CS2209A 2017 Applied Logic for Computer Science

Lecture 11, 12 Logic and Proof

Instructor: Yu Zhen Xie

Proofs

- What is a theorem?
 Lemma, claim, etc
- What is a proof?
 - Where do we start?
 - Where do we stop?
 - What steps do we take?
 - How much detail is needed?

The truth

Theories and theorems

- **Theory:** axioms + everything derived from them using rules of inference
 - Euclidean geometry, set theory, theory of reals, theory of integers, Boolean algebra...
 - In verification: theory of arrays.
- **Theorem:** a **true statement** in a theory
 - Proved from axioms (usually, from already proven theorems)
- A statement can be a theorem in one theory and false in another!
 - Between any two numbers there is another number.
 - A theorem for real numbers. False for integers!

Pythagorean theorem

Axioms example: Euclid's postulates

- Through 2 points a line segment can be drawn
- A line segment can be extended to a straight line indefinitely
- III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre
- IV. All right angles are congruent
- V. Parallel postulate

Some axioms for propositional logic

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$
 - $True \lor A \equiv True.$
 - $-False \lor A \equiv A.$
 - $\mathsf{A} \lor A \equiv A \land A \equiv A$

 $A \land \neg A \equiv False$

- $True \land A \equiv A$
 - $False \land A \equiv False$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$, $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for Λ .
 - $\operatorname{Also}, (A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic

 $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Counterexamples

- To disprove a statement, enough to give a counterexample: a scenario where it is false
 - To **disprove** that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \rightarrow B$ is false, but $B \rightarrow A$ is true.
 - To **disprove** that if $\forall x \exists y P(x, y)$, then $\exists y \forall x P(x, y)$,
 - Set the domain of x and y to be {0,1}
 - Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
 - Then $\forall x \exists y P(x, y)$ is true, but $\exists y \forall x P(x, y)$ is false.
 - Because $(P(0,0) \lor P(0,1)) \land (P(1,0) \lor P(1,1))$ is true,
 - But $(P(0,0) \land P(1,0)) \lor (P(0,1) \land P(1,1))$ is false.

Constructive proofs

- Fermat's Last theorem There are no three positive integers x, y, and z for which x'' + y'' = z''for any integer n > 2
- To prove a statement of the form ∃x, sometimes can just find that x
 - $\exists x \in \mathbb{N} Even(x) \land Prime(x)$
 - Set x = 2.
 - Even(x) holds.
 - Prime(x) holds.
 - Therefore, $Even(x) \wedge Prime(x)$ holds.
 - Done.
 - This proof is **constructive**, because we constructed an x which makes the formula $Even(x) \wedge Prime(x)$ true.

Proof

- To prove that something of the form $\forall x F(x)$:
 - Make sure it holds in every scenario (method of exhaustion)
 - For all possible values of A and B, $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, by checking the truth table.
 - But there can be too many scenarios!
 - For any integer, there is a larger integer which is a prime.
 - For any two reals, there is a real between them.
 - Instead, use **axioms and rules of inference** to derive it. $\neg B \rightarrow \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \rightarrow B$
 - So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a tautology.
 - And, therefore, $\forall A, B \in \{ True, False \}, \neg B \rightarrow \neg A \equiv A \rightarrow B$

- Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$
- Prove or disprove:

 $\forall x \in S, x \text{ does not divide } x^2$

Puzzle

- Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$ $S = \emptyset$
- Prove or disprove:

 $\forall x \in S$, x does not divide x^2

- Let P(x)= "x does not divide x^2 "
- To disprove, can give a counterexample
 - Find an element in S such that P(x) is true ...
 - But there is no such element in S, because there are no elements in S at all!
- To prove, enough to check that it holds for all elements of S.
 - There is none, so it does hold for every element in S.
- Another way: Since S is defined as a subset of natural numbers, can read $\forall x \in S P(x)$ as $\forall x \in \mathbb{N} (x \in S \rightarrow P(x))$.
 - Since " $x \in S$ " is always false, $x \in S \to P(x)$ is true for every $x \in \mathbb{N}$
- Call a statement $\forall x \in \emptyset \ P(x)$ vacuously true.

