Exercises for lab 3 of CS2101a

Instructor: Marc Moreno Maza, TA: Xiaohui Chen

Thursday 26 September 2013

1 Exercise 1

The following is a C function for computing the sequence of the Fibonacci numbers (in a naive way).

```
double fib(int n){
    if(n<=2)
        return(1.0);
    else
        return(fib(n-2)+fib(n-1));
}
```

1. Write a Julia program that computes fib(n)
2. Using the @time macro, measure the running times of your Julia function $\mathrm{fib}(\mathrm{n})$ for n between 35 and 45 .
3. If you are a Matlab user, here's $f i b(n)$ in Matlab for you to perform the same measurement.
```
}unction f=fib(n)
            if n <= 2
                f=1.0;
            else
                f=fib(n-1)+fib(n-2);
            end
end
```


2 Exercise 2

The following is a C function for computing the product of two square matrices (in a naive and inefficient way).
\#define M 500
void mmult (double $A[M][M]$, double $B[M][M]$, double $C[M][M])\{$

```
    //double C[M] [M];
    int i,j,k;
    for(i=0; i<M; i++)
    for(j=0; j<M; j++){
        C[i][j] = 0;
        for(k=0; k<M; k++)
C[i][j] += A[i][k]*B[k][j];
    }
}
```

1. Write a Julia program that computes mmult (A,B) where A and B are two square matrices of the same order M (using the same naive and inefficient algorithm as in C).
2. Using the ©time macro, measure the running times of your Julia function mmult (A,B) for M equal to 500, 1000, 1500, 2000. Your input matrices will be randomly generated using rand (M, M).
3. If you are a Matlab user, here's mmult ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) in Matlab for you to perform the same measurement.
```
function C=mmult(A,B,C)
    [M,N] = size(A);
    for i=1:M
            for j=1:M
                for k=1:M
                        C(i,j) = C(i,j) + A(i,k)*B(k,j);
                end
            end
        end
end
```


3 Exercise 3

The following Julia session implements a famous algorithm for sorting called quicksort. Look at its wikipedia page to learn how this algorithm works!
http://en.wikipedia.org/wiki/Quicksort
function qsort! (a,lo,hi)
i, $j=10$, hi
while i < hi
pivot $=a[(l o+h i) \ggg 1]$
while i <= j
while a[i] < pivot; $i=1+1$; end
while a[j] > pivot; $j=j-1$; end
if i <= j

```
                        a[i], a[j] = a[j], a[i]
                i, j = i+1, j-1
            end
        end
        if lo < j; qsort!(a,lo,j); end
        lo, j = i, hi
    end
    return a
end
function sortperf(n)
    qsort!(rand(n), 1, n)
end
@time sortperf(5000)
```

1. Go through the code and make sure you agree that it is an implementation of the algorithm presented in the wikipedia page.
2. Record the running time of sortperf $\left(2^{e} * 1000000\right)$ for $e=0,1,2,3,4,5,6,7,8$.
3. Are your results coherent with the theoretical prediction (see the section Formal analysis in the wikipedia page) that sorting of an array of size n with quicksort runs in a time asymptotically proportional to $O(n \log (n))$?

4 Exercise 4

Read the wikipedia page dedicated to the merge-sort algorithm:

```
http://en.wikipedia.org/wiki/Merge sort
```

1. Write a Julia implementing the merge-sort algorithm and following the style and presentation done for quicksort.
2. Compare the running times of both sorting algorithms
