
Logic in Computer Science
Chapter 12

Antonina Kolokolova

February 7, 2014

How to describe a set? List elements, or list a property that elements have.

S = {John,Bob,Mary,George, Alex}. Another set is S = {2, 3, 4}, which is the same as
S = {x | 2 ≤ x ≤ 4}. If a set is infinite, we cannot list its elements, so we have to list the
property: S = {x | x ∈ N ∧ x|2} is the set of all even natural numbers

12.1 Operations on sets

Suppose S1 and S2 are two sets (with the universe U). Then the following are set operations:

Union: S1 ∪ S2 = {x|x ∈ S1 ∨ x ∈ S2}
Intersection: S1 ∩ S2 = {x|x ∈ S1 ∧ x ∈ S2}

Difference: S1 − S2 = {x|x ∈ S1 ∧ x /∈ S2}
Complement: S̄1 = {x|x /∈ S1}

Note that the complement of an empty set is the universe, and the complement of the
universe is the empty set.

Union

U U U U

Difference ComplementIntersection

Figure 1: Set operations

39

Two sets are equal of they are subsets of each other: A = B is defined to be ∀x(x ∈ A ⇐⇒
x ∈ B), or, alternatively, iff A ⊆ B ∧B ⊆ A.

One way of representing sets is Venn diagrams. Here, each set is drawn as a circle, intersecting
of the sets have common elements. Venn diagrams are useful for visualizing sets containing
common elements.

Example 1. Suppose 15 students take CS2742 and 10 students take CS2711. Provided that
3 students take both, how many are in either one of these two courses?

To solve the problem, draw a Venn diagram (two intersecting cir-
cles) for the sets of students in CS2742 and CS2711, respectively.
Put the number of students taking both (3) in the intersection.
Now, put the remaining number of students in the corresponding
sets outside of the intersection: 15-3=12 in the CS2742 set, and
10-3=7 in the CS2711 set.

Now, the total number of students, that is students that are in either of these two courses,
is the sum of these three numbers: |A ∪B| = (|A| − |A ∩B|) + (|B| − |A ∩B|) + |A ∩B| =
12+7+3 = 22. Equivalently, |A∪B| = |A|+ |B|−|A∩B| = 15+10−3 (since we subtracted
|A ∩B| twice and added once).

In general, this type of argument is called the rule of inclusion/exclusion and it can be
generalized for an arbitrary number of sets. Using the notation |S| to denote the number of
elements in the set,

|A ∪B| = |A|+ |B| − |A ∩B|
|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

Later in the course we will develop techniques that will allow us to prove a general inclu-
sion/exclusion rule.

Puzzle 1. What is wrong with the following argument?
“Nothing is better than an eternal bliss. A hamburger is better than nothing. Therefore,a
hamburger is better than eternal bliss”.

12.2 Boolean algebras

Before continuing, let us look at a simple example of sets:

40

Example 2 (Intervals on a real line). Let (−1, 0] and [0, 1) be two intervals on a real line.
(−1, 0] ∪ [0, 1) = (−1, 1), (−1, 0] ∩ [0, 1) = {0}, (−1, 0]− [0, 1) = (−1, 0).

Definition 1. Two sets are disjoint if they have no common elements. Sets A1 . . . An form
a partition of a set A if sets are pairwise disjoint (that is, ∀i, j Ai ∩Aj = ∅ and their union
forms the whole set A.

Note that the rule of inclusion/exclusion simplifies greatly when sets are disjoint: in this
case, the sum of the sizes of the disjoint sets is exactly the size of their union. This is used
in probability theory.

Some subset relations:

1) A ∩B ⊆ A

2) A ⊆ A ∪B

3) Transitivity: if A ⊆ B and B ⊆ C then A ⊆ C.

To prove that A ⊆ B show that any element x ∈ A is also ∈ B. Proof style: “suppose x is
in A. Now show that x ∈ B.” Now use logic of the definitions.

