CS2101 Due: Wednesday 23-rd of October 2013
Problem Set 1

CS2101 Submassion instructions on last page

PROBBLEM 1. [40 points| The goal of the exercise is to experiment with the performance
degradation caused by high rate of cache misses. We will also experiment with several im-
plementations of the same operation and compare their running times within Julia. To this
end, we will consider a fundamental and simple operation: matrix transposition. Reviewing
this operation can be done at the wikipedia page,

http://en.wikipedia.org/wiki/Transpose

Question 1. [10 points|] We saw in class, as part of the section dedicated to Cilk, a
simple way to perform matrix transposition. A pseudo-code for this transposition principle
is stated below. Please note that we state for an input rectangular matrix A, with m rows
and n columns, and an output matrix ‘A (thus rectangular with n rows and m columns):

for i=1:m
for j=1:n
B[j,i] = A[i,j]

Hence this is necessarily an out-of-place procedure while the Cilk code seen in class was in
place since it was stated for a square matrix.

You are required to write a Julia function that takes an m X n matrix A and returns
its transpose ‘A following the transpose principle stated above. Please note that this Julia
function is not required to use any of the parallelism constructs of the Julia language.
However, please feel free to experiment with those parallelism constructs, if you like.

Question 2. [10 points] We investigate another approach for computing the transpose *A.
For simplicity, we focus on the case where A is a square matrix. The proposed approach is
based on a divide and conquer scheme. In the formula below, we assume that n is a power
of 2 and that A; 1, A9, Asq, Aso denote square blocks of order n/2.

iy Aor) o Au Aus
tA = tAl’Q tA272 A2,1 A2,2 (1)
A if n=1
You are required to write a Julia function that

e takes as input a positive integer value n, which is assumes to be a power of 2,

e generate an n X n matrix a with random entries of type integer with values in the range
0---n—1.

e transpose the matrix in place using this divide-and-conquer approach.

Once again, using parallelism constructs is not required, but you are welcome to experiment
with it.

Question 3. [10 points] We consider a third approach for computing the transpose *A.
This is again a divide and conquer, called REC-TRANSPOSE. Now, no hypothesis is made on
the shape or size of A. Thus A is an input rectangular matrix with m rows and n columns,
as in Question 1. We present the principle below. Please note that the algorithm takes as
parameters the input matrix A and the output transpose B =! A. This implies that the
algorithm modifies one its parameters, namely B, and works out-of-place as the algorithm
in Question 1.

e If n > m, the REC-TRANSPOSE algorithm partitions

B
A=(A A), B= <B:>
and recursively executes REC-TRANSPOSE(A;, By) and REC-TRANSPOSE(A,, By).

e If m > n, the REC-TRANSPOSE algorithm partitions

A= (ﬁ;) , B = (B By)

and recursively executes REC-TRANSPOSE(A;, By) and REC-TRANSPOSE(A,, By).
You are required to write a Julia function that

e takes as input two positive integer value m and n,

e generates an m X n matrix a with random entries of type int with values in the range
0---n—1.

e computes the transposed matrix ‘A using the REC-TRANSPOSE divide and conquer
scheme.

An example of a similar procedure is the divide-and-conquer matrix multiplication in Exercise
3 of Lab 4, for which the solution is posted on the course web site.

Question 4. [10 points] You are required to compare experimentally the running times of
the above three implementations of matrix transposition. This implies to choose a series of
matrix sizes and apply these three implementations to each selected size.

PROBBLEM 2. [40 points| Here again, the goal of the exercise is to experiment with the
performance degradation caused by high rate of cache misses. To this end, you are required
to implement a well-known algorithm for sorting integer numbers and try it on larger and
larger input data sets.

This algorithm is the counting sort algorithm. At its wikipedia page,

http://en.wikipedia.org/wiki/Counting sort

you will find a detailed description of this algorithm, which is a very natural procedure. This
algorithm was also presented during the labs.
We summarize below the principle and show pseudo-code for the algorithm:

e Counting sort takes as input a collection of n items, each of which known by a key in
the range 0- - - k.

e The algorithm computes a histogram of the number of times each key occurs.

e Then performs a prefix sum to compute positions in the output.