Modus ponens

 The main rule of inference, given by the tautology
 ((p → q) ∧ p) → q, is called
 Modus Ponens ("method of
 affirming" in Latin).

• If p then q

p

p	q	p ightarrow q	$(p \rightarrow q) \land p$	$((p \rightarrow q) \land p) \rightarrow q$
True	True	True	True	<mark>True</mark>
True	False	False	False	<mark>True</mark>
False	True	True	False	<mark>True</mark>
False	False	True	False	<mark>True</mark>

Universal Modus Ponens

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal
- All cats like fish
- Molly likes fish

• Therefore, Molly is a cat

Universal Modus Ponens

- $\forall x, P(x) \rightarrow Q(x)$
- *P*(*a*)
- _____
- Q(a)

- All men are mortal $(\forall x, Man(x) \rightarrow Mortal(x))$
- Socrates is a man (*Man*(*Socrates*))
- Therefore, Socrates is mortal (*Mortal*(*Socrates*)
- All numbers are either odd or even
- 2 is a number
- Therefore, 2 is either odd or even.
- All trees drop leaves
- Pine does not drop leaves
- Therefore, pine is not a tree

Universal Modus Ponens

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal
- All cats like fish
- Molly likes fish
- Therefore, Molly is a cat

Instantiation/generalization

- In general, if ∀ x ∈ S F(x) is true for some formula F(x), if you take any specific element a ∈ S, then F(a) must be true.
 - This is called the **universal instantiation** rule.
 - $\forall x \in \mathbb{N} \ (x > -1)$
 - \therefore 5 > -1
- If you prove F(a) without any assumptions about a other than $a \in S$, then $\forall x \in S, F(x)$

– This is called **universal generalization**.

Instantiation/generalization

• If you can find an element $a \in S$ such that F(a), then $\exists x \in S, F(x)$

- This is called **existential generalization**.

- Alternatively, if ∃ x ∈ S F(x) is true, then you can give that element of S for which F(x) is true a name, as long as that name has not been used elsewhere.
 - This is called the **existential instantiation** rule.
 - $\exists x \in \mathbb{N} \ (x 5 = 0)$
 - $\therefore k = 0 + 5$

Existential instantiation

- If ∃ x ∈ S F(x) is true, then you can give that element of S for which F(x) is true a name, as long as that name has not been used elsewhere.
 - "Let n be an even number. Then n=2k for some k".
 - $\forall x \in \mathbb{N} \quad Even(x) \rightarrow \exists y \in \mathbb{N} \quad (x = 2 * y)$
 - Important to have a new name!
 - "Let n and m be two even numbers. Then n=2k and m=2k" is wrong!
 - $\forall x_1, x_2 \in \mathbb{N}$ $Even(x_1) \wedge Even(x_2) \rightarrow$

 $\exists y_{1,}y_{2} \in \mathbb{N} \ (x_{1} = 2 * y_{1}) \land (x_{2} = 2 * y_{2})$

• "Let n and m be two even numbers. Then n=2k and $m=2\ell$ "

Other inference rules

• Combining **universal instantiation** with **tautologies**, get other types of arguments:

$$p \to q$$
$$q \to r$$
$$_ \therefore$$
$$p \to r$$

•
$$\forall x P(x) \rightarrow Q(x)$$

$$\forall x \ Q(x) \to R(x)$$

 $\overline{\forall x \ P(x) \rightarrow R(x)}$

For any x, if x > 3, then x > 2For any x, if x > 2, then $x \neq 1$

For any x, if x > 3, then $x \neq 1$

• (This particular rule is called "transitivity")

Types of proofs

- Direct proof of $\forall x F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.
- Proof by cases
 - If can write $\forall x F(x)$ as $\forall x(G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$
 - Example: triangle inequality $(|x + y| \le |x| + |y|)$
- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: If square of an integer is even, then this integer is even.
- Proof by contradiction
 - To prove $\forall x F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

Puzzle: better than nothing

- Nothing is better than eternal bliss
- A burger is better than nothing

• Therefore, a burger is better than eternal bliss.