Now can prove properties of sets such as DeMorgan, by using “suppose x is in the left side...
show that x is in the right side”.

To prove something does not hold, find a counterexample.

Example 3. Show that it is not true that for all A,B,C, (A − B) ∪ (B − C) = A − C.
To prove this, find a counterexample, that is, sets A,B,C for which this does not hold. Let
A = {1, 2}, B = {2} and C = {1}. Then A− C = {2}, A−B = {1}, B − C = {2} and the
union is {1, 2}. Alternatively, think of an element in the LHS that is not in A− C: in this
case, such an element is some element not in A.

As you have noticed, the algebra of sets is very similar to the algebra of propositions. This
is because they are all examples of Boolean algebras.

Definition 2. A Boolean algebra is a set B together with two operations, generally denoted
+ and ·, such that for all a and b in B both a + b and a · b are in B and the following
properties hold:

• Commutative laws: a + b = b + a and a · b = b · a.

• Associative laws: (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).

41

• Distributive laws: (a+ b) · c = a · c+ b · c and a · b+ c = (a+ c) · (b+ c) (recall that the
second one does not hold for the normal arithmetic + and ·).

• Identity laws: a + 0 = a and a · 1 = a

• Complement laws: for each a there exists an element called negation of a and denoted
ā such that a + ā = 1, a · ā = 0.

In the case of propositional logic, 0 is F , 1 is T and there are no other elements, so it is
sufficient to say that T̄ = F and F̄ = T (in that setting, ¬ is used for complementation).
In set theory, 0 and 1 are ∅ and the universe U , respectively, and negation of every set is its
complement. Now, properties of Boolean algebras such as De Morgan’s law can be derived
from these axioms.

Example 4 (Idempotent identity). Show that a + a = a.

a = a + 0 because 0 is the identity for +

= a + (a · ā) by the complement law for ·
= (a + a) · (a + ā) by the distributive law

= (a + a) · 1 by the complement law for +

= a + a because 1 is the identity for +

Now, we obtain that the Idempotent identity holds for propositional logic and for set theory,
since both are examples of Boolean algebras.

42

Chapter 13

13.1 Building new sets: power set, Cartesian product, relations.

A power set of a set A, denoted 2A, is a set of all subsets of A. For example, if A = {1, 2, 3}
then 2A = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

Let |A| denote the number of elements of A (also called cardinality, especially when talking
about infinite sets.) The size of the power set, as notation suggests, is 2|A|.

Theorem 1. Let A be a finite set. Then the cardinality of 2A is 2|A|.

Proof. Suppose A has n elements. Now, every subset S of A can be represented by a binary
string of length n, which would have a 1 in the positions corresponding to an element in S,
and a 0 in places corresponding to elements not in S. For example, if A = {1, 2, 3} as above,
then S{1, 3} is represented by a string 101, and ∅ is represented by a string 000. Now, the
number of binary strings of length n is 2n. Therefore, the number of possible subsets of A
(and thus the elements of 2A) is also 2n.

What if A is infinite? Still the size of the powerset (called cardinality in this context) will be
larger. In one of the upcoming lectures we will talk about a technique called Diagonalization,
due to Cantor, that can be used to show this.

Another useful notation is the Cartesian product, which will allow us to talk about ordered
tuples of elements (pairs, triples, etc). A Cartesian product of sets A1 . . . An, denoted A1 ×
· · ·×An is a set of ordered tuples < a1, a2, ...an > such that a1 ∈ A1∧a2 ∈ A2∧· · ·∧an ∈ An.
Note that an ordered tuple (a, b) is not the same as a set {a, b}: here the order of elements
matters, so the tuple < 1, 2 > is not the same as the tuple < 2, 1 >. For two sets, their
Cartesian product is A×B = {(a, b) | a ∈ A and b ∈ B}.

For example, a Cartesian product of sets {3, 4} and {1, 2, 3} is the set of pairs {(3, 1), (3, 2),
(3, 3), (4, 1), (4, 2), (4, 3)}. Note that the pair (4, 3) is in the set, but the pair (3, 4) is not,
because 4 is not an element of {1, 2, 3}.

