
Big Prime Field FFTs on the GPU

Liyangyu Chen1 Svyatoslav Covanov2

Davood Mohajerani3 Marc Moreno Maza3,4

1East China Normal University, China
2University of Lorraine, France

3ORCCA, University of Western Ontario, Canada
4IBM Center for Advanced Studies, Markham, Canada

13th Workshop on Challenges For Parallel Computing

CASCON 2018

October 29, 2018



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Fourier transform

What does Fourier transform do?

Frequency

Time

Magnitude

Examples of a function sampled over a finite time interval:

- pressure of a sound wave,

- a radio signal,

- daily temperature readings.

1 / 59



Fourier transform over C

• An extension of the Fourier series when the period approaches infinity.

• It can be studied for complex values of ξ:

f̂ (ξ) =

∫ ∞
−∞

e−2πiξt f (t) dt

2 / 59



How does FT help solving a problem?

3 / 59



Discrete Fourier Transform (DFT) over C

DFT transforms a sequence of N complex numbers {xn} := x0, x1, . . . , xN−1 into another sequence of

complex numbers, {Xk} := X0,X1, . . . ,XN−1, :

Xk =
N−1∑
n=0

xn · e−
2πi
N kn =

N−1∑
n=0

xn · [cos(
2πkn

N
)− i · sin(

2πkn

N
)]

4 / 59



Applications of DFT over C

• Digital signal processing,

• Solving partial differential equations,

• Fast polynomial multiplication,

• Multiplying large integers.

5 / 59



Example: Denoising image (1/4)

⇒

https://www.scipy-lectures.org/intro/scipy/auto examples/solutions/plot fft image denoise.html

6 / 59

https://www.scipy-lectures.org/intro/scipy/auto_examples/solutions/plot_fft_image_denoise.html


Example: Denoising image (2/4)

⇒

7 / 59



Example: Denoising image (3/4)

⇒

8 / 59



Example: Denoising image (4/4)

⇒

9 / 59



Complex DFT in practice

• DFT deals with a finite amount of data, so it can be implemented in computers

• In practice, it is realized both as a software, or through dedicated hardware.

10 / 59



A quick review

Fourier transform over C:

f̂ (ξ) =

∫ ∞
−∞

e−2πiξt f (t) dt

⇓
Discret Fourier transform (DFT) over C:

Xk =
N−1∑
n=0

xn · [cos(
2πkn

N
)− i · sin(

2πkn

N
)]

⇓
DFT over finite field

11 / 59



DFT over finite field

• We now turn our focus to finite fields.

• Then, the next question is what are finite fields?

Field

A set on which addition, subtraction, multiplication, and division are defined.

Examples of field

• C is a field

• Z is not a field as inverse is not defined for every element!

Finite field

A field with a finite number of elements.

12 / 59



Prime field

Prime field

• Zp/Z = {0, 1, . . . , p − 1}

• The sum, the difference, and the product are computed, then, reduced modulo p.

• The modular inverse is computed using “extended Euclidean algorithm”.

Example: Z5/Z = {0, 1, 2, 3, 4}

• 3 + 4 ≡ 2 (mod 5)

• 3− 4 ≡ −1 (mod 5) ≡ 4 (mod 5)

• 3 ∗ 2 ≡ 1 (mod 5)

• 3−1 ≡ 2 (mod 5)

mod 5 0

1

2

3

4

13 / 59



DFT over a prime field
Driving applications of prime fields

Coding theory, cryptography, and solving systems of polynomial equations.

Can we compute DFT over a prime field?

It can be proven that most attributes of DFT over C also hold over prime fields.

Definition

For prime field Zp, with ω ∈ R a N-th root of unity, the following linear map is the DFTN at ω:

~a = (a0, . . . , aN−1)T
Ω−−−−→ ~b = (b0, . . . , bN−1)T

with matrix Ω defined as follows:

Ω = (ωjk)0≤j,k≤N−1 =


1 1 1 . . . 1

1 ω ω2 . . . ωN−1

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)


14 / 59



Example: RSA crpyptosystem (1/3)

Alice EAVESDROPPER Bob

Generates public key (n, e)

Generate private key d

Publishes public key (n,e)−−−−−−−−−−−−−−→ Receives public key (n, e)

↓ ↓

Keeps her secret private! Encrypts his message M using (n, e)

↓ EAVESDROPPER ↓

Retrieves M by using d to decrypt C
Sends C to Alice←−−−−−−−−− Encrypted cipher C

15 / 59



Example: RSA crpyptosystem (2/3)

• Find three very large positive integers e, d and n such that for 0 ≤ m < n we have:

(me)d ≡ m (mod n)︸ ︷︷ ︸
modular exponentiation

• The value of n is product of two randomly generated primes p and q.

