomials C+(x, y) ∶= A(x, y)B(x, y)

mod ⟨xK+1⟩ and C−(x, y) ∶= A(x, y)B(x, y) mod ⟨xK−1⟩ are computed over Z/mZ
via FFT techniques while the following equation holds over Z:

C(x, y) =
C+(x, y)

2
(xK − 1) +

C−(x, y)
2

(xK + 1). (4.1)

3. Finally, one recovers the product c(y) by evaluating the above equation at x = β.

Of course, the polynomials A(x, y),B(x, y) are also constructed such that their total bit

size is proportional to that of a(y), b(y), respectively. In our software experimentation,

this proportionality factor ranges between 2 and 4. Moreover, the number β is a power

of 2 such that evaluating the polynomials C+(x, y) and C−(x, y) (whose coefficients are

assumed to be in binary representation) at x = β amounts only to addition and shift

operations. Further, for a software implementation on 64-bit computer architectures,

the number m can be chosen to be either one machine word size prime p or a prod-

uct p1p2 of two such primes. Therefore, in practice, the main arithmetic cost of the

whole procedure is that of either two or four convolutions, those latter being required for

computing C+(x, y) and C−(x, y). All the other arithmetic operations (for constructing

A(x, y),B(x, y) or evaluating the polynomials C+(x, y) and C−(x, y)) are performed in

single or double fixed precision at a cost which is proportional to that of reading/writing

the byte vectors representing A(x, y), B(x, y), C+(x, y) and C−(x, y).

Theorem 1 below states complexity estimates for the work, the span and the cache

complexity estimate of the above algorithm as we have implemented it. Recall that

our goal is not to obtain an algorithm which is asymptotically optimal for one of these

complexity measures. Instead, our algorithm is designed to be practically faster, in

terms of work, span and cache complexity, than the other algorithms that are usually

implemented for the same purpose of multiplying dense (univariate) polynomials with

integer coefficients.

Theorem 1 Let w be the number of bits of a machine word. Let N0 be the maximum

bit size of a coefficient among a(y) and b(y). There exist positive integers N,K,M ,

with N = KM and M ≤ w, such that the integer N is w-smooth (and so is K), we

have N0 < N ≤ N0 +
√
N0 and the above algorithm for multiplying a(y), b(y) has a work

of O(dK log2(dK)(log2(dK)+2M)) word operations, a span of O(K log2(d) log2(dK))

word operations and a cache complexity of O(⌈dN/wL⌉+⌈(log2(dK)+2M)⌉dK/L) cache

misses, where double logarithmic factors are neglected for the span (and only for the span).

4.2. Multiplying integer polynomials via two convolutions 58

A detailed proof of this result appears in Section 4.3. It follows from this result that

this algorithm is not asymptotically as fast as an approach based on a combination of

Kronecker’s substitution and Schönhage & Strassen, essentially by a O(log2(dK)) factor.

This is because we directly reduce our multiplication to FFTs over a small prime finite

field, instead of using the recursive construction of Schönhage & Strassen. However,

by using multi-dimensional FFTs, we obtain a parallel algorithm which is practically

efficient. We note also that the above span estimate is still linear in K, instead of the

expected poly-log estimate. This is because we are controlling parallelism overheads

by parallelizing only when this is cheap, see Section 4.2 for details. Finally, our cache

complexity estimate is sharp. Indeed, we control finely all intermediate steps with this

respect, see Section 4.3.

As mentioned above, our code is publicly available as part of the BPAS library2. To

illustrate the benefits of a parallelized dense univariate polynomial multiplication, we

integrated our code into the univariate real root isolation code presented in [11] together

with a parallel version of Algorithm (E) from [65] for Taylor Shifts. The results reported

in Section 4.5 show that this integration has substantially improved the performance of

our real root isolation code.

4.2 Multiplying integer polynomials via two convo-

lutions

Notations. We write

a(y) =
d−1
∑
i=0

aiy
i, b(y) =

d−1
∑
i=0

biy
i and c(y) =

2d−2
∑
i=0

ciy
i, (4.2)

where ai, bi, ci are integers. Let N be a non-negative integer such that every coefficient

α of a or b satisfies

− 2N−1 ≤ α ≤ 2N−1 − 1 (4.3)

Therefore, using two’s complement, every such coefficient α can be encoded with N bits.

In addition, the integer N is chosen such that N writes

N =KM with K ≠ N and M ≠ N, (4.4)

2BPAS library: http://www.bpaslib.org/

http://www.bpaslib.org/

4.2. Multiplying integer polynomials via two convolutions 59

for K,M ∈ N. It is helpful to think of K as a power of 2, say K = 2k, with k ≥ 1, and

M as a small number, say less than w, where w is the bit-size of a machine word. For

the theoretical analysis of our algorithm, we shall simply assume that N is a w-smooth

integer, that is, none of its prime factors is greater than w. The fact that one can choose

such an N will be discussed in Section 4.3.1. We denote by DetermineBase(a, b, z) a

function call returning (N,K,M) satisfying the constraints of (4.4) and such that N is

a z-smooth integer, minimum with the constraints of (4.3).

From Z[y] to Z[x, y]. Let (N,K,M) ∶= DetermineBase(a, b,w) and define β = 2M . We

write

ai =
K−1
∑
j=0

ai,jβ
j, and bi =

K−1
∑
j=0

bi,jβ
j, (4.5)

where each ai,j and bi,j are signed integers in the closed range [−2M−1,2M−1 − 1]. Then,

we define

A(x, y) =
d−1
∑
i=0

(
K−1
∑
j=0

ai,jx
j)yi, and B(x, y) =

d−1
∑
i=0

(
K−1
∑
j=0

bi,jx
j)yi, (4.6)

and

C(x, y) ∶= A(x, y)B(x, y) with C(x, y) =
2d−2
∑
i=0

(
2K−2
∑
j=0

ci,jx
j)yi, (4.7)

with ci,j ∈ Z. We denote by BivariateRepresentation(a,N,K,M) a function call returning

A(x, y) as defined above. Observe that the polynomial c(y) is clearly recoverable from

C(x, y) as

C(β, y) = A(β, y)B(β, y)

= a(y)b(y)

= c(y).

(4.8)

The following sequence of equalities will be useful:

C(x, y) = A(x, y)B(x, y)

= (∑
d−1
i=0 (∑

K−1
j=0 ai,jxj)yi) (∑

d−1
i=0 (∑

K−1
j=0 bi,jxj)yi)

= ∑
2d−2
i=0 (∑`+m=i (∑

K−1
k=0 a`,kxk) (∑

K−1
h=0 bm,hxh)) yi

= ∑
2d−2
i=0 (∑`+m=i (∑

2K−2
j=0 (∑k+h=j a`,kbm,h)xj)) yi

= ∑
2d−2
i=0 (∑

2K−2
j=0 ci,jxj) yi

= ∑
2K−2
j=0 (∑

2d−2
i=0 ci,jyi)xj

= ∑
K−1
j=0 (∑

2d−2
i=0 ci,jyi)xj + xK∑

K−2
j=0 (∑

2d−2
i=0 ci,j+Kyi)xj,

(4.9)

4.2. Multiplying integer polynomials via two convolutions 60

where we define

ci,j ∶= ∑
`+m=i

∑
k+h=j

a`,kbm,h for 0 ≤ i ≤ 2d − 2,0 ≤ j ≤ 2K − 2, (4.10)

with the convention

ci,2K−1 ∶= 0 for 0 ≤ i ≤ 2d − 2. (4.11)

Since the modular products A(x, y)B(x, y) mod ⟨xK +1⟩ and A(x, y)B(x, y) mod ⟨xK −

1⟩ are of interest, we define the bivariate polynomial over Z

C+(x, y) ∶=
2d−2
∑
i=0

c+i (x) y
i where c+i (x) ∶=

K−1
∑
j=0

c+i,j x
j and c+i,j ∶= ci,j − ci,j+K (4.12)

and the bivariate polynomial over Z

C−(x, y) ∶=
2d−2
∑
i=0

c−i (x) y
i where c−i (x) ∶=

K−1
∑
j=0

c−i,j x
j and c−i,j ∶= ci,j + ci,j+K . (4.13)

Thanks to Equation (4.9), we observe that we have

C+(x, y) ≡ A(x, y)B(x, y) mod xK + 1 and C−(x, y) ≡ A(x, y)B(x, y) mod xK − 1.

(4.14)

Since the polynomials xK + 1 and xK − 1 are coprime for all integer K ≥ 1, we deduce

Equation (4.1).

Since β is a power of 2, evaluating the polynomials C+(x, y), C−(x, y) and thus

C(x, y), (whose coefficients are assumed to be in binary representation) at x = β amounts

only to addition and shift operations. A precise algorithm is described in Section 4.2.1.

Before that, we turn our attention to computing C+(x, y) and C−(x, y) via FFT tech-

niques.

From Z[x, y] to Z/m[x, y]. From Equation (4.14), it is natural to consider using FFT

techniques for computing both C+(x, y) and C−(x, y). Thus, in order to compute over

a finite ring supporting FFT, we estimate the size of the coefficients of C+(x, y) and

C−(x, y). Recall that for 0 ≤ i ≤ 2d − 2, we have

c+i,j = ci,j − ci,j+K
= ∑`+m=i∑k+h=j a`,kbm,h −∑`+m=i∑k+h=j+K a`,kbm,h

(4.15)

4.2. Multiplying integer polynomials via two convolutions 61

Since each a`,k and each bm,h has bit-size at most M , the absolute value of each coefficient

c+i,j is bounded over by 2dK 22M . The same holds for the coefficients c−i,j. Since the

coefficients c+i,j and c−i,j may be negative, we consider a positive integer m such that

m > 4dK 22M . (4.16)

From now on, depending on the context, we freely view the coefficients c+i,j and c−i,j either

as elements of Z or as elements of Z/m. Indeed, the integer m is large enough for this

identification and we use the integer interval [−m−12 , m−12] to represent the elements of

Z/m.

One may want to choose the integer m such that the ring Z/m admits appropriate

primitive roots of unity for computing the polynomials C+(x, y) and C−(x, y) via cyclic

convolution and negacylic convolution in Z/m[x, y], see details below. Finally, we observe

that in a computer program, the bound constraint on m would be achieved by picking a

number m whose bit-size exceeds 2 + ⌈log2(dK)⌉ + 2M .

From Z/m[x, y] to Z/p[x, y], for a prime number p. Since an integer m as specified

above may not be represented by a single machine word, it is natural to adopt a “small

prime” approach by means of the Chinese Remaindering Algorithm (CRA). This is the

point of view that we shall follow in the rest of this section. To be more specific, we

choose prime numbers p1, . . . , pe of machine word size such that their product satisfies

p1⋯pe > 4dK 22M . (4.17)

and such that the following divisibility relations hold

2r ∣ pi − 1 and K ∣ pi − 1, (4.18)

for all i = 1⋯e, where r = ⌈log2(2d − 1)⌉. Note that we require that 2r (instead of 2d − 1)

divides p − 1 so as to apply the Truncated FFT algorithm of [63]; we shall return to this

latter point in Section 4.3. This allows us to compute

C+
i (x, y) ∶= A(x, y)B(x, y) mod ⟨xK+1, pi⟩ and C−

i (x, y) ∶= A(x, y)B(x, y) mod ⟨xK−1, pi⟩,

(4.19)

via FFT/TFT techniques, for all i = 1⋯e. Then, we combine C+
1 (x, y), . . . ,C

+
e (x, y) (resp.

C−
1 (x, y), . . . ,C

−
e (x, y)) by CRA in order to recover C+(x, y) (resp. C−(x, y)) over Z,

denoting this computation by CombineBivariate (C+
1 (x, y), . . . ,C

+
e (x, y), p1, . . . , pe) (resp.

4.2. Multiplying integer polynomials via two convolutions 62

CombineBivariate (C−
1 (x, y), . . . ,C

−
e (x, y), p1, . . . , pe)). Finally, we denote by RecoveryPrimes(d,K,M)

a sequence of prime numbers p1, . . . , pe satisfying (4.17) and (4.18) with e minimum.

Cyclic and negacylic convolutions in Z/p[x, y]. Let p be one prime returned by

RecoveryPrimes(d,K,M). Let θ be a 2K-th primitive root of unity in Z/p. We define

ω = θ2, thus ω is a K-th primitive root in Z/p. For univariate polynomials u(x), v(x) ∈

Z[x] of degree at most K − 1, computing u(x) v(x) mod ⟨xK − 1, p⟩ via FFT is a well-

known operation, see Algorithm 8.16 in [29]. Using the row-column algorithm for two-

dimensional FFT, one can compute C−(x, y) ≡ A(x, y)B(x, y) mod ⟨xK − 1, p⟩, see [47,

46] for details. We denote by CyclicConvolution(A,B,K, p) the result of this calculation.

We turn our attention to the negacylic convolution, namely A(x, y)B(x, y) mod ⟨xK+

1, p⟩. We observe that the following holds:

C+(x, y) ≡ A(x, y)B(x, y) mod ⟨xK+1, p⟩ ⇐⇒ C+(θx, y) ≡ A(θx, y)B(θx, y) mod ⟨xK−1, p⟩

(4.20)

Thus, defining

C ′(x, y) ∶= C+(θx, y), A′(x, y) ∶= A(θx, y) and B′(x, y) ∶= B(θx, y), (4.21)

we are led to compute

A′(x, y)B′(x, y) mod ⟨xK − 1, p⟩, (4.22)

which can be done as CyclicConvolution(A′,B′,K, p). Then, the polynomial C+(x, y)

mod ⟨xK − 1, p⟩ is recovered from C ′(x, y) mod ⟨xK − 1, p⟩ as

C+(x, y) ≡ C ′(θ−1x, y) mod ⟨xK − 1, p⟩, (4.23)

and we denote by NegacyclicConvolution(A,B,K, p) the result of this process. We dedi-

cate a section to the final step of our algorithm, that is, the recovery of the product c(y)

from the polynomials C+(x, y) and C−(x, y).

4.2.1 Recovering c(y) from C+(x, y) and C−(x, y)

We naturally assume that all numerical coefficients are stored in binary representation.

Thus, recovering c(y) as C(β, y) from Equation (4.1) involves only additions and shift

operations. Indeed, β is a power of 2. Hence, the algebraic complexity of this recovery is

essentially proportional to the sum of the bit sizes of C+(x, y) and C−(x, y). Therefore,

the arithmetic count for computing these latter polynomials (by means of cyclic and nega-

4.2. Multiplying integer polynomials via two convolutions 63

cyclic convolutions) dominates that of recovering c(y). Nevertheless, when implemented

on a modern computer hardware, this recovery step may contribute in a significant way

to the total running time. The reasons are that both the convolution computations and

recovery steps incur similar amounts of cache misses and that the memory traffic implied

by those cache misses are a significant portion of the total running time.

