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Once upon a time, everything was slow in a computer.



The second space race . . .
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CPU Cache (1/7)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.
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CPU Cache (2/7)

Each location in each memory (main or cache) has
• a datum (cache line) which ranges between 8 and 512 bytes in size,

while a datum requested by a CPU instruction ranges between 1 and
16.

• a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).
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CPU Cache (3/7)

When the CPU needs to read or write a location, it checks the cache:
• if it finds it there, we have a cache hit
• if not, we have a cache miss and (in most cases) the processor needs to

create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.
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CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires to
keep the CPU busy with something else:

- out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the cache
miss

- hyper-threading (HT): allows an alternate thread to use the CPU
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CPU Cache (5/7)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.
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CPU Cache (6/7)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N -way set associative: N possible entries can hold it
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Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.
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A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; *B; *C;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
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Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte per cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!



Hierarchical memories and their impact on our
programs

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z)*IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
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Issues with data reuse

C

1024 1024384

4
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C= x
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Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.
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Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
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Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C, double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(Cx,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
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Experimental results

Computing the product of two n× n matrices on my laptop (Quad-core
Intel i7-3630QM CPU @ 2.40GHz L2 cache 6144 KB, 8 GBytes of RAM)

n naive transposed 8× 8-tiled t. & t.
1024 7854 1086 1105 999
2048 8335 8646 10166 7990
4096 747100 69149 100538 69745
8192 6914349 546585 823525 562433

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) and the titled
multiplication have simiilar performance.
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Experimental results: going further . . .
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Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.
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Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned once, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.
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Analyzing cache misses in the tiled multiplication

C

1024 1024384
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Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order b and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3b2/L.

This process happens n3/b3 times, leading to 3n3/(bL) cache misses.

Three blocks fit in cache for 3b2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if b is well chosen, which is optimal.
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Basic idea of a cache memory (review)

Cache

Memory……Cache Lines

A cache is a smaller memory, faster to access

Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory

Key reason why this works: temporal locality and spatial locality.
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A simple cache example

Cache

Memory……Cache Lines

Byte addressable memory

Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so
the cache can fit 29 × 24 = 213 int.

A cache access costs 1 cycle while a memory access costs 100 cycles.

How addresses map into cache
• Bottom 6 bits are used as offset in a cache line,
• Next 9 bits determine the cache line
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Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory

#define S ((1<<20)*sizeof(int))

int A[S];

// Thus size of A is 2^(20) x 4 bytes

for (i = 0; i < S; i++) {

read A[i];

}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 1 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i];

}

S reads to A.

16 elements of A per cache line

15 of every 16 hit in cache.

Total access time: 15(S/16) + 100(S/16).

spatial locality, cold misses.
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Exercise 2 (1/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[0];

}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 2 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[0];

}

S reads to A

All except the first one hit in cache.

Total access time: 100 + (S − 1).

Temporal locality

Cold misses.
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Exercise 3 (1/2)

// Assume 4 <= N <= 13

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 3 (2/2)

// Assume 4 <= N <= 13

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

S reads to A

One miss for each accessed line, rest hit in cache.

Number of accessed lines: 2N−4.

Total access time: 2N−4100 + (S − 2N−4).

Temporal and spatial locality

Cold misses.
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Exercise 4 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 4 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

S reads to A.

First access to each line misses

Rest accesses to that line hit.

Total access time: 15(S/16) + 100(S/16).

Spatial locality

Cold and capacity misses.
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Exercise 5 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}

Memory

A Cache

Data Fetched
But Not AccessedBut Not Accessed

Total access time? What kind of locality? What kind of misses?
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Exercise 5 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}

S reads to A.

First access to each line misses

One access per line.

Total access time: 100S.

No locality!

Cold and conflict misses.
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Exercise 6 (1/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[random()%S];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 6 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[random()%S];

}

S reads to A.

After N iterations, for some N , the cache is full and holds 29 cache
lines from S.

S consists of 220−4 = 216 cache lines.

Them the chance of hitting in cache is 29/216 = 1/128

Estimated total access time: S ((127/128)100 + (1/128)).

Almost no locality!

Cold, capacity conflict misses.
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Exercise 7 (1/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 7 (2/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B interfere in cache: indeed two cache lines whose addresses
differ by a multiple of 29 have the same way to cache.

Total access time: 2× 100× S.

Spatial locality but the cache cannot exploit it.

Cold and conflict misses.



Cache Analysis in Practice

Exercise 8 (1/2)

#define S ((1<<19+4)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 8 (2/2)

#define S ((1<<19+4)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B almost do not interfere in cache.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.
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Set Associative Caches

Way 0 Way 1

…Sets

Set associative caches have sets with multiple lines per set.

Each line in a set is called a way

Each memory line maps to a specific set and can be put into any
cache line in its set

In our example, we assume a 32 Kbyte cache, with 64 byte lines,
2-way associative. Hence we have:

• 256 sets
• Bottom six bits determine offset in cache line
• Next 8 bits determine the set.
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Exercise 9 (1/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 9 (2/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B lines hit same set, but enough lines in a set.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.
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Tuned cache-oblivious matrix transposition benchmarks

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

L1 data 32 KB, L2 4096 KB, cache line size 64bytes

Both codes run on 1 core

The ration comes simply from an optimal memory access pattern.
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Tuned cache-oblivious parallel matrix multiplication
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