
Lecture 11, 12Logic and Proof
CS2209A 2017Applied Logic for Computer Science

Instructor: Yu Zhen Xie
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Proofs
• What is a theorem? 
– Lemma, claim, etc

• What is a proof? 
– Where do we start?
– Where do we stop? 
– What steps do we take?
– How much detail is needed?
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The truth
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Theories and theorems
• Theory:  axioms + everything derived from them using rules of inference

– Euclidean geometry,  set theory,  theory of reals, theory of integers, Boolean algebra… 
– In verification: theory of arrays.

• Theorem: a true statement in a theory 
– Proved from axioms (usually, from already proven theorems) 

• A statement can be a theorem in one theory and false in another! 
– Between any two numbers there is another number. 

• A theorem for real numbers. False for integers! 
Pythagorean theorem
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Axioms example: Euclid’s postulates
I. Through 2 points a line segment can be drawn II. A line segment can be  extended to a straight line indefinitely III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centreIV. All right angles are congruentV. Parallel postulate
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Some axioms for propositional logic 
• For any formulas A, B, C: 
– A ∨ ¬� ≡ ���� 																					� ∧ ¬� ≡ ��
��
– ���� ∨ � ≡ ����. 															���� ∧ � ≡ �
– ��
�� ∨ � ≡ �. 																				��
�� ∧ � ≡ ��
��
– A	∨ � ≡ � ∧ � ≡ �

• Also, like in arithmetic (with ∨ as +, ∧	as *)
– � ∨ � ≡ � ∨ �	, 				 � ∨ � ∨ � ≡ � ∨ � ∨ � 	
– Same	holds	for	∧.		
– Also,  � ∨ � ∧ � ≡ � ∧ � ∨ � ∧ �

• And unlike arithmetic
– � ∧ �	 ∨ � ≡ 		 � ∨ � ∧ (� ∨ �)	 6



Counterexamples
• To disprove  a statement, enough to give a counterexample:  a scenario where it is false 
– To disprove that � → � ≡ � → �	

• Take � = "���, � = #�
��,
• Then  � → �	 is false, but 	B → �	is true.

– To disprove that  if ∀&	∃(	) &, ( ,	 then ∃(	∀&	) &, ( ,	
• Set the domain of x and y  to be {0,1} 
• Set P(0,0) and P(1,1)  to true, and P(0,1), P(1,0) to false. 
• Then ∀&	∃(	) &, ( is true, but 	∃(	∀&	) &, ( is false.

– Because ) 0,0 ∨ ) 0,1 ∧ ) 1,0 ∨ ) 1,1 is true, 
– But () 0,0 ∧ )(1,0)) ∨ () 0,1 ∧ )(1,1)) is false. 7



Constructive proofs
• To prove a statement of the form ∃&,		sometimes can just find that x  
– ∃& ∈ ℕ	./�0 & ∧ )�12�(&)
• Set x = 2. 
• Even(x) holds.  
• Prime(x) holds.  
• Therefore, ./�0 & ∧ )�12�(&) holds.  
• Done.

– This proof is constructive, because we constructed an x which makes the formula ./�0 & ∧ )�12�(&) true. 8



Proof 
• To prove that something of the form ∀&	� & :
– Make sure it holds in every scenario (method of exhaustion)

• For all possible values  of A and B,  ¬� → ¬�	 is equivalent to � → �, by checking  the truth table.  
– But there can be too many scenarios! 

• For any integer, there is a larger integer which is a prime. 
• For any two reals, there is a real between them. 

– Instead,  use axioms and rules of inference to derive it. ¬� → ¬� ≡	¬¬� ∨ ¬�		 ≡ � ∨ ¬	�	 ≡ ¬� ∨ � ≡ � → �
• So ¬� → ¬� ↔ (� → �)		is a tautology.  
• And, therefore, ∀�, � ∈ 	����, ��
�� , ¬� → ¬� ≡ � → �9



Puzzle
• Let 4 = & ∈ ℕ	 	&	1�	�/�0} ∩ & ∈ ℕ 	&	1�	788}	
• Prove or disprove:  ∀& ∈ 4, &	87��	07"	81/18�	&9	
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Puzzle
• Let 4 = & ∈ ℕ	 	&	1�	�/�0} ∩ & ∈ ℕ	 	&	1�	788}	S = ∅
• Prove or disprove:  ∀& ∈ 4, &	87��	07"	81/18�	&9	
– Let P(x)= “&	87��	07"	81/18�	&9” 
– To disprove, can give a counterexample

• Find an element in S such that P(x) is true …
• But there is no such element in S, because there are no elements in S at all! 

