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Applied Logic for Computer Science

Lecture 11, 12
Logic and Proof

Instructor: Yu Zhen Xie



Proofs

e What is a theorem?

ey
— Lemma, claim, etc ﬂ?
. ‘
* What is a proof?
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— Where do we start? a
-

— Where do we stop?

— What steps do we take?
— How much detail is needed?
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Theories and theorems

* Theory: axioms + everything derived from
them using rules of inference

— Euclidean geometry, set theory, theory of
reals, theory of integers, Boolean algebra...

— In verification: theory of arrays.

* Theorem: a true statement in a theory

— Proved from axioms (usually, from already
proven theorems)

* A statement can be a theorem in one theory
and false in another!
— Between any two numbers there is another
number.
* A theorem for real numbers. False for integers!
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Pythagorean theorem



Axioms example: Euclid’s postulates

IV.

Through 2 points a line
segment can be drawn

A line segment can be
extended to a straight line
indefinitely

Given a line segment, a circle
can be drawn with it as a
radius and one endpoint as a
centre

All right angles are congruent
Parallel postulate



Some axioms for propositional logic

* For any formulas A, B, C:

— AV aA = True AN—=A = False
— True Vv A = True. TrueNA=A
— FalseVv A = A. False N A = False

—AVA=ANA=A

* Also, like in arithmetic (with vV as +, A as *)

—AVB=BVA, AVB)VC=Av(BVC(C)
— Same holds for A.
— Also, (AVB)AC=(AANC)V(BAC)

 And unlike arithmetic
—(AANB)vC= (AVC)AN(BVCO)



Counterexamples oo

There are no three positive integers

%, y, and z for which
n A z’!
for any integer n > 2

* To disprove a statement, enough to give a
counterexample: a scenario where it is false

— Todisprove that A - B =5 —- A
* Take A = true, B = false,
e Then A —» B isfalse, but B = A is true.

— To disprove that if Vx 3y P(x,y), then 3y Vx P(x,v),
e Set the domain of xand y to be {0,1}
e Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
* Then Vx 3y P(x,y) is true, but 3y Vx P(x,y) is false.

— Because (P(0,0) v P(0,1)) A (P(1,0) v P(1,1)) is true,
— But (P(0,0) AP(1,0)) vV (P(0,1) A P(1,1)) is false.



Constructive proofs e

There are no three positive integers

%, ¥, and z for which
n n n
for any integer n > 2

* To prove a statement of the form Fx,

sometimes can just find that x
— 3x € N Even(x) A Prime(x)
* Setx = 2.
Even(x) holds.
Prime(x) holds.
Therefore, Even(x) A Prime(x) holds.
* Done.

— This proof is constructive, because we
constructed an x which makes the formula
Even(x) N Prime(x) true.



Proof

* To prove that something of the form Vx F(x):

— Make sure it holds in every scenario (method of
exhaustion)

* For all possible values of Aand B, -5 — —A is equivalent to
A — B, by checking the truth table.

— But there can be too many scenarios!
* For any integer, there is a larger integer which is a prime.
* For any two reals, there is a real between them.

— Instead, use axioms and rules of inference to derive it.
—_B—>—-A= -—-BV-A =BVvV-A =-AvB=A—-B
* So (=B — —A) & (A — B) is atautology.
* And, therefore, VA,B € { True, False}, =B - -A=A - B
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Puzzle “aren

There are no three positive integers

%, ¥, and z for which
n n zﬂ
for any integer n > 2

e letS={x eEN|xiseven}n{x € N| x is odd}

* Prove or disprove:

Vx € S, x does not divide x?
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Fermat’s Last
theorem

three positive integers
for which

There are no
x,y, and z for whicl
u z z e x" yn z
for any integer n > 2

e letS={x€eN|xiseven}n{x € N|xisodd}
S=0
* Prove or disprove:
Vx € S, x does not divide x*

— Let P(x)= “x does not divide x*”

— To disprove, can give a counterexample
* Find an element in S such that P(x) is true ...

