E 4 Processes and Job Control

y

Foreground and Background (1)

0 Unix Is a multi- tasking operating system

—some of these tasks are being done by
other users logged In

—some are being done by you In the
background

Ue.g. watching for incoming mail

0 When you run a task (a Unix command, like
Is or vi) It executes in the foreground of
your shell

—1t has the “control” of your screen and
keyboard

Foreground and Background (2)

U If you still want to use the current shell
Dobelix[1] > a heavy task &
0[1] 13607
Dobelix[2] >

0 When you put atask in background

— task keeps running, but you continue to work at
the shell in the foreground

— If any output is done, it appears on your screen
Immediately (can be confusing)

— If Input Is required, process prints a message
and stops

—when it is done, a message will be printed

Foreground and Background (3)

0 Explicit background processes are needed less
often with windowing systems

— Just go to another window and run the
command

0 But explicit background processes are used often
IN unix
— A command needs a long time, you do not want
to close that window by accident
— Run a job at the background and logout

— netscape& will open a new window, but leave the
current shell window still available to use

A Smple Script

0 We use the following shell script to illustrate job
control

0 Edit a file make noise
obelix[1] > cat > make noise
#!/ bin/ sh
while [1]
do
date
sleep 1
done
obelix[2] > chmod u+x make noise

0 make noise then is a shell script repeats to print
the time for every second, until you terminate it
using
Ctrl- c.

Job Control — Suspending Jobs

0 csh, tcsh, and bash allow you to manage
the running of different processes

0 Suspending jobs
—the Cirl- z special character stops the job
obelix[1] > make noise
Fri May 16 14:14:43 EDT 2003

nNZ
Suspended

obelix[2] > vi readme
NZ

Job Control - Monitoring Jobs

U The "jobs" command shows which of
your jobs are running and/ or stopped.

obelix[3] > jobs
1] + Suspended make noise
2] + Suspended vi readme

U Here there are two suspended
processes, the make noise and a vi

process.

Job Control —Resuming Jobs

0 Putting jobs back into the foreground:

—Use the "fg" command to move a job into
the foreground.

obelix[4] > fg Y&
—Puts job number 2 into the foreground.

—Works with either a background or
stopped job.

0 Putting jobs into the background:
obelix[5] > bg %l

Job Control —Killing Jobs

0 Jobs can also be killed
— Use the Unix "kill" command
obelix[6] > kill %
or if it won't die ...
obelix[7] > kill 9 %l

0 Jobs can be stopped and continued
obelix[8] > a heavy task &
obelix[9] > stop %l

obelix[10] > bg %l

Using ps (1)

0 Jobs are really just a special case of Unix
processes

0 ps can list the current processes
obelix[11] > ps
PID TT S TIME COMMAND
2312 pts/0 T 0:00 i
2296 pts/0 R 0:00 tcsh
2313 pts/0 R 0:00 ps

U ps can take many options, depending on
which version of ps you are using
(/usr/ bin/ps vs. /usr/ucb/ps)

Using ps (2)

0 The ps command takes a number of

options

U-1 gives you a long listing of what Is

going on

U-u loginid tells you about loginid's
processes

Huse man

O kill p

id Kills t

DS to see more options
ne process pid

RM sigha

pIc

— kil
Sig

nal

will be sent to the process

-9 or kill - KILL will send the KILL

—Use man kill to find out more signals

Another useful command: ulimit

L' Theulimit utility sets or reports the file-size
writing limit imposed on files written by the shell
and its child processes (files of any size may be read).
Only a process with appropriate privileges can
Increase the limit.

O-aprints all limits
O-f maximum file size (in 512- byte blocks)
O-v maximum size of virtual memory (in kbytes)

0 Let usillustrate the interest of ulimit
[moreno@guanodon shell]$ ulimit -u 100
[moreno@iguanodon shell]$ more foo
echo FOO
J bar
[moreno@guanodon shell]$ more bar
echo BAR
/foo
[moreno@iguanodon shell]$./foo

