CS2209A 2017 Applied Logic for Computer Science

Lecture 13

Set Theory

Instructor: Yu Zhen Xie

Midterm

- Midterm 7:00pm-8:50pm, Wed., October 25th
 - Closed-book; no electronic devices are allowed.
 - Two exam papers (take A or B); Covers lectures 1 to 12.
 - ➤ Question formats are the same as those for quizzes, exercises and assignments.
 - Study guide posted to help you study
 - not to bring to the midterm itself.
 - The table for laws of propositional logic will be provided with the exam paper for your reference.
- Assignment 1 marked.
 - Solution sheet posted at OWL.
 - Let us know as soon as possible if you have questions about your mark.
- We will do our best to return the marked Assignment 2 before the midterm

A review for the work of Assignment 2 and Quiz 2

Arguments and validity

- An argument is valid
 if whenever all premises are
 true, the conclusion is also true.
 - So if premises are P_1, \dots, P_n , and conclusion is P_{n+1} ,
 - then the argument is valid
 - if and only if
 - $-P_1 \wedge P_2 \wedge \cdots P_n \rightarrow P_{n+1}$ is a tautology

 P_1 P_2 \vdots P_n $\therefore P_{n+1}$

Rules of inference

- Can apply **tautologies** of the form $\mathbf{F} \rightarrow \mathbf{G}$
 - so that if F is an AND of several formulas derived so far, then we get G, and add G to the premises.
 - Such as from $((p \rightarrow q) \land p) \rightarrow q$ we can deduce q. Now we can add q to the list of premises.
- Keep going until we get the conclusion.

- If Socrates is a man, then Socrates is mortal
- Socrates is a man
- ∴ Socrates is mortal

Modus ponens: treasure hunt

- If p then q• p $\frac{p}{q}$
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.
- Here, p is "the house is next to the lake", and q is "the treasure is not in the kitchen".

Resolution rule

- Middle ground between truth tables and natural deduction
 - Basis for many practical provers (SAT solvers).
 - Used in verification, scheduling, etc...

$$\begin{array}{c}
C \vee x \\
D \vee \neg x
\end{array}$$

$$\therefore C \vee D$$

• $(C \lor x) \land (D \lor \neg x) \rightarrow (C \lor D)$ is a tautology

Resolution rule

- Ignore order in an OR and remove duplicates.
- C and D are possibly empty
 - $x \land \neg x \equiv False$ (same as saying it is a contradiction)

$$x$$
 $\neg x$
 $\therefore False$

Resolution proofs

- Rather than proving that F is a tautology, prove that $\neg F \equiv FALSE$. That is, a proof of F is a refutation of $\neg F$
 - To check that an formula A is a tautology, refute $\neg A$
 - To check that an **argument** is valid, refute AND of premises AND NOT conclusion.
- Last step of the resolution refutation of $\neg F$:
 - from x and $\neg x$ derive FALSE, for some variable x.
 - If you cannot derive anything new, then the formula is satisfiable.

Exp. Prove Modus Ponens by resolution

- If p then q
- p

q

 $(p \rightarrow q) \land p \rightarrow q$ is a tautology Prove by resolution refutation: $(p \rightarrow q) \land p \land (\neg q)$ is false

$$(\neg p \lor q) \land p \land \neg q$$

$$(\neg p \lor q) \land p \land (\neg q)$$

$$q$$

$$FALSE$$

Predicate logic (first-order formula)

- A formula $\forall x \in S$, F(x), where F(x) is a formula containing predicates, is true (on the domain of predicates) if it is true on every value of x from the domain. Here, \forall is called a *universal quantifier*, usually pronounced as "for all ...".
- A formula $\exists x \in S$, F(x), where F(x) is a formula containing predicates, is true (on the domain of predicates) if it is true on some value of x from the domain. Here, \exists is called an *existential quantifier*, usually pronounced as "exists ...".
- Universal and existential quantifiers are opposites of each other.

$$-\neg(\forall x\in S, F(x))\equiv \exists x\in S, \ \neg F(x)$$

$$-\neg(\exists x \in S, F(x)) \equiv \forall x \in S, \neg F(x)$$

Scope of quantifiers

• Like in programming, a **scope** of a quantified variable continues until a new variable with the same name **is** introduced.

```
- \forall x (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))
```