We denote by RecoveringProduct(C+(x, y),C−(x, y), β) a function call recovering c(y)

from C+(x, y), C−(x, y) and β = 2M . We start by stating below a simple procedure for

this operation:

1. u(y) := C+(β, y)

2. v(y) := C−(β, y)

3. c(y) := u(y)+v(y)
2 +

−u(y)+v(y)
2 2N

To further describe this operation and, later on, in order to discuss its cache complex-

ity and parallelization, we specify the data layout. From the definition of the prime

number sequence (p1, . . . , pe), we can assume that each coefficient of the bivariate poly-

nomials C+(x, y), C−(x, y) can be encoded within e machine words. Thus, we assume

that C+(x, y) (resp. C−(x, y)) is represented by an array of (2d − 1)K e machine words

such that, for 0 ≤ i ≤ 2d − 2 and 0 ≤ j ≤ K − 1, the coefficient c+i,j (resp. c−i,j) is written

between the positions (K i + j)e and (K i + j)e + e − 1, inclusively. Thus, this array can

be regarded as the encoding of a 2-D matrix whose i-th row is c+i (x) (resp. c−i (x)). Now,

we write

u(y) ∶=
2d−2
∑
i=0

uiy
i and v(y) ∶=

2d−2
∑
i=0

viy
i (4.24)

thus, from the definition of u(y), v(y), for 0 ≤ i ≤ 2d − 2, we have

ui =
K−1
∑
j=0

c+i,j 2M j and vi =
K−1
∑
j=0

c−i,j 2M j. (4.25)

Denoting by H+, H− the largest absolute value of a coefficient in C+(x, y), C−(x, y), we

deduce

∣ui∣ ≤ H+
((2M)

K
− 1)

2M − 1
and ∣vi∣ ≤ H−

((2M)
K
− 1)

2M − 1
. (4.26)

From the discussion justifying Relation (4.16), we have

H+, H− ≤ 2dK 22M , (4.27)

4.2. Multiplying integer polynomials via two convolutions 64

and with (4.26) we derive

∣ui∣, ∣vi∣ ≤ 2dK 22M 2N−1
2M−1

≤ 2dK 22M 2N

2M

≤ 2dK 2M+N
(4.28)

Indeed, recall that N =KM holds. We return to the question of data layout. Since each

of c+i,j or c−i,j is a signed integer fitting within e machine words, it follows from (4.26) that

each of the coefficients ui, vi can be encoded within

f ∶= ⌈N/w⌉ + e (4.29)

machine words. Hence, we store each of the polynomials u(y), v(y) in an array of (2d −

1) × f machine words such that the coefficient in degree i is located between position f i

and position f (i + 1) − 1. Finally, we come to the computation of c(y). We have

ci =
ui + vi

2
+ 2N

vi − ui
2

, (4.30)

which implies

∣ci∣ ≤ 2dK 2M+N(1 + 2N). (4.31)

Relation (4.31) implies that the polynomial c(y) can be stored within an array of (2d −

1) × 2f machine words. Of course, a better bound than (4.31) can be derived by simply

expanding the product a(y) b(y), leading to

∣ci∣ ≤ d22N−2. (4.32)

The ratio between the two bounds given by (4.31) and (4.32) tells us that the extra

amount of space required by our algorithm is O(k+M) bits per coefficient of c(y), where

k = ⌈log2(K)⌉. Recall that, in practice, we have M ≤ w. Therefore, this extra space

amount can be regarded as small and thus satisfactory.

4.2.2 The algorithm in pseudo-code

With the procedures that were defined in this section, we are ready to state our algorithm

for integer polynomial multiplication.

Input: a(y), b(y) ∈ Z[y] and z a small integer such that 2 ≤ z ≤ w and d ∶=

max(deg(a),deg(b)) + 1.

4.2. Multiplying integer polynomials via two convolutions 65

Output: the product a(y) b(y)

1: (N,K,M) := DetermineBase(a(y), b(y), z)

2: A(x, y) := BivariateRepresentation(a(y),N,K,M)

3: B(x, y) := BivariateRepresentation(b(y),N,K,M)

4: p1, . . . , pe := RecoveryPrimes(d,K,M)

5: for i ∈ 1⋯e do

6: C−
i (x, y) := CyclicConvolution(A,B,K, pi)

7: ˙ C+
i (x, y) := NegacyclicConvolution(A,B,K, pi)

8: end do

9: C+(x, y) := CombineBivariate(C+
i (x, y), pi, i = 1⋯e)

10: C−(x, y) := CombineBivariate(C−
1 (x, y), pi, i = 1⋯e)

11: c(y) := RecoveringProduct(C+(x, y),C−(x, y),2M)

12: return c(y)

In order to analyze the complexity of our algorithm, it remains to specify the data

layout for a(y), b(y), A(x, y), B(x, y), C+
1 (x, y), . . . ,C

+
e (x, y), C

−
1 (x, y), . . . ,C

−
e (x, y).

Note that this data layout question was handled for C−(x, y), C+(x, y) and c(y) in

Section 4.2.1.

In the sequel, we view a(y), b(y) as dense in the sense that each of their coefficients

is assumed to be of essentially the same size. Hence, from the definition of N , see

Relation (4.3), we assume that each of a(y), b(y) is stored within an array of d × ⌈N/w⌉

machine words such that the coefficient in degree i is located between positions ⌈N/w⌉i

and ⌈N/w⌉(i + 1) − 1.

Finally, we assume that each of the bivariate integer polynomials A(x, y), B(x, y) is

represented by an array of d ×K machine words whose (K × i + j)-th coefficient is ai,j,

bi,j respectively, for 0 ≤ i ≤ d−1 and 0 ≤ j ≤K −1. The same row-major layout is used for

each of the d ×K machine word arrays representing the bivariate modular polynomials

C+
1 (x, y), . . . ,C

+
e (x, y), C

−
1 (x, y), . . . ,C

−
e (x, y).

4.2.3 Parallelization

One of the design goals of our algorithm is to take advantage of the parallel FFT-based

routines for multiplying dense multivariate polynomials over finite fields that have been

proposed in [46, 47]. To be precise, these routines provide us with a parallel imple-

mentation of the procedure CyclicConvolution, from which we easily derive a parallel

implementation of NegacyclicConvolution.

Lines 1 and 4 can be ignored in the analysis of the algorithm. Indeed, as we shall

4.3. Complexity analysis 66

explain in Section 4.4, one can simply implement DetermineBase and RecoveryPrimes by

look-up in precomputed tables. For instance, Table B.1 in Appendix B is being used for

determining the base using 2 primes.

For parallelizing Lines 2 and 3, it is sufficient in practice to convert concurrently

all the coefficients of a(y) and b(y) to univariate polynomials of Z[y]. Similarly, for

parallelizing Lines 9 and 10, one can view each of the polynomials C−(x, y), C+(x, y) (and

their modular images) as polynomials in y, then processing their coefficients concurrently.

For parallelizing Line 11 it is sufficient again to compute concurrently the coefficients of

u(y), v(y) and then those of c(y). Finally, the parallel for-loop of 5 can be converted into

a parallel for-loop, while each call to CyclicConvolution and NegacyclicConvolution relies

on parallel FFT as mentioned.

4.3 Complexity analysis

In this section, we analyze the algorithm stated in Section 4.2.2. We estimate its work and

span as defined in the fork-join concurrency model introduced in Section 2.1.1. Since the

fork-join model has no primitive constructs for defining parallel for-loops, each of those

loops is simulated by a divide-and-conquer procedure for which non-terminal recursive

calls are forked, see [43] for details. Hence, in the fork-join model, the bit-wise comparison

of two vectors of size n has a span of O(log(n)) bit operations. This is actually the same

time estimate as in the Exclusive-Read-Exclusive-Write PRAM [60, 31] model, but for a

different reason.

We shall also estimate the cache complexity [22] of the serial counterpart of our algo-

rithm for an ideal cache of Z words and with L words per cache line. Note that the ratio

work to cache complexity indicates how an algorithm is capable of re-using cached data.

Hence the larger is the ratio, the better.

We denote byWi, Si, Qi the work, span and cache complexity of Line i in the algorithm

stated in Section 4.2.2. As mentioned before, we can ignore the costs of Lines 1 and 4.

Moreover, we can use W2, S2, Q2 as estimates for W3, S3, Q3, respectively. Similarly,

we can use the estimates of Lines 6 and 9 for the costs of Lines 7 and 10, respectively.

Thus, we only analyze the costs of Lines 2, 6, 9 and 11.

Analysis of BivariateRepresentation(a(y),N,K,M). Converting each coefficient of a(y)

to a univariate polynomial of Z[x] requires O(N) bit operations thus

W2 ∈ O(dN) and S2 ∈ O(log(d)N). (4.33)

4.3. Complexity analysis 67

In the latter, the log(d) factor comes from the fact that the parallel for-loop corresponding

to “for each coefficient of a(y)” is executed as a recursive function with O(log(d)) nested

recursive calls. Considering now the cache complexity, and taking into account the data

layout specified in Section 4.2.2, one observes that converting a(y) to A(x, y) leads to

O(⌈dN/wL⌉+1) cache misses for reading a(y) and O(⌈dK/L⌉+1) cache misses for writing

A(x, y). Therefore, we have

Q2 ∈ O(⌈dN/wL⌉ + ⌈dK/L⌉ + 1). (4.34)

Analysis of CyclicConvolution(A,B,K, pi). Following the techniques developed in [46,

47], we compute A(x, y)B(x, y) mod ⟨xK − 1, pi⟩ by 2-D FFT of format K × (2d− 1). In

the direction of y, we use van der Hoeven’s TFT algorithm [63], thus the only constraint

on d is the fact that fact 2r divides p−1 where r = ⌈log2(2d−1)⌉. In the direction of x, the

convolutions (i.e. products in Z[x]/⟨xK−1, pi⟩) require to compute (non-truncated) FFTs

of size K. Using the Algorithm of Wang and Zhu [67], this can be done for all K dividing

pi − 1, but such a convolution requires O(Klog2
(K)) operations in Z/pi instead of the

more desirable O(Klog(K)). Alternatively, one can assume that K is highly composite

so as to take advantage of faster FFT algorithms such as Cooley-Tukey’s algorithm [15].

The Cooley-Tukey factorization used with small radices can be argued to have cache-

oblivious locality benefits on systems with hierarchical memory [20]. For this reason, we

further assume that N , and thus K, are z-smooth integers where z is small, say z ≤ w.

In Section 4.3.1, we explain the reduction to this hypothesis. Consequently, we apply

the complexity results of [46], leading to a work (resp. a span) of O(s log(s)) (resp.

O(log(s))) operations in Z/pi, where s = (2d− 1)K. Since pi is of machine word size, we

deduce

W6 ∈ O(dK log(dK)) and S6 ∈ O(log(dK)) (4.35)

bit operations and, from the results of [22], we have

Q6 ∈ O(1 + (dK/L)(1 + logZ(dK))). (4.36)

Analysis of CombineBivariate(C+
1 (x, y), . . . ,C

+
e (x, y), p1, . . . , pe). Applying subproduct

tree techniques (see Section 5) each coefficient of C+(x, y) is obtained from the cor-

responding coefficients of C+
1 (x, y), . . . ,C

+
e (x, y) within O(M(log2(µ)) loglog2(µ)) word

operations, where µ is the product of the prime numbers p1, . . . , pe and ` z→ M(`) is a

multiplication time for multiplying two integers with at most ` bits. For this multipli-

cation time, we use the estimates of Fürer [24] or De, Kurur, Saha and Saptharishi [17].

4.3. Complexity analysis 68

From (4.17), we can assume log2(µ) ∈ Θ(log2(dK) + 2M). Since C+(x, y) has (at most)

2d − 1 coefficients along y and K coefficients along x, and since 2M is less than the

number of bits of a machine word, we obtain

W9 ∈ O(dK M(log2(dK)) loglog2(dK)) and S9 ∈ O(log2(d)K M(log2(dK)) loglog2(dK))

(4.37)

bit operations. Recall, indeed, that we only parallelize computations along y, since par-

allelizing along x would be practically counterproductive due to parallelization overheads

(scheduling costs, tasks migration). Turning to the cache complexity of Line 9, we ob-

serve that, once a cache-line from each of the polynomials C+
1 (x, y), . . . ,C

+
e (x, y),C

+(x, y)

has been loaded into the cache, then L recombinations of coefficients can be performed

without evicting any of those cache-lines from the cache. Indeed, accommodating e co-

efficients from C+
1 (x, y), . . . ,C

+
e (x, y) (taking into account that each coefficient is a word

on one cache-line of L words) requires Ze = eL words of cache. Next, accommodating

e consecutive coefficients from C+(x, y), (taking into account possible misalignments in

memory) requires Z+ = L(⌈e/L⌉ + 1) ≤ e + L + 1 words of cache. Recall that we choose

p1, . . . , pe such that µ = p1, . . . , pe ≥ 4dK22M and, thus,

e = ⌊log2(µ)/w⌋ + 1

≤ 2 + ⌈log2(dK)⌉ + 2M + 1.
(4.38)

Hence, we require (4+⌈log2(dK)⌉+2M)(L+1) words of cache for storing those coefficients.

Since, for our algorithm, the quantity 4+⌈log2(dK)⌉+2M represents a few machine words

(typically 2 for the largest examples tested on a computer with 1/4 Tera bytes of RAM)

our assumption is in fact clearly covered by the standard tall cache assumption [22],

namely Z ∈ Ω(L2). Under this assumption, elementary calculations leads to

Q9 ∈ O(e(⌈dK/L⌉ + 1) + ⌈(2d − 1) ×K × e/L⌉ + 1)

∈ O((⌈log2(dK)⌉ + 2M)(⌈dK/L⌉ + 1)).
(4.39)

Analysis of RecoveringProduct(C+(x, y),C−(x, y),2M). Converting each coefficient of

u(y) and v(y) from the corresponding coefficients C+(x, y) and C−(x, y) requires O(K e)

bit operations. Then, computing each coefficient of c(y) requires O(N + ew) bit opera-

tions. Thus we have

W11 ∈ O(d (K e +N + e)) and S11 ∈ O(log(d) (K e +N + e)) (4.40)

4.3. Complexity analysis 69

word operations. Converting C+(x, y), C−(x, y) to u(y), v(y) leads to O(⌈dK e/L⌉ + 1)

cache misses for reading C+(x, y), C−(x, y) and O(⌈d(N/w + e)/L⌉ + 1) cache misses for

writing u(y), v(y). This second estimate holds also for the total number of cache misses

for computing c(y) from u(y), v(y). Therefore, we have

Q11 ∈ O(⌈d (K e +N + e)/L⌉ + 1). (4.41)

We note that the quantity K e+N +e can be replaced in above asymptotic upper bounds

by K(log2(dK) + 3M).