Definition 1. A relation on n variables R(x1, . . . , xn) is a subset of the Cartesian product
of domains of x1, . . . , xn.

43

You often hear an expression ”relational databases”. Indeed, a standard way to describe a
database is as a set of relations, where each parameter corresponds to a field in a database,
and each tuple (element) to an item in the database. For example, a student database could
have a relation StudentInfo(name, number, address) which could be a subset of Strings×
N × Strings. That is, every item in this relation will consist of three elements, denoting
the name, student number and address of a specific student. A database usually contains
several different relations.

13.2 Relations

Recall that a relation on n variables is just a subset of a Cartesian products of n sets which
are domains of the variables. In this respect, a binary relation on a set A is a just a subset
of A× A.

For example, R(x, y) ⊆ Z × Z such that R(x, y) if and only if x ≤ y is a binary relation.
In this case, we often write directly x ≤ y, rather than writing R(x, y). The relation x = y
is also a binary relation, which can be defined for many different domains such as integers,
reals, strings and so on.

Another common binary relation is congruence mod n for a natural number n: in that
case, R(x, y), written as x ≡ y mod n, if ∃z ∈ Z such that x − y = zn. This is the same
as saying that x and y have the same remainder from division by n. For every n there is a
different mod n relation.

Yet another binary relation is Parent(x, y), which contains all pairs x, y such that x is a
parent of y. At this point you may ask what is the difference between a predicate Parent(x, y)
and a binary relation Parent(x, y): the predicate is true on the pairs (x, y) that belong to
the set which is the binary relation.

There are several major types of binary relations. In this case, it is often more convenient
to view a binary relation R(x, y) as “taking” a x “into” y. Binary relations can be:

• Reflexive: ∀x ∈ A R(x, x).
For example, x = y, x ≤ y, x ≡ y mod n are reflexive, but Parent9(x, y) and x < y
are not.

• Symmetric: ∀x, y ∈ A R(x, y)→ R(y, x).
Antisymmetric: ∀x, y ∈ A R(x, y) ∧R(y, x)→ x = y.
For example, x = y, x ≡ y mod n are symmetric, x ≤ y, x < y and Parent(x, y)
are antisymmetric, and the relation Likes(x, y) defined on the domain of people is
neither symmetric nor antisymmetric. Note that symmetric and antisymmetric are
not complements: an easy way to see that is by noticing that both have a universal
quantifier in the definition, whereas a complement of a universal quantifier is existential

44

quantifier. Another way of checking it is to find a relation such as Likes(x, y) which
is neither symmetric nor antisymmetric.

• Transitive: ∀x, y, z ∈ A R(x, y) ∧R(y, z)→ R(x, z)
For example, relation x = y is transitive, because if x = y and y = z then x = z as
well. Same can be said about x ≤ y and x < y: if x is smaller than y, and y is smaller
than z, then x is definitely smaller than z.

Note that Parent(x, y) relation is not transitive: if x is a parent of y, and y is a parent
of z, then x is not a parent of z, it is a grandparent. But often we do want to express
the fact that one person is related to another by a chain of Parent(x, y) relationships:
that is, it is a grandparent, or great-grandparent, or great-great-grandparent and so
on. For that, we can define a relation Ancestor(x, y), which would contain all pairs
(x, y) related by a chain of Parent() relations. Such a relation is called a transitive
closure.

Definition 2. For a relation R(x, y), its transitive closure contains all pairs x, y such
that there is a sequence z1, . . . , zn with R(x, z1), R(zn, y) and ∀1 ≤ i < n R(zi, zi+1).

For example, if John is a grandparent of Jill via Mary who is the daughter of John and
the mother of Jill, then x=John, y=Jill and n = 1, so there is just one z1=Mary such
that Parent(John,Mary) and Parent(Mary, Jill). Thus, Ancestor(John, Mary) holds.

