Cache Memories

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS2101 October 2012



The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU

speeds.
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Once upon a time, everything was slow in a computer.
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@ Hierarchical memories and their impact on our programs
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@ A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

@ Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.
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e Each location in each memory (main or cache) has
e a datum (cache line) which ranges between 8 and 512 bytes in size,
while a datum requested by a CPU instruction ranges between 1 and
16.
e a unique index (called address in the case of the main memory)
@ In the cache, each location has also a tag (storing the address of the
corresponding cached datum).
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@ When the CPU needs to read or write a location, it checks the cache:
e if it finds it there, we have a cache hit
e if not, we have a cache miss and (in most cases) the processor needs to
create a new entry in the cache.
e Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.
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Read latency (time to read a datum from the main memory) requires to

keep the CPU busy with something else:

- out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the cache
miss

- hyper-threading (HT): allows an alternate thread to use the CPU



CPU Cache (5/7)
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e Modifying data in the cache requires a write policy for updating the

main memory

- write-through cache: writes are immediately mirrored to main

memory

- write-back cache: the main memory is mirrored when that data is

evicted from the cache

@ The cache copy may become out-of-date or stale, if other processors
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modify the original entry in the main memory.
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Each location in main memory can be
cached by justane cache beation.

@ The replacement policy decides where in the cache a copy of a

2-Way Associative

Cache Fill

Cache
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Each lbcation in main memory can be
cached by one of two cache bcations.

particular entry of main memory will go:

- fully associative: any entry in the cache can hold it

- direct mapped: only one possible entry in the cache can hold it

- N-way set associative: N possible entries can hold it
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Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.



A typical matrix multiplication C code

#define IND(A, x, y, d) AL(X)*(D+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

}

double *A; *B; *C;
long started, ended;
float timeTaken;
int i, j, k;

srand(getSeed()) ;

A = (double *)malloc(sizeof (double)*x*y) ;
B = (double *)malloc(sizeof (double)*x*z);
C =

for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < x*y; i++) A[i]
started = example_get_time();
for (i = 0; i < x; i++)
for (j = 0; j < y; j++)
for (k = 0; k < z; k++)

// A[i1[3]1 += BLil[k] + C[k][jl;
IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,y);

ended = example_get_time();

0

timeTaken = (ended - started)/1.f;

return timeTaken;

(double *)malloc(sizeof (double)*y*z);
for (i = 0; i < x*z; i++) B[i] = (double) rand()
(double) rand()

B

H

H
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Issues with matrix representation

X

|IC | | — | — | - | — | — ]

o Contiguous accesses are better:

o Data fetch as cache line (Core 2 Duo 64 byte per cache line)
e With contiguous data, a single cache fetch supports 8 reads of doubles.
e Transposing the matrix C should reduce L1 cache misses!



Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

}

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;
A = (double *)malloc(sizeof (double)*x*y);
B = (double *)malloc(sizeof (double)*x*z);
¢ (double *)malloc(sizeof (double)*y*z);
Cx = (double *)malloc(sizeof (double)x*y*z);
srand(getSeed()) ;
for (i = 0; i < x*z; i++) B[i]
for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < x*y; i++) A[i]
started = example_get_time();
for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)
IND(A, i, j, y) += IND(B, i, k, z)*IND(Cx, j, k, z);
ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

(double) rand() ;
(double) rand() ;
0 ;
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Issues with data reuse

1024 384 1024

1024
>
1024

o Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024 x 384 = 393,216 in C. Total
= 394, 524.

e Computing a 32 x 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384 x 32 in B and 32 x 384 in C.
Total = 25, 600.

@ The iteration space is traversed so as to reduce memory accesses.



Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{
double *A; double *B; double *Cj;
long started, ended; float timeTaken; int i, j, k, i0, jO, kO;

A = (double *)malloc(sizeof (double)*x*y);
B = (double *)malloc(sizeof (double)*x*z) ;
C = (double *)malloc(sizeof (double)*y*z) ;

srand(getSeed()) ;
for (i = 0; i < x*z; i++) B[i]
for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < x*y; i++) A[i]
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); iO++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)
IND(4A,i0,jO,y) += IND(B,i0,k0,z) * IND(C,k0,jO0,y);
ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

(double) rand() ;
(double) rand() ;
0 ;



Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C, double *Cx;
long started, ended; float timeTaken; int i, j, k, i0, jO, kO;
A = (double *)malloc(sizeof (double)*x*y);
B = (double *)malloc(sizeof (double)*x*z);
¢ (double *)malloc(sizeof (double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i]
for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < xxy; i++) A[i]
started = example_get_time();
for(j =0; j < y; j++)
for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C,k,j,y);
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)

(double) rand() ;
(double) rand() ;
(U

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(Cx,jO,k0,z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;
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Experimental results

Computing the product of two n x n matrices on my laptop (Quad-core
Intel i7-3630QM CPU @ 2.40GHz L2 cache 6144 KB, 8 GBytes of RAM)

n naive transposed | 8 x 8-tiled | t. & t.
1024 7854 1086 1105 999
2048 8335 8646 10166 7990
4096 | 747100 69149 100538 69745

8192 | 6914349 546585 823525 562433
Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) and the titled
multiplication have simiilar performance.



Experimental results: going further ...



programs.

Other performance counters

Hardware count events
@ CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism
@ L1 and L2 Cache Miss Rate.

@ Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be

canceled.
L1 L2
Miss Miss Percent SSE Instructions
CPI Rate Rate Instructions Retired

InC 4.78 024 0.02 43% 13,137,280,000

~5x Co2x CoIx
Transposed 1.13° 015~ 0.02 50% 13,001,486,336 -

~3x © Bx ~0.8x

Tiled 0.49 - 002" 0 39% 16,044,811,264 ~
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Analyzing cache misses in the naive and transposed multiplication

Let A, B and C have format (m,n), (m,p) and (p,n) respectively.
A is scanned once, so mn/L cache misses if L is the number of
coefficients per cache line.

B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.

C'is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.

@ Since 2mn p arithmetic operations are performed, this means roughly
one cache miss per flop!

If C'is transposed, then the ratio improves to 1 for L.
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Analyzing cache misses in the tiled multiplication

1024 384 1024

' -

1024
>
1024

o Let A, B and C have format (m,n), (m,p) and (p,n) respectively.
@ Assume all tiles are square of order b and three fit in cache.

o If C is transposed, then loading three blocks in cache cost 3b2/L.

o This process happens n?/b? times, leading to 3n°/(bL) cache misses.
Three blocks fit in cache for 3b2 < Z, if Z is the cache size.

So O(n?/(v/ZL)) cache misses, if b is well chosen, which is optimal.
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Cache Analysis in Practice

Basic idea of a cache memory (review)

Cache

Cache Lines

Memory

@ A cache is a smaller memory, faster to access

@ Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory

o Key reason why this works: temporal locality and spatial locality.
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A simple cache example

Cache

Cache Lines Memory

o Byte addressable memory

e Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so
the cache can fit 29 x 2¢ = 213 int.

@ A cache access costs 1 cycle while a memory access costs 100 cycles.

@ How addresses map into cache

e Bottom 6 bits are used as offset in a cache line,
e Next 9 bits determine the cache line
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Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof (int))
int A[S];
// Thus size of A is 27(20) x 4 bytes
for (i = 0; i < 8; i++) {
read A[i];

Memory

Total access time? What kind of locality? What kind of misses?
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Exercise 1 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < 8S; i++) {

read A[i];

S reads to A.

16 elements of A per cache line

15 of every 16 hit in cache.
Total access time: 15(5/16) 4+ 100(S/16).

spatial locality, cold misses.
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Exercise 2 (1/2)

#tdefine S ((1<<20)*sizeof (int))

int A[S];

for (i =0; i < 8S; i++) {
read A[O];

}

Memory

Total access time? What kind of locality? What kind of misses?
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Exercise 2 (2/2)

#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < 8S; i++) {

read A[O];

@ S reads to A

All except the first one hit in cache.
Total access time: 100 + (S —1).

Temporal locality

Cold misses.
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Exercise 3 (1/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < 8; i++) {
read A[i % (1<<N)];

Memory

A /M Cache

—>\—>

Total access time? What kind of locality? What kind of misses?
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Exercise 3 (2/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];

@ S reads to A

@ One miss for each accessed line, rest hit in cache.
o Number of accessed lines: 24

o Total access time: 274100 + (S — 2V—4).