* But there is no such element in S, because there are no elements in S
at all!

— To prove, enough to check that it holds for all elements of S.
* There is none, so it does hold for every element in S.

— Another way: Since S is defined as a subset of natural
numbers, canread Vx € S P(x) asVx € N (x ES > P(x)).

* Since “x € S"is always false, x € S - P(x) is true for every x € N
— Call a statement Vx € @ P(x) vacuously true.



Modus ponens

* The main rule of inference,
given by the tautology

((p = q)Ap) — q, is called
Modus Ponens (“method of

affirming” in Latin).

p__a__pa_(p39)p (p2a)w)q
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* If p then q
*Dp
q

True

True
True

True
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Universal Modus Ponens

 All men are mortal

* Socrates is a man
 Therefore, Socrates is mortal

e All cats like fish
* Molly likes fish
 Therefore, Molly is a cat

WRONG
\ WAY
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Universal Modus Ponens

* Vx, P(x) »Q(x)
* P(a)

* Qo)

* All men are mortal (Vx, Man(x) —» Mortal(x))

* Socratesisaman (Man(Socrates))

* Therefore, Socrates is mortal (Mortal(Socrates) Mortals
* All numbers are either odd or even

* 2isanumber

* Therefore, 2 is either odd or even.

* All trees drop leaves
* Pine does not drop leaves
* Therefore, pine is not a tree
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Universal Modus Ponens

e All men are mortal

e Socratesis a man

 Therefore, Socrates is mortal

e All cats like fish
* Molly likes fish
* Therefore, Molly is a cat
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Instantiation/generalization &5

* Ingeneral,if Vx € S F(x)istrue for some
formula F(x), if you take any specific element
a € S, then F(a) must be true.

— This is called the universal instantiation rule.
e VxeN (x>-1)
e &~ 5> -1

* If you prove F(a) without any assumptions
about a otherthana € S, thenVx € S, F(x)

— This is called universal generalization.
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Instantiation/generalization

* |f you can find an element a € S such that
F(a),then3x € S, F(x)

— This is called existential generalization.

* Alternatively,if 3 x € S F(x) is true, then
you can give that element of S for which F (x)
is true a name, as long as that name has not
been used elsewhere.

— This is called the existential instantiation rule.
e dx €N (x —5=0)
e & k=045
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Existential instantiation

e If3x €S F(x)istrue, thenyou can give that
element of S for which F(x) is true a name, as
long as that name has not been used elsewhere.

— “Let n be an even number. Then n=2k for some k”.
*Vx €N Even(x) > I3y€EN (x =2x*y)
— Important to have a new name!

e “Let n and m be two even numbers. Then n=2k and
m=2k” is wrong!

* Vxi,x, €EN Even(x;) A Even(x,) —
31,72 €N (Gt =25 y1) A (xz = 2% 37)

* “Let n and m be two even numbers. Then n=2k and
m=2¢"
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Other inference rules &%

 Combining universal instantiation with
tautologies, get other types of arguments:

Foranyx, if x > 3,
p—q  VxP(x) - Q(x) then x > 2
q-—orT ¢ Vx Q(x) » R(x) For any x, if x > 2,
then x # 1

p=r Vx P(x) - R(x)
Foranyx, ifx > 3,

thenx # 1

* (This particular rule is called “transitivity”)



Types of proofs

Direct proof of Vx F(x)

— Show that F(x) holds for arbitrary x, then use universal generalization.
« Often, F(x) is of the form G(x) — H(x)
— Example: A sum of two even numbers is even.

Proof by cases

— If can write Vx F(x) as Vx(G{(x) V G,(x) V-V G (x)) = H(x),
prove (G;(x) —» H(®)) A (G2(x) = HG)) A A (G (x) = H(0))

— Example: triangle inequality (|x + y| < |x]| + |y])

Proof by contraposition
— To prove Vx G(x) » H(x), prove Vx =H(x) - =G (x)
— Example: If square of an integer is even, then this integer is even.