- For everybody there is somebody who loves them and somebody who hates them.
- Not the same as $\forall x (\exists y \ P(x,y) \land Q(x,y))$
 - For everybody there is somebody who both loves and hates them.
- Better to avoid using same names for different variables since it is confusing.

```
- \forall x (\exists y \ P(x,y)) \land (\exists y \ Q(x,y)) \\
\equiv \\
- \forall x (\exists y \ P(x,y)) \land (\exists z \ Q(x,z)) \\
\equiv \\
- \forall x \exists y \exists z \ P(x,y) \land Q(x,z) \\
\equiv \\
- \forall x \exists z \exists y \ P(x,y) \land Q(x,z)
```

Prenex normal form

- When all quantified variables have different names, can move all quantifiers to the front of the formula, and get an equivalent formula: this is called prenex normal form.
 - $\forall x \exists y \exists z P(x,y) \land Q(x,z)$ is in prenex normal form
 - $\forall x (\exists y P(x,y)) \land (\exists z Q(x,z))$ is not in prenex normal form.
- Order of variables under the same quantifier does not matter. Under different ones does.
 - $\forall x \exists y \exists z P(x,y) \land Q(x,z)$ and $\exists y \forall x \exists z P(x,y) \land Q(x,z)$ are not equivalent
- Be careful with **implications**: when in doubt, open into $\neg A \lor B$. Move all negations inside.
 - $\forall x \ ((\exists y \ P(x,y)) \rightarrow Q(x))$ actually has two universal quantifiers!
 - Its equivalence in prenex normal form is $\forall x \ \forall y \ (\neg P(x, y) \lor Q(x))$

Universal Modus Ponens

- $\forall x, \ P(x) \rightarrow Q(x)$
- P(a)
- •
- Q(a)

- Socrates is a man (Man(Socrates))
- Therefore, Socrates is mortal (Mortal(Socrates))

- 2 is a number
- Therefore, 2 is either odd or even.
- All trees drop leaves
- Pine does not drop leaves
- Therefore, pine is not a tree

Counterexamples

- To disprove a statement, enough to give a counterexample: a scenario where it is false
 - To **disprove** that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \to B$ is false, but $B \to A$ is true.
 - To **disprove** that if $\forall x \exists y P(x,y)$, then $\exists y \forall x P(x,y)$,
 - Set the domain of x and y to be {0,1}
 - Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
 - Then $\forall x \exists y P(x, y)$ is true, but $\exists y \forall x P(x, y)$ is false.
 - Because $(P(0,0) \vee P(1,0)) \wedge (P(0,1) \vee P(1,1))$ is true,
 - But $(P(0,0) \land P(1,0)) \lor (P(0,1) \land P(1,1))$ is false.

Constructive proofs

- To prove a statement of the form $\exists x$, sometimes can just find that x
 - $-\exists x \in \mathbb{N} \ Even(x) \land Prime(x)$
 - Set x = 2.
 - Even(x) holds.
 - Prime(x) holds.
 - Therefore, $Even(x) \land Prime(x)$ holds.
 - Done.
 - This proof is **constructive**, because we constructed an x which makes the formula $Even(x) \wedge Prime(x)$ true.

Existential instantiation/generalization

- If you can find an element $a \in S$ such that F(a), then $\exists x \in S, F(x)$
 - This is called existential generalization.
- Alternatively, if $\exists x \in S \ F(x)$ is true, then you can give that element of S for which F(x) is true **a name**, as long as that name has not been used elsewhere.
 - This is called the existential instantiation rule.
 - $\exists x \in \mathbb{N} \ (x 5 = 0)$
 - : k = 0 + 5

Proof of the form $\forall x F(x)$

- To prove that something of the form $\forall x F(x)$:
 - Make sure it holds in every scenario (method of exhaustion)
 - For all possible values of A and B, $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, by checking the truth table.
 - But there can be too many scenarios!
 - For any integer, there is a larger integer which is a prime.
 - For any two reals, there is a real between them.
 - Instead, use axioms and rules of inference to derive it.

$$\neg B \rightarrow \neg A \equiv \neg \neg B \vee \neg A \equiv B \vee \neg A \equiv \neg A \vee B \equiv A \rightarrow B$$

- So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a tautology.
- And, therefore, $\forall A, B \in \{True, False\}, \neg B \rightarrow \neg A \equiv A \rightarrow B$

Universal instantiation/generalization

- In general, if $\forall x \in S$ F(x) is true for some formula F(x), if you take any specific element $a \in S$, then F(a) must be true.
 - This is called the **universal instantiation** rule.
 - $\forall x \in \mathbb{N} \ (x > -1)$
 - : 5 > -1
- If you prove F(a) without any assumptions about a other than $a \in S$, then $\forall x \in S, F(x)$
 - This is called universal generalization.

