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The purpose of this handout is to explain the notions of countable and
uncountable sets.

1 Basic Definitions

A map f between sets S1 and S2 is called a bijection if f is one-to-one and
onto. In other words

• If f(a) = f(b) then a = b. This holds for all a, b ∈ S1.

• For each b ∈ S2, there is some a in S1 such that f(a) = b.

We write S1 ∼ S2 if there is a bijection f : S1 → S2. We say that S1 and
S2 are equivalent or have the same cardinality if S1 ∼ S2. This notion of
equivalence has several basic properties:

1. S ∼ S for any set S. The identity map serves as a bijection from S to
itself.

2. If S1 ∼ S2 then S2 ∼ S1. If f : S1 → S2 is a bijection then the inverse
map f−1 is a bijection from S2 to S1.

3. If S1 ∼ S2 and S2 ∼ S3 then S1 ∼ S3. This boils down to the fact that
the composition of two bijections is also a bijection.

These three properties make ∼ into an equivalence relation.
Let N = {1, 2, 3...} denote the natural numbers. A set S is called count-

able is S ∼ T for some T ⊂ N . Here is a basic result about countable
sets.
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Lemma 1.1 If S is both countable and infinite, then there is a bijection

between S and N itself.

Proof: For any s ∈ S, we let f(s) denote the value of k such that s is the
kth smallest element of S. This map is well defined for any s, because there
are only finitely many natural numbers between 1 and s. It is impossible for
two different elements of S to both be the kth smallest element of S. Hence
f is one-to-one. Also, since S is infinite, f is onto. ♠

Lemma 1.2 If S is countable and S ′ ⊂ S, then S is also countable.

Proof: Since S is countable, there is a bijection f : S → N . But then
f(S ′) = N

′ is a subset of N , and f is a bijection between S ′ and N
′. ♠

A set is called uncountable if it is not countable. One of the things I will
do below is show the existence of uncountable sets.

Lemma 1.3 If S ′ ⊂ S and S ′ is uncountable, then so is S.

Proof: This is an immediate consequence of the previous result. If S is
countable, then so is S ′. But S ′ is uncountable. So, S is uncountable as well.
♠

2 Examples of Countable Sets

Finite sets are countable sets. In this section, I’ll concentrate on examples
of countably infinite sets.

2.1 The Integers

The integers Z form a countable set. A bijection from Z to N is given by
f(k) + 2k if k ≥ 0 and f(k) = 2(−k) + 1 if k < 0. So, f maps 0, 1, 2, 3... to
0, 2, 4, 6... and f maps −1,−2,−3,−4... to 1, 3, 5, 7....
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2.2 The Rational Numbers

I’ll give a different argument than the one I gave in class. Let Lq denote the
finite list of all rational numbers between −q and q that have denominator
at most q. There are at most q(2q + 1) elements of Lq. We can make the list
L1, L2, L3, ... and throw out repeaters. This makes a list of all the rational
numbers. As above, we define f(p/q) to be the value of k such that p/q is
the kth fraction on our list.

2.3 The Algebraic Numbers

A real number x is called algebraic if x is the root of a polynomial equation
c0 + c1x + ... + cnx

n where all the c’s are integers. For instance,
√

2 is an
algebraic integer because it is a root of the equation x2−2 = 0. To show that
the set of algebraic numbers is countable, let Lk denote the set of algebraic
numbers that satisfy polynomials of the form c0+c1x+ ...+cnxn where n < k
and max(|cj|) < k. Note that there are at most kk polynomials of this form,
and each one has at most k roots. Hence Lk is a finite set having at most
kk+1 elements. As above, we make our list L1, L2, L3 of all algebraic numbers
and weed out repeaters.

2.4 Countable Unions of Countable Sets

Lemma 2.1 Suppose that S1, S2, ... ⊂ T are disjoint countable sets. Then

S =
⋃

i Si is a countable set.

