
CS2101a – Foundations of Programming for
High Performance Computing

Xiaohui Chen & Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS2101

Plan

1 Course Overview

2 Hardware Acceleration Technologies

3 High-performance Computing

4 A Case Study: Matrix Multiplication

Course Overview

Plan

1 Course Overview

2 Hardware Acceleration Technologies

3 High-performance Computing

4 A Case Study: Matrix Multiplication

Course Overview

Course description (1/2)

In two sentences:

This course is an introduction to parallel computing and its
applications in science.

The emphasis is on the usage of modern parallel computer
architectures and concurrency platforms rather than the design of
parallel algorithms and the optimization of computer programs.

The audience:

The targeted audience is undergraduate students who are not
engaged in a computer science program,

but who want to be exposed to the principles of HPC and take
advantage of them in their field of study.

Course Overview

Course description (1/2)

Objectives:

Students will be introduced to the ideas and techniques that underline
the usage of multicore architectures, GPUs and clusters.

They will be presented with software that are commonly used in
scientific computing, namely Matlab and Julia.

They will study fundamental parallel algorithms (mainly from an
experimental viewpoint) and assemble them in course projects within
Julia.

Course Overview

Multicore architectures, GPUs and clusters (1/2)

Once upon a time (well, 10 years ago)

All personal computers were essentially identical and using single-core
processors.

Most programmers needed not to know how computers worked.

But today:

Personal computers cover several types (laptops, tablets, smart
phones, workstations)

Moreover, they all are parallel machines thanks to hardware
accelerators (multicore architectures, GPUs) and may be tightly
connected (thus forming clusters)

Course Overview

Multicore architectures, GPUs and clusters

Multicore architectures

Typically a multicore processor consists of 2, 4, 6, 8, 12, 16, 24, 32, 48 or
64 cores sharing memory and capable of working on either the same
program or different programs.

GPUs

Graphics Processor Units (GPUs) consists of much more cores (typically
1024) sharing memory and (up to some details) executing simultaneously
the same program.

Clusters

A typical cluster consists of a few workstations, not sharing memory, but
capable of running the same program, by exchanging messages through
the network.

Course Overview

Matlab

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

>> A(2,3)

ans =

11

MATLAB (matrix laboratory) is a numerical computing environment
It offers a very high level programming language, which is interpreted by a
read-eval-print interactive loop
MATLAB allows matrix manipulations, plotting of functions and data,
implementation of algorithms and provides support for parallel computing
This is a commercial software developed by MathWorks which is very
popular among engineers

Course Overview

Julia

julia> sqrt(-1)

NaN

julia> sqrt(-1 + 0im)

0.0 + 1.0im

Julia is another high-level dynamic programming language designed to
support numerical computing

Its designers emphasize two aspects: high performance and
expressiveness

This is an academic project which started at MIT around Alan
Edelman

Julia is free and open source

Course Overview

Parallel algorithms: challenges (1/3)

The Euclidean Algorithm

function gcd(a, b)

while b <> 0

t := b

b := a mod t

a := t

return a

There is no (reasonably efficient) parallel version of this fundamental
algorithm.

Course Overview

Parallel algorithms: challenges (2/3)

Naive matrix multiplication

The following code fragment multiplies the matrix A with the matrix B then
writes the result to C

for i in 1..m do

for j in 1..p do

for k in 1..n do

C[i,j] := C[i,j] + A[i,k] * B[k, j]

Writing a reasonably efficient parallel code for the same task is hard.

A first attempt

for i in 1..m do

for j in 1..p do

paralle_for k in 1..n do

C[i,j] := C[i,j] + A[i,k] * B[k, j]

Is an incorrect program. Why?

Course Overview

Parallel algorithms: challenges (3/3)

A second attempt

paralle_for i in 1..m do

paralle_for j in 1..p do

for k in 1..n do

C[i,j] := C[i,j] + A[i,k] * B[k, j]

As we shall see, the above is a correct program, but very inefficient.

A third attempt

Below, for simplicity, we assume m = n = p and consider a positive integer B
dividing n.

parallel_for x in 0..(n/B -1) do

parallel_for y in 0..(n/B -1) do

for z in 0..(n/B -1) do

for i in 1.B do

for k in 1..B do

for k in 1..B do

(a,b,c) := (x*B+i, y*B+j, z*B+k)

C[a,b] := C[a,b] + A[a,c] * B[c, b]

As we shall see, this block-wise version of matrix multiplication, for a well
chosen b is practically optimal.