– To prove, enough to check that it holds for all elements of S. 
• There is none, so it does hold for every element in S. 

– Another way: Since S is defined as a subset of natural numbers, can read ∀& ∈ 4	) & as ∀& ∈ ℕ		 & ∈ 4 → ) & .	
• Since   “& ∈ 4"	is always false,  & ∈ 4 → ) & is true for every & ∈ ℕ	

– Call a statement ∀& ∈ ∅		) & vacuously true. 11



Modus ponens
• The main rule of inference, given by the tautology( < → = ∧ <) → =,  is called Modus Ponens (“method of affirming” in Latin).  
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• If  <	 then 	=
• <___________ ∴	=

p q <→= (<→=)∧< ((<→=)∧<)→=True True True True TrueTrue False False False TrueFalse True True False TrueFalse False True False True



Universal Modus Ponens
• All men are mortal
• Socrates is a man
• Therefore, Socrates is mortal 
• All cats like fish
• Molly likes fish
• Therefore, Molly is a cat
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Universal Modus Ponens
• ∀&, ) & 	 → ? &
• ) �
• -------------------------
• ? �
• All men are mortal (∀&, @�0 & → @7�"�
 & )
• Socrates is a man    (@�0 47A��"�� )
• Therefore, Socrates is mortal  (@7�"�
(47A��"��)
• All numbers are either odd or even 
• 2 is a number 
• Therefore, 2 is either odd or even.
• All trees drop leaves 
• Pine does not drop leaves
• Therefore, pine is not a tree  

Mortals
Men

Q P

14



Universal Modus Ponens
• All men are mortal
• Socrates is a man
• Therefore, Socrates is mortal 
• All cats like fish
• Molly likes fish
• Therefore, Molly is a cat

MortalMen
Like fishcats
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Instantiation/generalization
• In general, if ∀	& ∈ 4		� & is true for some formula � & ,	 if you take any specific element � ∈ 4,	 then � � must be true. 
– This is called the universal instantiation rule.
• ∀& ∈ ℕ		 & > −1 	
• ∴ 		5 > −1	

• If you prove � � without any assumptions about �	other than � ∈ 4, then ∀& ∈ 4, � &
– This is called universal generalization. 
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Instantiation/generalization
• If you can find an element � ∈ 4 such that � � , then ∃& ∈ 4, � &
– This is called existential generalization. 

• Alternatively, if ∃	& ∈ 4		� & is true,	 then you can give that element of 4 for which � &is true a name, as long as that name has not been used elsewhere. 
– This is called the existential instantiation rule.
• ∃& ∈ ℕ		 & − 5 = 0 	
• ∴ 		E = 0 + 5 17



Existential instantiation
• If ∃	& ∈ 4		� & is true,	 then you can give that element of 4 for which � & is true a name, as long as that name has not been used elsewhere. 
– “Let n be an even number. Then n=2k for some k”. 
• ∀& ∈ ℕ			./�0 & → 		∃	( ∈ ℕ		 & = 2 ∗ (

– Important to have a new name! 
• “Let n and m be two even numbers.  Then n=2k and m=2k” is wrong! 
• ∀&I, &9 	 ∈ ℕ			./�0 &I ∧ ./�0 &9 →		∃	(I,	(9 ∈ ℕ		 &I = 2 ∗ (I ∧ &9 = 2 ∗ (9
• “Let n and m be two even numbers.  Then n=2k and m=2ℓ” 18



Other inference rules
• Combining universal instantiation with tautologies, get other types of arguments:

• (This particular rule is called “transitivity”)
For any x, if & > 3	, then & > 2For any x, if  & > 2,	then & ≠ 1	_________________∴For any x, if & > 3	, then	& ≠ 1

M → Nq → �_____ ∴	M → �	
• ∀&	) & → ? &
• ∀&	? & → P &_______________ ∴∀&	) & → P & 	
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Types of proofs
• Direct proof of ∀Q	R Q

– Show that � & holds for arbitrary x, then use universal generalization. 
• Often, � & is of the form S & → T(&)

– Example:  A sum of two even numbers is even.
• Proof by cases 

– If can write ∀&	� & as  ∀&(SI & ∨ S9 & ∨ ⋯∨ SV & ) → T(&),  prove SI & → T & ∧ (S9 & → T & ) ∧ ⋯∧ (SV & → T(&))
– Example: triangle inequality 	( & + ( W & + ( )			

• Proof by contraposition 
– To prove ∀&		S & → T(&), prove ∀&	¬T & → ¬S(&)
– Example: If square of an integer is even, then this integer is even. 