• Encryption: C ≡ me (mod n)︸ ︷︷ ︸
modular exponentiation

• Decryption: C d ≡ (me)d ≡ m (mod n)︸ ︷︷ ︸
modular exponentiation

16 / 59



Example: RSA crpyptosystem (3/3)

Alice EAVESDROPPER Bob

Generate public key (n, e):

n = 7 ∗ 11 = 77 and e = 13

Generate private key d = 7

Publishes public key (n,e)−−−−−−−−−−−−−−→ Receives public key (n, e)

↓ ↓

Keeps her secret private!
Encrypt M = 15:

C ≡ me ≡ 1513 ≡ 64 (mod 77)

↓ EAVESDROPPER ↓

Retrieve M:

C d ≡ (me)d ≡ 647 ≡ 15 (mod n)

Sends C to Alice←−−−−−−−−− Encrypted cipher C

17 / 59



Example: computing DFT over Z17 (I)

Comuting DFT8 for

~v = [1, 2, 1, 2, 1, 2, 1, 2]

• n = 8 and n−1 = 15,

• ω = 2 (as ω8 ≡ 1 (mod 17)), and

• ω−1 = 9 (as ωω−1 ≡ 1 (mod 17)).

0

1

2

3
45

6

7

8

9

10

11
12 13

14

15

16

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

0

1

2

3

45

6

7

8

9

10

11

12 13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

18 / 59



Example: computing DFT over Z17 (II)

Ω =



ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 ω2 ω4 ω6 ω8 ω10 ω12 ω14

ω0 ω3 ω6 ω9 ω12 ω15 ω18 ω21

ω0 ω4 ω8 ω12 ω16 ω20 ω24 ω28

ω0 ω5 ω10 ω15 ω20 ω25 ω30 ω35

ω0 ω6 ω12 ω18 ω24 ω30 ω36 ω42

ω0 ω7 ω14 ω21 ω28 ω35 ω42 ω49



=



1 1 1 1 1 1 1 1

1 2 4 8 16 15 13 9

1 4 16 13 1 4 16 13

1 8 13 2 16 9 4 15

1 16 1 16 1 16 1 16

1 15 4 9 16 2 13 8

1 13 16 4 1 13 16 4

1 9 13 15 16 8 4 2



DFT8(~v) = Ω~v

= Ω([1, 2, 1, 2, 1, 2, 1, 2])

= [12, 0, 0, 0, 13, 0, 0, 0]

0

1

2

3
45

6

7

8

9

10

11
12 13

14

15

16

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

0

1

2

3

45

6

7

8

9

10

11

12 13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

0

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

19 / 59



Example: DFT as an evaluation-interpolation scheme

f (x) = 1x0 + 2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7

y0 = f (ω0) = 2

y1 = f (ω1) = 8

y2 = f (ω2) = 14

y3 = f (ω3) = 6

y4 = f (ω4) = 13

y5 = f (ω5) = 3

y6 = f (ω6) = 12

y7 = f (ω7) = 1



INTERPOLATE((y0, y1, · · · , y7)) = DFT−1((y0, y1, · · · , y7)) = [1, 2, 3, 4, 5, 6, 7, 8]

20 / 59



DFT-based polynomial multiplication over Zp

f (x) =
n−1∑
i=0

aixi −→ ~a
DFTn(ω)−−−−−→ DFT(~a)

g(x) =
n−1∑
i=0

bixi −→ ~b
DFTn(ω)−−−−−→ DFT(~b)

↓ ↓

f (x)g(x) ≡
n−1∑
i=0

cixi (mod xn − 1) → ~c
DFT−1

n (ω−1)←−−−−−−−− DFT(~a) ∗DFT(~b)

21 / 59



Example: DFT-based polynomial multiplication over Z17

f (x) = 1x0 + 2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7

g(x) = 8x0 + 7x1 + 6x2 + 5x3 + 4x4 + 3x5 + 2x6 + 1x7

f (x)g(x) ≡ 6x0 + 3x1 + 8x2 + 4x3 + 8x4 + 3x5 + 6x6 + 0x7 (mod p)

Vectors ~a, ~b, and ~c are the vector of cofficients for f (x), g(x), and f (x)g(x), respectively.

~a = [1, 2, 3, 4, 5, 6, 7, 8]
DFT8(ω)−−−−−→ DFT8(~a) = [2, 8, 14, 6, 13, 3, 12, 1]

~b = [8, 7, 6, 5, 4, 3, 2, 1]
DFT8(ω)−−−−−→ DFT8(~b) = [2, 9, 3, 11, 4, 14, 5, 16]

~c = [6, 3, 8, 4, 8, 3, 6, 0]
DFT−1

8 (ω−1)
←−−−−−−−− (DFT8(~a) ∗DFT8(~b)) = [4, 4, 8, 15, 1, 8, 9, 16]

22 / 59



What do we achieve by computing DFT via FFT?

