
Lecture 13Set Theory

CS2209A 2017Applied Logic for Computer Science

Instructor: Yu Zhen Xie
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Midterm
• Midterm 7:00pm-8:50pm, Wed., October 25th
– Closed-book; no electronic devices are allowed.
– Two exam papers (take A or B); Covers lectures 1 to 12. 

�Question formats are the same as those for quizzes, exercises and assignments. 
– Study guide posted to help you study 

• not to bring to the midterm itself.  
– The table for laws of propositional logic will be provided with the exam paper for your reference.

• Assignment 1 marked.   
– Solution sheet posted at OWL.
– Let us know as soon as possible if you have questions about your mark. 

• We will do our best to return the marked Assignment 2 before the midterm



A review for the work of Assignment 2 and Quiz 2



Arguments and validity  
• An argument is validif whenever all premises are true, the conclusion is also true. 
– So if premises are ��, … , ��,	and conclusion is ����	, 
– then the argument is valid if and only if 
– �	 ∧ �� ∧ ⋯�
 → �
�		 is a tautology
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�	��⋮�
______∴ �
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Rules of inference
• Can apply tautologies of the form � → �
– so that if  F is an AND of several formulas derived so far, then we get G, and add G to the premises. 
– Such as from  ( � → � ∧ �) → �we can deduce �. Now we can add �	to the list of premises. 

• Keep going until we get the conclusion.  
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• If Socrates is a man, then Socrates is mortal
• Socrates is a man________________∴ Socrates is mortal



Modus ponens: treasure hunt
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• If  �	 then  �
• �___________ ∴	�

• If house is next to the lake then the treasure is not in the kitchen
• The house is next to the lake
• Therefore, the treasure is not in the kitchen. 

� Here, p is “the house is next to the lake”, and q is “the treasure is not in the kitchen”. 



• Middle ground between truth tables and natural deduction 
– Basis for many practical provers (SAT solvers).
– Used in verification, scheduling, etc... � ∨ �				� ∨ ¬�	_______∴ � ∨ �	
• (� ∨ � ) ∧ 	 	� ∨ ¬�	 → (� ∨ �) is a tautology

Resolution rule
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� ∨ �			� ∨ ¬�	_______∴ � ∨ �	
� ∨ ¬�	 ∨ �			 	 ∨ ¬�___________∴ � ∨ ¬�	 ∨  	

� ∨ � ∨ ¬�				¬�	 ∨ ¬�	_________∴ � ∨ ¬�		
• Ignore order in an OR and remove duplicates.
• C and D are possibly empty 

Resolution rule

�			¬�	_______∴ !"#$%	� & ∧ ¬& ≡ ()*+,	(same as saying it is a contradiction) 8



Resolution proofs
• Rather than proving that F is a tautology, prove that ¬( ≡ (-./0. That is, a proof of F is a  refutation of ¬!
– To check that an formula 2 is a tautology, refute ¬2
– To check that an argument is valid, refute  AND of premises AND NOT conclusion. 

• Last step of the resolution refutation of ¬!: 
– from � and ¬�		 derive FALSE, for some variable �.
– If  you cannot derive anything new, then the formula is satisfiable.               � ∨ ¬� ∧		 ¬� ∧			 � ∨ �

¬�
FALSE	

�
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Exp. Prove Modus Ponens by resolution

¬8 ∨ � ∧ 	8 ∧	 ¬�
q
FALSE	

• If  �	 then  �
• �___________ ∴	�
� → � ∧ � → �	:+	)	;)<;=*=>?

¬� ∨ � ∧ � ∧ ¬�	

� Prove by resolution refutation: 8 → � ∧ 8 ∧ (¬�	) is	false
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Predicate logic (first-order formula)
• A formula ∀� ∈ H, ! � 	, where ! � 	is a formula containing predicates, is true (on the domain of predicates) if it is true on every value of �	from the domain. Here, ∀ is called a universal quantifier, usually pronounced as “for all ...". 
• A formula ∃� ∈ H, ! � 	, where ! � 	is a formula containing predicates, is true (on the domain of predicates) if it is true on some value of �	from the domain. Here, ∃	is called an existential quantifier, usually pronounced as “exists ...". 
• Universal and existential quantifiers are opposites of each other.
– ¬ ∀& ∈ /, ( & ≡ ∃& ∈ /, ¬((&)
– ¬ ∃& ∈ /, ( & ≡ ∀& ∈ /, ¬((&)
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Scope of quantifiers 
• Like in programming, a scope of a quantified variable continues until a new variable with the same name is introduced. 

– ∀&	 ∃?		� &, ?	 ∧ ∃?	J &, ? 	
• For everybody there is somebody who loves them and somebody who hates them. 