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count [key(x)] = Count[key(x)] + 1
total 0
for i 0, 1, ... k:

¢ = Count[i]

Count[i] = total

total = total + c
allocate an output array Output[0..n-1]
for each input item x:

store x in Output [Count [key(x)]1]

Count [key(x)] = Count[key(x)] + 1
return Output

Question 1. [30 points| Write a Julia program implementing the counting sort algorithm.
The input of this program will be simply two positive integers n and k. The integer n is
the size of the array to be sorted. The entries of this array will be random non-negative
integers less or equal than k. Hence, one can use the following Julia command to create it:
rand(1:k,1,n). There will be no output for this program, since we are only interested in
its running time. However, you should test that your program and make sure that it sorts
properly. Note that to enforce the use of 32-bit integers the array Count can be initialized
as follows: Count = zeros(Int32,1,k+1). The k+1 is because entry range is 0:k.

Question 2. [5 points| Let k be the largest value of a Julia 32-bit positive integer. Measure
the running time of your program for n equal to i * 10000000 where i is successively
1,2,3,4,5,6.

Question 3. [5 points] Theoretically, the number of operations performed by the counting
sort algorithm is (asymptotically) proportional ton + k. Do the experimental results of the
previous question reflect that fact? If not, explain why. Hint: Try to estimate the number of
caches incurred by the algorithm when both n and k are larger than the size of the L1 cache.

PROBBLEM 3. |20 points| The following four questions are using this simple cache mem-
ory; the same as in class.

Cache

Cache Lines Memory

We recall its key features.
e Byte addressable memory.

e The Cache has size 32Kbyte with direct mapping and 64 byte lines (512 lines); so the
cache can fit 27 x 2% = 213 int.

Therefore, successive 32Kbyte memory blocks can line up in cache.

A cache access costs 1 cycle while. a memory access costs 100 cycles.

How addresses map into cache

— Bottom 6 bits are used as offset in a cache line,

— Next 9 bits determine the cache line

For each of the following four questions, answers must be justified. Total access times should
be expressed in terms of S. That is, do not replace S by its numerical value.

Question 1. [5 points]

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof (int))
int A[S];
// Thus size of A is 27(20) x 16 bytes
for (i =0; i < 8S; i++) {
read A[2];
}

What is the total access time of this program? What kind of locality does it have, if any?
What kind of cache misses?

Question 2. [5 points]

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof (int))
int A[S];

// Thus size of A is 27(20) x 16 bytes
for (i = 0; i < 8; i++) {

read A[i];
}

What is the total access time of this program? What kind of locality does it have, if any?
What kind of cache misses?

Question 3. [5 points]

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof (int))
int A[S];
// Thus size of A is 27(20) x 16 bytes
for (i =0; i < 8S; i++) {
read A[(32 * 1) % S];
}

What is the total access time of this program? What kind of locality does it have, if any?
What kind of cache misses?

Question 4. [5 points]

#define S ((1<<19)x*sizeof(int))
int A[S];
int B[S];
// Thus, in the main memory, the cache lines of
// B are just after all the cache lines of A
for (i = 0; i < S; i++) {
read B[i], A[il;
}

What is the total access time of this program? What kind of locality does it have, if any?
What kind of cache misses?

Submission instructions.

Format: The answers to the questions of Problem 3 should be typed and submitted as a
PDF file called Pb3.pdf. No format other than PDF will be accepted. Problems 1
and 2 involve programming with Julia: they must be submitted as two input files to
be called Pbl.jl and Pb2.j1, respectively. Each of these two files must be a valid
input file for Julia. In addition, each user defined function must be documented. To
summarize, each assignment submission consists of three files: Pb1.jl, Pb2.jl and
Pb3.pdf.

Submission: The assignment should be returned to the instructor and the TA by email.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems that are not appropriate. For instance, because the cache memory
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor or the TA if you have any question
regarding this assignment. We will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
answers are clearly organized, precise and concise. Messy assignments (unclear state-
ments, lack of correctness in the reasoning, many typographical or language mistakes)
may give rise to a 10 % malus.