A way to describe the Ancestor relation is by the following recursive definition (of the
Ancestor predicate): Ancestor(x, y) = Parent(x, y)∨∃zParent(x, z)∧Ancestor(z, y).

However, this definition is not a first-order formula – it mentions the relation Ancestor(x, y)
which is being defined. Moreover, as we have seen with the Flight example in the pred-
icate logic, transitive closure cannot be defined by a first-order formula.

A relation that is reflexive, symmetric and transitive is called an equivalence relation. Equal-
ity and congruence mod 2 are equivalences.So is equivalence of digital circuits computing the
same function. Any equivalence relation breaks up the set of all objects on which it is defined
into equivalence classes: in such a class all objects are equivalent to each other, but not to
any object outside of the class. For example, x = y mod 5 breaks all natural numbers into
5 equivalence classes: 1) numbers that are divisible by 5, 2) numbers that have a remainder
1 from division by 5, 3) ones with remainder 2, 4) with remainder 3, 4) with remainder 4. In
the first class, there are numbers 0,5,10,15, 20.., in the third – 2,7,12,17,22,... It is possible
to extend this definition to all integers: -1 will be in the same class as 4, -2 in the same class
as 3, -5 as 5 and so on. For the names of the equivalence classes we can pick any element
of them, but it is convenient to choose 0, 1, 2, 3, 4, and in general, we represent equivalence
classes mod n as 0, 1, . . . , n− 1.

There is a special term to denote relations which are reflexive, transitive and antisymmetric:
they are called partial order relations (e.g., subset relation). A total order is a subclass of
partial orders with an additional property that any two elements are related: that is, for any
x, y either R(x,y) or R(y,x). E.g.: ≤ on numbers.

45

13.3 Functions

Recall that a relation on n variables R(x1, . . . , xn) is a subset of the Cartesian product of
domains of x1, . . . , xn. A function is a special kind of relation that has exactly value of xn

for any tuple of values of x1 . . . xn−1. Usually we write f(x1 . . . xn−1) = xn to mean that R
is a function and R(x1, . . . , xn−1, xn) holds.

So just as we defined numbers using sets, we now defined functins and relations on numbers
(and not just numbers: the variables can be anything).

Example 1. f(x) = Mother(x) is a function, so is f(x) = x2, so is f(x) = x/y.

Definition 3. We often write functions as f : X → Y (read as “function f from X to Y ”)
meaning that the tuples of variables of f come from X, and that the output value of f comes
from Y . We call X the domain of f , and {y|x ∈ X ∧ f(x) = y} a range of f , or image of
X under f . A set Y is called codomain; the range of f is a subset of the codomain.

Domain and codomain can be different sets: e.g., function counting the number of 0’s in a
binary string f : {0, 1}∗ → N.

• Identity function: f(x) = x. Can be defined for any domain=codomain.

• Constant function: f(x) = a, where a does not change when x does. For example,
f : Z→ Z, f(x) = 0.

• Arithmetic functions: logarithmic function f(x, y) = logx y, exponential f(x, y) = xy,
addition, multiplication, division, subtraction, etc.

• Boolean functions: a function from strings of 0s and 1s of length n (denoted {0, 1}n)
to {0, 1}.

A function is defined by a formula if there is a formula which is true exactly on tuples of
inputs + output of the function. E.g., a function F : N→ N f(x) = x+ 1 can be defined by
y > x ∧ ∀z (z ≤ x ∨ z ≥ y). Sometimes a function is not well defined on a certain domain:
e.g.,

√
x is not well-defined when both the domain and the range are natural numbers.

Definition 4. Let f : X → Y be a function. Then f is one-to-one (or injective) iff ∀x, y ∈
X (f(x) = f(y) → x = y). A function is onto (or surjective) if ∀y ∈ Y ∃x ∈ X(f(x) = y).
A function is bijective if it is both one-to-one and onto.

To prove that two sets are the same size, give a bijection (or give two functions, one a
surjection and one an injection).

