
Multithreaded Parallelism on Multicore
Architectures

Marc Moreno Maza

University of Western Ontario, Canada

CS2101 March 2012

Plan

1 Multicore programming
Multicore architectures

2 Cilk / Cilk++ / Cilk Plus

3 The fork-join multithreaded programming model

4 Practical issues and optimization tricks

Multicore programming Multicore architectures

Plan

1 Multicore programming
Multicore architectures

2 Cilk / Cilk++ / Cilk Plus
3 The fork-join multithreaded programming model
4 Practical issues and optimization tricks

Multicore programming Multicore architectures

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

Multicore programming Multicore architectures

Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

Cores on a multi-core device can be coupled tightly or loosely:
• may share or may not share a cache,
• implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, SIMD or multi-threading.

Multicore programming Multicore architectures

Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)

Multicore programming Multicore architectures

Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (4/6)

x=3

Store …Store
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5

Multicore programming Multicore architectures

Cache Coherence (5/6)

x=3

Store …Store
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache

Multicore programming Multicore architectures

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache

Multicore programming Multicore architectures

MSI Protocol

In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- I: this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

These coherency states are maintained through communication
between the caches and the backing store.

The caches have different responsibilities when blocks are read or
written, or when they learn of other caches issuing reads or writes for
a block.

Multicore programming Multicore architectures

True Sharing and False Sharing

True sharing:
• True sharing cache misses occur whenever two processors access the

same data word
• True sharing requires the processors involved to explicitly synchronize

with each other to ensure program correctness.
• A computation is said to have temporal locality if it re-uses much of

the data it has been accessing.
• Programs with high temporal locality tend to have less true sharing.

False sharing:
• False sharing results when different processors use different data that

happen to be co-located on the same cache line
• A computation is said to have spatial locality if it uses multiple words

in a cache line before the line is displaced from the cache
• Enhancing spatial locality often minimizes false sharing

See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam
http://suif.stanford.edu/papers/anderson95/paper.html

Multicore programming Multicore architectures

Multi-core processor (cntd)

Advantages:
• Cache coherency circuitry operate at higher rate than off-chip.
• Reduced power consumption for a dual core vs two coupled single-core

processors (better quality communication signals, cache can be shared)

Challenges:
• Adjustments to existing software (including OS) are required to

maximize performance
• Production yields down (an Intel quad-core is in fact a double

dual-core)
• Two processing cores sharing the same bus and memory bandwidth

may limit performances
• High levels of false or true sharing and synchronization can easily

overwhelm the advantage of parallelism

Cilk / Cilk++ / Cilk Plus

From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

Cilk / Cilk++ / Cilk Plus

Cilk++ (and Cilk Plus)

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

Cilk++ includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Cilk / Cilk++ / Cilk Plus

Nested Parallelism in Cilk ++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

Cilk++ keywords cilk spawn and cilk sync grant permissions for
parallel execution. They do not command parallel execution.

Cilk / Cilk++ / Cilk Plus

Loop Parallelism in Cilk ++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.

Cilk / Cilk++ / Cilk Plus

Serial Semantics (1/2)

Cilk (resp. Cilk++) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):

• The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct
implementation of the semantics of the program.

• Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a Cilk++ program

#define cilk_for for

#define cilk_spawn

#define cilk_sync

Cilk / Cilk++ / Cilk Plus

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

Cilk / Cilk++ / Cilk Plus

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Cilk / Cilk++ / Cilk Plus

The Cilk++ Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Cilk / Cilk++ / Cilk Plus

Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Cilk / Cilk++ / Cilk Plus

So does the (tuned) cache-oblivious matrix multiplication

The fork-join multithreaded programming model

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)() ();

else {
int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

() ();
else {

int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.

The fork-join multithreaded programming model

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:

Tp is the minimum running time on p processors

T1 is called the work, that is, the sum of the number of instructions at
each node.

T∞ is the minimum running time with infinitely many processors, called
the span

The fork-join multithreaded programming model

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal
to T∞. For this reason, T∞ is also referred to as the critical path length.

The fork-join multithreaded programming model

Work law

We have: Tp ≥ T1/p.

Indeed, in the best case, p processors can do p works per unit of time.

The fork-join multithreaded programming model

Span law

We have: Tp ≥ T∞.

Indeed, Tp < T∞ contradicts the definitions of Tp and T∞.