4.3.1 Smooth integers in short intervals

We review a few facts about smooth integers and refer to Andrew Granville’s survey [33]

for details and proofs. Let S(x, y) be the set of integers up to x, all of whose prime

factors are less or equal to y (such integers are called “y-smooth”), and let Ψ(x, y) be

the number of such integers. It is a remarkable result that for any fixed u ≥ 1, the

proportion of the integers up to x, that only have prime factors less or equal to x1/u,

tends to a nonzero limit as x escapes to infinity. This limit, denoted by ρ(u) is known as

the Dickman-de Bruijn ρ-function. To be precise, Dickman’s result states the following

asymptotic equivalence

Ψ(x, y) ∼ xρ(u) as xÐ→∞ (4.42)

where x = yu. Unfortunately, one cannot write down a useful, simple function that gives

the value of ρ(u) for all u. Therefore, upper bounds and lower bounds for Ψ(x, y) are

of interest, in particular for the purpose of analyzing algorithms where smooth integers

play a key role, as for the multiplication algorithm of Section 4.2. A simple lower bound

is given by

Ψ(x, y) ≥ x1−log(log(x))/log(y) (4.43)

for all x ≥ y ≥ 2 and x ≥ 4, from which, one immediately deduces

Ψ(x, log2
(x)) ≥

√
x. (4.44)

However, it is desirable to obtain statements which could imply inequalities like Ψ(x +

z, y) −Ψ(x, y) > 0 for all x ≥ z and for y arbitrary small. Indeed, such inequality would

mean that, for all x, y, a “short interval” around x contains at least one y-smooth integer.

4.3. Complexity analysis 70

In fact, the following relation is well-known for all x ≥ z ≥ x/y1−o(1):

Ψ(x + z, y) −Ψ(x, y) ∼
z

x
Ψ(x, y) ∼ zρ(u). (4.45)

but does not meet our needs since it does allow us to make y arbitrary small independently

of x and z, while implying Ψ(x + z, y) −Ψ(x, y) > 0.

Nevertheless, in 1999, Ti Zuo Xuan [68] proved that, under the Riemann Hypothesis

(RH), for any ε > 0, δ > 0 there exists x0 such that for all x ≥ x0 the interval (x,x + y],

for
√
x(log(x))1+ε ≤ y ≤ x, contains an integer having no prime factors exceeding xδ.

Moreover, in 2000, Granville has conjectured that for all α > 0 there exists x0 such that

for all x ≥ x0, we have

Ψ(x +
√
x,xα) −Ψ(x,xα) > 0. (4.46)

In the sequel of this section, we shall assume that either RH or Granville’s conjecture

holds. In fact, we have verified Relation (4.46) experimentally for all x ≤ 223. This is by

far sufficient for the purpose of implementing our multiplication algorithm and verifying

the properties of the positive integers N,K,M stated in Theorem 1. Moreover, for all

the values x that we have tested, the following holds

Ψ(2x,23) −Ψ(x,23) > 0. (4.47)

4.3.2 Proof of Theorem 1

The fact that one can find positive integers N,K,M with N = KM and M ≤ w, such

that the integer N is w-smooth and N0 < N ≤ N0 +
√
N0 follows from the discussion of

Section 4.3.1. Next, recall that analyzing our algorithm reduces to analyzing Lines 2,

6, 9 and 12, noting that 6 is the block of a for loop with e iterations. Recall also that

Relation (4.38) gives an upper bound for e.

Based on the results obtained above forW2, W6, W9, W11 with Relations (4.33), (4.35),

(4.37), (4.40) respectively, it follows that the estimate for the work of the whole algorithm

is given by eW6, leading to the result in Theorem 1. Meanwhile the span of the whole

algorithm is given by S9. Neglecting the double logarithmic factor loglog2(dK)) and

the iterated logarithmic factor from M(log2(dK)), one obtains the result in Theorem 1.

Finally, the cache complexity estimate in Theorem 1 comes from adding up Q2, e ×Q6,

Q9, Q11 and simplifying.

4.4. Implementation 71

4.4 Implementation

We have implemented the proposed algorithm using CilkPlus targeting multi-cores. The

code for Convert-in and Convert-out steps can be found in Appendix A.

4.5 Experimentation

We use the CilkPlus multi-threaded language [43] and compiled our code with the

CilkPlus branch of GCC3. Our experimental results were obtained on an 48-core AMD

Opteron 6168, running at 900Mhz with 256 GB of RAM and 512KB of L2 cache. Table 4.1

gives running times for the six multiplication algorithms that we have implemented:

� KSs stands for Kronecker’s substitution combined with Schönhage & Strassen al-

gorithm [58]; (see Section 3.2) note this is a serial implementation, run on 1 core,

� CV L2
s is our algorithm in Section 4.2, run on 1 core,

� CV L2
p is our algorithm in Section 4.2, run on 48 cores,

� DnCp is a straightforward parallel implementation of plain multiplication, run on

48 cores, (see Section 3.3)

� Toom4p is a parallel implementation of 4-way Toom-Cook, run on 48 cores, (see

Section 3.5.2)

� Toom8p is a parallel implementation of 8-way Toom-Cook, run on 48 cores. (see

Section 3.5.3)

We have compared our code versus the FILNT library [37] which shows that our two-

convolution method is 4 times faster for the largest input polynomials. Note that the

implementation of the algorithms described in Chapter 3 relies entirely on the GMP

library. This latter is recognized to be about twice slower than its FLINT counterpart.

The input Size gives both d − 1 and N as defined in Section 4.2, thus defining both

the common degree of the polynomials a(y), b(y) and the bit size of their coefficients.

The input polynomials a(y), b(y) are random and dense.

For the parallel univariate real root isolation code presented in [11], its was recognized

that the Taylor Shift operation, that is, the map x z→ f(x + 1), had the dominant

cost. Algorithm (E) in [65] provides an asymptotically fast algorithm for this task,

which reduces calculations to integer polynomial multiplication. We implemented the

Taylor shift operation based on Algorithm (E), powered by a combination of our parallel

multiplications algorithms (using different thresholds between them depending on the

input sizes of our polynomials). We call this code URRI in the tables.

3http://gcc.gnu.org/svn/gcc/branches/cilkplus/

http://gcc.gnu.org/svn/gcc/branches/cilkplus/

4.5. Experimentation 72

Size KSs CV L2
p DnCp Toom4p Toom8p FLINT Maple-18

512 0.018 0.152 0.049 0.022 0.026 0.005 0.054
1024 0.057 0.139 0.11 0.046 0.059 0.016 0.06
2048 0.25 0.196 0.17 0.17 0.17 0.067 0.201
4096 1.37 0.295 0.58 0.67 0.64 0.42 0.86
8192 5.40 0.699 2.20 2.79 2.73 1.671 3.775
16384 20.95 1.927 8.26 10.29 8.74 7.178 17.496
32768 92.03 9.138 30.75 35.79 33.40 32.112 84.913
65536 *Err. 33.035 122.09 129.43 115.86 154.688 445.673

Table 4.1: Running time of four classical multiplication methods and the two-convolution
multiplication method

Size Number of bits CV L2
p FLINT Maple-18

256 15872 0.202 0.078 0.181
512 25088 0.259 0.276 0.605
1024 49152 0.293 1.224 2.65
2048 96256 1.089 4.744 11.82
4096 188416 3.398 23.967 51.414
8192 368640 13.01 102.95 241.072
16384 720896 51.383 496.785 1318.125

Table 4.2: Running time of four classical multiplication methods and the two-convolution
multiplication method for our faviorite examples

CV L2
s sub-steps CV L2

p sub-steps

Size I II III I II III

2048 0.007 0.54 0.020 0.029 0.10 0.043
4096 0.019 2.22 0.076 0.021 0.10 0.11
8192 0.067 9.56 0.30 0.039 0.36 0.25
16384 0.26 41.65 1.14 0.12 1.37 0.67
32768 1.04 180.27 4.47 0.41 5.34 3.94
65536 4.11 783.80 18.17 1.52 23.30 10.96

Table 4.3: Running time of 3 sub-steps of the two-convolution multiplication method: I refers
to Lines 1-4, II refers Lines 5-8 and III refers Lines 9-11 of the pseudo-code in Section 4.2.2

4.5. Experimentation 73

Degree URRI CMY [11] realroot #Roots

4095 3.31 2.622 7.137 1
8191 13.036 17.11 40.554 1
16383 61.425 124.798 274.706 1
32767 286.46 970.165 2059.147 1
65535 1311.07 7960.57 *Err. 1

Table 4.4: Running time of Bn,d(x) = 2d xd + .. + 2d

Degree URRI CMY [11] realroot #Roots

4095 1.93 1.917 3.941 1
8191 6.467 7.611 29.448 1
16383 25.291 34.198 239.771 1
32767 96.507 172.432 1863.125 1
65535 375.678 995.358 *Err. 1

Table 4.5: Running time of Cn,d(x) = xd + d

We run these two parallel real root algorithms: URRI and CMY [11], which are both

implemented in CilkPlus, against Maple 17 serial realroot command, which implements

a state-of-the-art algorithm. The machine that we use in a 12-core Intel Xeon X5650

@ 2.67GHz. Table 4.4 to 4.8 show the running times (in secs) of well-known five test

problems, including Bnd, Cnd, Mignotte, Chebycheff and “random polynomials” with

expected number of roots. Moreover, for each test problem, the degree of the input

polynomial varies in a range.

In Table 4.9 the data from the Cilkview performance analysis tool are gathered

which shows that our method is getting impressive parallelism, and on an ideal machine

having infinite number of processors, the algorithm would be extremely fast (see the

span). Comparing these results to the correspondence in Table 3.5 for the classical

algorithms, shines the worthiness of the effort for this new method. The reason that

in our benchmarks in Table 4.1, the new approach is not superior compared to Toom-

Cook’s is that we are executing the algorithms on a machine having a small number of

processors (say 12-24), and Toom-Cooks which has static parallelism (say 15) performs

well. Whereas, when running the new algorithm on an ideal machine, the new algorithm

Degree URRI CMY [11] realroot #Roots

127 1.716 1.478 0.540 2
255 21.141 19.225 5.111 2
511 320.57 306.155 1390.941 2

Table 4.6: Running time of Mignotte xd − 50x2 + 20x − 2

4.6. Conclusion 74

Degree URRI CMY [11] realroot #Roots

255 1.317 0.867 2.346 255
511 9.666 8.375 15.443 511
1023 100.181 116.107 257.782 1023

Table 4.7: Running time of Chebycheff polynomials

Degree URRI CMY [11] realroot #Roots

255 2.553 2.427 4.539 223
511 29.044 28.727 68.654 479
1023 445.65 440.791 1539.965 991

Table 4.8: Running time of random polynomials with expected number of roots

beats Toom-Cook with a significantly high speed-up.

4.6 Conclusion

We have presented a parallel FFT-based method for multiplying dense univariate poly-

nomials with integer coefficients. Our approach relies on two convolutions (cyclic and

negacyclic) of bivariate polynomials which allow us to take advantage of the row-column

algorithm for 2D FFTs. The data conversions between univariate polynomials over Z and

bivariate polynomials over Z/pZ are highly optimized by means of low-level “bit hacks”

thus avoiding software multiplication of large integers. In fact, our code relies only and

directly on machine word operations (addition, shift and multiplication).

Our experimental results show this new algorithm has a high parallelism and scale

better than its competitor algorithms.

Size Algorithm Parallelism Work Span Work/ks-work Span/ks-work
2048 KSs 1 795549545 795549545 1 1

CV L2
p 221.15 1817735714 8219389 2.28 0.0103

4096 KSs 1 4302927423 4302927423 1 1
CV L2

p 402.7 7573750959 18807254 1.76 0.0043
8192 KSs 1 16782031611 16782031611 1 1

CV L2
p 607.36 31689523426 52175696 1.88 0.0031

16384 KSs 1 63573232166 63573232166 1 1
CV L2

p 756.03 133048851429 175983213 2.09 0.0027
32768 KSs 1 269887534779 269887534779 1 1

CV L2
p 865.78 558336263845 644893038 2.06 0.0023

Table 4.9: Cilkview analysis for the proposed algorithm compared to KSs.

4.6. Conclusion 75

The source of the algorithms discussed in this chapter are freely available at the web

site of Basic Polynomial Algebra Subprograms (BPAS-Library) 4.

4http://bpaslib.org/

http://bpaslib.org/

Chapter 5

Subproduct tree techniques on

many-core GPUs

We propose parallel algorithms for operations on univariate polynomials (multi-point

evaluation, interpolation) based on subproduct tree techniques. We target implemen-

tation on many-core GPUs. On those architectures, we demonstrate the importance of

adaptive algorithms, in particular the combination of parallel plain arithmetic and paral-

lel FFT-based arithmetic. Experimental results illustrate the benefits of our algorithms.

This chapter is a joint work with S. A. Haque and M. Moreno Maza.

5.1 Introduction

We investigate the use of Graphics Processing Units (GPUs) in the problems of evaluating

and interpolating polynomials. Many-core GPU architectures were considered in [61]

and [64] in the case of numerical computations, with the purpose of obtaining better

support, in terms of accuracy and running times, for the development of polynomial

system solvers.

Our motivation, in this work, is also to improve the performance of polynomial system

solvers. However, we are targeting symbolic, thus exact, computations. In particular,

we aim at providing GPU support for solvers of polynomial systems with coefficients in

finite fields, such as the one reported in [54]. This case handles as well problems from

cryptography and serves as a base case for the so-called modular methods [16], since

those methods reduce computations with rational number coefficients to computations

with finite field coefficients.

Finite fields allow the use of asymptotically fast algorithms for polynomial arithmetic,

based on Fast Fourier Transforms (FFTs) or, more generally, subproduct tree techniques.

