
1 Exercise 1

function fib(n)

if n <= 2

1.0

else

fib(n-1)+fib(n-2);

end

end

[@time fib(i) for i=35:45]

elapsed time: 0.04645490646362305 seconds

elapsed time: 0.07510113716125488 seconds

elapsed time: 0.12166213989257812 seconds

elapsed time: 0.1966111660003662 seconds

elapsed time: 0.3180971145629883 seconds

elapsed time: 0.512732982635498 seconds

elapsed time: 0.8321151733398438 seconds

elapsed time: 1.3448238372802734 seconds

elapsed time: 2.177851915359497 seconds

elapsed time: 3.525499105453491 seconds

elapsed time: 5.701272010803223 seconds

We observe that the running for fib(n) is essentially the double of that for
fib(n-1). When we look at the formula Fn = Fn−1 + Fn−2 this makes sense.

2 exercise 2

function mmult(A,B)

(M,N) = size(A);

C = zeros(M,M);

for i=1:M

for j=1:M

for k=1:M

C[i,j] += A[i,k]*B[k,j];

end

end

end

C;

end

for d in [500,1000,1500,2000]

a=rand(d,d)

b=rand(d,d)

@time mmult(a,b)

end

1

elapsed time: 0.3470189571380615 seconds

elapsed time: 3.170802116394043 seconds

elapsed time: 23.14421010017395 seconds

elapsed time: 62.64995193481445 seconds

Theoretically, the number of arithmetic operations required to multiply two
square matrices of order n is proportional to n3. Hence, one could expect that
the running time for n = 1000 should be 8 = (1000/500)3 times that for n = 500.
But the above experimental results show a ratio close to 10. This is due to the
high rate of cache misses in the naive algorithm for matrix multiplication. We
saw in class better algorithms for this operation, in particular one based on a
blocking strategy.

3 exercise 3

function qsort!(a,lo,hi)

i, j = lo, hi

while i < hi

pivot = a[(lo+hi)>>>1]

while i <= j

while a[i] < pivot; i = i+1; end

while a[j] > pivot; j = j-1; end

if i <= j

a[i], a[j] = a[j], a[i]

i, j = i+1, j-1

end

end

if lo < j; qsort!(a,lo,j); end

lo, j = i, hi

end

return a

end

function sortperf(n)

qsort!(rand(n), 1, n)

end

issorted(sortperf(5000)) // to test whether your alog is correct

true

[@time sortperf(2^e*1000000) for e=[0 1 2 3 4 5 6 7]]

elapsed time: 0.2307720184326172 seconds

elapsed time: 0.21168804168701172 seconds

2

elapsed time: 0.4441850185394287 seconds

elapsed time: 0.912261962890625 seconds

elapsed time: 1.9140989780426025 seconds

elapsed time: 3.977203130722046 seconds

elapsed time: 8.138957023620605 seconds

elapsed time: 16.795485973358154 seconds

Theoretically, the number of integer comparisons required to sort a list of
n integers (using quick-sort) is proportional to O(n log(n)). Hence, one could
expect that the running time for n = 27 1000000 should be 7/3 times that
for n = 26 1000000. (To verify this claim approximate 1000 with 210.) And,
indeed, the above experimental results show a ratio close to 2. This is due to
the relatively low rate of cache misses in quick sort algorithms.

4 exercise 4

function mergesort(data, istart, iend)

if(istart < iend)

mid = (istart + iend) >>>1

mergesort(data, istart, mid)

mergesort(data, mid+1, iend)

merge(data, istart, mid, iend)

end

end

function merge(data, istart, mid, iend)

n = iend - istart + 1

temp = zeros(n)

s = istart

m = mid+1

for tem = 1:n

if s <= mid && (m > iend || data[s] <= data[m])

temp[tem] = data[s]

s=s+1

else

temp[tem] = data[m]

m=m+1

end

end

data[istart:iend] = temp[1:n]

end

issorted(mergesort(rand(100),1,100)) // to test whether your algorithm is correct

true

3

[@time mergesort(rand(2^e*1000000),1,2^e*1000000) for e=[0 1 2 3 4 5 6]]

elapsed time: 0.47666501998901367 seconds

elapsed time: 0.9581248760223389 seconds

elapsed time: 1.9626061916351318 seconds

elapsed time: 3.9991350173950195 seconds

elapsed time: 8.226263046264648 seconds

elapsed time: 16.87691307067871 seconds

elapsed time: 34.648082971572876 seconds

Theoretically, the number of integer comparisons required to sort a list of
n integers (using merge-sort) is proportional to O(n log(n)), as for quick-sort.
Nevertheless, we can see that, for our input data sets, merge-sort is essentially
twice slower than quick-sort. However, merge-sort has nicer properties with
respect to parallelism, as we shall see later.

4

