
File Security and Permissions



File Permissions (1)
uWith respect to a particular file, Unix divides the 

set of all users on a system into three categories:
– user 
vThe owner of the file.

– group users
vMost of you are in the group 2ndyr
vUsed for easier administration of access control.
vNormally only the superuser can set up groups.
vUsers can be in more than one group.

– others
vEveryone else.



File Permissions (2)

uPermissions can be viewed with the ls -l command
obelix[1] > ls -l
total 1247
-rw------- 1 csnow 1117 Jul 23 15:49 bad.cpp
drwx--x--x   2 csnow 2048 Jul 17 10:13 bibd/
drwxr-xr-x   2 csnow 512 Aug 27 23:18 cache/
-rw------- 1 csnow 2081 Jul 23 15:49 tst2.s
-rw-r-xr-- 1 csnow 1275 Jul 23 15:49 vecexpr.cpp

-rw-r-xr--
File type
- = file
d = directory

l=symbolic link
User 
Permissions

Group 
Permissions

Other
Permissions

r read permission
w write permission
x execute permission



File Permissions (3)

uPermissions are changed with the chmod
command.

u There are two syntaxes you can use:
chmod DDD file [file ...]
– DDD are 3 octal digits representing bits of protection 
– rwx rwx rwx can be thought of as 111 111 111 in 

binary 
rw- r-- r--
110 100 100

6     4     4           chmod 644 file



File Permissions (4)
u chmod [ugoa][+-=][rwx] file [...]

– This is the “symbolic” method.
– chmod u+rwx file gives the User Read, Write, and 

eXecute 
– chmod g+rx file gives the Group Read and eXecute 
– chmod o-rwx file removes R, W, and X from Others 
– chmod a+x file gives All eXecute permission 
– chmod g=r file gives Group Read permission and 

makes sure it has nothing else 

uSymbolic modes can be appended with commas 
– chmod u=rwx,g-w,o-rwx file for instance



The umask command

u umask sets the default permissions for any file 
you will create

u Format is backwards to the chmod command 
– tells you which permissions will NOT be given 
vumask 077 means don't let anyone but the User 

do anything with my files by default

uGenerally set umask once in your .cshrc file and 
never set it again



Directory Permissions (1)
uDirectory permissions are different from the file 

permissions

– Requires execute permission to access files in the 
directory and its subdirectories

– Requires read permission to list the contents of the 
directory (does not affect the subdirectory)

– Requires write permission to create files in the 
directory (does not affect the subdirectory)



Directory Permissions (2)
obelix[1] >  ls -l 
drwx--x--- 2048 Jul 17 10:13 bibd/
obelix[2] > ls -l bibd
-r--r--rwx 173  Jul 17 10:13 readme

u Files in bibd/ are accessible to user

u Files in bibd/ are accessible by name (if you know 
the name) for group users

u Files in bibd/ and subdirectories are not 
accessible to others.



Directory Permissions (3)
u The -R option to chmod is useful when working with 

directories.
– It recursively changes the mode for each chmod operand 

that is a directory.
– All files and directories would receive those permissions.

– chmod -R a+rw dir gives everyone read and write 
permission to each file under dir (not execute though!!!)

– chmod -R a+rwx dir gives the executable access to allow 
people to actually access the files under dir
vMakes all files executable though ...

– chmod -R a+rwX dir gives the executable access only to 
those files already executable (programs, directories, …)



Exercise – File permission 
u Create a directory dir1 in your home directory.
u Edit a file test.txt in dir1.
u Remove your own read permission of test.txt.
u Try to display the content of test.txt by cat.
u Remove your own write permission of test.txt
u Make some changes to test.txt with an editor and try

to save.
u Try to delete the file test.txt



Exercise – Directory Permission
u Create a directory dir2.  

– What is the permission of 
dir2?  

– What argument is provided to
umask in your .cshrc file?

u Copy test.txt to dir2/test2.txt
u Remove your own ‘r’ 

permission of dir2.
– Try to ls dir2.
– cat dir2/test2.txt
– cd dir2
– ls
– cd ..

u Set your own permission of 
dir2 to be r-x
– cp test.txt dir2/test3.txt
– rm dir2/test2.txt
– edit the file dir2/test2.txt using 

an editor and save the changes

u Set your own permission of 
dir2 to be rw-
– cd dir2
– cat dir2/test2.txt
– cp test.txt dir2/test3.txt
– ‘ls’ dir2
– ls dir2