– Not the same as		∀&	 ∃?		� &, ?	 ∧ J &, ?
• For everybody there is somebody who both loves and hates them. 

• Better to avoid using same names for different variables since it is confusing. 
– ∀&	 ∃?		� &, ?	 ∧ ∃?	J &, ? 	≡																																																																													
– ∀&	 ∃?	� &, ? ∧ ∃K	J &, K≡																																																																														
– ∀&	∃?	∃K	� &, ? ∧ J &, K≡																																																																														
– ∀&	∃K	∃?	� &, ? ∧ J &, K
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Prenex normal form
• When all quantified variables have different names, can move all quantifiers to the front of the formula, and get an equivalent formula: this is called prenex normal form. 

– ∀�	∃�	∃�	� �, � ∧ L �, � is in prenex normal form
– ∀�	 ∃	�	� �, � ∧ ∃�	L �, � is not in prenex normal form. 

• Order of variables under the same quantifier does not matter. Under different ones does. 
– ∀�	∃�	∃�	� �, � ∧ L �, � and	∃�	∀�	∃�	� �, � ∧ L �, � are	not	equivalent

• Be	careful	with	implications:	when	in	doubt,	open	into	¬2 ∨ \. Move	all	negations	inside.	
– ∀�		( ∃�	� �, � → L � 	)	actually	has	two	universal	quantifiers!	
– Its	equivalence	in	prenex normal	form	is	∀�	∀�	c¬� �, � ∨L � d 13



Universal Modus Ponens
• ∀�, � � 	 → L �
• � "
• -------------------------
• L "
• All men are mortal (∀�, e"f � → eghi"# � )
• Socrates is a man    (e"f Hgjh"i%$ )
• Therefore, Socrates is mortal  (eghi"#(Hgjh"i%$)
• All numbers are either odd or even 
• 2 is a number 
• Therefore, 2 is either odd or even.
• All trees drop leaves 
• Pine does not drop leaves
• Therefore, pine is not a tree  

Mortals

Men

Q P
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Counterexamples
• To disprove  a statement, enough to give a counterexample:  a scenario where it is false 
– To disprove that 2 → \ ≡ \ → 2	

• Take 2 = ih %, \ = l"#$%,
• Then  2 → \	 is false, but 	B → 2	is true.

– To disprove that  if ∀�	∃�	� �, � ,	 then ∃�	∀�	� �, � ,	
• Set the domain of x and y  to be {0,1} 
• Set P(0,0) and P(1,1)  to true, and P(0,1), P(1,0) to false. 
• Then ∀�	∃�	� �, � is true, but 	∃�	∀�	� �, � is false.

– Because � 0,0 ∨ � 1,0 ∧ � 0,1 ∨ � 1,1 is true, 
– But (� 0,0 ∧ �(1,0)) ∨ (� 0,1 ∧ �(1,1)) is false. 
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Constructive proofs
• To prove a statement of the form ∃�,		sometimes can just find that x  
– ∃� ∈ ℕ	pq%f � ∧ �hrs%(�)
• Set x = 2. 
• Even(x) holds.  
• Prime(x) holds.  
• Therefore, pq%f � ∧ �hrs%(�) holds.  
• Done.

– This proof is constructive, because we constructed an x which makes the formula pq%f � ∧ �hrs%(�)true. 
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Existential instantiation/generalization
• If you can find an element " ∈ H such that ! " , then ∃� ∈ H, ! �
– This is called existential generalization. 

• Alternatively, if ∃	� ∈ H		! � is true,	 then you can give that element of H for which ! �is true a name, as long as that name has not been used elsewhere. 
– This is called the existential instantiation rule.
• ∃� ∈ ℕ		 � − 5 = 0 	
• ∴ 		v = 0 + 5
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Proof of the form 
• To prove that something of the form ∀�	! � :
– Make sure it holds in every scenario (method of exhaustion)

• For all possible values  of A and B,  ¬\ → ¬2	 is equivalent to 2 → \, by checking  the truth table.  
– But there can be too many scenarios! 

• For any integer, there is a larger integer which is a prime. 
• For any two reals, there is a real between them. 