Proof by contradiction
— To prove Vx F(x), prove Vx =F(x) » FALSE

— Example: V2 is not a rational number.

— Example: There are infinitely many primes.
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Puzzle: better than nothing

* Nothing is better than eternal bliss
* A burger is better than nothing

Is there anything wrong with this argument?
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Direct proof

* Direct proof of Vx € § F(x): show directly that
F (x) holds for arbitrary x, then use universal
generalization.

— Universal instantiation: “let n be an arbitrary element
of the domain S of Vx ”

— Show F(n) from axioms, definitions, previous
theorems...

* When F(x) is of the form G(x) —» H(x), then assume
G (n) is true, and from that (and axioms, etc) derive H(n)

e That proves G(n) » H(n)

— Now use universal generalization to conclude that
Vx F(x) is true.

O (Dorié).



Direct proof

* Definition (of even integers):
— Anintegerniseveniff 3k € Z,n = 2 - k.
e Theorem: Sum of two even integers is even.

— Vx,y € Z Even(x) A Even(y) = Even(x + y).

* Proof:
— Suppose m and n are arbitrary even integers.
* Universal instantiation.
— Then3dk € Z,n = 2k and 3l € Z, m = 21.
* By definition: note different variables.
—m4+n=2k+2l=2k+1)
* By substitution and axioms of theory of integers (algebra).
—m+n=2(k+1),som+ niseven
* By definition (other direction of iff).

— Since m and n were arbitrary, therefore, we have shown what
we needed: Vx,y € Z Even(x) A Even(y) — Even(x + y).

* By universal generalization.

O (Dorié).



Modular arithmetic

* Quotient-remainder theorem: for any integer n and a
positive integer d, there exist unique integers g
(quotient) and r (reminder) such that: n = dq +r
and 0 <r <gq

— 16 =3*%5+1, 11 =2%4+3...

* n=m (mod d), pronounced “n is congruent to m
mod d”, means that n and m have the same
remainder when divided by d. Thatis,n = dqg; + r
and m = dqg, + r, for the samer.

— In some programming languages, there is an operator
mod, so you might see “n mod d”, which would returnr.

* In Python, itis n % d.

* n=m (modd) and m = nmod d are not the same:
« 10 =16 (mod 3), but10 mod 3 =1

— Operator div, “n divd” is sometimes used to compute q.
* In Python, integer division (or /) does it.
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Modular arithmetic in CS

 Example: day of the week.
— Oct 4™ and Oct 11t are both on Wednesday:
4 =11 (mod 7)
* Hash functions: distribute random data
evenly among d memory locations
— Often take h(k) = k mod p for some prime p.
If Kk = ¢ (mod p), get a collision.
* Cryptography:
— Parity checks in codes, ISBNs, etc.
— Public key crypto, RSA ....
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Direct proof example

* Theorem: for all integers n, m and d, where d > 0,if n = m (mod d) then
there exists an integer k such that n=m + kd

Vx,y,z (z>0ANx=y(modz))—>3u x=y+uz

* Proof:

Let n, m, d be arbitrary integers such thatd > 0 andn = m (mod d)
* Universal instantiation and assuming the premise

Then there are integers q4,q,, 7 with 0 <r < dsuchthatn =dq, +r
and m =dq, + .

* By the quotient-remainder theorem and definition of congruence.
Now, n—m = (dq; + 1) — (dq; + ) = d(q; — q2)
e Substitution and algebra.
Setk=gqq — q,. Forthisk,n =m + kd. Therefore,3u n=m + ud
* By existential generalization

Since n, m, d were arbitrary integers with d > 0 and n = m (mod d),
Vx,v,Z (z>0ANx=y(modz)) »3u x=y+uz

* By universal generalization.
O (Dorie).



