
Divide and Conquer

I Divide the problem into several subproblems of equal size.
Recursively solve each subproblem in parallel. Merge the
solutions to the various subproblems into a solution for the
original problem.

I Dividing the problem is usually straightforward. The effort
here often lies in combining the results effectively in parallel.



Divide and Conquer Examples

I Top-down recursive mergesort.

I Gravitational N-body problem.



Top-down Mergesort

MergeSort(A, low, high)

1. if low < high
2. then mid ← b(low + high)/2c
3. MergeSort (A, low, mid)
4. MergeSort (A, mid + 1, high)
4. Merge (A, low, mid, high)

I Top-down parallelization would be to create two processes that
each handle one of the two recursive sort calls. The original
process waits for them to finish and then merges the results.

I Only feasible on a shared memory system.



N-Body Problem

I The N-body problem is concerned with determining the effects
of forces between “bodies.” (astronomical, molecular
dynamics, fluid dynamics etc)

I Gravitational N-body Problem. To simulate the positions and
movements of the bodies in space that are subject to
gravitational forces from other bodies using the Newtonian
laws of physics.



Gravitational N-body Problem

One of the deepest optical views showing early galaxies starting to
form. The image is from the Hubble Telescope operated by NASA.



Gravitational N-body Problem

A swarm of ancient stars.



Gravitational N-body problem

I Given two bodies with masses ma and mb, the gravitational force is
given by

F = G
mamb

r2
,

where G is the gravitational constant (which is
6.67259(±0.00030)× 10−11kg−1m3s−2) and r is the distance
between the bodies.

I A body will accelerate according to Newton’s second law:

F = ma

As a result of the gravitational forces all bodies will move to new
positions and have new velocities.

I For a precise numeric description, differential equations would be used
(with F = m dx/dt and v = dx/dt). However an exact closed form
solution is not known for n > 3. Instead a discrete event-driven
simulation is done.



Simulating the Gravitational N-body Problem
I Suppose the time steps are t0, t1, t2, . . .. Let the time interval be ∆t,

which is as short as possible. Then we can compute the force and velocity
in time interval t + 1 as given below.

F = m

(
v t+1 − v t

∆t

)
→ v t+1 = v t +

F∆t

m

I New positions for the bodies can be computed using the velocity as
follows:

x t+1 − x t = v∆t

I Once bodies move to new positions, the forces change and the
computation has to be repeated. The velocity is not actually constant
over ∆t. Hence an approximate answer is obtained. A leap-frog
computation can help smooth out the approximation. In a leap-frog
computation the position and velocity are computed alternately.

F t = m

(
v t+1/2 − v t−1/2

∆t

)
, → v t+1/2 = v t−1/2+

F∆t

m
, x t+1−x t = v t+1/2∆t

where positions are computed for t, t + 1, t + 2, . . . and the velocities are
computed for t + 1/2, t + 3/2, t + 5/2, . . ..



Simulating the Gravitational N-body Problem
I Suppose the time steps are t0, t1, t2, . . .. Let the time interval be ∆t,

which is as short as possible. Then we can compute the force and velocity
in time interval t + 1 as given below.

F = m

(
v t+1 − v t

∆t

)
→ v t+1 = v t +

F∆t

m

I New positions for the bodies can be computed using the velocity as
follows:

x t+1 − x t = v∆t

I Once bodies move to new positions, the forces change and the
computation has to be repeated. The velocity is not actually constant
over ∆t. Hence an approximate answer is obtained. A leap-frog
computation can help smooth out the approximation. In a leap-frog
computation the position and velocity are computed alternately.

F t = m

(
v t+1/2 − v t−1/2

∆t

)
, → v t+1/2 = v t−1/2+

F∆t

m
, x t+1−x t = v t+1/2∆t

where positions are computed for t, t + 1, t + 2, . . . and the velocities are
computed for t + 1/2, t + 3/2, t + 5/2, . . ..



Simulating the Gravitational N-body Problem
I Suppose the time steps are t0, t1, t2, . . .. Let the time interval be ∆t,

which is as short as possible. Then we can compute the force and velocity
in time interval t + 1 as given below.

F = m

(
v t+1 − v t

∆t

)
→ v t+1 = v t +

F∆t

m

I New positions for the bodies can be computed using the velocity as
follows:

x t+1 − x t = v∆t

I Once bodies move to new positions, the forces change and the
computation has to be repeated. The velocity is not actually constant
over ∆t. Hence an approximate answer is obtained. A leap-frog
computation can help smooth out the approximation. In a leap-frog
computation the position and velocity are computed alternately.