– Instead,  use axioms and rules of inference to derive it. ¬\ → ¬2 ≡	¬¬\ ∨ ¬2		 ≡ \ ∨ ¬	2	 ≡ ¬2 ∨ \ ≡ 2 → \
• So ¬\ → ¬2 ↔ (2 → \)		is a tautology.  
• And, therefore, ∀2, \ ∈ 	yh %, !"#$% , ¬\ → ¬2 ≡ 2 → \
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Universal instantiation/generalization
• In general, if ∀	� ∈ H		! � is true for some formula ! � ,	 if you take any specific element " ∈ H,	 then ! " must be true. 
– This is called the universal instantiation rule.
• ∀� ∈ ℕ		 � > −1 	
• ∴ 		5 > −1	

• If you prove ! " without any assumptions about "	other than " ∈ H, then ∀� ∈ H, ! �
– This is called universal generalization. 
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Types of proofs
• Direct proof of ∀&	( &

– Show that ! � holds for arbitrary x, then use universal generalization. 
• Often, ! � is of the form { � → |(�)

– Example:  A sum of two even numbers is even.
• Proof by cases 

– If can write ∀�	! � as  ∀�({� � ∨ {} � ∨ ⋯∨ {~ � ) → |(�),  prove {� � → | � ∧ ({} � → | � ) ∧ ⋯∧ ({~ � → |(�))
– Example: Sum of an integer with a consecutive integer is odd. 

• Proof by contraposition 
– To prove ∀�		{ � → |(�), prove ∀�	¬| � → ¬{(�)
– Example: If square of an integer is even, then this integer is even. Example: The Pigeonhole Principle

• Proof by contradiction: To prove ∀�	! � ,  prove ∀�	¬! � → !2�Hp
– Example: To prove “ 2		is not a rational number”, we prove that ” 2		is rational” leads to a contradiction. 
– Example: To prove ((� ∨ � ) ∧ 	 	� ∨ ¬�	 → (� ∨ �)) is a tautology, we can prove	¬((� ∨ � ) ∧ 	 	� ∨ ¬�	 → (� ∨ �)) is false. 20



Set Theory



Sets
• A set is a collection of objects.
– H�={1, 2, 3}, 		H} = {Cathy, Alan, Keiko, Daniela}    
– H� = [-1, 2] (real numbers from -1 to 2, inclusive) 
– PEOPLE = {x | x is a person living on Earth now}
• {x | such that x   ... } is called set builder notation 

– H� = { (x,y) | x and y are people, and x is a parent of y}
– BANKTELLERS = { x | x is a person who is a bank teller} 

• The order of elements does not matter.  
• There are no duplicates. 
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Special sets
• Notation for some special sets (much of which you are likely to have seen): 
– Empty set ∅
– Natural numbers ℕ = 1, 2, 3, … (sometimes with 0) 
– Integers ℤ = 	…− 2,−1, 0, 1, 2, …
– Rational numbers ℚ =		 �� 		 	s, f	rf	ℤ, f ≠ 0}	
– Real numbers ℝ	
– complex numbers ℂ
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• ) ∈ /	 means that an element " is in a set S, and ) ∉ / that " is not in S. That is,  ) ∈ / ≡ ¬	 ) ∉ /
– Susan ∈ PEOPLE, Susan ∉ BANKTELLERS   
– 0.23	 ∈ �−1, 2�.  	3.14 ∉ �−1, 2�

Set elements
Bank tellers Feminists

PEOPLE

• Also, write & ∈ /	for a variable &.  
– BANKTELLERS = {  � ∈ �p���p | � is a bank teller} 

• How do we generalize sentences like “� is a bank teller”, where x is an element of some set?  
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Feminists

Set inclusion. 
• Let A and B be two sets. 
– Such as A={2,3,4} and B= {1,2,3,4,5}

• A is a subset of B:  
– 2 ⊆ \	iff ∀�	 � ∈ 2 → � ∈ \

• 2 ⊆ \. 	!pe���HyH ⊆ �p���p	
– A is a strict subset of B: 

• 2 ⊂ \	iff		∀�	 � ∈ 2 → � ∈ \ ∧ ∃	�	(� ∈ \ ∧ � ∉ 2)
• 2 ⊂ \. 	!pe���HyH ⊂ �p���p	

– When both - ⊆ �	 and � ⊆ -,		then - = �
• A and B are disjoint iff	 ∀�	(� ∉ 2 ∨ � ∉ \)
– {1,5} and {2,3,6,9} are disjoint. So are BANKTELLERS and FEMINISTS in the diagram above. 

Bank tellers
PEOPLE



Operations on sets
• Let A and B be two sets. 