Is there anything wrong with this argument?

Direct proof

- Direct proof of $\forall x \in S \ F(x)$: show directly that F(x) holds for arbitrary x, then use universal generalization.
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Show F(n) from axioms, definitions, previous theorems...
 - When F(x) is of the form $G(x) \rightarrow H(x)$, then assume G(n) is true, and from that (and axioms, etc) derive H(n)
 - That proves $G(n) \rightarrow H(n)$
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.

Direct proof

- *Definition* (of even integers):
 - An integer n is **even** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k$.
- *Theorem*: Sum of two even integers is even.
 - $\forall x, y \in \mathbb{Z} \ Even(x) \land Even(y) \rightarrow Even(x + y).$
- Proof:
 - Suppose m and n are arbitrary even integers.
 - Universal instantiation.
 - Then $\exists k \in \mathbb{Z}, n = 2k$ and $\exists l \in \mathbb{Z}, m = 2l$.
 - By definition: note different variables.
 - -m + n = 2k + 2l = 2(k + l)
 - By substitution and axioms of theory of integers (algebra).
 - -m+n=2(k+l), so m+n is even
 - By definition (other direction of iff).
 - Since m and n were arbitrary, therefore, we have shown what we needed: $\forall x, y \in \mathbb{Z} \ Even(x) \land Even(y) \rightarrow Even(x + y)$.
 - By universal generalization.

□ (Dorie).

Modular arithmetic

- Quotient-remainder theorem: for any integer n and a positive integer d, there exist unique integers q (quotient) and r (reminder) such that: n = dq + r and $0 \le r < q$ - 16 = 3*5+1, 11 = 2*4+3...
- $n \equiv m \pmod{d}$, pronounced "*n* is congruent to *m* mod *d*", means that n and m have the same
 - remainder when divided by d. That is, $n = dq_1 + r$ and $m = dq_2 + r$, for the same r.
 - In some programming languages, there is an operator mod, so you might see "n mod d", which would return r.
 - In Python, it is n % d.
 - $n \equiv m \pmod{d}$ and $m = n \mod{d}$ are not the same:
 - $10 \equiv 16 \pmod{3}$, but $10 \mod 3 = 1$
 - Operator div, "n div d" is sometimes used to compute q.
 - In Python, integer division (or /) does it.

Modular arithmetic in CS

- Example: day of the week.
 - Oct 4th and Oct 11th are both on Wednesday: $4 \equiv 11 \pmod{7}$
- Hash functions: distribute random data evenly among *d* memory locations
 - Often take $h(k) = k \mod p$ for some prime p. If $k \equiv \ell \pmod{p}$, get a collision.
- Cryptography:
 - Parity checks in codes, ISBNs, etc.
 - Public key crypto, RSA

Direct proof example

• *Theorem*: for all integers *n*, *m* and *d*, where d > 0, if $n \equiv m \pmod{d}$ then there exists an integer k such that n = m + kd

 $- \ \forall x, y, z \ (z > 0 \land x \equiv y \ (mod \ z)) \rightarrow \exists u \ x = y + uz$

- Proof:
 - Let n, m, d be arbitrary integers such that d > 0 and $n \equiv m \pmod{d}$
 - Universal instantiation and assuming the premise
 - Then there are integers q_1, q_2, r with $0 \le r < d$ such that $n = dq_1 + r$ and $m = dq_2 + r$.
 - By the quotient-remainder theorem and definition of congruence.
 - Now, $n-m = (dq_1 + r) (dq_2 + r) = d(q_1 q_2)$
 - Substitution and algebra.
 - Set $k = q_1 q_2$. For this k, n = m + kd. Therefore, $\exists u \ n = m + ud$
 - By existential generalization
 - Since n, m, d were arbitrary integers with d > 0 and $n \equiv m \pmod{d}$, $\forall x, y, z \ (z > 0 \land x \equiv y \pmod{z}) \rightarrow \exists u \ x = y + uz$
 - By universal generalization.

