
Processes and Job Con trol

Foreground and Background (1)

◆ Unix is a mult i- tasking operat ing system
– some of these tasks are being done by

other users logged in
– some are being done by you in the

background
❖e.g. watching for incoming mail

◆ When you run a task (a Unix command, like
ls or vi) it executes in the foreground of
your shell
– it has the “control" of your screen and

keyboard

Foreground and Background (2)
◆ If you st ill want to use the current shell

❖obelix[1] > a_heavy_task &
❖ [1] 13607
❖obelix[2] >

◆ When you put a task in background
– task keeps running, but you continue to work at

the shell in the foreground
– if any output is done, it appears on your screen

immediately (can be confusing)
– if input is required, process prints a message

and stops
– when it is done, a message will be printed

Foreground and Background (3)
◆ Explicit background processes are needed less

often with windowing systems

– Just go to another window and run the
command

◆ But explicit background processes are used often
in unix

– A command needs a long t ime, you do not want
to close that window by accident

– Run a job at the background and logout

– netscape& will open a new window, but leave the
current shell window still available to use

A Sim p le Scrip t
◆ We use the following shell script to illustrate job

control
◆ Edit a f ile make_noise

obelix[1] > cat > make_noise
#!/ bin/ sh
while [1]
do
 date
 sleep 1
done
obelix[2] > chmod u+ x make_noise

◆ make_noise then is a shell script repeats to print
the t ime for every second, until you terminate it
using
Ctrl- c.

Job Con trol – Susp end ing Jobs

◆ csh, tcsh, and bash allow you to manage
the running of dif ferent processes

◆ Suspending jobs
– the Ctrl- z special character stops the job

obelix [1] > make_noise
Fri May 16 14:14:43 EDT 2003
……
^ Z
Suspended
obelix [2] > vi readme
^ Z

Job Con trol - Mon itor ing Jobs

◆ The "jobs" command shows which of
your jobs are running and/ or stopped.

obelix [3] > jobs

[1] + Suspended make_noise

[2] + Suspended vi readme

◆ Here there are two suspended
processes, the make_noise and a vi
process.

Job Con trol – Resum ing Jobs
◆ Putt ing jobs back into the foreground:

– Use the "fg" command to move a job into
the foreground.

obelix [4] > fg %2
– Puts job number 2 into the foreground.
– Works with either a background or

stopped job.

◆ Putt ing jobs into the background:

obelix [5] > bg %1

Job Con trol – Killing Jobs
◆ Jobs can also be killed

– Use the Unix "kill" command

obelix [6] > kill %1

or if it won't die ...

obelix [7] > kill –9 %1

◆ Jobs can be stopped and cont inued

obelix [8] > a_heavy_task &

obelix [9] > stop %1

obelix [10] > bg %1

Using p s (1)
◆ Jobs are really just a special case of Unix

processes
◆ ps can list the current processes

obelix [11] > ps

PID TT S TIME COMMAND

2312 pts/ 0 T 0:00 vi

2296 pts/ 0 R 0:00 tcsh

2313 pts/ 0 R 0:00 ps
◆ ps can take many opt ions, depending on

which version of ps you are using
(/ usr/ bin/ ps vs. / usr/ ucb/ ps)

Using p s (2)
◆ The ps command takes a number of

opt ions
❖- l gives you a long list ing of what is

going on
❖- u loginid tells you about loginid's

processes
❖use man ps to see more opt ions

◆ kill pid kills the process pid
– TERM signal will be sent to the process

pid
– kill - 9 or kill - KILL will send the KILL

signal
– Use man kill to f ind out more signals

An oth er u sefu l com m an d : u lim it

◆ Th e ulim it u t ility set s or rep or t s th e file- s iz e
wr it in g lim it im p osed on files writ t en by th e sh ell
an d it s ch ild p rocesses (files of an y s iz e m ay be read).
 On ly a p rocess with ap p rop r ia te p r ivileges can
in crease th e lim it .

❖ - a p r in t s a ll lim it s
❖ - f m axim u m file s iz e (in 512- byte b locks)
❖ - v m axim u m s iz e of vir tu a l m em ory (in kbytes)

◆ Let u s illu s t ra te th e in teres t of u lim it
[m oreno@iguanod on shell]$ u lim it - u 100
[m oreno@iguanod on shell]$ m ore foo
echo FOO
./ bar
[m oreno@iguanod on shell]$ m ore bar
echo BAR
./ foo
[m oreno@iguanod on shell]$./ foo