Fast Fourier transform (FFT): a fast divide-and-conquer algorithm

• Naively computing DFT over a vector of size n takes O(n2).

• Efficient DFT computation is done via fast Fourier transform (FFT) which takes O(n log n).

• First mentioned by Gauss (1805), popularized by IBM fellows Cooley and Tukey (1965).

• Using FFT, DFT-based polynomial multiplication leads to faster division, gcd, and factorization!

23 / 59



Problem

Problem

• Some computations over prime fields need high accuracy.

• This can only be achieved if computing is done directly over prime fields of a large characteristic.

Our work

CUDA implementation of arithmetic over Z/pZ for p of size of at least 8 or 16 machine words.

CUDA implementation of FFT over Z/pZ.

Theoretical and practical comparison of our approach vs. an approach based on small prime fields.

24 / 59



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Cooley-Tukey factorization

Cooley-Tukey factorization formula

• Expressed in tensor notation, for J,K > 1 and n = JK , we have:

DFTn = DFTJK = (DFTJ ⊗ IK )DJ,K (IJ ⊗DFTK )LJKJ

where

DJ,K =
J−1⊕
j=0

diag(1, ωj , . . . , ωj(K−1)),

LJKJ = x[iJ + j ] 7→ x[jJ + i ], (0 ≤ j < J, 0 ≤ i < K .)

• Various fast Fourier transform algorithms can be derived from this formula.

• We can greatly benefit from sparsity of factorized matrices.

25 / 59



Example: FFT algorithm and data locality

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

26 / 59



Example: FFT algorithm and data locality: radix-2 (1/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

27 / 59



Example: FFT algorithm and data locality: radix-2 (2/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

28 / 59



Example: FFT algorithm and data locality: radix-2 (3/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

29 / 59



Example: FFT algorithm and data locality: radix-2 (4/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

30 / 59



Example: FFT algorithm and data locality: radix-2 (5/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

31 / 59



Example: FFT algorithm and data locality: blocking (1/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

32 / 59



Example: FFT algorithm and data locality: blocking (2/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

33 / 59



Example: FFT algorithm and data locality: blocking (3/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

34 / 59



Example: FFT algorithm and data locality: blocking (4/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

35 / 59



Example: FFT algorithm and data locality: blocking (5/5)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

36 / 59



Complexity analysis (1/2)

Analysis of FFT over a prime field

DFTJK = (DFTJ ⊗ IK )︸ ︷︷ ︸
K DFT’s of size J

DJ,K︸︷︷︸
N mults by a power of ω

(IJ ⊗DFTK )︸ ︷︷ ︸
J DFT’s of size K

LJKJ

• For f ∈ Z/pZ[x ] of degree at most N − 1, computing DFTN(f ) at ω by a FFT amounts to

- N log(N) additions in Z/pZ,

- N/2 log(N) multiplications by a power of ω in Z/pZ.

• If p spans k machine words, the cost of each addition remains linear (O(k) word ops.), but

multiplication by a power of ω becomes a bottleneck as k grows (O(M(k)) word ops).

• Can we reduce cost of some multiplications to a cost of an addition?

37 / 59



Complexity analysis (2/2)

Fürer’s trick

• Let N = K e for some “small” K , J = N
K = K e−1 and η = ωN/K .

• Assume that multiplying any element of Z/pZ by a power of η is as cheap as an addition.

• Radix r fits in one machine word (32 or 64 bits wide depending on the device).

• This latter result holds whenever p is a prime of the form p = rk + 1 (a generalized Fermat number).

Applying Furer’s trick to CT factorization

• Using p = rk + 1, with K = 2k, DFTN(ω) amounts to:

O(N log2(N) k + N logk(N) M(k)) word ops.

• Without our assumption, the same DFT would run in O(N log2(N) M(k)) word ops.

• Using p = rk + 1 results in a speedup factor of log(K ) .

38 / 59



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Compute Unified Device Architecture (CUDA)

• A platform developed by NVIDIA corporation.

• Provides an API for writing scalable parallel programs on GPUs

The CUDA execution and programming model

• Streaming multiprocessors (SMs): building blocks of GPUs

• Kernel: The function that is executed on the GPU.

• Device: the GPU that executes kernels.

• Warp: The GPU scheduler deploys every 32 threads together for execution.

39 / 59



The CUDA memory model

On-chip Memory:

• Registers

• L1 cache

• Shared memory

Off-chip memory:

• Global memory

• L2 cache

• Local memory Figure: The CUDA memory model for CC 2.x and higher.