Proof by cases

v N
~—
~ > - >
it /
- A
. v .
N 9 //
i .y
0 N v 3

Use the tautology (p1 V) A(p1 = @) A(p2 > q) = q

* Or its variant with cases p; ... py

If Vx F(x)is Vx(G1(x) V G,(x)) = H(x),
prove (G1 (x) - H(x)) A (Go(x) = H(x)).
Proof:

— Universal instantiation: “let n be an arbitrary element of

the domain S of Vx ”
— Case 1: G;(n) » H(n)
— Case 2: G,(n) » H(n)
e .... (if more cases than 2)
e Casek: Gy(n) » H(n)
— Therefore, G;(n) V G,(n)) —» H(n),

— Now use universal generalization to conclude that
Vx F(x) is true.

O (Done).



Proof by cases: example 1

e Definition (of odd integers):
— Anintegernisoddiff 3k € Z,n=2-k + 1.
e Theorem: Sum of an integer with a consecutive integer is odd.

— Vx €Z 0dd(x + (x + 1)).
* Proof:
— Suppose n is an arbitrary integer.

— Case 1: nis even.
* So n=2k for some k (by definition).

* Its consecutive integer is n+1 = 2k+1.
Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).

 Letl = 2k.Then 4k + 1 = 21 + 1 is an odd number (by definition).
So in this case, n+(n+1) is odd.
— Case 2: nis odd.
* So n=2k+1 for some k (by definition).
* Its consecutive integer is n+1 = 2k+2.
Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1. (axioms).
o Letl =2k + 1. Then n+(n+1) = 2(2k+1)+1= 2] + 1,
which is an odd number (by definition). So in this case, n+(n+1) is also odd.
— Since in both cases n+(n+1) is odd, it is odd without additional
assumptions. Therefore, by universal generalization,

getVx € Z Odd(x + (x + 1)). o (Dor)
0] .



Proof by cases: example 2

* Definition: an absolute value of a real number r is a non-negative real
number |r| such thatif |r| =rifr 20, and |r| = —rifr <0
— Claim 1: Vx € R, |—x| = |x|
— Claim2: Vx € R, —|x| < x < |x]
 Theorem: for any two reals, sum of their absolute values is at least
the absolute value of their sum.

- Vx,yER [x+y| <|x| + |yl
* Proof:
— Let r and s be arbitrary reals. (universal instantiation)
— Case 1: Letr+s = 0.
 Then |r + s| = r + s (definition of ||)
e Sincer < |r|ands < |s| (claim2), r+s < |r| + |s]| (axioms),
 so|r+s|=r+s < |r|+ [s], which is what we need.
— Case 2: Letr+s <0.
 Then|r+s| =—({+5s) = (—r) + (—S) (definition of |)
* Since —r < |—r| =|r|and —s < |—s| < |s| (claims 1 and 2),
iIr+s| = (—r) + (—s) < |r| + |s| (axioms), which is what we need.
— Since in both cases |r+s| < |r| + |s|, and there are no more cases,

Ir+s| < |r|+ |s| without additional assumptions. By universal generalization
can now getVvx,y € R |x +y| < |x| + |y|. a (Dorie)



Proof by contraposition m 3

— To prove Vx G(x) — H(x), prove its contrapositive
Vx —H(x) - =G (x)

Universal instantiation: “let n be an arbitrary element of
the domain S of Vx ”

Suppose that —=H (n) is true.
Derive that =G (n) is true.
Conclude that =H(n) — =G (n) is true.

Now use universal generalization to conclude that
Vx G(x) — H(x)istrue.

O (Dore).



Pigeonhole Principle

e Suppose that nobody in our class carries more
than 10 pens.

e There are 70 students in our class.

* Prove that there are at least 2 students in our
class who carry the same number of pens.

— In fact, there are at least 7 who do.