76

5.1. Introduction 77

Chapter 10 in the landmark book [28] is an overview of those techniques, which have the

advantage of providing a more general setting than FFTs. More precisely, evaluation

points do not need to be successive powers of a primitive root of unity. Evaluation

and interpolation based on subproduct tree techniques have “essentially” (i.e. up to

log factors) the same algebraic complexity estimates as their FFT-based counterparts.

However, their implementation is known to be challenging.

In this chapter, we report on the first GPU implementation (using CUDA [55]) of

subproduct tree techniques for multi-point evaluation and interpolation of univariate

polynomials. The parallelization of those techniques raises the following challenges on

hardware accelerators:

1. The divide-and-conquer formulation of operations on subproduct-trees is not suf-

ficient to provide enough parallelism and one must also parallelize the underlying

polynomial arithmetic operations, in particular polynomial multiplication.

2. Algorithms based on FFT (such as subproduct tree techniques) are memory bound

since the ratio of work to memory access is essentially constant, which makes those

algorithms not well suited for multi-core architectures.

3. During the course of the execution of a subproduct tree operation (construction,

evaluation, interpolation) the degrees of the involved polynomials vary greatly,

thus so does the work load of the tasks, which makes those algorithms complex to

implement on many-core GPUs.

The contributions of this work are summarized below. We propose parallel algorithms

for performing subproduct tree construction, evaluation and interpolation. We also re-

port on their implementation on many-core GPUs. See Sections 5.3, 5.5 and 5.6, respec-

tively. We enhance the traditional algorithms for polynomial evaluation and interpolation

based on subproduct tree techniques, by introducing the data-structure of a subinverse

tree, which we use to implement both evaluation and interpolation, see Section 5.4. For

subproduct tree operations targeting many-core GPUs, we demonstrate the importance

of adaptive algorithms. That is, algorithms that adapt their behavior according to the

available computing resources. In particular, we combine parallel plain arithmetic and

parallel fast arithmetic. For the former we rely on [36] and, for the latter we extend the

work of [53]. The span and parallelism overhead of our algorithm are measured consid-

ering many-core machine model stated in Section 2.4. To evaluate our implementation,

we measure the effective memory bandwidth of our GPU code for parallel multi-point

evaluation and interpolation on a card with a theoretical maximum memory bandwidth

5.2. Background 78

of 148 GB/S, our code reaches peaks at 64 GB/S. Since the arithmetic intensity of our

algorithms is high, we believe that this is a promising result.

All implementation of subproduct tree techniques that we are aware of are serial

only. This includes [9] for GF (2)[x], the FLINT library[38] and the Modpn library [44].

Hence we compare our code against probably the best serial C code (namely the FLINT

library) for the same operations. For sufficiently large input data and on NVIDIA Tesla

C2050, our code outperforms its serial counterpart by a factor ranging between 20 to

30. Experimental data are provided in Section 5.7. Our code is available in source as

part of the project CUDA Modular Polynomial (CUMODP) whose web site is http:

//www.cumodp.org.

5.2 Background

We review various notions related to subproduct tree techniques (see [28, Chapter 10]

for details). We also specify costs for the underlying polynomial arithmetic used in our

implementation. Notations and hypotheses introduced in this section are used throughout

this chapter. Let n = 2k for some positive integer k and let K be a finite field. Let

u0, . . . , un−1 ∈ K. Define mi = x − ui, for 0 ≤ i < n. We assume that each ui ∈ K can be

stored in one machine word.

Subproduct tree. The subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1) is a complete

binary tree of height k = log2 n. The j-th node of the i-th level of Mn is denoted by Mi,j,

where 0 ≤ i ≤ k and 0 ≤ j < 2k−i, and is defined as follows:

Mi,j =mj⋅2i ⋅mj⋅2i+1⋯mj⋅2i+(2i−1) = ∏0≤`<2i mj⋅2i+`.

Note that each of Mi,j can be defined recursively as follows:

M0,j =mj and Mi+1,j =Mi,2j ⋅Mi,2j+1.

Observe that the i-th level of Mn has 2k−i polynomials with degree of 2i. Since each

element of K fits within a machine word, then storing the subproduct tree Mn requires

at most n log2 n + 3n − 1 words.

Let us split the point set U = {u0, . . . , un−1} into two halves of equal cardinality and

proceed recursively with each half until it becomes a singleton. This leads to a binary

tree of depth log2 n having the points u0, . . . , un−1 as leaves, depicted on Figure 5.1. Note

that the j-th node from the left at level i is labeled by Mi,j. Algorithm 9 generates the

http://www.cumodp.org
http://www.cumodp.org

5.2. Background 79

u0, . . . , un−1

u0, . . . , un/2−1 un/2, . . . , un−1

u0, u1 u2, u3 un−2, un−1

u0 u1 u2 u3 un−2 un−1

Mk,0

Mk−1,0 Mk−1,1

M1,0 M1,1 M1,n/2−1

M0,0 M0,1 M0,2 M0,3
M0,n−2 M0,n−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

i = k

i = k − 1

i = 1

i = 0

Figure 5.1: Subproduct tree associated with the point set U = {u0, . . . , un−1}.

polynomials Mi,j in an efficient manner, discussed in Section 5.3.

Algorithm 9: SubproductTree(m0, . . . ,mn−1)
Input: m0 = (x−u0), . . . ,mn−1 = (x−un−1) ∈ K[x] with u0, . . . , un−1 ∈ K and n = 2k

for k ∈ N.
Output: The subproduct-tree Mn, that is, the polynomials

Mi,j = ∏0≤`<2i mj⋅2i+` for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.
for j = 0 to n − 1 do

M0,j =mj;

for i = 1 to k do
for j = 0 to 2k−i − 1 do

Mi,j =Mi−1,2jMi−1,2j+1;

return Mn;

Multi-point evaluation and interpolation. Given a univariate polynomial f ∈ K[x] of

degree less than n, we define χ(f) = (f(u0), . . . , f(un−1)). The map χ is called the multi-

point evaluation map at u0, . . . , un−1. Let m = ∏0≤i<n(x − ui). When u0, . . . , un−1 are

pairwise distinct, then

χ ∶
K[x]/⟨m⟩ Ð→ Kn

f z→ (f(u0), . . . , f(un−1))

realizes an isomorphism of K-vector spaces K[x]/⟨m⟩ and Kn. The inverse map χ−1

can be computed via Lagrange interpolation. Given values v0, . . . , vn−1 ∈ K, the unique

polynomial f ∈ K[x] of degree less than n which takes the value vi at the point ui for all

5.2. Background 80

0 ≤ i < n is: f = ∑
n−1
i=0 visim/(x − ui) where si = ∏i≠j,0≤j<n 1/(ui − uj) . We observe that

K[x]/⟨m⟩ and Kn are vector spaces of dimension n over K. Moreover, χ is a K-linear

map, which is a bijection when the evaluation points u0, . . . , un−1 are pairwise distinct.

Complexity measures. Since we are targeting GPU implementation, our parallel algo-

rithms are analyzed using an appropriate model of computation introduced in Section 2.4.

The complexity measures are the work (i.e. algebraic complexity estimate) the span (i.e.

running time on infinitely many processors) and the parallelism overhead. This latter is

the total amount of time for transferring data between the global memory and the local

memories of the streaming multi-processors (SMs).

Notation 3 The number of arithmetic operations for multiplying two polynomials with

degree less than d using the plain (schoolbook) multiplication is Mplain(d) = 2d2−2d+1. In

our GPU implementation, when d is small enough, each polynomial product is computed

by a single thread block and thus within the local memory of a single SM. In this case, we

use 2d + 2 threads for one polynomial multiplication. Each thread copies one coefficient

from global memory to the local memory. Each of these threads, except one, is responsible

for computing one coefficient of the output polynomial and writes that coefficient back to

global memory. So the span and parallelism overhead are d+1 and 2U respectively, where

1/U is the throughput measured in word per second, see Section 2.4.

Notation 4 The number of operations for multiplying two polynomials with degree less

than d using Cooley-Tukey’s FFT algorithms is MFFT(d) = 9/2 d′ log2(d
′)+4d′ [48]. Here

d′ = 2⌈log2 (2d−1)⌉. In our GPU implementation, which relies on Stockham FFT algorithm,

this number of operations becomes: MFFT(d) = 15d′ log2(d
′) + 2d′, see [53]. The span

and parallelism overhead of our FFT-based multiplication are 15d′ +2d′ and (36d′ −21)U

respectively Section 2.4.

Notation 5 Given a, b ∈ K[x], with deg(a) ≥ deg(b) we denote by Remainder(a, b) the

remainder in the Euclidean division of a by b. The number of arithmetic operations for

computing Remainder(a, b), by plain division, is (deg(b)+1)(deg(a)−deg(b)+1). In our

GPU implementation, we perform plain division for small degree polynomials, in which

case a, b are stored into the local memory of an SM. For larger polynomials, we use an

FFT-based algorithm to be discussed later. Returning to plain division, we use deg(b)+1

threads to implement this operation. Each thread reads one coefficient of b and at most

⌈
deg(a)+1
deg(b)+1 ⌉ coefficients of a from the global memory. For the output, at most deg(b) threads

write the coefficients of the remainder to the global memory. The span and parallelism

overhead are 2(deg(a) − deg(b) + 1) and (2 + ⌈
deg(a)+1
deg(b)+1 ⌉)U .

5.3. Subproduct tree construction 81

Notation 6 For f ∈ K[x] of degree d > 0 and an k ≥ d, the reversal of order k of f is the

polynomial denoted by revk(f) and defined as revk(f) = xkf(1/x). In our implementation,

we use one thread for each coefficient of the input and output. So the span and overhead

are 1 and 2U , respectively.

Notation 7 Adding two polynomials of degree at most d is done within d + 1 coefficient

operations. In our implementation, we use one thread per coefficient operation. So the

span and overhead are 1 and 3U , respectively.

Notation 8 For f ∈ K[x], with f(0) = 1, and ` ∈ N the modular inverse of f modulo

x` is denoted by Inverse(f, `) and is uniquely defined by Inverse(f, `) f ≡ 1 mod (x`).

Algorithm 10 computes Inverse(f, `) using Newton iteration. Observe that, this algorithm

has ⌈log2 `⌉ dependent sequential steps. As a result, the for-loop cannot be turned into a

parallel loop.

Algorithm 10: Inverse(f, `)

Input: f ∈ R[x] such that f(0) = 1 and ` ∈ N.
Output: gr ∈ R[x] such that fgr ≡ 1 mod x`.
g0 = 1;
r = ⌈log2 `⌉;
for i = 1 . . . r do

gi = (2gi−1 − fg2i−1) mod x2
i
;

return gr;

Remark 12 To help the reader following the complexity analysis presented in the sequel

of this paper, a Maple worksheet is available at http: // cumodp. org/ links. html .

Therein, we compute estimates for space allocation, work (total of number of arithmetic

operations), span (parallel running time) and parallelism overhead for constructing sub-

product tree and sub-inverse tree (our proposed data structure). Recall that parallelism

overhead measures the time spent in transferring data between the global memory of the

devices and shared memories of the SMs. Note that the estimates computed by this Maple

worksheet are based on our CUDA implementation available at http: // cumodp. org .

5.3 Subproduct tree construction

In this section, we study an adaptive algorithm for constructing the subproduct tree

Mn ∶= SubproductTree(u0, . . . , un−1) as defined in Section 5.2. Recall that n = 2k holds for

http://cumodp.org/links.html
http://cumodp.org

5.3. Subproduct tree construction 82

some positive integer k and that we have u0, . . . , un−1 ∈ K. Both polynomial evaluation

and interpolation use the subproduct tree technique which depends highly on polynomial

multiplication. This brings several implementation challenges.

First of all, it is well-known that, for univariate polynomials of low degrees, FFT-based

multiplication is more expensive than plain multiplication in the sense of the number of

arithmetic operations. For this reason, we apply plain multiplication for constructing

the nodes of levels 1, . . . ,H of the subproduct tree Mn, where 0 < H ≤ k is a prescribed

threshold. Then, we use FFT-based multiplication for the nodes of higher level.

A second challenge follows from the following observation. At level i of the subproduct

tree, each polynomial has degree 2i and thus 2i + 1 coefficients in a dense representation.

This is not a favorable case for FFT-based multiplication. Fortunately, the leading

coefficient of any such polynomial in the subproduct tree is 1. So, it is possible to

create Mi,j from Mi−1,2j and Mi−1,2j+1, even if we do not store the leading coefficients of

the latter two polynomials.

As we will see in Section 5.7 our implementation still has room for improvements

regarding polynomial multiplication. For instance, we could consider using an “interme-

diate” algorithm for polynomials with degree in a “middle range”. Such an algorithm

could be the one of Karatsuba or one of its variants. However, it is known that these

algorithms are hard to parallelize [12].

Definition 1 Let H be a fixed integer with 1 ≤ H ≤ k. We call the following procedure

an adaptive algorithm for computing Mn with threshold H:

1. for each level 1 ≤ h ≤H, the nodes are computed using plain multiplication,

2. for each level H+1 ≤ h ≤ k, the nodes are computed using FFT-based multiplication.

This algorithm is adaptive in the sense that it takes into account the amount of available

resources, as well as the input data size. Indeed, as specified in Section 5.2, each plain

multiplication is performed by a single SM, while each FFT-based multiplication is com-

puted by a kernel call, thus using several SMs. In fact, this kernel computes a number

of FFT-based products concurrently.

Before analyzing this adaptive algorithm, we recall that, if the subproduct tree Mn is

computed by means of a single multiplication algorithm, with multiplication time1 M(n),

Lemma 10.4 in [28] states that the total number of operations for constructing Mn is at

most M(n) log2 n operations in K. Lemma 8 below prepares to the study of our adaptive

algorithm.

1This notion is defined in [28, Chapter 8]

5.3. Subproduct tree construction 83

Lemma 8 Let 0 ≤ h1 < h2 ≤ k be integers. Assume that level h1 of Mn has already been

constructed. The total number of operations in K for constructing levels h1 + 1, . . . , h2 in

Mn is at most ∑
h2
i=h1+1 2k−iM(2i+1).

Proof. Recall that M(d) is an upper bound on the number of operations in K for

multiplying two univariate polynomials of degree less than d. Let h1 < i ≤ h2 be an index.

To construct the i-th level, we need 2k−i multiplications of degree less than 2i+1. So the

total cost to construct for level i is upper bounded 2k−iM(2i+1). ◻

We can have an immediate consequence from Lemma 8 by setting h1 = 0 and h2 = k.

Corollary 10 The number of operations for constructing the Mn is ∑
k
i=1 2k−iM(2i+1).