40 / 59



Implementation challenges (1/6)

Choice of FFT algorithm:

• Using GPU as a block processor (i.e., lots of SM’s working together).

• Block parallelism can be realized by IJ ⊗DFTK .

• We use the six-step recursive FFT algorithm

DFTN = LNK (IJ ⊗DFTK )LNJ DK ,J(IK ⊗DFTJ)LNK .

• We expand IK ⊗DFTJ to turn all DFT computations to base-case DFTK .

41 / 59



Implementation challenges (2/6)

Parallelization of arithmetic operations.

• Initial idea: using multiple threads for computing one operation!

• High overhead will not improve the performance before a threshold! (think of p > 22048)

• Solution: we need to compute operations in batches; one big number handled by one thread.

Figure: Better performance at lower occupancy, Vasily Volkov

42 / 59

http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf


Implementation challenges (2/6, continued)
Maximizing global memory efficiency.

• Consider ~X as a vector of N elements of Z/pZ

• Assume that consecutive digits of each element are stored in adjacent memory addresses.

• View it as the row-major layout of a N × k matrix.

• Problem: performance is hurt due to increased memory overhead.

• Solution: perform a stride permutation (transposition) LkNk on all input vectors.

• Result: increasing memory (load/store) efficiency.



~X0

~X1

.

.

.

~XN−1


=



~X(0,0)
~X(0,1)

~X(0,2) . . . ~X(0,k−1)

~X(1,0)
~X(1,1)

~X(1,2) . . . ~X(1,k−1)

~X(N−1,0)
~X(N−1,1)

~X(N−1,2) . . . ~X(N−1,k−1)


(N×k)

LkNk−−→



~X(0,0)
~X(1,0)

~X(N−1,0)

~X(0,1)
~X(1,1)

~X(N−1,1)

~X(0,2)
~X(1,2)

~X(N−1,2)

.

.

.
.
.
.

.

.

.

~X(0,k−1)
~X(1,k−1)

~X(N−1,k−1)


(k×N)

43 / 59



Implementation challenges (3/6)

Memory-bound kernels.

• Problem: Performance is limited by frequent accesses to memory.

• Solutions:

• minimizing memory latency (through buffering),

• maximizing occupancy (#active warps on each SM) to hide latency, and

• maximizing IPC (instructions per clock cycle): exploiting ILP.

• avoiding use of shared memory (to keep occupancy high),

• turn off L1 cache for operations that do not reuse data: all add, sub

• keep all data on global memory

44 / 59



Implementation challenges (4/6)

Register spilling

• Problem: Using many registers per thread can lower the occupancy,

• Solution: register-intensive kernels are broken into multiple smaller ones.

45 / 59



Implementation challenges (5/6)

Maximizing occupancy

• Problem: For the same application, different GPUs need different kernel parameters for achieving

peak performance.

• Solution: Design kernels that are oblivious to the size of a thread block.

• We choose size of thread blocks for maximizing bandwidth-related performance metrics (read and

write throughput).

46 / 59



Implementation challenges (6/6)

Effect of GPU instructions on performance

• Initial idea: implementation based on 64-bit instructions (64-bit radix should be better!)

• Problem: Compiler converts all instructions to a sequence of 32-bit equivalents, this conversion can

have negative impact on the overall performance (specially, 64-bit multiplication!).

• Solution: Using 32-bit arithmetic provides more opportunities for optimization such as ILP

Argument for NOT using 64-bit arithmetic

• Let’s see how GPU behaves in each case.

• There is a cost for converting between 64-bit types to and from all other 32-bit types.

• All 64-bit instructions have a significantly lower IPC count compared to their 32-bit counterparts.

Table 1 is taken from Pages 85-86 of CUDA C PROGRAMMING GUIDE.

47 / 59

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf


Instruction throughput comparison

Table: Number of Results per Clock Cycle per Multiprocessor

Instruction /CC 3.0,

3.2

3.5,

3.7

5.0,

5.2

5.3 6.0 6.1 6.2 7.0

32-bit integer add,

extended-precision add,

subtract, extended-

precision subtract

160 160 128 128 64 128 128 64

32-bit integer multiply,

multiply-add, extended-

precision multiply-add

32 32 Multiple

inst.

Multiple

inst.

Multiple

inst.

Multiple

inst.

Multiple

inst.