* The Pigeonhole Principle:
— If there are n pigeons
— And n-1 pigeonholes
— Then if every pigeon is in a pigeonhole
— At least two pigeons sit in the same hole
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e Theorem (Pigeon Hole Principle): For any n, if there are n+1
pigeons and n holes, then if every pigeon sits in some hole,
then there is a hole with at least two pigeons.

Ju<x3Iv<xIw<x (u=+vASits(u,w) A Sits(v,w))

vx €N (Vy < x3z<x Sits(y,z)) -

* Proof:

Suppose n is an arbitrary integer.

We show the contrapositive: if every hole has at most one

pigeon, then some pigeon is not sitting in any hole.

If every hole has at most one pigeon, then there are at < 1*n=n

pigeons sitting in holes.

Then thereare = (n + 1) — n = 1 pigeons that are not sitting in

a hole, proving the contrapositive.

Therefore, if every pigeon sits in a hole, and there are more than

n pigeons, then two pigeons sit in the same hole.
By universal generalization, done.

O (Dorié).



Proof by contraposition i B0

 Theorem:
If a square of an integer is even, that integer is even.

— Vx € Z Even(x?) - Even(x).
* Proof:

— We will show a contrapositive:
Vx € Z ~Even(x) » =Even(x?).
That is, square of an odd integer is odd.

— Let n be an arbitrary odd integer.
By definition, n = 2k + 1 for some integer k.
—Thenn? = 2k + 1)? = 4k* + 4k + 1
= 2(2k? + 2k) + 1,
— Son? = 2m + 1 for m= 2k? + 2k, thus n? is odd by
definition.

— By universal generalization,
get Vx € Z —Even(x) - —Even(x?).
Since it is a contrapositive of the original statement, done.




Proof by contradiction

— To prove Vx F(x), prove Yx —F(x) — FALSE

Universal instantiation: “let n be an arbitrary element
of the domain S of Vx ”

Suppose that =F(n) is true.

Derive a contradiction.

Conclude that F(n) is true.

By universal generalization, Vx F(x) is true.

O (Donﬁ).



Proof by contradiction

* Definition (of rational and irrational numbers):

— A rea)lnnumber risrationaliff Aim,n € Z,n # 0 Aged(m,n) =1 A
r = ;
* Reminder: greatest common divisor gcd(m,n) is the largest integer which

divides both m and n. When d=1, m and n are relatively prime.
— A real number which is not rational is called irrational.

e Theorem: Square root of 2 is irrational.

* Proof:
— Suppose, for the sake of contradiction, that V2 is rational. Then
there exist relatively prime m, n € Z, n # 0 such thatv2 = iy

n
2
— By algebra, squaring both sides we get 2 = %
— Thus m? is even, and by the theorem we just proved, then m is
even. So m = 2k for some k.
— 2n% = 4 k? son? = 2k?, and by the same argument n is even.

— This contradicts our assumption that m and n are relatively prime.
Therefore, such m and n cannot exist, and so V2 is not rational.

O (I3350ne).




Summary: Types of proofs

Direct proof of Vx F(x)
— Show that F(x) holds for arbitrary x, then use universal generalization.
« Often, F(x) is of the form G(x) — H(x)
— Example: A sum of two even numbers is even.

Proof by cases

— If can write Vx F(x) as Vx(G{(x) V G,(x) V-V G (x)) = H(x),
prove (G;(x) —» H(®)) A (G2(x) = HG)) A A (G (x) = H(0))

— Example: triangle inequality (|x + y| < |x]| + |y])

Proof by contraposition
— To prove Vx G(x) » H(x), prove Vx =H(x) - =G (x)
— Example: If square of an integer is even, then this integer is even.

Proof by contradiction
— To prove Vx F(x), prove Vx =F(x) » FALSE

— Example: V2 is not a rational number.
— Example: There are infinitely many primes.
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