Remark 13 We do not store the leading coefficient of polynomials in Mn of levels H +

1, . . . , k − 1. So, the length of a polynomial becomes 2i at level i. The objective of this

technique is to reduce the computation time for FFT based multiplication. As the leading

coefficient is always 1, we proceed as follows.

Let a, b ∈ K[x] be two monic and univariate polynomials. Let deg(a) = deg(b) = d = 2e

for some e ∈ N . Let a′ = a− xd and b′ = b− xd. Then, we have ab = x2d + a′b′ + (a′ + b′)xd.

If we were to compute a b directly the cost would be O(MFFT(2d)). But if compute

it from a′ b′ using the above formula, then the cost will be reduced to O(MFFT(d) + d).

On the RAM model, this technique saves almost half of the computational time. On a

many-core machine, though the cost is not significant in theory, it saves O(d) memory

space and also saves about half of the work. In fact, this has a significant impact on the

computational time, as we could observe experimentally.

Another implementation trick is the so-called FFT doubling. At a level H + 2 ≤ i ≤ k,

for 0 ≤ j ≤ 2k−i − 1, consider how to compute Mi,j from Mi−1,2j and Mi−1,2j+1. Since the

values of Mi−1,2j and Mi−1,2j+1 at 2i−1 points have already been computed (via FFT), it is

sufficient, in order to determine Mi,j, to evaluate Mi−1,2j and Mi−1,2j+1 at 2i−1 additional

points. To do this, we write f ∈ {Mi−1,2j,Mi−1,2j+1} as f = f0+x2
i−2
f1, with deg(f0) < 2i−2,

and evaluate each of f0, f1 at those 2i−1 additional points. While this trick brings savings

in terms of work, it increases memory footprint, in particular parallelism overheads.

Integrating this trick in our implementation is work in progress and, in the rest of this

paper, the theoretical and experimental results do not rely on it.

Proposition 12 The number of arithmetic operations of the adaptive algorithm for com-

puting Mn with threshold H is

n (
15

2
log2(n)

2
+

19

2
log2(n) + 2H −

15

2
H2 −

17

2
H −

1

2H
) .

5.3. Subproduct tree construction 84

Proof. We compute the number of arithmetic operations for constructing Mn with

threshold H from Corollary 10. We rely on the cost of polynomial multiplication given

in Notations 3 and 4. Note that, we apply the technique described in Remark 13 for

FFT-based multiplication to create the polynomials of level H + 1, . . . , k of Mn. The

total number of arithmetic operations for computing levels 0,1, . . . ,H of Mn using plain

arithmetic is n
2
(19 log2(n) + 15 log2(n)

2
− 19H − 15H2) coefficient operations. For levels

H + 1, . . . , k of Mn, the cost is n(H + 2H − 1
2H

) coefficient operations. We obtain the

algebraic complexity estimates for constructing Mn by adding these two quantities. ◻

Proposition 13 The number of machine words required for storing Mn, with threshold

H is given below

n (log2(n) −H + 5) + (−H − 2) (n +
n

2H+1
) + 2nH (1 +

1

2H+2
)

Proof. Following our adaptive algorithm, we distinguish the nodes at levels 0, . . .H

from those at levels H +1, . . . , k. At level i ∈ {0, . . .H}, the number of coefficients of each

polynomial of Mn is 2i + 1 and all those coefficients are stored. The total number of

coefficients over all polynomials in Mn for level {0, . . . ,H}, which is (−H − 2) (n + n
2H+1)+

2nH (1 + 1
2H+2) + 5n.

At level i ∈ {H + 1, . . . , k}, we use the implementation technique described in Re-

mark 13, that is, leading coefficients of each polynomial are not stored. So a polyno-

mial at level i requires 2i words of storage. From the same worksheet, we compute the

total number of words required to store polynomials at level {H + 1 . . . , k}, which is

n (log2(n) −H). ◻

Proposition 14 Span and overhead of Algorithm 9 for constructing Mn with threshold

H using our adaptive method are spanMn
and overheadMn respectively, where

spanMn
=

15

2
(log2(n) + 1)

2
−

7

2
log2(n) + 2H+1 −

15

2
(H + 1)

2
+

9

2
H − 2

and

overheadMn = ((18 (log2(n) + 1)
2
− 35 log2(n) − 18 (H + 1)

2
+ 35H) + 2H)U.

Proof. Let us fix i with 0 ≤ i <H. At level i, our implementation uses plain multi-

plication in order to compute the polynomials at level i+1. Following Notation 3, the span

and the parallelism overhead of this process are H −2+2H+1 and 2HU , respectively. For

5.4. Subinverse tree construction 85

level H ≤ i < k, each thread is participating to one FFT-based multiplication and two co-

efficient additions (in order to implement the trick of Remark 13) With Notation 4 and 7,

we obtain the span and overhead for this step from Maple worksheet as 15
2 (log2(n) + 1)

2
−

7
2 log2(n) −

15
2 (H + 1)

2
+ 7

2 H and (18 (log2(n) + 1)
2
− 35 log2(n) − 18 (H + 1)

2
+ 35H)U

respectively. ◻

Propositions 12 and 14 imply that for a fixed a H, the parallelism (ratio work to span)

is in Θ(n) which is very satisfactory. We stress the fact that this result could be achieved

because both our plain and FFT-based multiplications are parallelized. Observe also that,

for a fixed n, parallelism overhead decreases as H increases: that is, plain multiplication

suffers less parallelism overheads than FFT-based multiplication on GPUs.

It is natural to ask how to choose H so as to minimize work and span. Elementary

calculations, using our Maple worksheet suggest 6 ≤H ≤ 7. However, in degrees 26 and

27, parallelism overhead is too high for FFT-based multiplication and, experimentally,

the best choice appeared to be H = 8.

5.4 Subinverse tree construction

For f ∈ K[x] of degree less than n, evaluating f on the point set {u0, . . . , un−1} is done

by Algorithm 11 by calling TopDownTraverse(f, k,0,Mn, F). An array F of length n is

passed to this procedure such that F [i] receives f(ui) for 0 ≤ i ≤ n− 1. The function call

Remainder(f,Mi,j) relies on plain division whenever i <H holds, where H is the threshold

of Section 5.3. Fast division is applied when polynomials are large enough and, actually,

Algorithm 11: TopDownTraverse(f, i, j,Mn, F)

Input: f ∈ K[x] with deg(f) < 2i , i and j are integers such that 0 ≤ i ≤ k,
0 ≤ j < 2k−i and F is an array of length n.

if i == 0 then
F [j] = f ;
return;

f0 = Remainder(f,Mi−1,2j);
f1 = Remainder(f,Mi−1,2j+1);
TopDownTraverse(f0, i − 1,2j,Mn, F);
TopDownTraverse(f1, i − 1,2j + 1,Mn, F);

can not be stored within the local memory of a streaming multiprocessor.

Fast division requires computing Inverse(rev2i(Mi,j),2i), for H ≤ i ≤ k and 0 ≤ j < 2k−i,

see Chapter 9 in [28]. However, this latter calculation has, in principle, to be done via

Newton iteration. As mentioned in Section 5.2, this latter provides little opportunities

5.4. Subinverse tree construction 86

for concurrent execution. To overcome this performance issue, we introduce a strategy

that relies on a new data structure called subinverse tree. In this section, we first define

subinverse trees and describe their implementation. Then, we analyze the complexity of

constructing a subinverse tree.

Definition 2 For the subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1), the subinverse

tree associated with Mn, denoted by InvMn, is a complete binary tree of the same format

as Mn, defined as follows. For 0 ≤ i ≤ k, for 0 ≤ j < 2k−i, the j-th node of level i in InvMn

contains the univariate polynomial InvMi,j of less than degree 2i and defined by

InvMi,j rev2i(Mi,j) ≡ 1 mod x2
i

.

Remark 14 We do not store the polynomials of subinverse tree InvMn below level H.

Indeed, for those levels, we rely on plain division for the function calls Remainder(f,Mi,j)

in Algorithm 11.

Proposition 15 Let InvMn be the subinverse tree associated with a subproduct tree Mn,

with the threshold H < k. Then, the amount of space required for storing InvMn, is

(k −H)n.

Proof. From the Definition 2, we realize the length of InvMi,j is 2i. As the total

number of polynomials at level i in InvMn is 2k−i, we need 2k, that is, n machine words

to store all polynomials of level i. Here, we are not considering the root of InvMn to be

stored, because in evaluation or interpolation of a univariate polynomial, we do not need

this. Plus, as it is mentioned in Remark 14, we do not store for levels below H. ◻

The following lemma is a simple observation from which we derive Proposition 16

and, thus, the principle of subinverse tree construction.

Lemma 9 Let R be a commutative ring with identity element. Let a, b, c ∈ R[x] be

univariate polynomials such that c = a b and a(0) = b(0) = 1 hold. Let d = deg(c) + 1.

Then, we have c(0) = 1 and Inverse(c, d) mod xd can be computed from a and b as

follows:

Inverse(c, d) ≡ Inverse(a, d) ⋅ Inverse(b, d) mod xd.

Proposition 16 Let InvMi,j be the jth polynomial (from left to right) of the subinverse

tree at level i, where 0 < i < k and 0 ≤ j < 2k−i. We have the following:

InvMi,j ≡ Inverse(rev2i−1(Mi−1,2j),2i) ⋅ Inverse(rev2i−1(Mi−1,2j+1),2i) mod x2
i

where InvMi,j = Inverse(rev2i(Mi,j),2i) from Definition 2.

5.4. Subinverse tree construction 87

The key observation is that computing InvMi,j requires Inverse(rev2i−1(Mi−1,2j),2i) and

Inverse(rev2i−1(Mi−1,2j+1),2i). However, at level i−1, the nodes InvMi−1,2j and InvMi−1,2j+1
are Inverse(rev2i−1(Mi−1,2j),2i−1) and Inverse(rev2i−1(Mi−1,2j+1),2i−1) respectively. To take

advantage of this observation, we call OneStepNewtonIteration(rev2i−1(Mi−1,2j), InvMi−1,2j, i−

1) and OneStepNewtonIteration(rev2i−1(Mi−1,2j+1), InvMi−1,2j+1, i − 1), see Algorithm 12,

so as to obtain Inverse(Mi−1,2j,2i) and Inverse(Mi−1,2j+1,2i) respectively. Algorithm 12

performs a single iteration of Newton iteration’s algorithm. Finally, we perform one

truncated polynomial multiplication, as stated in Proposition 16, to obtain InvMi,j. We

apply this technique to compute all the polynomials of level i of the subinverse tree, for

H + 1 ≤ i ≤ k.

Since we do not store the leading coefficients of the polynomials in the subproduct

tree, our implementation relies on a modified version Algorithm 12, namely Algorithm 13.

Algorithm 12: OneStepNewtonIteration(f, g, i)

Input: f, g ∈ R[x] such that f(0) = 1, where deg(g) =≤ 2i and fg ≡ 1 mod x2
i
.

Output: g′ ∈ R[x] such that fg′ ≡ 1 mod x2
i+1

.
g′ = (2g − fg2) mod x2

i+1
;

return g′;

Let f = rev2i(Mi,j) and g = InvMi,j. From Definition 2, we have fg ≡ 1 modx2
i
. Note

that deg(fg) ≤ 2i+1 − 1 holds. Let e′ = −fg + 1. Thus e′ is a polynomial of degree at most

2i+1 − 1. Moreover, from the definition of a subinverse tree, we know its least significant

2i coefficients are zeros. Let e = e′/x2i . So deg(e) ≤ 2i − 1. In Algorithm 12, we have

g′ ≡ g mod x2
i
. We can compute g′ from eg and g. The advantage of working with e

instead of e′ is that the degree of e′ is twice the degree of e.

In Algorithm 13, we compute e as follows

e = −rev2i(Mi,j ⋅ rev2i−1(InvMi,j) − x
2i+1−1)

by means of one convolution and three more polynomial operations. Since we do not

store the leading coefficient of Mi,j, we need to do these three additional operations.

Middle product technique is used in the implementations of Algorithms 10 and 12.

This improves the computational time significantly [34]. However, we do not apply

middle product technique directly in constructing subinverse tree, since it only works

well when the intermediate inverse polynomial gi has smaller degree than polynomial f

(in Algorithm 10).

For a given i, with H < i ≤ k, and for 0 ≤ j < 2k−i, Algorithm 14 computes the

polynomial InvMi,j. Algorithm 14 calls Algorithm 13 twice to increase the accuracy of

5.4. Subinverse tree construction 88

Algorithm 13: EfficientOneStep(M ′
i,j,InvMi,j, i)

Input: M ′
i,j =Mi,j − x2

i
, InvMi,j.

Output: g, such that g rev2i(Mi,j) ≡ 1 mod x2
i+1

.
a =rev2i−1(InvMi,j);
b = a − x2

i−1;
c =convolution(a,M ′

i,j,2
i);

d =rev2i(c + b);
e = −d;
h = e InvMi,j mod x2

i
;

g = hx2
i
+InvMi,j;

return g;

Algorithm 14: InvPolyCompute(Mn,InvM, i, j)

Input: Mn and InvM are the subproduct tree and subinverse tree respectively.
Output: c such that c rev2i(Mi,j) ≡ 1 mod x2

i
.

M ′
i−1,2j =Mi−1,2j − x2

i−1
;

M ′
i−1,2j+1 =Mi−1,2j+1 − x2

i−1
;

a = EfficientOneStep(M ′
i−1,2j,InvMi−1,2j, i − 1) ;

b = EfficientOneStep(M ′
i−1,2j+1,InvMi−1,2j+1, i − 1) ;

c = ab mod x2
i
;

return c;

Algorithm 15: SubinverseTree(Mn,H)

Input: Mn is the subproduct tree and H ∈ N.
Output: the subinverse tree InvMn

for j = 0 . . .2k−H − 1 do
InvMH,j = Inverse(MH,j,deg(MH,j));

for i = (H + 1) . . . k do
for j = 0 . . .2k−i − 1 do

InvMi,j = InvPolyCompute(Mn,InvMi,j);

return InvMn;

5.4. Subinverse tree construction 89

InvMi−1,2j and InvMi−1,2j+1 to x2i. Then it multiplies those latter polynomials and applies

a mod operation. Algorithm 15 is the top level algorithm which creates the subinverse

tree InvMn using a bottom-up approach and calling Algorithm 14 for computing each

node InvMi,j for H ≤ i ≤ k and 0 ≤ j < 2k−i.