64

32-bit bitwise AND, OR,

XOR

160 160 128 128 64 128 128 64

Type conversions from

and to 64-bit types

8 32 4 4 16 4 4 16

32-bit floating point

add, multiply, multiply-

add

192 192 128 128 64 128 128 64

64-bit floating point

add, multiply, multiply-

add

8 64 4 4 32 4 4 32

32-bit integer shift 32 64 64 64 32 64 64 64

compare, minimum,

maximum

160 160 64 64 32 64 64 64

48 / 59



A lesson hard-learned: better to avoid 64-bit instructions in CUDA

“Forward looking GPU integer performance”

One of the answers verified by NVIDIA on this subject:

" Yes, 64-bit arithmetic is accomplished via instruction sequences generated

by the compiler (on all current CUDA GPUs). There is no native 64 bit integer

add or multiply instruction ... "

Posted 06/29/2016 04:52 AM, by txbob

https://devtalk.nvidia.com/default/topic/948014/forward-looking-gpu-integer-performance/?offset=14

49 / 59

https://devtalk.nvidia.com/default/topic/948014/forward-looking-gpu-integer-performance/?offset=14


Profiling addition for N = 216 (random input) for P3 = (263 + 234)8 (K = 16)

Metric Description Avg. non-transposed Avg. transposed

Achieved Occupancy 92% 87%

Executed IPC 0.13 0.72

Global Memory Load Efficiency 25% 99%

Global Memory Store Efficiency 25% 100%

Instruction Replay Overhead 3.22 0.36

Global Memory Replay Overhead 1.78 0.10

Device Memory Read Throughput 26 GB/s 30 GB/s

Device Memory Write Throughput 13 GB/s 15 GB/s

Total Kernel Time 2.395ms 0.504ms

Table: Profiling results for transposed and non-transposed addition in Z/pZ

50 / 59



Profiling multiplication by a power of radix (x r s) for N = 216 for P3 = (263 + 234)8 (K = 16)

Metric Description Avg. non-transposed Avg. transposed

Achieved Occupancy 91% 57%

Executed IPC 0.18 4.61

Global Memory Load Efficiency 25% 86%

Global Memory Store Efficiency 25% 87%

Instruction Replay Overhead 3.19 0.04

Global Memory Replay Overhead 1.22 0.01

Device Memory Read Throughput 14 GB/s 20 GB/s

Device Memory Write Throughput 18 GB/s 20 GB/s

Total Kernel Time 3.331ms 0.380ms

Table: Profiling results for transposed and non-transposed x r s in Z/pZ

51 / 59



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Outline

1 Fourier transforms

2 Fürer’s trick: beyond Cooley-Tukey factorization

3 Implementation challenges

4 Experimental Comparison



Big prime vs. small prime: RNS and CRT (1/2)

Input (big integers)
Taking numbers to a RNS−−−−−−−−−−−−−−−→ RNS representation

↓ ↓

Directly compute with big integers Compute in RNS

↓ ↓

Result
Retrieve the result using CRT←−−−−−−−−−−−−−−−−− Result in RNS

52 / 59



Big prime vs. small prime: RNS and CRT (2/2)

Example of RNS-CRT scheme for 4-bit numbers

• If M is the maximum absolute value that will be used in computation, a RNS/CRT scheme needs

primes M < p1 × · · · × pe .

• For 0 ≤ x , y < B, the M = max(x ∗ y) = (2B − 1)2.

• With B = 4, M = (24− 1)2 = 225, then, we can pick p1 = 3, p2 = 7, p3 = 11 (as 225 < 3× 7× 11).

x = 14
RNS (3,7,11)−−−−−−−−→ x ′ = (2, 0, 3)

y = 10
RNS (3,7,11)−−−−−−−−→ y ′ = (1, 3, 10)

↓ ↓ ↓ ↓

xy = 140
RNS (3,7,11)−−−−−−−−→ x ′y ′ = (2, 0, 8)
CRT (3,7,11)←−−−−−−−−

53 / 59



Big prime vs. Small prime

Computing FFT: big prime vs. small prime

• Small prime approach: pairwise different primes p1, . . . , pk

1. compute image fi of f in Z/p1Z[x ], . . . ,Z/pkZ[x ] (projection)

2. compute DFTN(fi ) at ωi in Z/piZ[x ]

3. combine the results using the CRT (recombination)

• The small primes are
machine-word size

2
, it is fair to use 2k of them!

• Small prime FFTs from the CUMODP library compute DFT2n for 8 ≤ n ≤ 26:

• the Cooley-Tukey FFT,

• the Cooley-Tukey FFT with pre-computed powers of ω,

• the Stockham FFT.