To prove that a function is one-to-one show that f(x) = f(y)→ x = y.

46

Not total BijectionNot one−to−one Not a functionNot onto

Example 2. For example, f(x) = 4x + 1, f(x) = f(y) so 4x+1=4y+1 so x = y. On the
other hand, f : Z→ Z, f(n) = n2 is not one-to-one: as a counterexample take x = −1 and
y = 1. Then x 6= y, but x2 = y2.

To prove that a function is onto, show that every element has a preeimage. To prove that it
is not onto, show that there is an element in the codomain such that nothing maps into it.

Example 3. Consider again f(x) = 4x+1 over real numbers. There it is onto. Now consider
it over integers. It is not onto integers.

47

Chapter 14

14.1 Cardinalities and diagonalization

It is easy to compare sizes (in set theory terminology, cardinalities) when sets are finite:
whichever set has more elements, that set is larger. In a way, what we are doing in that com-
parison is creating a correspondence between the elements of the sets by matching elements
of one set to elements of another one-by-one. If this correspondence is both one-to-one and
onto, then our sets are of equal size. For example, to match {10, 20, 30} with {a, b, c} we can
define a bijection f(x) by f(10) = a, f(20) = b, f(30) = c. If sets have different sizes, then
either f cannot be one-to-one (if the second set is smaller) or it is not onto (if the second
set is large).

This is the idea behind the comparison of infinite sets. We declare two sets to have the same
size (cardinality), if there is bijection (that is, a function which is both one-to-one and onto)
from one set to the other. To extend this definition, we say that a (possibly infinite) set
A has cardinality |A| ≤ |B| if there is a one-to-one function from A to B. Note that this
gives us another way of proving that two sets have equal cardinality: give two one-to-one
functions, one from A to B and another from B to A. Rephrasing pigeonhole principle: for
sets such that |A| < |B| there is no one-to-one function from B to A (no onto function from
A to B).

But this definition gives us some strange consequences. With infinite sets, it is possible that
a proper subset has the same cardinality as the whole set (although it is not possible for a
subset to be larger than the whole: identity function gives the proof). Example: N ⊂ Q,
Even ⊂ N, N ⊂ N× N.

Definition 1. We call sets that have the same cardinality as N countable sets. The sets that
have larger cardinality such as R, we call uncountable.

Example 1. The set of positive rational numbers is countable.

Note that we already know an injective function from N to Q+: it is an identity function.
So the interesting part is to give an injective function from Q+ to N.

For that, look at the following table:

48

1/1 1/2 1/3 1/4 1/5 ...
2/1 2/2 2/3 2/4 2/5 ...
3/1 3/2 3/3 3/4 3/5 ...
4/1 4/2 4/3 4/4 4/5 ...
5/1 5/2 5/3 5/4 5/5 ...
...

...
...

...
...

...

Now, start counting the elements of the table as follows:

1: 1/1, 2: 1/2. 3: 2/1, 4: 1/3, 5: 2/2, 6: 3/1, 7: 1/4 and so on (that is, list all elements with
the sum of numerator and denominator equal 2, then all with sum =3 and so on). Note that
every rational number is represented in this table, multiple times, too (for example, 2/4 and
1/2). So we just constructed a one-to-one function from a set larger than Q+ to the set of
natural numbers. Therefore, the cardinality of Q+ is at most the cardinality of N. Since it
is also at least |N|, we conclude that |Q+| = |N|.

This kind of argument is often used to show that a certain set is countable.

14.2 Diagonalization

At this point you may ask – is it true, then, that all infinite sets have the same size? What
about a powerset of natural numbers 2N? In this case, we can show that the resulting set is
actually strictly larger than N. For this, we will use a technique called diagonalization, due
to Cantor, who used it to show that the set of real numbers is larger than the set of natural
numbers.