Propositions 17 and 18 imply that for a fixed a H, the parallelism (ratio work to

span) is in Θ(n) which is very satisfactory.

Proposition 17 For the subproduct tree Mn, with threshold H, the number of arithmetic

operations for constructing the subinverse tree InvMn using Algorithm 15 is:

n(10 (3 log2(n)
2
+ log2(n) − 3H2 − 7H − 4) +

16 42H

3 ⋅ 2H
+ 2 −

1

3 ⋅ 2H
−

2

2H−2H
) .

Proof. At level H, we need to compute 2k−H polynomials. For each polynomials,

we need to call Algorithm 10, having the corresponding polynomial of subproduct tree

at level H, whose degree is 2H . So the loop in this algorithm runs H times. We apply

plain multiplications for this step using the idea of middle product technique to make the

implementation fast. In middle product technique, we require convolution to compute

some coefficients of a polynomial multiplications. In plain arithmetic, we can do the

same in a direct way. For example, in the i-th iteration of the for-loop in Algorithm 10

for i = 2, . . . ,H, we need to compute 2i−1 coefficients of gi. We can treat both f and gi−1
as polynomials of degree less than 2i−1. Thus this multiplication cost can be expressed

as Mplain(2i−1) We need two polynomial multiplications of this type in each iteration.

We also need some polynomial subtraction operations. Observe that computing g0 and

g1 is trivial in Algorithm 10. Based on our implementation described with Notation 3

to compute the total number of coefficient operations for construction the H-th level of

InvMn, the total number of operation is given below:

−
n

3 ⋅ 2H
+ 2n +

16n42H

3 ⋅ 2H
−

2n

2H−2H
.

After level H, each polynomial in InvMn is computed by the equation given in Propo-

sition 16. Note that, when we are constructing the i-th level of subinverse tree, it is

assumed that all of the polynomials at level i − 1 are precomputed. All polynomial mul-

tiplications in these levels are FFT-based. From Algorithm 13 and Proposition 16 along

with Notation 4, we compute the total number of operations required to compute the

polynomials from level H + 1 to k − 1 which is given below:

10 (log2(n) + 3 log2(n)
2
− 7H − 3H2 − 4)n.

5.5. Polynomial evaluation 90

We sum up these two complexity estimates and we get the result. ◻

Proposition 18 For the subproduct tree Mn with threshold H, the span and overhead of

constructing the subinverse tree InvMn by Algorithm 15 are spanInvMn
and overheadInvMn

respectively, where

spanInvMn
=

75

2
log2(n)

2
−

107

2
log2(n) + 2 ⋅ 4H + 4 ⋅ 2H −

75

2
H2 −

43

2
H + 14

and

overheadInvMn = U (90 log2(n)
2
− 255 log2(n) + 2H+1 − 90H2 + 75H + 166) .

Proof. The construction of InvMn can be divided into two steps. First, we compute

the polynomials at level H using plain arithmetic by Algorithm 10. During this step,

we assign one thread to compute one polynomial of InvMn. So its span is equal to the

complexity of Newton iteration algorithm that computes inverse of a polynomial of degree

2H modular x2
H

. One kernel call is enough to compute this. Moreover each thread is

responsible to copy one polynomial at level H of the subproduct tree from global memory

to local memory. The span and overhead that is computed for this step in our Maple

worksheet are 4 ⋅ 2H − 2 + 2 ⋅ 4H and (2H+1 + 1)U respectively.

Second, we construct level H+1, . . . , (k−1) of InvMn. As mentioned before, we do not

construct the root of the subinverse tree. For a level above H, each thread participates in

three FFT-based multiplications and five other coefficient operations (involving shifting,

addition, copying). For each of the operations, except FFT-based multiplication, each

thread requires accessing at most three times in global memory. So the span and overhead

for this step is computed from Notation 4 and 7 are 75
2 log2(n)

2
− 107

2 log2(n) −
75
2 H

2 −

43
2 H + 16 and 15 (6 log2(n)

2
− 17 log2(n) − 6H2 + 5H + 11)U respectively. ◻

5.5 Polynomial evaluation

Multi-point evaluation of polynomial f ∈ K[x] of degree less than n, for points in

{u0, . . . , un−1} can be done by Horner’s rule in O(n2) time. If we consider parallel archi-

tecture to solve this problem, the span becomes O(n) by doing each point-evaluations

in parallel trivially. Subproduct tree based multi-point evaluation has better time com-

plexity and span than that.

Algorithm 11 solves the multi-point evaluation problem using subproduct tree tech-

nique. To do so, we construct the subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1)

5.5. Polynomial evaluation 91

with threshold H and the corresponding subinverse tree InvMn. Then, we run Algo-

rithm 11, which requires polynomial division. We implement both plain and fast division.

For the latter, we rely on the subinverse tree, as described in Section 5.4

Proposition 19 For the subproduct tree Mn with threshold H and its corresponding

subinverse tree InvMn, the number of arithmetic operations of Algorithm 11 is:

30n log2(n)
2
+ 106n log2(n) + n2H+1 − 30nH2 − 46nH + 74n + 16

n

2H
− 8.

Proof. Our adaptive algorithm has two steps. First, we need to call Algorithm 16

for computing the remainder for k′ = k, . . . , (H + 1). We do not need to compute the

inverses of polynomials as we have InvMn. All of the multiplications in this algorithm are

FFT-based. We need two multiplications and four other operations (polynomial reversals

and subtraction). Following Notations 4, 6 and 8, the number of arithmetic operations

complexity of this step will be:

106nlog2(n) + 30nlog2(n)
2
− 30nH2 − 46Hn + 76n + 16

n

2H
− 8.

Second, when k′ =H, . . . ,1 in Algorithm 16, we use plain division algorithm described in

Notation 5. The total number of operation for this step is n2H+1 − 2n. ◻

Remark 15 In [52], the algebraic complexity estimate for performing multi-point evalua-

tion (which only considers multiplication cost and ignores other coefficient operations) is

7M(n/2) log2(n) +O(M(n)). Considering for M(n) a multiplication time like the one

based on Cooley-Tukey’s algorithm (see Section 5.2) the running time estimate of [52]

becomes similar to the estimate of Proposition 19. Since our primary goal is parallleliza-

tion, we view this comparison as satisfactory. Furthermore, Propositions 19 and 20 imply

that for a fixed a H, the parallelism (ratio work to span) is in Θ(n) which is satisfactory

as well.

In our proposed method, for constructing one polynomial in subinverse tree, we require

two polynomial convolutions and two polynomial multiplications between corresponding

polynomials (children of that polynomial) from subproduct tree and subinverse tree and

one polynomial multiplication. We require two polynomial multiplications in each call

to Algorithm 16, if subinverse tree is given. In addition, we need one multiplication

to create one polynomial in subproduct tree. So in total, the algebraic complexity esti-

mates for solving multi-point evaluation using our proposed method is 3M(n/2)(log2(n)−

1) + (2M(n/2) + 4M(n/4) + 4CONV(n/4)(log2(n) − 2)) considering only the polynomial

multiplication and ignoring all other coefficient operations. It should be noted, we start

5.6. Polynomial interpolation 92

computing the subinverse tree from level H. Each leaf of the subinverse tree has a con-

stant polynomial that is 1. Now if we compare our complexity estimate with that in [52],

(converting the convolution time to an appropriate multiplication time), we might not see

any significant differences. In practice, our proposed method should performs better on

parallel machine. We do not compare these techniques. We keep it for future work.

Considering our adaptive strategy, we compute the exact number of operations in

solving multi-point evaluation problem by adding the algebraic complexity estimates of

constructing Mn along with the corresponding InvMn and Algorithm 11 found in Propo-

sition 12, 17 and 19 respectively.

Proposition 20 Given a subproduct tree Mn with threshold H and the corresponding

subinverse tree InvMn, span and overhead of Algorithm 11 are spaneva and overheadeva

respectively, where

spaneva = 15 log2(n)
2
+ 23 log2(n) + 6 × 2H − 15H2 − 22H − 2

and

overheadeva = (36 log2(n)
2
+ 3 log2(n) − 36H2 + 2H)U.

Proof. From the proof of Proposition 19, we can compute the span and overhead

of Algorithm 11, when the value of k′ = k, . . . , (H + 1), using Notations 4, 6 and 8 as

15 log2(n)
2
+ 23 log2(n) − 15H2 − 23H

and

3U (12 log2(n)
2
+ log2(n) − 12H2 −H)

respectively. Once the Algorithm 11 depends on plain arithmetic for division that means

when k′ =H, . . . ,1, the span and overhead can be computed using Notation 5 as H − 2+

6 2H and 5HU respectively. ◻

5.6 Polynomial interpolation

As recalled in Section 5.2, we rely on Lagrange interpolation. Our interpolation proce-

dure, inspired by the recursive algorithm in [28, Chapter 10.9], relies on Algorithm 17

below, which proceeds in a bottom-up traversal fashion.

Algorithm 17 computes a binary tree such that the j-th node from the left at level i is

a polynomial Ii,j of degree 2i −1, for 0 ≤ i ≤ k, 0 ≤ j ≤ 2k−i −1. The root Ik,0 is the desired

5.6. Polynomial interpolation 93

Algorithm 16: FastRemainder(a, b)

Input: a, b ∈ R[x] with b ≠ 0 monic.
Output: (q, r) such that a = bq + r and deg(r) < deg(b)
t = deg(a);
s = deg(b);
if t < s then

q = 0;
r = a;
else

f =revs(b);
g =inverse(f, t − s + 1);
q =revt(a)g mod xt−s+1;
/* revt(a) means to replace x by 1/x in a and then multiply a with

xt. */

q =revt−s(q);
r = a − bq;

return (q, r);

Algorithm 17: LinearCombination(Mn, c0, . . . , cn−1)
Input: Precomputed subproduct tree Mn for the evaluation points u0, . . . , un−1,

and c0, . . . , cn−1 ∈ K, with n = 2k for k ∈ N
Output: ∑

0≤i<n
cim/(x − ui) ∈ K[x], where m = ∏0≤i<n(x − ui)

for j = 0 to n − 1 do
I0,j = cj;

for i = 1 to k do
for j = 0 to 2k−i − 1 do

Ii,j =Mi−1,2jIi−1,2j+1 +Mi−1,2j+1Ii−1,2j;

return Ik,0;

5.6. Polynomial interpolation 94

polynomial. We use the same threshold H as for the construction of the subproducttree

tree:

1. for each node Ii,j where 1 ≤ i ≤ H and 0 ≤ j < 2k−i, we compute Ih,j using plain

multiplication.

2. for each node Ii,j, with H + 1 ≤ i ≤ k, we compute the Ii,j using FFT-based multi-

plication.

In Theorem 10.10 in [28], the complexity estimates of the Linear Combination is

stated as (M(n) +O(n)) log(n). In Proposition 21, we present a more precise estimate.

Proposition 21 For the subproduct tree Mn with threshold H, the number of arithmetic

operations Algorithm 17 is given below

15n log2(n)
2
+ 20n log2(n) + 11n + 13nH − 15nH2 + n2H+1 − n21−H .

Proof. Each polynomial Ii,j for 0 ≤ i < k and 0 ≤ j < 2k−i is obtained by two

polynomial multiplications and one polynomial addition. For level i = 0, . . . ,H, by plain

multiplication and addition, Using Notation 3 and 7, we compute the total number of

operations as 3Hn + 6n + n2H+1 − n21−H . For the other levels, we apply FFT-based

multiplication. Using Notation 4 and 7, we obtain the total number of operations as

5n (4 log2(n) + 1 + 3 log2(n)
2
+ 2H − 3H2). ◻

Proposition 22 For the subproduct tree Mn with threshold H and the corresponding

subinverse tree InvMn, the span and overhead of Algorithm 17 are spanlc and overheadlc

respectively, where

spanlc =
15

2
log2(n)

2
+

25

2
log2(n) + 2H+1 −

15

2
H2 −

21

2
H − 2

and

overheadlc = 18 log2(n)
2
+ log2(n) − 18H2 + 4H.

Proof. At level i for 0 ≤ i ≤ H, this algorithm does 2k−i polynomial plain multi-

plications and 2k−i−1 polynomial additions. So each thread participates in one coefficient

multiplication and one addition. Thus using Notation 3 and 7, we compute the span and

overhead as 2H − 2 + 2H+1 and 5HU respectively.

For a level,i (i >H) we have same number of polynomial multiplications. But each of

the multiplication is done by FFT. As we do not store the leading coefficients for both

5.7. Experimentation 95

Mi,j, we need one more polynomial addition. So a thread participates in one FFT-based

multiplication and two coefficient additions. We compute the span and overhead for this

step as
15

2
log2(n)

2
+

25

2
log2(n) −

15

2
H2 −

25

2
H

and

U (18 log2(n)
2
+ log2(n) − 18H2 −H)

respectively by using Notation 4 and 7. ◻

Finally we use Algorithm 18 in which we first compute c0, . . . , cn−1, and then we call

Algorithm 17. Algorithm 18 is adapted from Algorithm 10.11 in [28].

Algorithm 18: FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1)
Input: u0, . . . , un−1 ∈ K such that ui − uj is a unit for i ≠ j, and v0, . . . , vn−1 ∈ K,

and n = 2k for k ∈ N
Output: The unique polynomial P ∈ K[x] of degree less than n such that

P (ui) = vi for 0 ≤ i < n
Mn ∶= SubproductTree(u0, . . . , un−1);
Let m be the root of Mn;
Compute m′(x) the derivative of m;
InvMn ∶= SubinverseTree(Mn,H);
TopDownTraverse(m′(x), i, j,Mn, F);
return LinearCombination(Mn, v0/F [0], . . . , vn−1/F [n − 1]);

The number of arithmetic operations of polynomial interpolation by Algorithm 18 is

stated in Remark 16.

Remark 16 In Algorithm 18, we need to compute multi-point evaluation followed by

Algorithm 17 for linear combination. In between these two major steps, we compute

the derivation of the root of the subproduct tree, which can be done by n coefficient

operations. So the number of arithmetic operations of Algorithm 18 is the summation of

that of polynomial evaluation (from Remark 15), Proposition 21 and n for the derivation.

