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Hardware Acceleration Technologies

Konrad Zuse’s Z3 electro-mechanical computer (1941, Germany). Turing
complete, though conditional jumps were missing.



Hardware Acceleration Technologies

Colossus (UK, 1941) was the world’s first totally electronic programmable
computing device. But not Turing complete.



Hardware Acceleration Technologies

Harvard Mark I IBM ASCC (1944, US). Electro-mechanical computer (no
conditional jumps and not Turing complete). It could store 72 numbers,
each 23 decimal digits long. It could do three additions or subtractions in
a second. A multiplication took six seconds, a division took 15.3 seconds,
and a logarithm or a trigonometric function took over one minute. A loop
was accomplished by joining the end of the paper tape containing the
program back to the beginning of the tape (literally creating a loop).



Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.



Hardware Acceleration Technologies

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).
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The Pentium Family.
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Hardware Acceleration Technologies

L1  Data Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way32 KB 64 bytes 3 cycles 8‐way

L1  Instruction Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way

L2 CacheL2  Cache
Size Line Size Latency Associativty
6 MB 64 bytes 14 cycles 24‐way

Typical cache specifications of a multicore in 2008.
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Hardware Acceleration Technologies

Once uopn a time, every thing was slow in a computer . . .



Software Performance Engineering

Plan

1 Hardware Acceleration Technologies

2 Software Performance Engineering

3 Cache Memories

4 A Case Study: Matrix Multiplication

5 Multicore Architectures

6 Multicore Programming

7 CS2101 Course Outline



Software Performance Engineering

Why is Performance Important?

Acceptable response time (Anti-lock break system, Mpeg decoder,
Google Search, etc.)

Ability to scale (from hundred to millions of users/documents/data)

Use less power / resource (viability of cell phones dictated by battery
life, etc.)



Software Performance Engineering

Improving Performance is Hard

Knowing that there is a performance problem: complexity estimates,
performance analysis software tools, read the generated assembly
code, scalability testing, comparisons to similar programs, experience
and curiosity!

Establishing the leading cause of the problem: examine the algorithm,
the data structures, the data layout; understand the programming
environment and architecture.

Eliminating the performance problem: (Re-)design the algorithm,
data structures and data layout, write programs close to the metal
(C/C++), adhere to software engineering principles (simplicity,
modularity, portability)

Golden rule: Be reactive, not proactive!



Software Performance Engineering

Remember that Picture!
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Cache Memories
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Cache Memories

CPU Cache (1/7)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.



Cache Memories

CPU Cache (2/7)

Each location in each memory (main or cache) has
• a datum (cache line) which ranges between 8 and 512 bytes in size,

while a datum requested by a CPU instruction ranges between 1 and
16.

• a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).



Cache Memories

CPU Cache (3/7)

When the CPU needs to read or write a location, it checks the cache:
• if it finds it there, we have a cache hit
• if not, we have a cache miss and (in most cases) the processor needs to

create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.



Cache Memories

CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:

out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the
cache miss

hyper-threading (HT): allows an alternate thread to use the CPU



Cache Memories

CPU Cache (5/7)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.



Cache Memories

CPU Cache (6/7)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N -way set associative: N possible entries can hold it



Cache Memories

Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000 ).



Cache Memories

Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.
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A Case Study: Matrix Multiplication

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



A Case Study: Matrix Multiplication

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!



A Case Study: Matrix Multiplication

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C, k, j, y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



A Case Study: Matrix Multiplication

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.



A Case Study: Matrix Multiplication

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



A Case Study: Matrix Multiplication

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



A Case Study: Matrix Multiplication

Experimental results

Computing the product of two n× n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.



A Case Study: Matrix Multiplication

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.



A Case Study: Matrix Multiplication

Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned one, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.



A Case Study: Matrix Multiplication

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order B and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3B2/L.

This process happens n3/B3 times, leading to 3n3/(BL) cache
misses.

Three blocks fit in cache for 3B2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if B is well chosen, which is optimal.
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Multicore Architectures

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.