The idea of the proof is as follows. The proof proceeds by contradiction. Assume, for the
sake of contradiction, that your set in question (i.e., 2N or R) is countable, that is, there
is function from the elements of this set to natural numbers. Make a table in which rows
correspond to elements being enumerated in the order of that assumed enumeration (e.g,
rows are real numbers represented as strings of digits or rows are (infinite) strings encoding
the powerset of natural numbers). Now, construct a new element which belongs to the set
and which is different from any row in the table.

For example, here is how the table looks for proving that the powerset of natural numbers
is uncountable. Represent each subset S of natural numbers by an infinite string s with 0 in
bit i when number i is not in the set S and 1 in bit i if i ∈ S. Now, list these strings as rows
of the table, according to that alleged enumeration. The table would look similar to this:

49

1 0 0 1 1 0 1 1 0 1
2 1 1 1 1 1 0 0 1 1
3 1 0 0 0 0 1 1 1 1
4 1 1 0 1 1 0 0 1 1
5 0 0 1 1 1 1 1 0 0

...
...

...
...

...
...

...
...

...
...

- 1 0 1 0 0 1 1 0 1

Here, inside of the table is the alleged listing of all possible subsets of natural numbers,
represented as strings. The string under the table differs from the first line in the table in
the first bit, from the second line of the table in the second bit and so on. Since this string
looks like the diagonal of the table inverted, the method is called diagonalization.

How do we show that this diagonal string that we constructed is not in the listing? Suppose
it is, then it is in the table as a row number k for some k. But this is not possible, because
our diagonal string differs from the string in row k in its kth bit. Therefore, this string is
not in the enumeration. Since this works for any possible enumeration of subsets of natural
numbers (just construct a corresponding string for each enumeration), we conclude that 2N is
not countable. However, it has the same size as the set of all real numbers (exercise: see how
you can prove that). It makes sense to ask is there a set with cardinality strictly between
the two, that is, some set A such that |N| < |A| < |R|. And the answer is... not only we
don’t know, but either way would not contradict the axioms of mathematics.

This is called the Continuum Hypothesis. It says that there is no set whose size is strictly
between that of natural numbers and that of real numbers (that is, between N and 2N.
This hypothesis is not provable (or disprovable) from the current axioms of mathematics (of
Zermelo-Fraenkel set theory ZFC).

Another interesting application of this method is to show that there are problems that
cannot be solved by any (say, Java) program. Think about the simplest kind of problems,
classification of inputs – or even simpler, determining whether a given input is a number
belonging to a specified set. For example, such membership problem can be determining,
given a natural number, whether that number is prime or whether it is a square of another
number. As you are already noticing from the definition of the problem, here a ”problem”
(often called ”language” in this setting) corresponds exactly to a subset of natural numbers
discussed above. So as before the rows of our table will encode subsets of natural numbers,
with each column corresponding to a number that can be given to a program as an input.

Now, we want to enumerate the rows of the table by Java programs, where a Java program
associated with a row should correctly compute all values in this row (for example, if the
row corresponds to 1s for all prime numbers, the Java program should correctly determine
whether a given number is prime). Note that any Java program can be written as a finite
binary string, and we already said that finite binary strings (with 1 in front) form a bijec-

50

tion with natural numbers. In particular, there are not more Java programs than natural
numbers. Now, applying diagonalization exactly the same way as we did above, we obtain
a language that differs from the language computed by ith Java program on the ith number.
Therefore, this language is not computable.

At this point you may ask if there is a specific, concrete example of a language not computed
by any Java program. Indeed there is, and to construct it, we will use intuition akin Russell’s
paradox A = {x | x /∈ A}. This particular example is called the Halting Problem, and it
corresponds to a very natural task of checking whether a given program goes into an infinite
loop on a given input or eventually stops (halts). More precisely, let CheckHalt be an
algorithm such that CheckHalt(M,x) prints “halts” if M terminates on input x, and “loops”
if M does not terminate. Let Diag(X) = ¬CheckHalt(X,X). Such a Diag(X) gives a
paradox (just think what Diag would do if presented with its own code as an input).

51

	ch12
	ch13
	ch14