5.7 Experimentation

In Table 5.1 we compare the running time of our multi-point evaluation CUDA code (for

polynomials with different degrees) against the running time of our FFT-based poly-

nomial multiplication CUDA code. We see that the ratio between these running time

varies in the range [2.24,4.02] on a GPU card NVIDIA Tesla C2050, while n [7] the same

5.7. Experimentation 96

ratio is estimated to be 3
2 . We believe that this observation as promising for our imple-

mentation. One of the major factors of performance in GPU applications is of memory

K Teva Tmul Teva/Tmul ∗ k
10 0.11 0.0049 2.24
11 0.17 0.0051 3.03
12 0.21 0.0060 2.91
13 0.28 0.0061 3.53
14 0.36 0.0069 3.72
15 0.42 0.0070 4.00
16 0.56 0.0087 4.02
17 0.70 0.0111 3.70
18 1.01 0.0163 3.44
19 1.50 0.0256 3.08
20 2.52 0.0438 2.80
21 4.61 0.0862 2.54
22 9.08 0.1654 2.49
23 18.83 0.3416 2.39

Table 5.1: Computation time for ran-
dom polynomials with different degrees
(2K) and points. All of the times are in
seconds.

Degree Evaluation Interpolation
4 0.0012 0.0013
5 0.0025 0.0026
6 0.0042 0.0045
7 0.0050 0.0060
8 0.0021 0.0029
9 0.0192 0.0318
10 0.0877 0.1228
11 0.2554 0.3403
12 0.5596 0.7054
13 1.2947 1.6182
14 2.5838 3.1445
15 5.2702 6.3464
16 9.6193 11.4143
17 16.4358 18.7800
18 22.6172 26.7590
19 32.3230 38.7674
20 40.4644 49.0012
21 46.7343 57.0978
22 50.8830 62.4516
23 52.9413 64.2464

Table 5.2: Effective memory bandwidth
in (GB/S)

bandwidth. For our algorithm this factor is presented for various input degrees in the

Table 5.2. The maximum memory bandwidth for our GPU is 148 GB/S. Since our code

has a high arithmetic intensity, we believe that our experimental are promising, while

leaving room for improvement.

In Table 5.3 and Figure 5.3, we compare two implementations of FFT-based polyno-

mial multiplication. The first one is implemented with CUDA [53]. The other one is from

the FLINT library [37]. We executed our CUDA codes on a NVIDIA Tesla M2050 GPU

and the other code on the same machine with an Intel Xeon X5650 CPU at 2.67GHz.

From the experimental data, it is clear that, our CUDA code for FFT-based multipli-

cation outperforms its FLINT counterpart only in degree larger than 213. This tells us

that we need to implement another multiplication algorithm to have better performance

in low-to-average degrees. This is work in progress.

5.8. Conclusion 97

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 9 10 11 12 13 14

GPU

FLINT

Figure 5.2: Our GPU implementation ver-
sus FLINT for FFT-based polynomial mul-
tiplication.

Degree GPU (s) FLINT (s) Speed-Up

9 0.001 0.001 0.602

10 0.0029 0 0

11 0.0019 0.002 1.029

12 0.0032 0.003 0.917

13 0.0023 0.008 3.441

14 0.0039 0.013 3.346

15 0.0032 0.023 7.216

16 0.0065 0.045 6.942

17 0.0084 0.088 10.475

18 0.0122 0.227 18.468

19 0.0198 0.471 23.738

20 0.0266 1.011 27.581

21 0.0718 2.086 29.037

22 0.1451 4.419 30.454

23 0.3043 9.043 29.717

Table 5.3: Execution times of multiplica-
tion

In Table 5.4 we compare our implementation of polynomial evaluation and interpola-

tion with that of the FLINT library. We found that our implementation does not perform

well until degree 215. In degree 223, we achieve a 21 times speedup factor w.r.t. FLINT.

We believe that by improving our multiplication routine for polynomials of degrees 29 to

213, we would have better performance in both polynomial evaluation and interpolation

in these ranges.

5.8 Conclusion

We discussed fast multi-point evaluation and interpolation of univariate polynomials

over a finite field on GPU architectures. We have combined algorithmic techniques like

subproduct trees, subinverse trees, plain polynomial arithmetic, FFT-based polynomial

arithmetic. Up to our knowledge, this is the first report on a parallel implementation

of subproduct tree techniques. The source code of our algorithms is freely available in

CUMODP-Library website 2.

The experimental results are very promising. Room for improvement, however, still

exists, in particular for efficiently multiplying polynomials in the range of degrees from

2http://cumodp.org/

5.8. Conclusion 98

Evaluation Interpolation
Degree GPU (s) FLINT (s) Speed-Up GPU (s) FLINT (s) Speed-Up

10 0.0843 0 0 0.0968 0.01 0.1032
11 0.1012 0.01 0.0987 0.1202 0.01 0.0831
12 0.1361 0.02 0.1468 0.1671 0.03 0.1794
13 0.1580 0.07 0.4429 0.1963 0.09 0.4584
14 0.2034 0.17 0.8354 0.2548 0.22 0.8631
15 0.2415 0.41 1.6971 0.3073 0.53 1.7242
16 0.3126 0.99 3.1666 0.4026 1.26 3.1294
17 0.4285 2.33 5.4375 0.5677 2.94 5.1780
18 0.7106 5.43 7.6404 0.9034 6.81 7.5379
19 1.0936 12.63 11.5484 1.3931 15.85 11.3768
20 1.9412 29.2 15.0420 2.4363 36.61 15.0268
21 3.6927 67.18 18.1923 4.5965 83.98 18.2702
22 7.4855 153.07 20.4486 9.2940 191.32 20.5851
23 15.796 346.44 21.9321 19.6923 432.13 21.9441

Table 5.4: Execution times of polynomial evaluation and interpolation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

GPU

FLINT

Figure 5.3: Interpolation lower degrees

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23

GPU

FLINT

Figure 5.4: Interpolation higher degrees

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4 6 8 10 12 14 16

GPU

FLINT

Figure 5.5: Evaluation lower degrees

 0

 50

 100

 150

 200

 250

 300

 350

 16 17 18 19 20 21 22 23

GPU

FLINT

Figure 5.6: Evaluation higher degrees

5.8. Conclusion 99

29 to 213. Filling this gap is work in progress.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company, 1974.

[2] L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM

Systems Journal, 5:78–101, 1966.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work

stealing. J. ACM, 46(5):720–748, 1999.

[4] M. Bodrato and A. Zanoni. What about Toom-Cook matrices optimality ? Technical

Report 605, Centro ”Vito Volterra”, Università di Roma ”Tor Vergata”, October

2006. http://bodrato.it/papers/#CIVV2006.

[5] M. Bodrato and A. Zanoni. Integer and polynomial multiplication: towards optimal

toom-cook matrices. In Wang [66], pages 17–24.

[6] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and

number theory (London, 1993).

[7] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of

points. J. Complexity, 21(4):420–446, 2005.

[8] R. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University

Press, New York, NY, USA, 2010.

[9] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplication in

gf(2)[x]. In Proceedings of the 8th international conference on Algorithmic number

theory, ANTS-VIII’08, pages 153–166, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] C. Chen, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. Parallel multiplication

of dense polynomials with integer coefficients. 2014.

100

http://bodrato.it/papers/#CIVV2006

BIBLIOGRAPHY 101

[11] C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore imple-

mentation for univariate real root isolation. J. of Physics: Conference Series, 341,

2011.

[12] M. F. I. Chowdhury, M. Moreno Maza, W. Pan, and É. Schost. Complexity and per-

formance results for non fft-based univariate polynomial multiplication. In Proceed-

ings of Advances in mathematical and computational methods: addressing modern

of science, technology, and society, AIP conference proceedings, volume 1368, pages

259–262, 2011.

[13] S. A. Cook. On the minimum computation time of functions. PhD thesis, 1966.

URL: http://cr.yp.to/bib/entries.html#1966/cook.

[14] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier

series. Math. Comp., 19:297–301, 1965.

[15] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex fourier

series. Mathematics of Computation, 19(90):297–301, 1965.

[16] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques

for triangular decompositions. In Proceedings of the 2005 international symposium

on Symbolic and algebraic computation, ISSAC ’05, pages 108–115, New York, NY,

USA, 2005. ACM.

[17] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast integer multiplication using

modular arithmetic. SIAM J. Comput., 42(2):685–699, 2013.

[18] R. J. Fateman. Can you save time in multiplying polynomials by encoding them as

integers?

[19] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other

cilk++ hyperobjects. In Proceedings of the Twenty-first Annual Symposium on Par-

allelism in Algorithms and Architectures, SPAA ’09, pages 79–90, New York, NY,

USA, 2009. ACM.

[20] M. Frigo and S. G. Johnson. The design and implementation of fftw3. 93(2):216–231,

2005.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. In Proceedings of the 40th annual symposium on foundations of computer

science, FOCS ’99, pages 285 – 297, 1999.

BIBLIOGRAPHY 102

[22] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. ACM Transactions on Algorithms, 8(1):4, 2012.

[23] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5

multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

[24] M. Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.

[25] M. Gastineau. Parallel operations of sparse polynomials on multicores: I. multipli-

cation and poisson bracket. In Proceedings of the 4th International Workshop on

Parallel and Symbolic Computation, PASCO ’10, pages 44–52, New York, NY, USA,

2010. ACM.

[26] M. Gastineau and J. Laskar. Development of trip: Fast sparse multivariate polyno-

mial multiplication using burst tries. In Vassil N. Alexandrov, G. Dick van Albada,

Peter M. A. Sloot, and Jack Dongarra, editors, International Conference on Com-

putational Science (2), volume 3992 of Lecture Notes in Computer Science, pages

446–453. Springer, 2006.

[27] M. Gastineau and J. Laskar. Highly scalable multiplication for distributed sparse

multivariate polynomials on many-core systems. In Vladimir P. Gerdt, Wolfram

Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, CASC, volume 8136 of

Lecture Notes in Computer Science, pages 100–115. Springer, 2013.

[28] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,

1999.

[29] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, New York, NY, USA, 2 edition, 2003.

[30] P. Gaudry, A. Kruppa, and P. Zimmermann. A gmp-based implementation of

schönhage-strassen’s large integer multiplication algorithm. In Wang [66], pages

167–174.

[31] P. B. Gibbons. A more practical PRAM model. In Proc. of SPAA, pages 158–168,

1989.

[32] T. Granlund and the GMP development team. GNU MP: The GNU Multiple Pre-

cision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

[33] A. Granville. Smooth numbers: computational number theory and beyond. Algo-

rithmic Number Theory, MSRI Publications, 44:267–323, 2008.

http://gmplib.org/

BIBLIOGRAPHY 103

[34] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm i. Appl.

Algebra Eng., Commun. Comput., 14(6):415–438, March 2004.

[35] S. A. Haque, M. Moreno Maza, and N. Xie. A many-core machine model for designing

algorithms with minimum parallelism overheads. CoRR, abs/1402.0264, 2014.

[36] S. A. Haque and M. Moreno Maza. Plain polynomial arithmetic on GPU. In J. of

Physics: Conf. Series, volume 385, page 12014. IOP Publishing, 2012.

[37] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory,

2012. Version 2.3, http://flintlib.org.

[38] W. B. Hart. Fast library for number theory: An introduction. In K. Fukuda,

J. van der Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software -

ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan,

September 13-17, 2010. Proceedings, volume 6327 of Lecture Notes in Computer

Science, pages 88–91. Springer, 2010.

[39] D. Harvey. Faster polynomial multiplication via multipoint kronecker substitution.

J. Symb. Comput., 44(10):1502–1510, October 2009.

[40] J. W. Hong and H. T. Kung. I/o complexity: The red-blue pebble game. In STOC,

pages 326–333. ACM, 1981.

[41] A. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-

tomata. Soviet Physics Doklady, 7:595–596, 1963. URL: http://cr.yp.to/bib/

entries.html#1963/karatsuba.

[42] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumer-

ical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1997.

[43] C. E. Leiserson. The cilk++ concurrency platform. The Journal of Supercomputing,

51(3):244–257, 2010.

[44] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing

fast polynomial arithmetic into maple. J. Symb. Comput., 46(7):841–858, July 2011.

[45] C. Van Loan. Computational frameworks for the fast Fourier transform. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

http://flintlib.org

BIBLIOGRAPHY 104

[46] M. Moreno Maza and Y. Xie. Fft-based dense polynomial arithmetic on multi-

cores. In HPCS, volume 5976 of Lecture Notes in Computer Science, pages 378–399.

Springer, 2009.

[47] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-

cores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

[48] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-

cores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

[49] L. Meng, Y. Voronenko, J. R. Johnson, M. Moreno Maza, F. Franchetti, and Y. Xie.

Spiral-generated modular fft algorithms. In M. Moreno Maza and Jean-Louis Roch,

editors, PASCO, pages 169–170. ACM, 2010.

[50] M. Monagan and R. Pearce. Poly: A new polynomial data structure for maple 17 .

[51] M. B. Monagan and R. Pearce. Parallel sparse polynomial multiplication using

heaps. In Jeremy R. Johnson, Hyungju Park, and Erich Kaltofen, editors, ISSAC,

pages 263–270. ACM, 2009.

[52] P. L. Montgomery. An FFT Extension of the Elliptic Curve Method of Factorization.

PhD thesis, University of California Los Angeles, USA, 1992.

[53] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a gpu. J. of Physics:

Conference Series, 256, 2010.

[54] M. Moreno Maza and W. Pan. Solving bivariate polynomial systems on a gpu. J.

of Physics: Conference Series, 341, 2011.

[55] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming

with CUDA. Queue, 6(2):40–53, 2008.

[56] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, June 2011.

[57] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,

F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.

SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special issue

on “Program Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[58] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing,

7(3-4):281–292, 1971.

BIBLIOGRAPHY 105

[59] T. G. Stockham, Jr. High-speed convolution and correlation. In AFIPS ’66 (Spring):

Proceedings of the April 26-28, 1966, Spring joint computer conference, pages 229–

233, New York, NY, USA, 1966. ACM.

[60] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by

circuits. SIAM J. Comput., 13(2):409–422, 1984.

[61] S. Tanaka, T. Chou, B. Y. Yang, C. M. Cheng, and K. Sakurai. Efficient parallel

evaluation of multivariate quadratic polynomials on gpus. In WISA, pages 28–42,

2012.

[62] A. L. Toom. The complexity of a scheme of functional elements realizing the multi-

plication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.

[63] J. van der Hoeven. The truncated fourier transform and applications. In Jaime

Gutierrez, editor, ISSAC, pages 290–296. ACM, 2004.

[64] J. Verschelde and G. Yoffe. Evaluating polynomials in several variables and their

derivatives on a gpu computing processor. In Proceedings of the 2012 IEEE 26th

International Parallel and Distributed Processing Symposium Workshops & PhD Fo-

rum, IPDPSW ’12, pages 1397–1405, Washington, DC, USA, 2012. IEEE Computer

Society.