• Proof by contradiction 
– To prove ∀&	� & ,  prove ∀&	¬� & → ��X4.
– Example:  2		is not a rational number. 
– Example: There are infinitely many primes. 20



Puzzle: better than nothing
• Nothing is better than eternal bliss 
• A burger is better than nothing ------------------------------------------------
• Therefore, a burger is better than eternal bliss.
Is there anything wrong with this argument? 

W																														W

21



Direct proof
• Direct proof of ∀Q ∈ Y		R Q : 	show directly that � & holds for arbitrary x, then use universal generalization. 
– Universal instantiation: “let n be an arbitrary element of the domain 4 of ∀&	” 
– Show F(n) from axioms, definitions, previous theorems… 
• When � & is of the form S & → T(&), then assume S(0) is true, and from that (and axioms, etc) derive H(n)
• That proves S 0 → T 0

– Now use universal generalization to conclude that  ∀&	� & is true. [ (Done).22



Direct proof
• Definition (of even integers):  

– An integer n is even iff ∃E ∈ ], 0 = 2 ⋅ E.	
• Theorem:  Sum of two even integers is even.  

– ∀&, ( ∈ ]		./�0 & ∧ ./�0 ( → ./�0 & + ( .	
• Proof:  

– Suppose m and n are arbitrary even integers. 
• Universal instantiation. 

– Then ∃E ∈ ], 0 = 2E and ∃
 ∈ ],2 = 2
.	
• By definition: note different variables. 

– 2 + 0 = 2E + 2
 = 2(E + 
)
• By substitution and axioms of theory of integers (algebra). 

– m+ n = 2 E + 
 , so 2 + 0 is even 
• By definition (other direction of iff). 

– Since m and n were arbitrary, therefore,  we have shown what we needed: ∀&, ( ∈ ]		./�0 & ∧ ./�0 ( → ./�0 & + ( .	
• By universal generalization. [ (Done).23



Modular arithmetic
• Quotient-remainder theorem: for any integer n and a positive integer d,  there exist unique integers q(quotient) and r (reminder) such that: 0 = 8N + �	and 0 W � _ N

– 16 = 3*5+1,  11 = 2*4+3…  
• 0 ≡ 2	(278	8), pronounced “n is congruent to mmod d”,   means that n and m have the same remainder when divided by d. That is, 0 = 8NI + �	and 2 = 8N9 + �, for the same r.  
– In some programming languages, there is an operator mod, so you might see  “n mod d”, which would return r .  

• In Python, it is n % d.   
• 0 ≡ 2	 278	8 and 2 = 0	278	8 are not the same: 
• 10 ≡ 16	 mod	3 , but 10	278	3 = 1

– Operator  div,  “n div d” is sometimes used to compute q. 
• In  Python, integer division  (or /) does it. 24



Modular arithmetic in CS
• Example:  day of the week. 
– Oct 4th and Oct 11th are both on Wednesday: 4 ≡ 11	(278	7)

• Hash functions:  distribute random data evenly among d memory locations 
– Often take h(k) = k mod p for some prime p.  If E ≡ ℓ	 278	M ,	 get a collision. 

• Cryptography: 
– Parity checks in codes, ISBNs, etc. 
– Public key crypto, RSA …. 
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Direct proof example
• Theorem: for all integers n, m and d, where 8 > 0,	if   0 ≡ 2	 278	8 	then there exists an integer k such that n= 2 + E8	

– ∀&, (, c		(c > 0 ∧ 	& ≡ (	 278	c ) → ∃�			& = ( + �c
• Proof:  

– Let n, m, d be arbitrary integers such that 8 > 0	 and 0 ≡ 2	 278	8
• Universal instantiation and assuming the premise

– Then there are integers NI, N9, �	with	 0 W �	 _ 8	such that 0 = 8NI + �and  2 = 8N9 + �.
• By the quotient-remainder theorem and definition of congruence. 

