
Compiler Directives

The C Preprocessor
u The C preprocessor (cpp) changes your source code

based on instructions, or preprocessor directives,
embedded in the source code.

u The preprocessor creates a “new” version of your
program and it is this new program that actually gets
compiled.
– Normally, you do not see these “new” versions on the hard

disk, as they are deleted after compilation.
– You can force the compiler to keep them to see the results.

u Each preprocessor directive appears in the source
code proceeded by a ‘#’ sign.

The #define Directive
u Simple substitution Macros

#define text1 text2

u This tells the compiler to find all occurrences of “text1”
in the source code and substitute “text2”.

u Usually used for constants:
#define MAX 1000

– Generally use upper case letters (by convention).
– Always separate by white space.
– No trailing semi-colon (think about it...)

u An example:
– #define PRINT printf

PRINT(“hello, world”);

Function Macros
u You can also define more complex macros:
#define max(a,b) ((a) > (b) ? (a) : (b))
……
printf("%d", 2 * max(3+3, 7)); /* is equivalent to */
printf("%d", 2 * ((3+3) > (7) ? (3+3) : (7));

u The parentheses are important! For example:
#define max(a,b) a>b?a:b
printf("%d", 2 * max(3+3, 7)); /*is equivalent to */
printf("%d", 2 * 3+3 > 7 ? 3+3 : 7);

Function Macros Should be Used with Care
#define max(x,y) ((x)>(y)?(x):(y))
……
int n, i=4, j=3;

n= max(i++, j); /* Same as n= ((i++)>(j)?(i++):(j)) */
printf("%d,%d,%d", n, i, j);

u The output is:
– 5, 6, 3

u If max was a function, the output would have been:
– 4, 5, 3

Conditional Compilation (1)
u The pre-processor directives #if, #elif, #else, and

#endif tell the compiler is the enclosed source code
should be compiled

u Can create more efficient and more portable code.
– Compiled to match the environment it is compiled for.

u Structure:
#if condition_1

statement_block_1
#elif condition_2

statement_block_2
...
#elif condition_n

statement_block_n
#else

default_statement_block
#endif

Any Constant Expression
• non-zero is true

• compile statement_block_1
• zero is false

• don't compile statement_block_1

Conditional Compilation (2)
u For the most part, the only things that can be tested are the

things that can be defined by #define statements.
u An example:

#define ENGLAND 0
#define FRANCE 1
#define ITALY 0
#if ENGLAND

#include "england.h"
#elif FRANCE

#include "france.h"
#elif ITALY

#include "italy.h"
#else

#include "canada.h"
#endif

Conditional Compilation (3)
u Conditional compilation can also be very useful for

including “debugging code”
– When you are debugging your code you probably print out

some information during the running of your program.
– However, you may not need want these extra print outs when

you release your program. So, you need to go back through
your code and delete them.

u Instead, you can use #if #endif to save you time:
#define DEBUG 1
……
#if DEBUG

printf("Debug reporting at function my_sort()!\n");
#endif
……

Conditional Compilation (4)
uUsually people use a preprocessor function as the

condition of compilation:
defined (NAME)
vReturns true if NAME has been defined; else false

uAn example:
#define DEBUG
#if defined (DEBUG)

printf("debug report at function my_sort() \n");
#endif

uNote: This only depends on if DEBUG has been
defined. But has nothing to do with which value
DEBUG is defined to.

uCan also use the notation #ifdef NAME instead.

Conditional Compilation (5)
u The #undef … directive makes sure that

defined(…) evaluates to false.
uAn example:

– Suppose at the first part of a source file, you want
DEBUG to be defined. At the last part of the file,
however, you want DEBUG to be undefined…

uA directive can also be set on the Unix
command line at compile time:

cc –DDEBUG myprog.c
vCompiles myprog.c with the symbol DEBUG

defined as if #define DEBUG was in written at
the top of myprog.c.

The #include Directive
u We've seen lots of these already.
u This directive causes all of the code in the included file

to be inserted at the point in the text where #include
appears.

u The included files can contain other #include directive.
– Usually limited to 10 levels of nesting

u < > tell the compiler to look in the standard include
directories first.

u " " tells the compiler to treat this as a Unix filename.
– Relative to directory containing file if a relative pathname.
– Relative to root with an absolute pathname.
– But most compilers also search for the standard include

directory if it cannot find the file at the specified path.

Inline Functions (1)
u Recall the two different ways to compute the maximum

number between two integers:
– #define max(a,b) ((a)>(b)? (a):(b))
– int max(int a, int b) { return a>b?a:b; }

u Function calls need to jump to another part of your
program and jump back when done. This needs to:
– Save current registers.
– Allocate memory on the stack for the local variables in the

function that is called.
– Other overhead ……

u Therefore, the macro approach is often more efficient,
since it does not have function call overhead.
– But, this approach can be dangerous, as we saw earlier.

Inline Functions (2)
u Modern C and C++ compilers provide “inline” functions to

solve the problem:
– Put the inline keyword before the function header.
inline int max(int a, int b) {

return a>b?a:b;
}

u You then use it as a normal function in your source code.
– printf("%d", max(x, y));

u When the compiler compiles your program, it will not
compile it as a function. Rather, it just integrates the
necessary code in the line that max() is called in to avoid
an actual function call.
– The above printf(…) is compiled to be something like:
– printf("%d", x>y?x:y);

Inline Functions (3)
u Writing the small but often-used functions as inline

functions can improve the speed of your program.
u A small problem in doing so is that you have to include

the inline function definition before you use it in a file.
– For normal functions, only the function prototypes are

needed.
u Therefore, inline functions are often defined in header

(.h) files.
– Once you include the header file, you can use

v Inline functions whose definitions are in that header file.
vNormal functions whose prototypes are in that header file.

u Another small problem is that some debuggers get
confused when handling inline functions -- sometimes
it is best to inline functions after debugging is finished.