Types of proofs

• Direct proof of $\forall x \ F(x)$

- Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \to H(x)$
- Example: A sum of two even numbers is even.

Proof by cases

- If can write $\forall x \ F(x)$ as $\forall x (G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$
- Example: Sum of an integer with a consecutive integer is odd.

Proof by contraposition

- To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \ \neg H(x) \rightarrow \neg G(x)$
- Example: If square of an integer is even, then this integer is even.
 Example: The Pigeonhole Principle
- **Proof by contradiction:** To prove $\forall x \ F(x)$, prove $\forall x \ \neg F(x) \rightarrow FALSE$
 - Example: To prove " $\sqrt{2}$ is not a rational number", we prove that " $\sqrt{2}$ is rational" leads to a contradiction.
 - Example: To prove $((C \lor x) \land (D \lor \neg x) \rightarrow (C \lor D))$ is a tautology, we can prove $\neg((C \lor x) \land (D \lor \neg x) \rightarrow (C \lor D))$ is false.

Set Theory

Sets

- A set is a collection of objects.
 - $-S_1=\{1, 2, 3\}, S_2=\{Cathy, Alan, Keiko, Daniela\}$
 - $-S_3 = [-1, 2]$ (real numbers from -1 to 2, inclusive)
 - PEOPLE = {x | x is a person living on Earth now}
 - {x | such that x ... } is called **set builder notation**
 - $-S_4 = \{ (x,y) \mid x \text{ and } y \text{ are people, and } x \text{ is a parent of } y \}$
 - BANKTELLERS = $\{x \mid x \text{ is a person who is a bank teller}\}$
- The order of elements does not matter.
- There are no duplicates.

Special sets

- Notation for some special sets (much of which you are likely to have seen):
 - Empty set Ø
 - Natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$ (sometimes with 0)
 - Integers $\mathbb{Z} = \{ ... 2, -1, 0, 1, 2, ... \}$
 - Rational numbers $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \text{ in } \mathbb{Z}, n \neq 0 \right\}$
 - − Real numbers ℝ
 - complex numbers ℂ

Set elements

• $a \in S$ means that an element a is in a set S, and $a \notin S$ that a is not in S.

That is,
$$a \in S \equiv \neg (a \notin S)$$

- Susan ∈ PEOPLE,Susan ∉ BANKTELLERS
- $-0.23 \in [-1, 2]$. $3.14 \notin [-1, 2]$

- Also, write $x \in S$ for a variable x.
 - BANKTELLERS = { $x \in PEOPLE \mid x \text{ is a bank teller}}$
- How do we generalize sentences like "x is a bank teller",
 where x is an element of some set?

Set inclusion.

Feminists

PEOPLE

Bank

tellers

- Let A and B be two sets.
 - Such as A={2,3,4} and B= {1,2,3,4,5}
- A is a subset of B:
 - $-A \subseteq B \text{ iff } \forall x (x \in A \rightarrow x \in B)$
 - $A \subseteq B$. FEMINISTS \subseteq PEOPLE
 - A is a **strict subset** of B:

- $A \subset B$. FEMINISTS \subset PEOPLE
- When both $A \subseteq B$ and $B \subseteq A$, then A = B
- A and B are **disjoint** iff $\forall x \ (x \notin A \lor x \notin B)$
 - {1,5} and {2,3,6,9} are disjoint. So are BANKTELLERS and FEMINISTS in the diagram above.