Proof: There are bijections fi : Si → N for each i. Let Lk denote the set of
elements s ∈ S such that s lies in some Si for i < k, and fi(s) < k. Note that
Lk is a finite set. It has at most k2 members. The list L1, L2, L3... contains
every element of S. Weeding out repeaters, as above, we see that we have
listed all the elements of S. Hence S is countable. ♠

The same result holds even if the sets Si are not disjoint. In the general
case, we would define

S ′

k = Sk −
k−1⋃

i=1

Si,

and apply the above argument to the sets S ′

1, S
′

2.... The point is that S ′

i is
countable, the various S ′ sets are disjoint, and

⋃
i Si =

⋃
i S

′

i.
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3 Examples of Uncountable Sets

3.1 The Set of Binary Sequences

Let S denote the set of infinite binary sequences. Here is Cantor’s famous
proof that S is an uncountable set. Suppose that f : S → N is a bijection.
We form a new binary sequence A by declaring that the nth digit of A is
the opposite of the nth digit of f−1(n). The idea here is that f−1(n) is some
binary sequence and we can look at its nth digit and reverse it.

Supposedly, there is some N such that f(A) = N . But then the Nth
digit of A = f−1(N) is the opposite of the Nth digit of A, and this is a
contradiction.

3.2 The Real Numbers

Let R denote the reals. Let R
′ denote the set of real numbers, between 0 and

1, having decimal expansions that only involve 3s and 7s. (This set R
′ is an

example of what is called a Cantor set .) There is a bijection between R
′ and

the set S of infinite binary sequences. For instance, the sequence 0101001...
is mapped to .3737337.... Hence R

′ is uncountable. But then Lemma 1.3
says that R is uncountable as well.

3.3 The Transcendental Numbers

A real number x is called transcendental if x is not an algebraic number.
Let A denote the set of algebraic numbers and let T denote the set of tran-
scendental numbers. Note that R = A ∪ T and A is countable. If T were
countable then R would be the union of two countable sets. Since R is un-
countable, R is not the union of two countable sets. Hence T is uncountable.

The upshot of this argument is that there are many more transcendental

numbers than algebraic numbers.

3.4 Tail Ends of Binary Sequences

Let T denote the set of binary sequences. We say that two binary sequences
A1 and A2 are equivalent if they have the same tail end. For instance
1001111... and 111111... are equivalent.
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Lemma 3.1 For any binary sequence A, there are only countably many bi-

nary sequences equivalent to A.

Proof: Let Ln denote the set of sequences that differ from A only in the
first n digits. Then Ln is a finite set with at most 2n elements. Now we list
L1, L2, L3.... This gives a list of all the binary sequences equivalent to A.
The rest of the proof is as above. ♠

Say that a tail end is the collection of sequences all equivalent to a given
one. Note that T is the union of tail ends. Each tail end it a countable
set, and T is uncountable. Hence, there are uncountably many tail ends, by
Lemma 2.1.

3.5 The Penrose Tiles

To each Penrose tiling P we can associate a tail end τ(P ). Recall that there
is an infinite sequence P = P0, P1, P2, ... where Pn is the parent of Pn−1. In
other words, Pn is obtained from Pn−1 by the grouping process discussed in
class.

We say that the nth digit of τ(P ) is a 0 if x is contained in a kite of Pn

and a 1 if x is contained in a dart of Pn. We might need to move x slightly
to avoid choosing a point that lies right on a crack. If we replace x by x′,
then only the initial part of the sequence changes. So, τ(P ) is well defined.

By using the subdivision operation, we can produce a Penrose tiling P
that has any τ(P ) we like. Hence, there are uncountably many different
Penrose tilings.

4 A Heirarchy of Infinite Sets

For any set S let 2S denote the set of subsets of S.

Lemma 4.1 There is no bijection between S and 2S.

Proof: This is really a generalization of Cantor’s proof, given above. Sup-
pose that there really is a bijection f : S → 2S. We create a new set A as
follows. We say that A contains the element s ∈ S if and only if s is not a
member of f(s). This makes sense, because f(s) is a subset of S.
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Since A is a subset of S, we have A = f(a) for some a ∈ S. If a ∈ A then
a ∈ f(a). But then, by definition, a is not a member of A. On the other
hand, if a 6∈ A, then a ∈ f(a). But, again, this is a contradiction. The only
way out of the contradiction is to realize that there can be no bijection f . ♠

We can start with S0 = N , and recursively define Sn = 2Sn−1 . That is,
Sn is the set of subsets of Sn−1. Then, the sets S0, S1, S2, ... form an infinite
heirarchy of sets, each one so much larger than the previous one that there
is no bijection between it and the previous one.

The fun doesn’t stop there. We can define

Σ0 =
∞⋃

n=0

Sn.

Then, there is no bijection between Σ0 and Sn for any n. The set Σ0 is larger
than all of the sets previously defined. One can now define Σn = 2Σn−1 . And
so on.
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