F t = m

(
v t+1/2 − v t−1/2

∆t

)
, → v t+1/2 = v t−1/2+

F∆t

m
, x t+1−x t = v t+1/2∆t

where positions are computed for t, t + 1, t + 2, . . . and the velocities are
computed for t + 1/2, t + 3/2, t + 5/2, . . ..



N-body Simulation Example
Initial conditions: 300 bodies in a 2-dimensional space



N-body Simulation Example
300 bodies after 500 steps of simulation



Three-dimensional Space

I In 3-dimensional space, the position of two bodies a and b are given
by (xa, ya, za) and (xb, yb, zb) respectively. Then the distance between
the bodies is:

r =
√

(xb − xa)2 + (yb − ya)2 + (zb − za)2

Fx =
Gmamb

r2

(
xb − xa

r

)
Fy =

Gmamb

r2

(
yb − ya

r

)
Fz =

Gmamb

r2

(
zb − za

r

)
I Similarly, the velocity is resolved in three directions.
I For simulation, we can use a fixed 3-dimensional space.



Sequential Code for N-Body Problem

nbody(x, y, z, n)
for (t=0; t<max; t++) {

for (i=0; i<n; i++) {
Fx ← compute force x(i)
Fy ← compute force y(i)
Fz ← compute force z(i)
vx[i]new ← vx[i] + Fx * dt/m
vy[i]new ← vy[i] + Fy * dt/m
vz[i]new ← vz[i] + Fz * dt/m
x[i]new ← x[i] + vx[i]new * dt
y[i]new ← y[i] + vy[i]new * dt
z[i]new ← z[i] + vz[i]new * dt

}
for (i=0; i < n; i++) {

x[i] ← x[i]new, y[i] ← y[i]new, z[i] ← z[i]new
v[i] ← v[i]new

}
}

Θ(n2) per iteration.



Improving the Sequential Algorithm

I A cluster of distant bodies can be approximated as a single distant
body with the total mass of the cluster sited at the center of the
mass of the cluster.

I When to use clustering? Suppose the original space is of dimension
d × d × d ,and the distance to the center of the mass of the cluster is
r . Then we want to use clustering when

r ≥ d

θ
, where θ is a constant, typically ≤ 1.0



Improving the Sequential Algorithm

I A cluster of distant bodies can be approximated as a single distant
body with the total mass of the cluster sited at the center of the
mass of the cluster.

I When to use clustering? Suppose the original space is of dimension
d × d × d ,and the distance to the center of the mass of the cluster is
r . Then we want to use clustering when

r ≥ d

θ
, where θ is a constant, typically ≤ 1.0



Parallel N-Body: Attempt I

I Each process is responsible for n/p bodies, where p is the total
number of processes. Each process computes the new velocity
and new position and then sends them to all other processes
so they can compute the new force for the next round.

I Even with clustering, the number of messages will be very
high. Also computation of the force is still O(n2).

I Sequentially, there is a better algorithm (Barnes-Hut
Algorithm) that is O(n lg n) on the average.



Parallel N-Body: Attempt I

I Each process is responsible for n/p bodies, where p is the total
number of processes. Each process computes the new velocity
and new position and then sends them to all other processes
so they can compute the new force for the next round.

I Even with clustering, the number of messages will be very
high. Also computation of the force is still O(n2).

I Sequentially, there is a better algorithm (Barnes-Hut
Algorithm) that is O(n lg n) on the average.



Parallel N-Body: Attempt I

I Each process is responsible for n/p bodies, where p is the total
number of processes. Each process computes the new velocity
and new position and then sends them to all other processes
so they can compute the new force for the next round.

I Even with clustering, the number of messages will be very
high. Also computation of the force is still O(n2).

I Sequentially, there is a better algorithm (Barnes-Hut
Algorithm) that is O(n lg n) on the average.



Barnes-Hut Algorithm
I Uses a octtree data structure (quadtree for 2-dimensional space) to

represent the 3-dimensional space.

I Using a better data structure cuts down the average run-time to
O(n lg n) time!

I A octtree is a tree where each node has no more than eight child
nodes. Similarly a quadtree is a tree where each node has no more
than 4 child nodes. The octtree is built using the following
divide-and-conquer scheme.

I Create a node to represent the cube for the space. Connect to parent if
there is any. Next divide the cube representing the space into eight
subcubes (four for a quadtree).

I If a subcubes does not contain any body, it is eliminated.
I If a subcube contains one body, then create a leaf node representing

that body.
I If a subcube contains more than one body, then repeat this scheme

recursively.

I After the construction of the tree, total mass and center-of-mass
information is propagated from the bodies (leaf nodes) towards the
root.