Multicore Architectures

Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

Cores on a multi-core device can be coupled tightly or loosely:
• may share or may not share a cache,
• implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, SIMD or multi-threading.



Multicore Architectures

Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)



Multicore Architectures

Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory



Multicore Architectures

Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory



Multicore Architectures

Cache Coherence (4/6)

x=3

Store …Store 
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5



Multicore Architectures

Cache Coherence (5/6)

x=3

Store …Store 
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache



Multicore Architectures

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache



Multicore Architectures

True Sharing and False Sharing

True sharing:
• True sharing cache misses occur whenever two processors access the

same data word
• True sharing requires the processors involved to explicitly synchronize

with each other to ensure program correctness.
• A computation is said to have temporal locality if it re-uses much of

the data it has been accessing.
• Programs with high temporal locality tend to have less true sharing.

False sharing:
• False sharing results when different processors use different data that

happen to be co-located on the same cache line
• A computation is said to have spatial locality if it uses multiple words

in a cache line before the line is displaced from the cache
• Enhancing spatial locality often minimizes false sharing

See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam
http://suif.stanford.edu/papers/anderson95/paper.html



Multicore Architectures

Multi-core processor (cntd)

Advantages:
• Cache coherency circuitry operate at higher rate than off-chip.
• Reduced power consumption for a dual core vs two coupled single-core

processors (better quality communication signals, cache can be shared)

Challenges:
• Adjustments to existing software (including OS) are required to

maximize performance
• Production yields down (an Intel quad-core is in fact a double

dual-core)
• Two processing cores sharing the same bus and memory bandwidth

may limit performances
• High levels of false or true sharing and synchronization can easily

overwhelm the advantage of parallelism
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Multicore Programming

From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/



Multicore Programming

Cilk++ (and Cilk Plus)

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

Cilk++ includes the Cilkscreen race detector and the Cilkview

performance analyzer.



Multicore Programming

Nested Parallelism in Cilk ++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

Cilk++ keywords cilk spawn and cilk sync grant permissions for
parallel execution. They do not command parallel execution.



Multicore Programming

Loop Parallelism in Cilk ++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.



Multicore Programming

Serial Semantics (1/2)

Cilk (resp. Cilk++) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):

• The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct
implementation of the semantics of the program.

• Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a Cilk++ program

#define cilk_for for

#define cilk_spawn

#define cilk_sync



Multicore Programming

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x  cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x  fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization



Multicore Programming

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.



Multicore Programming

The Cilk++ Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional 
Compiler

y b( );
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional 
Regression Tests

Parallel 
Regression Tests

Runtime 
System

4

Reliable Single-
Threaded Code

Exceptional 
Performance

Reliable Multi-
Threaded Code



Multicore Programming

Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83



Multicore Programming

So does the (tuned) cache-oblivious matrix multiplication
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Plan

1 Hardware Acceleration Technologies

2 Software Performance Engineering

3 Cache Memories

4 A Case Study: Matrix Multiplication

5 Multicore Architectures

6 Multicore Programming

7 CS2101 Course Outline
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Course Topics

Week 1: Introduction to UNIX (command lines, editors)

Week 2: Introduction to C (basic types, flow of control, expressions,
functions)

Week 3: UIX Fundamentals (permissions, job control, redirections)

Week 4: Arrays and pointers in C

Week 5: UNIX Regular expressions, shell programming

Week 6: Advanced topics on pointers and files in C

Weeks 7-8: Introduction to Multicore Programming

Week 9-10: Multithreaded Parallelism and Performance Measures

Week 11: Analysis of Multithreaded Algorithms

Weeks 12: Issues with code parallelization anddata locality

Week 13: Synchronizing without Locks and Concurrent Data Structures
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About this course

Prerequisites: no CS courses, but familiarity with a programming
language. Knowledge of linear algebra, linear recurrences is assumed.

Objectives: introduce students to performance software enginnering.

Methods: build a strong knowledge in C/UNIX, then study multicore
programming in Cilk.

We will cover a large of materials and we will have tutorial every week.
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