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Triangular decompositions are one of the major tools for
solving polynomial systems. For systems of algebraic equa-
tions, they provide a convenient way to describe complex
solutions and a step toward isolation of real roots or decom-
position into irreducible components. Combined with other
techniques, they are used for these purposes by several com-
puter algebra systems. For systems of partial differential
equations, they provide the main practicable way for deter-
mining a symbolic description of the solution set. Moreover,
thanks to Rosenfeld’s Lemma, techniques from the algebraic
case apply to the differential one [3].

Research in this area is following the natural cycle: theory,
algorithms, implementation, which will be the main theme of
this tutorial. We shall also concentrate on the algebraic case
and mention the differential one among the applications.

Theory. The concept of a characteristic set, introduced
by Ritt [14], is the cornerstone of the theory. He described
an algorithm for solving polynomial systems by factoring in
field extensions and computing characteristic sets of prime
ideals. Wu [16] obtained a factor-free adaptation of Ritt’s
algorithm. Several authors continued and improved Wu’s
approach: among them Chou, Gao [4], Gallo, Mishra [10]
Wang [15]. Considering characteristic sets of non-prime ide-
als leads to difficulties that were overcome by Kalkbrener [11]
and, Yang and Zhang [17] who defined particular character-
istic sets, called regular chains. See also the work of Lazard
and his students [1]. The first part of this tutorial will be
an introduction to this notion for a general audience.

Algorithms. Regular chains, combined with the D5 Prin-
ciple [8] and a notion of polynomial GCD [13], have also
contributed to improve the efficiency of algorithms for com-
puting triangular decompositions, as reported in [2]. To go
further, complexity estimates of the output regular chains
were needed. Such results were provided by Dahan and
Schost [7]. Together with the notion of equiprojectable de-
composition, they have brought the first modular algorithm
for computing triangular decompositions [5]. The second
part of this tutorial will focus on polynomial GCDs mod-
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ulo regular chains. Using the RegularChains library [12] in
MAPLE, we show how they are used for producing equipro-
jectable decompositions.

Implementation. This is certainly the hot topic today.
Obtaining fast algorithms for the low-level routines used in
triangular decompositions [6] and developing implementa-
tion techniques for them [9] are the priorities that we shall
discuss in the last part of this tutorial.
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