• Tests completed on a NVIDA GTX-1080Ti (3584 CUDA cores @1.5 GHZ, Memory @5 GHZ)

54 / 59



Benchmarking for P3 = (263 + 234)8 (K = 16)

CT-pre CT Stockham
0.00

2.00

4.00

6.00

8.00

6.35

3.95

8.06
S
p
ee
du

p

total e = 2

CT-pre CT Stockham
0.00

1.00

2.00

3.00

4.00

5.00

3.81

3.44

4.69

S
p

ee
d

u
p

total e = 3

CT-pre CT Stockham
0.00

0.20

0.40

0.60

0.69

0.59

0.66

S
p
ee
du

p

total e = 4

CT-pre CT Stockham
0.00

0.20

0.40

0.60

0.80

1.00

0.83 0.83

0.99

S
p

ee
d

u
p

total e = 5

55 / 59



Benchmarking for P4 = (262 + 236)16 (K = 32)

CT-pre CT Stockham
0.00

5.00

10.00

15.00

20.00

15.75
14.66

19.20
S
p
ee
du

p

total e = 2

CT-pre CT Stockham
0.00

0.50

1.00

1.50

2.00 1.88
1.76

1.89

S
p

ee
d

u
p

total e = 3

CT-pre CT Stockham
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.38 1.38

1.54

S
p
ee
du

p

total e = 4

56 / 59



Profiling results for DFTK4 with P3 (K = 16) and P4 (K = 32)

Twiddle Permutation Mult-by-r Add/Sub Memory
0

5

10

15

20

25

30

35

40 38

24

11
10

17

28 28

12
13

18

P
er

ce
n

ta
ge

of
ti

m
e

sp
en

t
in

ea
ch

op
er

at
io

n

P4 (262 + 236)16 + 1 (K = 32)

P3 (263 + 234)8 + 1 (K = 16)

57 / 59



Performance analysis:

Performance analysis:

• Larger p in Z/pZ ⇒ a higher number of cheap multiplications!

• Beyond a certain point, we have more expensive multiplications!

Addressing performance bottlenecks

Multiplication algorithm

Suboptimal use of device due to 64-bit arithmetic (emulated on CUDA GPUs).

Difficulty in adapting the code for new primes (mostly due to difficulties in multiplication).

58 / 59



Concluding remarks

Work in progress

• Moving to a complete implementation based on 32-bit arithmetic.

• Improving multiplication in Z/pZ is work in progress.

• By choosing a larger prime, say k = 32, or k = 64, we hope to cover other ranges of sizes.

• We have been working on a multi-core implementation and have managed to use FFT for

multiplying elements of Z/pZ for k large enough (k ≥ 64).

Conclusions

• Big prime field arithmetic is required by many advanced algorithms.

• Arithmetic modulo a big prime can be efficiently computed on GPUs.

• We have been the first in putting Fürer’s ideas into practice and experimentally verify them.

• Computing FFT in Z/pZ is competitive with a CRT-based approach for a range of sizes.

• Multiplication in Z/pZ (except for the case of a mult by a power of r) remains a bottleneck.

59 / 59



Thank You!

60 / 59



Your Questions?

61 / 59



Appendix

62 / 59



Main References

• Faster integer multiplication by Fürer

• Modern computer algebra 3rd edition by von zur Gathen and Gerhard

• Fast polynomial arithmetic by Moreno Maza and Pan

• How to write fast numerical code by Chellappa, Franchetti, and Puschel

• Fast Fourier transforms by Franchetti and Puschel

• CUDA C programming guide 8.0 by NVIDIA Corporation

63 / 59



Sparse-radix generalized Fermat numbers (SRGFN)

• Generalized Fermat numbers a2n

+ b2n

where a > 1, b ≥ 0 and n ≥ 0.

• For Fn(a) = a2n

+ 1, a is a 2n+1-th primitive root of unity Z/Fn(a)Z,

• A SRGFN is any Fn(r) where r is 2w + 2u or 2w − 2u, for w > u ≥ 0

Representing elements of Z/Fn(r)Z

• Let p = Fn(r), and k = 2n s.t. p = rk + 1 holds

• Represent x ∈ Z/pZ as ~x = (xk−1, xk−2, . . . , x0) such that:

x ≡ xk−1 r
k−1 + xk−2 r

k−2 + · · ·+ x0 mod p.

1. either xk−1 = r and xk−2 = · · · = x1 = 0, or

2. 0 ≤ xi < r for all i = 0 · · · (k − 1)

64 / 59



Addition and subtraction in Z/pZ

Add(sub) with carry for x , y ∈ Z/pZ represented by ~x , ~y with k coefficients.

Multiplication in Z/pZ

• Associate x , y ∈ Z/pZ with polynomials fx , fy ∈ Z[T ]

• For large k, fx fy mod T k + 1 can be computed in Z[T ] by fast algorithms

• For small k, say k ≤ 16, using plain multiplication is reasonable.