□ (Dorlê).

Proof by cases

- Use the tautology $(p_1 \lor p_2) \land (p_1 \to q) \land (p_2 \to q) \to q$
 - Or its variant with cases $p_1 \dots p_k$
- If $\forall x F(x)$ is $\forall x(G_1(x) \lor G_2(x)) \to H(x)$,
- prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)).$
- Proof:
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Case 1: $G_1(n) \rightarrow H(n)$
 - Case 2: $G_2(n) \rightarrow H(n)$
 - (if more cases than 2)
 - Case k: $G_k(n) \rightarrow H(n)$
 - Therefore, $G_1(n) \vee G_2(n)) \rightarrow H(n)$,
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.

□ (Dorie).

Proof by cases: example 1

- *Definition* (of odd integers):
 - An integer n is **odd** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k + 1$.
- *Theorem*: Sum of an integer with a consecutive integer is odd.
 - $\ \forall x \in \mathbb{Z} \ Odd(x + (x + 1)).$
- Proof:
 - Suppose n is an arbitrary integer.
 - Case 1: n is even.
 - So n=2k for some k (by definition).
 - Its consecutive integer is n+1 = 2k+1. Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).
 - Let l = 2k. Then 4k + 1 = 2l + 1 is an odd number (by definition). So in this case, n+(n+1) is odd.
 - Case 2: n is odd.
 - So n=2k+1 for some k (by definition).
 - Its consecutive integer is n+1 = 2k+2. Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1. (axioms).
 - Let l = 2k + 1. Then n+(n+1) = 2(2k+1)+1 = 2l + 1, which is an odd number (by definition). So in this case, n+(n+1) is also odd.
 - Since in both cases n+(n+1) is odd, it is odd without additional assumptions. Therefore, by universal generalization, get $\forall x \in \mathbb{Z} \ Odd(x + (x + 1))$.

□ (Dorie).

Proof by cases: example 2

- Definition: an absolute value of a real number r is a non-negative real number |r| such that if |r| = r if $r \ge 0$, and |r| = -r if r < 0
 - Claim 1: $\forall x \in \mathbb{R}, |-x| = |x|$
 - Claim 2: $\forall x \in \mathbb{R}, -|x| \le x \le |x|$
- *Theorem*: for any two reals, sum of their absolute values is at least the absolute value of their sum.
 - $\forall x, y \in \mathbb{R} |x + y| \le |x| + |y|$
- *Proof*:
 - Let r and s be arbitrary reals. (universal instantiation)
 - Case 1: Let $r + s \ge 0$.
 - Then |r + s| = r + s (definition of ||)
 - Since $r \leq |r|$ and $s \leq |s|$ (claim 2), $r+s \leq |r| + |s|$ (axioms),
 - so $|r + s| = r + s \le |r| + |s|$, which is what we need.
 - Case 2: Let r + s < 0.
 - Then |r + s| = -(r + s) = (-r) + (-s) (definition of ||)
 - Since $-r \le |-r| = |r|$ and $-s \le |-s| \le |s|$ (claims 1 and 2),
 - $|r+s| = (-r) + (-s) \le |r| + |s|$ (axioms), which is what we need.
 - Since in both cases $|r+s| \leq |r| + |s|$, and there are no more cases, $|r+s| \leq |r| + |s|$ without additional assumptions. By universal generalization, can now get $\forall x, y \in \mathbb{R}$ $|x + y| \leq |x| + |y|$.