The fork-join multithreaded programming model

Speedup on p processors

T1/Tp is called the speedup on p processors

A parallel program execution can have:
• linear speedup: T1/TP = Θ(p)

• superlinear speedup: T1/TP = ω(p) (not possible in this model,
though it is possible in others)

• sublinear speedup: T1/TP = o(p)

The fork-join multithreaded programming model

For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {

double temp = A[i][j];

A[i][j] = A[j][i];

A[j][i] = temp;

}

}

The iterations of a cilk for loop execute in parallel.

The fork-join multithreaded programming model

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a
divide-and-conquer implementation:

void recur(int lo, int hi) {

if (hi > lo) { // coarsen

int mid = lo + (hi - lo)/2;

cilk_spawn recur(lo, mid);

recur(mid, hi);

cilk_sync;

} else

for (int j=0; j<i; ++j) {

double temp = A[i][j];

A[i][j] = A[j][i];

A[j][i] = temp;

}

}

}

The fork-join multithreaded programming model

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.

Span of loop control: Θ(log(n))

Max span of an iteration: Θ(n)

Span: Θ(n)

Work: Θ(n2)

Parallelism: Θ(n)

The fork-join multithreaded programming model

The work-stealing scheduler

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Steal!

P P PP

The fork-join multithreaded programming model

Performances of the work-stealing scheduler

Assume that

each strand executes in unit time,

for almost all “parallel steps” there are at least p strands to run,

each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

TP = T1/p + O(T∞)

The fork-join multithreaded programming model

Overheads and burden

Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make Tp smaller in practice
than T1/p + T∞.

One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk++ program with its C++ elision
3 by estimating the costs of spawning and synchronizing

Cilk++ estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation
edges along the critical path.

The fork-join multithreaded programming model

Cilkview

Work Law
(linear

Span
Law(linear

speedup)
Measured

Burdened

Measured
speedup

Burdened
parallelism

— estimates Parallelismestimates
scheduling
overheads

Cilkview computes work and span to derive upper bounds on
parallel performance

Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.

The fork-join multithreaded programming model

The Fibonacci Cilk++ example

Code fragment

long fib(int n)

{

if (n < 2) return n;

long x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x + y;

}

The fork-join multithreaded programming model

Fibonacci program timing

The environment for benchmarking:

– model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

– L2 cache size : 4096 KB

– memory size : 3 GB

#cores = 1 #cores = 2 #cores = 4

n timing(s) timing(s) speedup timing(s) speedup

30 0.086 0.046 1.870 0.025 3.440
35 0.776 0.436 1.780 0.206 3.767
40 8.931 4.842 1.844 2.399 3.723
45 105.263 54.017 1.949 27.200 3.870
50 1165.000 665.115 1.752 340.638 3.420

The fork-join multithreaded programming model

Quicksort

code in cilk/examples/qsort

void sample_qsort(int * begin, int * end)

{

if (begin != end) {

--end;

int * middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

cilk_spawn sample_qsort(begin, middle);

sample_qsort(++middle, ++end);

cilk_sync;

}

}

The fork-join multithreaded programming model

Quicksort timing

Timing for sorting an array of integers:

#cores = 1 #cores = 2 #cores = 4

of int timing(s) timing(s) speedup timing(s) speedup

10× 106 1.958 1.016 1.927 0.541 3.619
50× 106 10.518 5.469 1.923 2.847 3.694

100× 106 21.481 11.096 1.936 5.954 3.608
500× 106 114.300 57.996 1.971 31.086 3.677

The fork-join multithreaded programming model

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687× 837 matrix by a 837× 1107 matrix

iterative recursive

threshold st(s) pt(s) su st(s) pt (s) su

10 1.273 1.165 0.721 1.674 0.399 4.195
16 1.270 1.787 0.711 1.408 0.349 4.034
32 1.280 1.757 0.729 1.223 0.308 3.971
48 1.258 1.760 0.715 1.164 0.293 3.973
64 1.258 1.798 0.700 1.159 0.291 3.983
80 1.252 1.773 0.706 1.267 0.320 3.959

st = sequential time; pt = parallel time with 4 cores; su = speedup

The fork-join multithreaded programming model

The cilkview example from the documentation

Using cilk for to perform operations over an array in parallel:

static const int COUNT = 4;

static const int ITERATION = 1000000;

long arr[COUNT];

long do_work(long k){

long x = 15;

static const int nn = 87;

for (long i = 1; i < nn; ++i)

x = x / i + k % i;

return x;

}

int cilk_main(){

for (int j = 0; j < ITERATION; j++)

cilk_for (int i = 0; i < COUNT; i++)

arr[i] += do_work(j * i + i + j);