Multiplication by r i for some 0 < i < 2k in Z/pZ

• Recall that r2k ≡ 1, rk ≡ −1, and rk+i ≡ −r i , for 0 < i < k

• Assume that 0 < i < k holds and 0 ≤ x < rk holds in Z, then:

x r i ≡ xk−1 r
k−1+i + · · ·+ x0 r

i mod p

≡
∑j=k−1

j=0 xj r
j+i mod p ≡

∑h=k−1+i
h=i xh−i r

h mod p

≡
∑h=k−1

h=i xh−i r
h −

∑h=k−1+i
h=k xh−i r

h−k mod p

• Computing the product x r i reduces to a negacyclic shift. 65 / 59



Finding primitive roots of unity in Z/pZ

Computing ω:

• Goal: speed up xωi for x ∈ Z/pZ.

• Let N = 2`, s.t. N | p − 1

• Assume that gN = 1 for g ∈ Z/pZ

• Write p = qN + 1.

• Pick a random α ∈ Z/pZ

• Let ω = αq.

• Fermat’s little theorem:

• if ωN/2 = 1 ⇒ ωN = 1,

• if ωN/2 = −1, pick another α.

Algorithm 1 Primitive N-th root ω ∈ Z/pZ s.t. ωN/2k =

r

procedure PRoot(N, r , k, g)

α := gN/2k

β := α

j := 1

while β 6= r do

β := αβ

j := j + 1

end while

ω := g j

return (ω)

end procedure

66 / 59



Host entry point function

Template HostGeneralOperation(~X,~Y,~U, N, k, r, b)

Input:

- an integer b giving the size of 1D thread block,

- Positive integer k , r , and N

- Vectors ~X and ~Y, each of size N

Output:

- vector ~U storing the result (~U := operation(~X,~Y)).

~X := HostTranspose(~X, N, k)

~Y := HostTranspose(~Y, N, k)

KernelGeneralOperation<<<
N

b
, b >>>(~X,~Y,~U, N, k, r)

return ~U

67 / 59



Template KernelGeneralOperation(~X,~Y,~U, N, k, r)

local: stride := N

local: offset:=0

local: vectors ~x, ~y, ~u each storing k digits, all initialized to zero.

local: tid := blockIdx.x∗blockSize.x+threadIdx.x

for (0 ≤ i < k) do

offset:=tid +i*stride

~x[i] := ~X[offset] . Reading the digit with the index i of element ~Xtid.

~y[i] := ~Y[offset] . Reading the digit with the index i of element ~Ytid.

end for

~u := DeviceGeneralOperation(~x,~y, k, r). . each thread computing one element of the final result.

for (0 ≤ i < k) do

offset:=tid +i*stride

~U[offset] := ~u[i]

end for

return . End of Kernel

68 / 59



Host entry point for DFTK e

Algorithm 4 HostDFTGeneral(~X,~Ω, N, K, k, s, r, b)

1: local: m := e where N = K e , j := 0

2: if e mod 2 = 1 then

3: HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)

4: end if

5: for (0 ≤ i < m by 2) do

6: HostDFTK2(~X,~Ω, N, K, k, s, r)

7: KernelTwiddleMultiplication(~X,~Ω, N, K, k, s := 2, r)

8: HostGeneralStridePermutation(~X,~Y, K2, N, k, s, b)

9: ~X[0 : kN− 1] := ~Y[0 : kN− 1]

10: HostDFTK2(~X,~Ω, N, K, k, s, r)

11: HostGeneralStridePermutation(~X,~Y, K2, N, k, s, b)

12: ~X[0 : kN− 1] := ~Y[0 : kN− 1]

13: end for

69 / 59



Host entry point for DFTK e

Algorithm 5 HostDFTGeneral(~X,~Ω, N, K, k, s, r, b)

1: if (e mod 2 = 1 ) then

2: KernelTwiddleMultiplication(~X,~Ω, N, K, k, s := 2, r)

3: HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)

4: X[0 : kN− 1] := ~Y[0 : kN− 1]

5: KernelBaseDFTKAllSteps(~X, N, K, r)

6: HostGeneralStridePermutation(~X,~Y, K1, N, k, s, b)

7: ~X[0 : kN− 1] := ~Y[0 : kN− 1]

8: end if

9: return ~X

70 / 59



Mixed-radix conversion

Mixed-radix representation

• For pairwise different primes p1, . . . , ps :

bi ∈ Z/piZ, 0 ≤ bi < pi , (1 ≤ i ≤ s).

• Then (b1, b2, . . . , bs) is mixed-radix representation of n ∈ Z:{
n = b1 + b2p1 + b3p1p2 + · · ·+ bsp1 · · · ps−1

0 ≤ n < p1p2 · · · ps

Reconstructing n from (b1, b2, . . . , bs)

• pre-compute m1 := p1, m2 := p1p2, . . . , ms := m,

• compute ui := bimi (stored in i machine-words),

• compute the sum n := u1 + u2 + . . .+ us

71 / 59



Recombination step

MRR or CRT?