Proof by contraposition

- To prove $\forall x \ G(x) \rightarrow H(x)$, prove its contrapositive $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg H(n)$ is true.
 - Derive that $\neg G(n)$ is true.
 - Conclude that $\neg H(n) \rightarrow \neg G(n)$ is true.
 - Now use universal generalization to conclude that $\forall x \ G(x) \rightarrow H(x)$ is true.

Pigeonhole Principle

- Suppose that nobody in our class carries more than 10 pens.
- There are 70 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.
 - In fact, there are at least 7 who do.
- The Pigeonhole Principle:
 - If there are n pigeons
 - And n-1 pigeonholes
 - Then if every pigeon is in a pigeonhole
 - At least two pigeons sit in the same hole

• Theorem (Pigeon Hole Principle): For any n, if there are n+1 pigeons and n holes, then if every pigeon sits in some hole, then there is a hole with at least two pigeons.

 $- \forall x \in \mathbb{N} \ (\forall y \le x \exists z < x \ Sits(y, z)) \rightarrow$

- $\exists u \le x \exists v \le x \exists w < x \ (u \neq v \land Sits(u, w) \land Sits(v, w))$
- Proof:
 - Suppose n is an arbitrary integer.
 - We show the contrapositive: if every hole has at most one pigeon, then some pigeon is not sitting in any hole.
 - If every hole has at most one pigeon, then there are at $\leq 1^*n=n$ pigeons sitting in holes.
 - Then there are $\ge (n + 1) n = 1$ pigeons that are not sitting in a hole, proving the contrapositive.
 - Therefore, if every pigeon sits in a hole, and there are more than n pigeons, then two pigeons sit in the same hole.
 - By universal generalization, done.

Proof by contraposition

• Theorem:

If a square of an integer is even, that integer is even.

 $- \forall x \in \mathbb{Z} \ Even(x^2) \rightarrow Even(x).$

- Proof:
 - We will show a **contrapositive**: $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$. That is, square of an odd integer is odd.
 - Let n be an arbitrary odd integer. By definition, n = 2k + 1 for some integer k.

- Then
$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$$

= 2(2k² + 2k) + 1,

- So $n^2 = 2m + 1$ for m= $2k^2 + 2k$, thus n^2 is odd by definition.
- By universal generalization, get $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$. Since it is a contrapositive of the original statement, done.

Proof by contradiction

- To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x F(x)$ is true.

Proof by contradiction

- *Definition* (of rational and irrational numbers):
 - A real number r is **rational** iff $\exists m, n \in \mathbb{Z}, n \neq 0 \land \gcd(m, n) = 1 \land r = \frac{m}{r}$.
 - Reminder: greatest common divisor gcd(m,n) is the largest integer which divides both m and n. When d=1, m and n are relatively prime.
 - A real number which is not rational is called **irrational**.
- *Theorem*: Square root of 2 is irrational.
- Proof:
 - Suppose, for the sake of contradiction, that $\sqrt{2}$ is rational. Then there exist relatively prime m, $n \in \mathbb{Z}$, $n \neq 0$ such that $\sqrt{2} = \frac{m}{n}$.
 - By algebra, squaring both sides we get $2 = \frac{m^2}{n^2}$.
 - Thus m^2 is even, and by the theorem we just proved, then m is even. So m = 2k for some k.
 - $-2n^2 = 4k^2$, so $n^2 = 2k^2$, and by the same argument n is even.
 - This contradicts our assumption that m and n are relatively prime. Therefore, such m and n cannot exist, and so $\sqrt{2}$ is not rational.

□ (Done).

Summary: Types of proofs

- Direct proof of $\forall x F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.
- Proof by cases
 - If can write $\forall x F(x)$ as $\forall x(G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$
 - Example: triangle inequality $(|x + y| \le |x| + |y|)$
- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: If square of an integer is even, then this integer is even.
- Proof by contradiction
 - To prove $\forall x F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