[65] J. von zur Gathen and J. Gerhard. Fast algorithms for taylor shifts and certain

difference equations. In B. W. Char, P. S. Wang, and W. Küchlin, editors, ISSAC,

pages 40–47. ACM, 1997.

[66] D. Wang, editor. Symbolic and Algebraic Computation, International Symposium,

ISSAC 2007, Waterloo, Ontario, Canada, July 28 - August 1, 2007, Proceedings.

ACM, 2007.

[67] Y. Wang and X. Zhu. A fast algorithm for the fourier transform over finite fields and

its vlsi implementation. IEEE J.Sel. A. Commun., 6(3):572–577, September 2006.

[68] T. Z. Xuan. On smooth integers in short intervals under the Riemann hypothesis.

Acta Arithmetica, 88:327–332, 1999.

[69] A. Zanoni. Toom-cook 8-way for long integers multiplication. In S. M. Watt, V. Ne-

gru, T. Ida, T. Jebelean, D. Petcu, and D. Zaharie, editors, SYNASC, pages 54–57.

IEEE Computer Society, 2009.

BIBLIOGRAPHY 106

[70] A. Zanoni. Iterative toom-cook methods for very unbalanced long integer multiplica-

tion. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic

Computation, ISSAC ’10, pages 319–323, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 107

Curriculum Vitae

Name: Farnam Mansouri

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

M.Sc. in Computer Science, April 2014

Amirkabir University of Technology

Tehran, Iran

B.S. in Computer Engineering, May 2012

Work

Experience:

Research Assistant, Teaching Assistant

University of Western Ontario, London, Canada

January 2013 - April 2014

Research Intern (Mitacs-Accelerate)

Maplesoft Inc., Waterloo, Ontario, Canada.

July 2013 - October 2013

Software Solution Provider

Caspian Company, Tehran, Iran

September 2010 - September 2012

Appendix A

Converting

A.1 Convert-in

/**

* Convert a univariate polynomial with large coefficients to

* a bivariate polynomial representation with relatively

* small coefficients.

*

* univariate --> a1 * y ^ 0 + a2 * y ^ 1 + ... + ad * y ^ (d-1)

* bivariate --> A1(x) * y ^ 0 + A2(x) * y ^ 1 + ... + Ad(x) * y ^ (d-1)

*

* Ai(x) = b1 * x ^ 0 + b2 * x ^ 1 + ... + bK * x ^ (K-1)

*

* @param coeff the coefficients of large integers

* @param d partial degree of the univariate polynomial plus one

*/

BivariatePolynomial * MulSSA::ToBivarTwoMod(mpz_class *coeff, int d,

int p1, int p2) {

BivariatePolynomial *biA = new BivariatePolynomial(d, K, M, 2);

int *A2 = biA->getCoefficients() + biA->getSize();

//convert a large int coeff[i] to a univar poly of degree K-1

//by a base of 2^M

//store the coefficients of the univar poly to the coeff of y^i

#pragma cilk_grainsize = 8192;

108

A.2. Convert-out 109

cilk_for(int i=0; i<d; ++i){

if (coeff[i]!=0){

sfixn ci = i*K;

sfixn *Ai = biA->getCoefficients() + ci;

sfixn *A2i = A2 + ci;

mpzToPolyTwoMod((coeff[i]).get_mpz_t(), M, p1, p2, Ai, A2i);

}

}

return biA;

}

A.2 Convert-out

/**

* for both C^+ (ncc) and C^- (cc), for each coefficient of y^i,

* which is a large integer encoded as a polynomial in x, i.e.

* ncc1_i(x), ncc2_i(x), ncc3_i(x), cc1_i(x), cc2_i(x), cc3(x)

* (1) for each coefficient of x, apply CRT for the three prime numbers,

* get ncc_i and cc_i

* (2) convert ncc_i and cc_i to GMP, get u_i and v_i

* (3) compute c_i = (u_i+v_i)/2+(-u_i+v_i)/2*2^N

*

* Output:

* @c: An array storing big integer coefficients, that is c = a * b

*

* Input:

* @ncc1: An array storing ncc1_i(x), ncc2_i(x), ncc3_i(x), cc1_i(x), cc2_i(x), cc3(x)

* @d1: Degree of polynomial a

* @d2: Degree of polynomial b

**/

void MulSSA::CRT_ToGMP_Recovering(sfixn *ncc1, int d1, int d2, mpz_class *c) {

int csize = d1 + d2 - 1;

int fullsize = K * csize;

sfixn *ncc2 = ncc1 + fullsize;

sfixn *ncc3 = ncc2 + fullsize;

A.2. Convert-out 110

sfixn *cc1 = ncc3 + fullsize;

sfixn *cc2 = cc1 + fullsize;

sfixn *cc3 = cc2 + fullsize;

#pragma cilk_grainsize = 1024;

cilk_for (int i = 0; i < csize; ++i) {

int Ks = i * K;

mpz_t u, v;

CRTtoMPZ(u, ncc1+Ks, ncc2+Ks, ncc3+Ks, K);

CRTtoMPZ(v, cc1+Ks, cc2+Ks, cc3+Ks, K);

mpz_add (c[i].get_mpz_t(), u, v);

c[i] >>= 1;

mpz_sub (v, v, u);

c[i] += mpz_class (v) << (N - 1);

mpz_clear(u);

mpz_clear(v);

}

}

Appendix B

Good N Table

N k M
2 1 1
4 1 2
6 1 3
8 1 4
10 1 5
12 1 6
14 1 7
16 1 8
18 1 9
20 1 10
22 1 11
24 1 12
26 1 13
28 1 14
30 1 15
32 1 16
34 1 17
36 1 18
38 1 19
40 1 20
42 1 21
44 1 22
46 1 23
48 1 24

N k M
50 1 25
52 1 26
54 1 27
56 1 28
58 1 29
60 1 30
62 1 31
64 1 32
66 1 33
68 1 34
70 1 35
72 1 36
74 1 37
76 1 38
78 1 39
80 1 40
82 1 41
84 1 42
86 1 43
88 1 44
90 1 45
92 1 46
94 1 47
96 1 48

N k M
98 1 49
100 1 50
102 1 51
104 1 52
106 1 53
108 1 54
110 1 55
112 1 56
114 1 57
116 2 29
120 2 30
124 2 31
128 2 32
132 2 33
136 2 34
140 2 35
144 2 36
148 2 37
152 2 38
156 2 39
160 2 40
164 2 41
168 2 42
172 2 43

N k M
176 2 44
180 2 45
184 2 46
188 2 47
192 2 48
196 2 49
200 2 50
204 2 51
208 2 52
212 2 53
216 2 54
220 2 55
224 2 56
232 3 29
240 3 30
248 3 31
256 3 32
264 3 33
272 3 34
280 3 35
288 3 36
296 3 37
304 3 38
312 3 39

Table B.1: Good N,k = log2K,M using two 62-bits primes.

111

APPENDIX B. GOOD N TABLE 112

N k M
320 3 40
328 3 41
336 3 42
344 3 43
352 3 44
360 3 45
368 3 46
376 3 47
384 3 48
392 3 49
400 3 50
408 3 51
416 3 52
424 3 53
432 3 54
440 3 55
448 4 28
464 4 29
480 4 30
496 4 31
512 4 32
528 4 33
544 4 34
560 4 35
576 4 36
592 4 37
608 4 38
624 4 39
640 4 40
656 4 41
672 4 42
688 4 43
704 4 44
720 4 45
736 4 46
752 4 47
768 4 48
784 4 49
800 4 50
816 4 51
832 4 52
848 4 53
864 4 54
896 5 28

N k M
928 5 29
960 5 30
992 5 31
1024 5 32
1056 5 33
1088 5 34
1120 5 35
1152 5 36
1184 5 37
1216 5 38
1248 5 39
1280 5 40
1312 5 41
1344 5 42
1376 5 43
1408 5 44
1440 5 45
1472 5 46
1504 5 47
1536 5 48
1568 5 49
1600 5 50
1632 5 51
1664 5 52
1696 5 53
1728 6 27
1792 6 28
1856 6 29
1920 6 30
1984 6 31
2048 6 32
2112 6 33
2176 6 34
2240 6 35
2304 6 36
2368 6 37
2432 6 38
2496 6 39
2560 6 40
2624 6 41
2688 6 42
2752 6 43
2816 6 44
2880 6 45

N k M
2944 6 46
3008 6 47
3072 6 48
3136 6 49
3200 6 50
3264 6 51
3328 6 52
3456 7 27
3584 7 28
3712 7 29
3840 7 30
3968 7 31
4096 7 32
4224 7 33
4352 7 34
4480 7 35
4608 7 36
4736 7 37
4864 7 38
4992 7 39
5120 7 40
5248 7 41
5376 7 42
5504 7 43
5632 7 44
5760 7 45
5888 7 46
6016 7 47
6144 7 48
6272 7 49
6400 7 50
6528 7 51
6656 8 26
6912 8 27
7168 8 28
7424 8 29
7680 8 30
7936 8 31
8192 8 32
8448 8 33
8704 8 34
8960 8 35
9216 8 36
9472 8 37

N k M
9728 8 38
9984 8 39
10240 8 40
10496 8 41
10752 8 42
11008 8 43
11264 8 44
11520 8 45
11776 8 46
12032 8 47
12288 8 48
12544 8 49
12800 8 50
13312 9 26
13824 9 27
14336 9 28
14848 9 29
15360 9 30
15872 9 31
16384 9 32
16896 9 33
17408 9 34
17920 9 35
18432 9 36
18944 9 37
19456 9 38
19968 9 39
20480 9 40
20992 9 41
21504 9 42
22016 9 43
22528 9 44
23040 9 45
23552 9 46
24064 9 47
24576 9 48
25088 9 49
25600 10 25
26624 10 26
27648 10 27
28672 10 28
29696 10 29
30720 10 30
31744 10 31

Table B.2: Good N,k = log2K,M using two 62-bits primes. (Continue)

APPENDIX B. GOOD N TABLE 113

N k M
32768 10 32
33792 10 33
34816 10 34
35840 10 35
36864 10 36
37888 10 37
38912 10 38
39936 10 39
40960 10 40
41984 10 41
43008 10 42
44032 10 43
45056 10 44
46080 10 45
47104 10 46
48128 10 47
49152 10 48
51200 11 25
53248 11 26
55296 11 27
57344 11 28
59392 11 29
61440 11 30
63488 11 31
65536 11 32
67584 11 33
69632 11 34
71680 11 35
73728 11 36
75776 11 37
77824 11 38
79872 11 39
81920 11 40
83968 11 41
86016 11 42
88064 11 43
90112 11 44
92160 11 45
94208 11 46
96256 11 47

N k M
98304 12 24
102400 12 25
106496 12 26
110592 12 27
114688 12 28
118784 12 29
122880 12 30
126976 12 31
131072 12 32
135168 12 33
139264 12 34
143360 12 35
147456 12 36
151552 12 37
155648 12 38
159744 12 39
163840 12 40
167936 12 41
172032 12 42
176128 12 43
180224 12 44
184320 12 45
188416 12 46
196608 13 24
204800 13 25
212992 13 26
221184 13 27
229376 13 28
237568 13 29
245760 13 30
253952 13 31
262144 13 32
270336 13 33
278528 13 34
286720 13 35
294912 13 36
303104 13 37
311296 13 38
319488 13 39
327680 13 40

N k M
335872 13 41
344064 13 42
352256 13 43
360448 13 44
368640 13 45
376832 14 23
393216 14 24
409600 14 25
425984 14 26
442368 14 27
458752 14 28
475136 14 29
491520 14 30
507904 14 31
524288 14 32
540672 14 33
557056 14 34
573440 14 35
589824 14 36
606208 14 37
622592 14 38
638976 14 39
655360 14 40
671744 14 41
688128 14 42
704512 14 43
720896 14 44
753664 15 23
786432 15 24
819200 15 25
851968 15 26
884736 15 27
917504 15 28
950272 15 29
983040 15 30
1015808 15 31
1048576 15 32
1081344 15 33
1114112 15 34
1146880 15 35

N k M
1179648 15 36
1212416 15 37
1245184 15 38
1277952 15 39
1310720 15 40
1343488 15 41
1376256 15 42
1409024 15 43
1441792 16 22
1507328 16 23
1572864 16 24
1638400 16 25
1703936 16 26
1769472 16 27
1835008 16 28
1900544 16 29
1966080 16 30
2031616 16 31
2097152 16 32
2162688 16 33
2228224 16 34
2293760 16 35
2359296 16 36
2424832 16 37
2490368 16 38
2555904 16 39
2621440 16 40
2686976 16 41
2752512 16 42
2883584 17 22
3014656 17 23
3145728 17 24
3276800 17 25
3407872 17 26
3538944 17 27
3670016 17 28
3801088 17 29
3932160 17 30
4063232 17 31
4194304 17 32

Table B.3: Good N,k = log2K,M using two 62-bits primes. (Continue)

	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Integer polynomial multiplication on multi-core
	Example

	Polynomial evaluation and interpolation on many-core
	Example

	Background
	Multi-core processors
	Fork-join parallelism model

	The ideal cache model
	General-purpose computing on graphics processing units
	CUDA

	Many-core machine model
	Complexity measures

	Fast Fourier transform over finite fields
	Schönhage-Strassen FFT
	Cooley-Tukey and Stockham FFT

	Parallelizing classical algorithms for dense integer polynomial multiplication
	Preliminary results
	Kronecker substitution method
	Handling negative coefficients
	Example

	Classical divide & conquer
	Toom-Cook algorithm
	Parallelization
	Classical divide & conquer
	4-way Toom-Cook
	8-way Toom-Cook

	Experimentation
	Conclusion

	Parallel polynomial multiplication via two convolutions on multi-core processors
	Introduction
	Multiplying integer polynomials via two convolutions
	Recovering c(y) from C+(x,y) and C-(x,y)
	The algorithm in pseudo-code
	Parallelization

	Complexity analysis
	Smooth integers in short intervals
	Proof of Theorem 1

	Implementation
	Experimentation
	Conclusion

	Subproduct tree techniques on many-core GPUs
	Introduction
	Background
	Subproduct tree construction
	Subinverse tree construction
	Polynomial evaluation
	Polynomial interpolation
	Experimentation
	Conclusion

	Curriculum Vitae
	Converting
	Convert-in
	Convert-out

	Good N Table