– Now,  n−2 = 8NI + � − 8N9 + � = 8 NI − N9
• Substitution and algebra.

– Set k = NI − N9.  For this k, 0 = 2 + E8.	 Therefore, ∃�			0 = 2 + �8
• By existential generalization

– Since n, m, d were arbitrary integers with  8 > 0	 and 0 ≡ 2	 278	8 ,∀&, (, c		(c > 0 ∧ 	& ≡ (	 278	c ) → ∃�			& = ( + �c
• By universal generalization. [ (Done).26



Proof by cases
• Use the tautology MI ∨ M9 ∧ MI → N ∧ M9 → N → N	
• Or its variant with cases MI…MV

• If ∀&	� & is  ∀&(SI & ∨ S9 & ) → T(&),  
• prove SI & → T & ∧ (S9 & → T & ). 
• Proof: 
– Universal instantiation: “let n be an arbitrary element of the domain 4 of ∀&	” 
– Case 1:  SI 0 → T(0)
– Case 2: 	S9 0 → T(0)

• ….  (if more cases than 2) 
• Case k: SV 0 → T(0)

– Therefore, SI 0 ∨ S9 0 ) → T(0), 
– Now use universal generalization to conclude that  ∀&	� & is true. [ (Done).27



Proof by cases: example 1 
• Definition (of odd integers):  

– An integer n is odd iff ∃E ∈ ], 0 = 2 ⋅ E + 1.	
• Theorem:  Sum of an integer with a consecutive integer is odd.   

– ∀& ∈ ]		h88(& + & + 1 ).	
• Proof:  

– Suppose n is an arbitrary integer. 
– Case 1:  n is even. 

• So n=2k for some k (by definition).
• Its consecutive integer is n+1 = 2k+1.  Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1.  (axioms). 
• Let 
 = 2E. Then  4E + 1 = 2
 + 1 is an odd number (by definition). So in this case, n+(n+1) is odd. 

– Case 2: n is odd.  
• So n=2k+1 for some k (by definition).
• Its consecutive integer is n+1 = 2k+2.  Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1.  (axioms). 
• Let 
 = 2E + 1.	 Then  n+(n+1) = 2(2k+1)+1= 2
 + 1,  which is an odd number (by definition). So in this case, n+(n+1) is also odd. 

– Since in both cases n+(n+1) is odd, it is odd without additional assumptions. Therefore,  by universal generalization, get ∀& ∈ ]		h88(& + & + 1 ).	 [ (Done).28



Proof by cases: example 2
• Definition:  an absolute value of a real number r is a non-negative real number |r| such that if |�| = � if � j 0,	 and � = −� if � _ 0

– Claim	1:		∀& ∈ l, −& = |&|
– Claim	2:	∀& ∈ l,− & W & W |&|

• Theorem:  for any  two reals, sum of their absolute values is at least the absolute value of their sum. 
– ∀&, ( ∈ l		 & + ( W & + (

• Proof: 
– Let r and s be arbitrary reals. (universal instantiation)
– Case 1:  Let	� + � j 0.	

• Then	 � + � = � + �	(definition	of		||)
• Since � W � and � W � (claim 2),   r+� W � + � 	 (axioms), 
• so � + � = r+� W � + � , which is what we need. 

– Case 2: Let	� + � _ 0.	
• Then	 � + � = − � + � = −� + −� 	(definition	of		||)
• Since −� W −� = |�| and −� W −� W |�| (claims 1 and 2),   
• |r+�| = (−�) + −� W � + � 	 (axioms), which is what we need.

– Since in both cases |r+�| 	W � + � ,	and there are no more cases, |r+�| 	W � + � 	without additional assumptions. By universal generalization , can now  get	∀&, ( ∈ l		 & + ( W & + ( .	 [ (Done).29



Proof by contraposition 
– To prove ∀&		S & → T(&), prove its contrapositive ∀&	¬T & → ¬S(&)
• Universal instantiation: “let n be an arbitrary element of the domain 4 of ∀&	” 
• Suppose that ¬T(0) is true. 
• Derive that ¬S(0) is true. 
• Conclude that ¬T 0 → ¬S(0) is true. 
• Now use universal generalization to conclude that  ∀&		S & → T(&) is true. 

[ (Done).30



Pigeonhole Principle
• The Pigeonhole Principle:
– If there are n pigeons
– And n-1 pigeonholes 
– Then if every pigeon is in a pigeonhole 
– At least two pigeons sit in the same hole 

• Suppose that nobody in our class carries more than 10 pens. 
• There are 70 students in our class.
• Prove that there are at least 2 students in our class who carry the same number of pens. 