Reference:
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut simulation



Barnes-Hut Algorithm
I Uses a octtree data structure (quadtree for 2-dimensional space) to

represent the 3-dimensional space.
I Using a better data structure cuts down the average run-time to

O(n lg n) time!

I A octtree is a tree where each node has no more than eight child
nodes. Similarly a quadtree is a tree where each node has no more
than 4 child nodes. The octtree is built using the following
divide-and-conquer scheme.

I Create a node to represent the cube for the space. Connect to parent if
there is any. Next divide the cube representing the space into eight
subcubes (four for a quadtree).

I If a subcubes does not contain any body, it is eliminated.
I If a subcube contains one body, then create a leaf node representing

that body.
I If a subcube contains more than one body, then repeat this scheme

recursively.

I After the construction of the tree, total mass and center-of-mass
information is propagated from the bodies (leaf nodes) towards the
root.

Reference:
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut simulation



Barnes-Hut Algorithm
I Uses a octtree data structure (quadtree for 2-dimensional space) to

represent the 3-dimensional space.
I Using a better data structure cuts down the average run-time to

O(n lg n) time!
I A octtree is a tree where each node has no more than eight child

nodes. Similarly a quadtree is a tree where each node has no more
than 4 child nodes. The octtree is built using the following
divide-and-conquer scheme.

I Create a node to represent the cube for the space. Connect to parent if
there is any. Next divide the cube representing the space into eight
subcubes (four for a quadtree).

I If a subcubes does not contain any body, it is eliminated.
I If a subcube contains one body, then create a leaf node representing

that body.
I If a subcube contains more than one body, then repeat this scheme

recursively.

I After the construction of the tree, total mass and center-of-mass
information is propagated from the bodies (leaf nodes) towards the
root.

Reference:
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut simulation



Barnes-Hut Algorithm
I Uses a octtree data structure (quadtree for 2-dimensional space) to

represent the 3-dimensional space.
I Using a better data structure cuts down the average run-time to

O(n lg n) time!
I A octtree is a tree where each node has no more than eight child

nodes. Similarly a quadtree is a tree where each node has no more
than 4 child nodes. The octtree is built using the following
divide-and-conquer scheme.

I Create a node to represent the cube for the space. Connect to parent if
there is any. Next divide the cube representing the space into eight
subcubes (four for a quadtree).

I If a subcubes does not contain any body, it is eliminated.
I If a subcube contains one body, then create a leaf node representing

that body.
I If a subcube contains more than one body, then repeat this scheme

recursively.

I After the construction of the tree, total mass and center-of-mass
information is propagated from the bodies (leaf nodes) towards the
root.

Reference:
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut simulation



Barnes-Hut quadtree example



Barnes-Hut Algorithm

tree-nbody(n)
for (t=0; t<max t++) {

build octtree() //builds tree top-down
compute mass() //works bottom-up on the tree
compute force()
update() //update positions and velocities

}

I The routines build octtree(), compute mass() and
compute force() take O(n lg n) time on an average.

I The total mass stored at each node is the sum of the total masses at
its child nodes.

M =
7∑

i=0

mi

I The center of mass is based on the positions and masses of the up to
eight child nodes of each node.

x =
1

M

7∑
i=0

mixi



Parallel N-Body: Attempt II

I We can partition the octtree among p processes. Each process
works on one subtree. The partitioning would have to be done
deep enough to have p subtrees. The top few levels can be
duplicated on each process.

I However the octtree is, in general, very unbalanced. So any
static partitioning scheme is not likely to be very effective. We
will need to use some kind of dynamic load balancing but it
may end up requiring a lot of messages.

I There is another N-body algorithm that also runs in O(n lg n)
time but uses a balanced tree by design. In fact, this
algorithm was designed for parallel computing. This algorithm
is known as Orthogonal Recursive Bisection.



Orthogonal Recursive Bisection (ORB)

We will describe the orthogonal recursive bisection for the
two-dimensional case. Reference: J. Salmon, Ph.D. Thesis.

I Find a vertical line that divides the area into two areas each
with an equal number of bodies.

I For each area, a horizontal line is found that divides it into
two areas with an equal number of bodies.

I Repeat above two steps until there are as many areas as
processes. At that one process is assigned to each area.

How to find the vertical/horizontal line that bisects the set of
points?
See chapter on (Medians and Order Statistics) in Introduction to
Algorithms by Cormen, Leiserson, Rivest and Stein.



ORB example

13

7

13

7 6 6

4 3 3 3 3 3 4 3

26 bodies, 8 processes