• The CRT defines a ring isomorphism:

Z/p1Z⊕ · · · ⊕ Z/psZ ∼= Z/(p1 × . . .× ps)Z

• The MRR defines a bijection:

Z/p1Z⊕ · · · ⊕ Z/psZ 7→ [0, p1p2 · · · ps [

which preserves the order (mapping lex-order to <)

• Both take Θ(k2) machine-word operations.

• The MRR is interesting for modular methods for real numbers

• We use MRR map instead of the CRT.

72 / 59



Benchmarking FFTs

Computing equivalent results

• Compute a DFTN in Z/pZ with p = rk + 1 → O(N logK (N)k2)

• Compute s DFTN over small prime fields. −→ O(sN log2(N))

• Compute a MRR on results of small prime FFTs −→ O(sNk2)

73 / 59



Example: computing DFT-16 based on DFT-2

• Expanding DFT16 based on the six-step FFT algorithm:

DFT16 = L16
2 (I8 ⊗DFT2)L16

8 D16
2,8(I2 ⊗DFT8)L16

2 ,

DFT8 = L8
2(I4 ⊗DFT2)L8

4D
8
2,4(I2 ⊗DFT4)L8

2,

DFT4 = L4
2(I2 ⊗DFT2)L4

2D
4
2,2(I2 ⊗DFT2)L4

2,

• Following multiplications by twiddle factors are required:

1. DFT16 with ω0 = ωN/K = r ,

2. DFT8 needs ω1 = ω(N/K)2

= r 2,

3. DFT4 needs ω2 = ω(N/K)4

= r 4.

• We have:

D16
2,8 = (1, 1, 1, 1, 1, 1, 1, 1, r0, r1, r2, r3, r4, r5, r6, r7),

D8
2,4 = (1, 1, 1, 1, r0, r2, r4, r6),

D4
2,2 = (1, 1, r0, r4).

74 / 59



Addition and subtraction in Z/pZ

• x , y ∈ Z/pZ represented by ~x , ~y

Algorithm 6 Computing x + y ∈ Z/pZ for x , y ∈ Z/pZ

procedure BigPrimeFieldAddition(~x , ~y , r , k)

1: compute zi = xi + yi in Z, for i = 0, . . . , k − 1,

2: let zk = 0,

3: for i = 0, . . . , k − 1, compute the quotient qi and the remainder si in the Euclidean division of

zi by r , then replace (zi+1, zi ) by (zi+1 + qi , si ),

4: if zk = 0 then return (zk−1, . . . , z0),

5: if zk = 1 and zk−1 = · · · = z0 = 0, then let zk−1 = r and return (zk−1, . . . , z0),

6: let i0 be the smallest index, 0 ≤ i0 ≤ k, such that zi0 6= 0, then let zi0 = zi0 − 1, let z0 = · · · =

zi0−1 = r − 1 and return (zk−1, . . . , z0).

end procedure

75 / 59



Multiplication in Z/pZ
• Associate x , y ∈ Z/pZ −−−→ fx , fy ∈ Z[T ]

• For large k, can compute fx fy mod T k + 1 in Z[T ] by fast algorithms

• For small k, say k ≤ 8, using plain multiplication is reasonable.

Algorithm 7 Computing xy ∈ Z/pZ for x , y ∈ Z/pZ

procedure BigPrimeFieldMultiplication(fx , fy , r , k)

1: We compute the polynomial product fu = fx fy in Z[T ] modulo T k + 1.

2: Writing fu =
k−1∑
i=0

uiT
i , we observe that for all 0 ≤ i ≤ k− 1 we have 0 ≤ ui ≤ kr2 and compute

a representation −→ui of ui in Z/pZ explained in Section ??.

3: We compute ui r
i in Z/pZ using the method of Section ??.

4: Finally, we compute the sum
k−1∑
i=0

ui r
i in Z/pZ using Algorithm 6.

end procedure

76 / 59



Example: RNS and CRT

pi Ni = p1p2p3

pi
Ni (mod pi ) Mi ≡ 1

Ni
(mod pi ) NiMi

3 77 2 2 154

7 33 5 3 99

11 21 10 10 210

x = 14
RNS (3,7,11)−−−−−−−−→ x ′ = (2, 0, 3)

y = 10
RNS (3,7,11)−−−−−−−−→ y ′ = (1, 3, 10)

↓ ↓ ↓ ↓

xy = 140
RNS (3,7,11)−−−−−−−−→ x ′y ′ = (2, 0, 8)
CRT (3,7,11)←−−−−−−−−

77 / 59


	Fourier transforms
	Fürer's trick: beyond Cooley-Tukey factorization
	Implementation challenges
	Experimental Comparison
	Backup
	Arithmetic and FFT over Z/Fn(r)Z