Course Overview

Course Topics (1/2)

Week 1: Course presentation and orientation

Week 2: Overview of parallel computing: architectures, programming
schemes, challenges and applications

Week 3: Julia

Week 4: Matlab

Week 5: Memory organization in modern processors: cache memories,
cache misses, spatial and temporal data locality, optimizing
code for data locality

Week 6: Multicore architectures: memory consistency, true/false
sharing, advantages and limitations of multicore
architectures, task graphs, work and span, scheduling,
performance metrics (speedup, efficiency, scalability),
parallelization overheads, optimizing code for parallelism

Weeks 7: Prefix sum: this fundamental operation has many
applications (in particular in data processing) and will serve
the notions on parallelism introduced in the previous weeks

Course Overview

Course Topics (2/2)

Week 8: Matrix Multiplication: this other fundamental operation is behind
many applications in scientific computing and will illustrate the
notions related to parallelism and memory organization

Week 9: LU Factorization: this is one of the most important operation
behind solvers of linear systems and related scientific computing
software

Week 10: Stencil computation: this parallel computing scheme is used in
many algorithms for numerical analysis, like discritization of
differential equations; we will focus on the discritization of the
heat equation

Week 11: Genetic and simulation algorithms: this other parallel computing
scheme is used in applications dealing with vast amount of data;
we will focus on Barnes-Hut Algorithm for N-Particle Interactions

Weeks 12: Parallel graph algorithms: designing efficient algorithms often
imply to choose appropriate data-structures, which is highly
non-trivial in the case of parallel computing; this topic will
introduce important techniques for this goal

Hardware Acceleration Technologies

Plan

1 Course Overview

2 Hardware Acceleration Technologies

3 High-performance Computing

4 A Case Study: Matrix Multiplication

Hardware Acceleration Technologies

Konrad Zuse’s Z3 electro-mechanical computer (1941, Germany). Turing
complete, though conditional jumps were missing.

Hardware Acceleration Technologies

Colossus (UK, 1941) was the world’s first totally electronic programmable
computing device. But not Turing complete.

Hardware Acceleration Technologies

Harvard Mark I IBM ASCC (1944, US). Electro-mechanical computer (no
conditional jumps and not Turing complete). It could store 72 numbers,
each 23 decimal digits long. It could do three additions or subtractions in
a second. A multiplication took six seconds, a division took 15.3 seconds,
and a logarithm or a trigonometric function took over one minute. A loop
was accomplished by joining the end of the paper tape containing the
program back to the beginning of the tape (literally creating a loop).

Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.

Hardware Acceleration Technologies

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).

Hardware Acceleration Technologies

The Pentium Family.

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

L1 Data Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way32 KB 64 bytes 3 cycles 8‐way

L1 Instruction Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way

L2 CacheL2 Cache
Size Line Size Latency Associativty
6 MB 64 bytes 14 cycles 24‐way

Typical cache specifications of a multicore in 2008.

Hardware Acceleration Technologies

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Hardware Acceleration Technologies

Once uopn a time, every thing was slow in a computer . . .

High-performance Computing

Plan

1 Course Overview

2 Hardware Acceleration Technologies

3 High-performance Computing

4 A Case Study: Matrix Multiplication

High-performance Computing

Why is Performance Important?

Acceptable response time (Anti-lock break system, Mpeg decoder,
Google Search, etc.)

Ability to scale (from hundred to millions of users/documents/data)

Use less power / resource (viability of cell phones dictated by battery
life, etc.)

High-performance Computing

Improving Performance is Hard

Knowing that there is a performance problem: complexity estimates,
performance analysis software tools, read the generated assembly
code, scalability testing, comparisons to similar programs, experience
and curiosity!

Establishing the leading cause of the problem: examine the algorithm,
the data structures, the data layout; understand the programming
environment and architecture.

Eliminating the performance problem: (Re-)design the algorithm,
data structures and data layout, write programs close to the metal
(C/C++), adhere to software engineering principles (simplicity,
modularity, portability)

Golden rule: Be reactive, not proactive!

A Case Study: Matrix Multiplication

Plan

1 Course Overview

2 Hardware Acceleration Technologies

3 High-performance Computing

4 A Case Study: Matrix Multiplication

A Case Study: Matrix Multiplication

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

A Case Study: Matrix Multiplication

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!

A Case Study: Matrix Multiplication

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C, k, j, y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

A Case Study: Matrix Multiplication

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024 × 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32 × 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384 × 32 in B and 32 × 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

A Case Study: Matrix Multiplication

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

A Case Study: Matrix Multiplication

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

A Case Study: Matrix Multiplication

Experimental results

Computing the product of two n× n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.

	Course Overview
	Hardware Acceleration Technologies
	High-performance Computing
	A Case Study: Matrix Multiplication