}

The fork-join multithreaded programming model

1) Parallelism Profile

Work : 6,480,801,250 ins

Span : 2,116,801,250 ins

Burdened span : 31,920,801,250 ins

Parallelism : 3.06

Burdened parallelism : 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span : 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00

4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06

The fork-join multithreaded programming model

A simple fix

Inverting the two for loops

int cilk_main()

{

cilk_for (int i = 0; i < COUNT; i++)

for (int j = 0; j < ITERATION; j++)

arr[i] += do_work(j * i + i + j);

}

The fork-join multithreaded programming model

1) Parallelism Profile

Work : 5,295,801,529 ins

Span : 1,326,801,107 ins

Burdened span : 1,326,830,911 ins

Parallelism : 3.99

Burdened parallelism : 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99

The fork-join multithreaded programming model

Timing

#cores = 1 #cores = 2 #cores = 4

version timing(s) timing(s) speedup timing(s) speedup

original 7.719 9.611 0.803 10.758 0.718
improved 7.471 3.724 2.006 1.888 3.957

Practical issues and optimization tricks

Example 1: a small loop with grain size = 1

Code:

const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()

{

#pragma cilk_grainsize = 1

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Expectations:

Parallelism should be large, perhaps Θ(N) or Θ(N/ logN).

We should see great speedup.

Practical issues and optimization tricks

Speedup is indeed great. . .

Practical issues and optimization tricks

. . . but performance is lousy

Practical issues and optimization tricks

Recall how cilk for is implemented

Source:

cilk_for (int i = A; i < B; ++i)

BODY(i)

Implementation:

void recur(int lo, int hi) {

if ((hi - lo) > GRAINSIZE) {

int mid = lo + (hi - lo) / 2;

cilk_spawn recur(lo, mid);

cilk_spawn recur(mid, hi);

} else

for (int i = lo; i < hi; ++i)

BODY(i);

}

recur(A, B);

Practical issues and optimization tricks

Default grain size

Cilk++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()

{

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Cilk++’s heuristic for the grain size:

grain size = min

{
N

8P
, 512

}
.

Generates about 8P parallel leaves.

Works well if the loop iterations are not too unbalanced.

Practical issues and optimization tricks

Speedup with default grain size

Practical issues and optimization tricks

Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()

{

#pragma cilk_grainsize = N

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Actually, no (except for noise):

Grain size Runtime

1 8.55 s
default (= 512) 2.44 s

N (= 108) 2.42 s

Practical issues and optimization tricks

Speedup with grain size = N

Practical issues and optimization tricks

Tradeoff between grain size and parallelism

Use the PPA to understand the tradeoff:

Grain size Parallelism

1 6,951,154
default (= 512) 248,784

N (= 108) 1

In the PPA, P = 1:

default grain size = min

{
N

8P
, 512

}
= min

{
N

8
, 512

}
.

Practical issues and optimization tricks

Lessons learned

Measure overhead before measuring speedup.
• Compare 1-processor Cilk++ versus serial code.

Small grain size ⇒ higher work overhead.

Large grain size ⇒ less parallelism.

The default grain size is designed for small loops that are reasonably
balanced.

• You may want to use a smaller grain size for unbalanced loops or loops
with large bodies.

Use the PPA to measure the parallelism of your program.

Practical issues and optimization tricks

Example 2: A for loop that spawns

Code:

const int N = 10 * 1000 * 1000;

/* empty test function */

void f() { }

void for_spawn()

{

for (int i = 0; i < N; ++i)

cilk_spawn f();

}

Expectations:

I am spawning N parallel things.

Parallelism should be Θ(N), right?

Practical issues and optimization tricks

“Speedup” of for spawn()

Practical issues and optimization tricks

Insufficient parallelism

PPA analysis:

PPA says that both work and span are Θ(N).

Parallelism is ≈ 1.62, independent of N .

Too little parallelism: no speedup.

Why is the span Θ(N)?

for (int i = 0; i < N; ++i)

cilk_spawn f();

Practical issues and optimization tricks

Alternative: a cilk for loop.

Code:

/* empty test function */

void f() { }

void test_cilk_for()

{

cilk_for (int i = 0; i < N; ++i)

f();

}

PPA analysis:

The parallelism is about 2000 (with default grain size).

The parallelism is high.

As we saw earlier, this kind of loop yields good performance and
speedup.

Practical issues and optimization tricks

Lessons learned

cilk_for() is different from for(...) cilk_spawn.

The span of for(...) cilk_spawn is Ω(N).