– In fact, there are at least 7 who do. 
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Proof by contraposition 
• Theorem (Pigeon Hole Principle):  For any n, if there are n+1 pigeons and n holes, then if every pigeon sits in some hole, then there is a hole with at least two pigeons. 

– ∀&	 ∈ ℕ		 ∀	( W 	&	∃	c _ &		41"� (, c →		∃	� W &	∃	/ W &	∃o _ &		(� ≠ / ∧ 41"� �, o ∧ 41"� /, o )	
• Proof:  

– Suppose n is an arbitrary integer. 
– We show the contrapositive:  if every hole has at most one pigeon, then some pigeon is not sitting in any hole. 
– If every hole has at most one pigeon, then there are at W	1*n=n pigeons sitting in holes.   
– Then there are j 0 + 1 − 0 = 1	 pigeons that are not sitting in a hole, proving the contrapositive.  
– Therefore, if every pigeon sits in a hole, and there are more than n pigeons, then two pigeons sit in the same hole. 
– By universal generalization, done. [ (Done).32



Proof by contraposition 
• Theorem:  If a square of an integer is even, that integer is even.    
– ∀& ∈ ]		./�0 &9 → ./�0(&).	

• Proof:  
– We will show a contrapositive:  ∀& ∈ ]	¬./�0 & → ¬./�0 &9 	.That is, square of an odd integer is odd. 
– Let n be an arbitrary odd integer. By definition, 0 = 2E + 1	 for some integer k. 
– Then 09 = 2E + 1 9 = 4E9 + 4E + 1= 2 2E9 + 2E + 1,	
– So 09 = 22 + 1 for m= 2E9 + 2E,	thus	09 is odd by definition.  
– By universal generalization, get ∀& ∈ ]	¬./�0 & → ¬./�0 &9 	.	Since it is a contrapositive of the original statement, done.  33



Proof by contradiction 
– To prove ∀&		�(&), prove ∀&	¬� & → ��X4.
• Universal instantiation: “let n be an arbitrary element of the domain 4 of ∀&	” 
• Suppose that ¬�(0) is true. 
• Derive a contradiction. 
• Conclude that �(0) is true. 
• By universal generalization,   ∀&	� & is true. 

[ (Done).34



Proof by contradiction
• Definition (of rational and irrational numbers):  

– A real number �	is rational iff ∃2, 0 ∈ ], 0 ≠ 0 ∧ gcd 2, 0 = 1	 ∧	� = st .
• Reminder:  greatest common divisor gcd(m,n) is the largest integer which divides both m and n. When d=1, m and n are relatively prime. 

– A real number which is not rational is called irrational. 		
• Theorem:  Square root of 2 is irrational.  
• Proof:  

– Suppose, for the sake of contradiction, that 2	 is rational. Then there exist relatively prime  m, n ∈ ], 0 ≠ 0 such that 2 = st .
– By algebra, squaring both sides we get 2 = sutu .	
– Thus 29	is even, and by the theorem we just proved, then m is even. So 2 = 2E	for some k. 
– 209 = 4	E9, so 09 = 2E9, and by the same argument n is even. 
– This contradicts our assumption that 2 and 0 are relatively prime.   Therefore,  such 2 and 0	cannot exist, and so 2	 is not rational.[ (Done).35



Summary: Types of proofs
• Direct proof of ∀Q	R Q

– Show that � & holds for arbitrary x, then use universal generalization. 
• Often, � & is of the form S & → T(&)

– Example:  A sum of two even numbers is even.
• Proof by cases 

– If can write ∀&	� & as  ∀&(SI & ∨ S9 & ∨ ⋯∨ SV & ) → T(&),  prove SI & → T & ∧ (S9 & → T & ) ∧ ⋯∧ (SV & → T(&))
– Example: triangle inequality 	( & + ( W & + ( )			

• Proof by contraposition 
– To prove ∀&		S & → T(&), prove ∀&	¬T & → ¬S(&)
– Example: If square of an integer is even, then this integer is even. 

• Proof by contradiction 
– To prove ∀&	� & ,  prove ∀&	¬� & → ��X4.
– Example:  2		is not a rational number. 
– Example: There are infinitely many primes. 36