Temporal and spatial locality

Cold misses.



Cache Analysis in Practice

Exercise 4 (1/2)

// Assume 14 <= N

#define S ((1<<20)#*sizeof (int))
int A[S];

for (i = 0; i < 8; i++) {

read A[i % (1<<N)];

}

Cache

<
]
3
o
S
<
VVIVIVIVIV

I

Total access time? What kind of locality? What kind of misses?
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Exercise 4 (2/2)

// Assume 14 <= N

#define S ((1<<20)#*sizeof (int))
int A[S];

for (i = 0; i < 8; i++) {

read A[i % (1<<N)];

}
@ S reads to A.
o First access to each line misses
@ Rest accesses to that line hit.
e Total access time: 15(S5/16) + 100(S/16).
@ Spatial locality
@ Cold and capacity misses.
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Exercise 5 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < 8S; i++) {

read A[(i*16) % (1<<N)];

+

Memory

A é Cache
I_'_l

Data Fetched
But Not Accessed

Total access time? What kind of locality? What kind of misses?
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Exercise 5 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}

@ S reads to A.
@ First access to each line misses
@ One access per line.

@ Total access time: 100S.

No locality!

Cold and conflict misses.
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Exercise 6 (1/2)

#define S ((1<<20)#*sizeof (int))
int A[S];
for (i = 0; i < 8; i++) {

read A[random()%S];

Memory

Total access time? What kind of locality? What kind of misses?
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Exercise 6 (2/2)

#define S ((1<<20)#*sizeof (int))
int A[S];
for (i = 0; i < 8S; i++) {

read A[random()%S];

}

@ S reads to A.

e After N iterations, for some N, the cache is full and holds 29 cache
lines from S.

@ S consists of 22074 = 216 cache lines.

o Them the chance of hitting in cache is 29/216 = 1/128

o Estimated total access time: S ((127/128)100 + (1/128)).

@ Almost no locality!

e Cold, capacity conflict misses.
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Exercise 7 (1/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[i], B[il;

}

Memory

4\

v

v

v

Total access time? What kind of locality? What kind of misses?
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Exercise 7 (2/2)

#define S ((1<<19)x*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[il;

}

S reads to A and B.

A and B interfere in cache: indeed two cache lines whose addresses
differ by a multiple of 2° have the same way to cache.

Total access time: 2 x 100 x S.

Spatial locality but the cache cannot exploit it.

Cold and conflict misses.
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Exercise 8 (1/2)

#define S ((1<<19+4)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[il, BI[il;

}

Memory

Cache

/

Total access time? What kind of locality? What kind of misses?
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Exercise 8 (2/2)

#define S ((1<<19+4)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[il;

}

@ S reads to A and B.

@ A and B almost do not interfere in cache.
e Total access time: 2(155/16 + 1005/16).
@ Spatial locality.

o Cold misses.
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Set Associative Caches

Way 0 Way 1

Sets

Set associative caches have sets with multiple lines per set.

Each line in a set is called a way

Each memory line maps to a specific set and can be put into any
cache line in its set

@ In our example, we assume a 32 Kbyte cache, with 64 byte lines,
2-way associative. Hence we have:

e 256 sets
e Bottom six bits determine offset in cache line
e Next 8 bits determine the set.
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Exercise 9 (1/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[i], B[il;

}

Cache

@
VIV

Total access time? What kind of locality? What kind of misses?
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Exercise 9 (2/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[il;

}

@ S reads to A and B.

@ A and B lines hit same set, but enough lines in a set.
e Total access time: 2(155/16 + 1005/16).

@ Spatial locality.

o Cold misses.
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Tuned cache-oblivious matrix transposition benchmarks

Naive Cache-oblivious ratio

size

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58
@ Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

o L1 data 32 KB, L2 4096 KB, cache line size 64bytes

o Both codes run on 1 core

@ The ration comes simply from an optimal memory access pattern.



Tuned cache-oblivious parallel matrix multiplication

Speedup for “nultiply 5800418008 natrix by 18888x5088 natrin’
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