Operations on sets

- Let A and B be two sets.
 - Such as A={1,2,3} and B={ 2,3,4}

- Intersection $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - The blue part in the picture
 - $-A \cap B = \{2,3\}$

- Union $A \cup B = \{ x \mid x \in A \lor x \in B \}$
 - The blue part in the picture.
 - $A \cup B = \{1,2,3,4\}$

- Difference $A B = \{x \mid x \in A \land x \notin B\}$
 - The yellow part in the picture
 - $-A B = \{1\}$

- Complement $\overline{A} = \{x \in U \mid x \notin A\}$
 - The blue part on the bottom diagram
 - If universe U = \mathbb{N} , $\overline{A} = \{x \in \mathbb{N} \mid x \notin \{1,2,3\} \}$

Subsets and operations

- If $A \subseteq B$ then
 - Intersection $A \cap B =$
 - A

- Union $A \cup B =$
 - **B**

- Difference A B =
 - Ø
- Difference B A =
 - $\overline{A} \overline{B}$

Size (cardinality)

- If a set A has n elements, for a natural number n, then
 A is a finite set and its cardinality is |A|=n.
 - $-|\{1,2,3\}|=3$
 - $|\emptyset| = 0$
- Sets that are not finite are **infinite**. More on cardinality of infinite sets in a couple of lectures ...
 - $-\mathbb{N},\mathbb{Z},\mathbb{Q}$
 - $-\mathbb{R},\mathbb{C}$
 - $-\{0,1\}^*$: set of all finite-length binary strings.

Rule of inclusion-exclusion

Let A and B be two sets. Then the cardinality:

- $|A \cup B| = |A| + |B| |A \cap B|$
- **Proof idea**: notice that elements in $|A \cap B|$ are counted twice in |A|+|B|, so need to subtract one copy.
- If A and B are **disjoint**, then $|A \cup B| = |A| + |B|$
- If there are 220 students in CS2209A, 100 in CS2210A, and 50 of them are in both, then the total number of students in 2209 or 2210 is 220+100-50=270.
- For three sets (and generalizes)

•
$$|A \cup B \cup C| = |A| + |B| + |C|$$

 $-|A \cap B| - |A \cap C| - |B \cap C|$
 $+|A \cap B \cap C|$

Power sets

- A power set of a set A, P(A), is a set of all subsets of A.
 - Think of sets as boxes of elements.
 - A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some).
 - Then $\mathcal{P}(A)$ is a box containing boxes with elements of A.
 - When you open the box $\mathcal{P}(A)$, you don't see chocolates (elements of A), you see boxes.

$$- A=\{1,2\}, \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

- $-A=\emptyset, \ \mathcal{P}(A)=\{\emptyset\}.$
 - They are not the same! There is nothing in A, and there is one element, an empty box, in $\mathcal{P}(A)$
- If A has n elements, then $\mathcal{P}(A)$ has 2^n elements.

Subsets of A:

Cartesian products

 Cartesian product of A and B is a set of all pairs of elements with the first from A, and the second from B:

- A x B =
$$\{(x, y) | x \in A, y \in B\}$$

$$- A=\{1,2,3\}, B=\{a,b\}$$

$$- A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$

-
$$A=\{1,2\}, A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$$

	а	b
1	(1,a)	(1,b)
2	(2,a)	(2,b)
3	(3,a)	(3,b)

• Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$.

- Number of elements in $A \times B$ is $|A \times B| = |A| \cdot |B|$
- Can define the Cartesian product for any number of sets:

$$-A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots x_k) | x_1 \in A_1 \dots x_k \in A_k\}$$

$$- A = \{1,2,3\}, B = \{a,b\}, C=\{3,4\}$$

$$-A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (2, b,$$

(2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)

Proofs with sets

Two ways to describe the purple area

- $\overline{A \cup B}$, $\overline{A} \cap \overline{B}$
 - $-x \in \overline{A \cup B}$ when $x \notin A \cup B$
 - This happens when $x \notin A \land x \notin B$.
 - So $x \in \overline{A} \cap \overline{B}$. Since we picked an arbitrary x, then $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$
 - Not quite done yet ... Now let $x \in \overline{A} \cap \overline{B}$
 - Then $x \in \overline{A} \land x \in \overline{B}$. So $x \notin A \land x \notin B$.
 - $-x \notin A \land x \notin B \equiv \neg (x \in A \lor x \in B)$. So $x \notin A \cup B$. Thus $x \in A \cup B$.
 - Since x was an arbitrary element of $\overline{A} \cap \overline{B}$, then $\overline{A} \cap \overline{B} \subseteq \overline{A} \cup B$.
 - Therefore $\overline{A \cup B} = \overline{A} \cap \overline{B}$