
Exercises for lab 3 of CS2101a

Instructor: Marc Moreno Maza, TA: Li Zhang

Thursday 25 September 2014

1 Exercise 1

The following is a Julia function for computing the sequence of the Fibonacci
numbers in a serial fashion:

@everywhere function fib(n)

if (n < 2) then

return n

else return fib(n-1) + fib(n-2)

end

end

This other Julia function, seen in class, computes the sequence of the Fi-
bonacci numbers in a parallel fashion:

@everywhere function fib_parallel(n)

if (n < 40) then

return fib(n)

else

x = @spawn fib_parallel(n-1)

y = fib_parallel(n-2)

return fetch(x) + y

end

end

1. Study experimentally the influence of the threshold (for switching between
parallel and serial execution, which is 40 in the above code) on the speedup
factor w.r.t. purely serial code. You could try other thresholds, say 10,
15, 20, 25, 30, 35, 45 for n between 35 and 45.

2. Use the Winston package for plotting your experimental data.

3. If you are a Matlab user, here’s fib(n) in Matlab for you to perform the
same measurement.

1



function f=fib(n)

if n <= 2

f=1.0;

else

f=fib(n-1)+fib(n-2);

end

end

Hint 1: For experimenting with thresholds, it is convenient to make the
threshold an input parameter of the fib parallel(n) function. For instance:

@everywhere function fib_parallel(n, t)

if (n < t) then

return fib(n)

else

x = @spawn fib_parallel(n-1, t)

y = fib_parallel(n-2, t)

return fetch(x) + y

end

end

Hint 2: Here’s an example of a Julia session for collecting timings with the
above fib function. Note that this implies using the auxiliary runningtime

below. Once the timings are collected in the array T, one passes the arrays T

and N to the plot commands of the Winston package.

@everywhere function fib(n)

if (n < 2) then

return n

else return fib(n-1) + fib(n-2)

end

end

function runningtime(f,n)

tic()

y = f(n)

t = toc()

t

end

T = [runningtime(fib,30+i) for i=1:10]

N = [30+i for i=1:10]

using Winston

2



plot(N, T)

Hint 3: For plotting in Julia, the Winston package is convenient. See the doc-
umentation at http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.
shtml#Plotting Please note that this documentation has specific installation
instructions for Ubuntu, Mac OSX and Windoows. The example in the section
“More complex plots” shows how to plot several graphs in the same frame. It
also shows how to label those graphs and how to save the generated plots into
a file!

2 Exercise 2

The following is a C function for computing the product of two square matrices
(in a naive and inefficient way). Note that in this C code, the output result AB

is passed as an input argument. If you are not familiar with the C programming
language, just consider this function as a pseudo-code or formula. If you need to
review matrix multiplication, visit http://en.wikipedia.org/wiki/Matrix_

multiplication

void mmult(double A[M][M],double B[M][M], double AB[M][M]){

int i,j,k;

for(i=0; i<M; i++)

for(j=0; j<M; j++){

AB[i][j] = 0;

for(k=0; k<M; k++)

AB[i][j] += A[i][k]*B[k][j];

}

}

1. Write a Julia program that computes mmult(A,B) where A and B are two
square matrices of the same order M (using the same naive and inefficient
algorithm as in C).

2. Using the @time macro, measure the running times of your Julia function
mmult(A,B) for M equal to 500, 1000, 1500, 2000. Your input matrices
will be randomly generated using rand(M,M).

3. If you are a Matlab user, here’s mmult(A,B,C) in Matlab for you to per-
form the same measurement.

function C=mmult(A,B,C)

[M,N] = size(A);

for i=1:M

for j=1:M

for k=1:M

C(i,j) = C(i,j) + A(i,k)*B(k,j);

3

http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml#Plotting
http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml#Plotting
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_multiplication


end

end

end

end

3 Exercise 3

The following Julia function implements a famous algorithm for sorting called
quicksort. Look at its wikipedia page to learn how this algorithm works! http:
//en.wikipedia.org/wiki/Quicksort

function qsort!(a,lo,hi)

i, j = lo, hi

while i < hi

pivot = a[(lo+hi)>>>1]

while i <= j

while a[i] < pivot; i = i+1; end

while a[j] > pivot; j = j-1; end

if i <= j

a[i], a[j] = a[j], a[i]

i, j = i+1, j-1

end

end

if lo < j; qsort!(a,lo,j); end

lo, j = i, hi

end

return a

end

function sortperf(n)

qsort!(rand(n), 1, n)

end

@time sortperf(5000)

1. Go through the code and make sure you agree that it is an implementation
of the algorithm presented in the wikipedia page.

2. Record the running time of sortperf(2e∗1000000) for e = 0, 1, 2, 3, 4, 5, 6, 7, 8.

3. Are your results coherent with the theoretical prediction (see the section
Formal analysis in the wikipedia page) that sorting of an array of size n
with quicksort runs in a time asymptotically proportional to O(nlog(n))?

4

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort

	Exercise 1
	Exercise 2
	Exercise 3