For simple flat loops, cilk_for() is generally preferable because it
has higher parallelism.

(However, for(...) cilk_spawn might be better for recursively
nested loops.)

Use the PPA to measure the parallelism of your program.

Practical issues and optimization tricks

Example 3: Vector addition

Code:

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i)

A[i] = B[i] + C[i];

}

Expectations:

The PPA says that the parallelism is 68,377.

This will work great!

Practical issues and optimization tricks

Speedup of vector add()

Practical issues and optimization tricks

Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level daxpy bandwidth

L1 19.6 GB/s per core
L2 18.3 GB/s per core
L3 13.8 GB/s shared
DRAM 7.1 GB/s shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

A single core can generally saturate most of the memory hierarchy.

Multiple cores that access memory will conflict and slow each other
down.

Practical issues and optimization tricks

How do you determine if memory is a bottleneck?

Hard problem:

No general solution.

Requires guesswork.

Two useful techniques:

Use a profiler such as the Intel VTune.
• Interpreting the output is nontrivial.
• No sensitivity analysis.

Perturb the environment to understand the effect of the CPU and
memory speeds upon the program speed.

Practical issues and optimization tricks

How to perturb the environment

Overclock/underclock the processor, e.g. using the power controls.
• If the program runs at the same speed on a slower processor, then the

memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.
• If the program runs at the same speed on a slower DRAM, then the

memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

Run P independent copies of the serial program concurrently.
• If they slow each other down then memory is probably a bottleneck.

Practical issues and optimization tricks

Perturbing vector add()

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

fib(5); // waste time

}

}

Practical issues and optimization tricks

Speedup of perturbed vector add()

Practical issues and optimization tricks

Interpreting the perturbed results

The memory is a bottleneck:

A little extra work (fib(5)) keeps 8 cores busy. A little more extra
work (fib(10)) keeps 16 cores busy.

Thus, we have enough parallelism.

The memory is probably a bottleneck. (If the machine had a shared
FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

vector_add cannot be fixed in isolation.

You must generally restructure your program to increase the reuse of
cached data. Compare the iterative and recursive matrix
multiplication from yesterday.

(Or you can buy a newer CPU and faster memory.)

Practical issues and optimization tricks

Lessons learned

Memory is a common bottleneck.

One way to diagnose bottlenecks is to perturb the program or the
environment.

Fixing memory bottlenecks usually requires algorithmic changes.

Practical issues and optimization tricks

Example 4: Nested loops

Code:

const int N = 1000 * 1000;

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Expectations:

The inner loop does 4 things in parallel. The parallelism should be
about 4.

The PPA says that the parallelism is 3.6.

We should see some speedup.

Practical issues and optimization tricks

“Speedup” of inner parallel()

Practical issues and optimization tricks

Interchanging loops

Code:

const int N = 1000 * 1000;

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Expectations:

The outer loop does 4 things in parallel. The parallelism should be
about 4.

The PPA says that the parallelism is 4.

Same as the previous program, which didn’t work.

Practical issues and optimization tricks

Speedup of outer parallel()

Practical issues and optimization tricks

Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration overheads.

Depends upon:

How well we implement the Cilk++ scheduler.

How you express the parallelism in your program.

The PPA prints the burdened parallelism:

0.29 for inner_parallel(), 4.0 for outer_parallel().

In a good program, parallelism and burdened parallelism are about
equal.

Practical issues and optimization tricks

What is the burdened parallelism?

Code:

A();

cilk_spawn B();

C();

D();

cilk_sync;

E();

Burdened critical path:

The burden is Θ(10000) cycles (locks, malloc, cache warmup, reducers,
etc.)

Practical issues and optimization tricks

The burden in our examples

Θ(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Θ(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Practical issues and optimization tricks

Lessons learned

Insufficient parallelism yields no speedup; high burden yields
slowdown.

Many spawns but small parallelism: suspect large burden.

The PPA helps by printing the burdened span and parallelism.

The burden can be interpreted as the number of spawns/syncs on the
critical path.

If the burdened parallelism and the parallelism are approximately
equal, your program is ok.

Practical issues and optimization tricks

Sumary and notes

We have learned to identify and address these problems:

High overhead due to small grain size in cilk_for loops.

Insufficient parallelism.

Insufficient memory bandwidth.

Insufficient burdened parallelism.

	Multicore programming
	Multicore architectures

	Cilk / Cilk++ / Cilk Plus
	The fork-join multithreaded programming model
	Practical issues and optimization tricks