– Such as A={1,2,3} and B={ 2,3,4} 
• Intersection 2 ∩ \ = 	�	 	� ∈ 2 ∧ � ∈ \}

– The blue part in the picture
– 2 ∩ \ = �2,3}

• Union 2 ∪ \ = 	�	 � ∈ 2 ∨ � ∈ \}	
– The blue part in the picture. 
– 2 ∪ \ = 1,2,3,4

• Difference 2 − \ = �	 	� ∈ 2 ∧ � ∉ \}	
– The yellow part in the picture 
– A − \ = 1

• Complement 2	 = � ∈ �	 	� ∉ 2}	
– The blue part on the bottom diagram
– If universe U = ℕ, 2 	= � ∈ ℕ	 � ∉ 1,2,3 		}		

A B U         

U         2 ∪ \	

U         A

U         
A-B

U         
2 ∩ \	



B

B
U         

A

U         
Subsets and operations
• If 2 ⊆ \	then	
– Intersection 2 ∩ \ =	

• A
– Union 2 ∪ \ =

• � 	
– Difference 2 − \ =

• ∅
– Difference B – A = 

• -	−	�

A B 

U         
A

B
U         

A



Size (cardinality)
• If a set A has n elements, for a natural number n, then A is a finite set and its cardinality is |A|=n. 
– 1,2,3 = 3
– |∅| = 0	

• Sets that are not finite are infinite. More on cardinality of infinite sets in a couple of lectures …
– ℕ, ℤ,ℚ	
– ℝ,ℂ
– 0,1 ∗: set of all finite-length binary strings. 



Rule of inclusion-exclusion
• Let A and B be two sets.  Then the cardinality:2 ∪ \ = 2 + \ − 2 ∩ \
– Proof idea: notice that elements in 2 ∩ \ are counted twice in |A|+|B|, so need to subtract one copy. 
– If A and B are disjoint, then 2 ∪ \ = 2 + \
– If there are 220 students in CS2209A, 100 in CS2210A, and 50 of them are in both, then the total number of students in 2209 or 2210 is   220+100-50=270. 

• For three sets (and generalizes)  
• 2 ∪ \ ∪ � = 2 + \ + �			− 2 ∩ \ − 2 ∩ � − \ ∩ �+ 2 ∩ \ ∩ �

A B U         

A B U         
C



Power sets
• A power set of a set A, P 2 , is a set of allsubsets of A.  

– Think of sets as boxes of elements. 
– A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some). 
– Then  P 2 is a box containing boxes with elements of A.
– When you open the box P 2 , you don’t see chocolates (elements of A), you see boxes. 
– A={1,2},   P 2 = ∅, 1 , 2 , 1,2
– 2 = ∅, 	P 2 = ∅ .  

• They are not the same! There is nothing in A, and there is one element, an empty box, in P 2
• If A has n elements, then  P 2 has 2�	elements.

A
Subsets of A: 

Power set  P 2



Cartesian products
• Cartesian product of  A and B is a set of all pairs of elements with the first from A, and the second from B:  

– A x B = �, � 	 	� ∈ 2, � ∈ \}	
– A={1,2,3},  B={a,b}
– 2 × \ = 1, " , 1, � , 2, " , 2, � , 3, " , 3, �
– A={1,2},  2 × 2	 = � 1,1. , 1,2 , 2,1 , 2,2 }

• Order of pairs does not matter, order within pairs does: 2 × \ ≠ \ × 2	.
• Number of elements in 2 × \ is |2 × \| = 2 ⋅ |\|
• Can define the Cartesian product for any number of sets:  

– 2� × 2} ×⋯× 2~ = ��, �}, … �~) 	�� ∈ 2�…�~ ∈ 2~
– 2 = 1,2,3 , \ ={a,b}, C={3,4}
– 2 × \ × � = � 1, ", 3 , 1, ", 4 , 1, �, 3 , 1, �, 4 ,																											 2, ", 3 , 2, ", 4 , 2, �, 3 , 2, �, 4 ,3, ", 3 , 3, ", 4 , 3, �, 3 , 3, �, 4 }

B

A

A x B 

a b
1 (1,a) (1,b)
2 (2,a) (2,b)
3 (3,a) (3,b)



Proofs with sets
• Two ways to describe the purple area
• 2 ∪ \, 					 2 ∩ \	
– � ∈ 		2 ∪ \			when � ∉ 		2 ∪ \	
– This happens when  � ∉ 2	 ∧ � ∉ \.			
– So � ∈ 	2 ∩ \.  Since we picked an arbitrary x, then 2 ∪ \ ⊆ 2 ∩ \	
– Not quite done yet …  Now let � ∈ 	2 ∩ \
– Then � ∈ 2 ∧ � ∈ \.	 So � ∉ 2 ∧ 	� ∉ \.	
– � ∉ 2 ∧ 	� ∉ \ ≡ 		¬	 � ∈ 2 ∨ � ∈ \ .  So � ∉ 2 ∪ \.	Thus � ∈ 		2 ∪ \.   
– Since x was an arbitrary element of 2 ∩ \,  then  2 ∩ \	 ⊆	2 ∪ \. 
– Therefore 2 ∪ \ =		2 ∩ \	

A B U         


