CS2209A 2017
Applied Logic for Computer Science

Lecture 13

Set Theory

Instructor: Yu Zhen Xie



Midterm

* Midterm 7:00pm-8:50pm, Wed., October 25t

— Closed-book; no electronic devices are allowed.

— Two exam papers (take A or B); Covers lectures 1 to 12.

» Question formats are the same as those for quizzes, exercises and
assignments.

— Study guide posted to help you study

* not to bring to the midterm itself.

— The table for laws of propositional logic will be provided
with the exam paper for your reference.

e Assignment 1 marked.
— Solution sheet posted at OWL.

— Let us know as soon as possible if you have questions about
your mark.

 We will do our best to return the marked Assignment 2
before the midterm



A review for the work of
Assignment 2 and Quiz 2



Arguments and validity

 An argument is valid
if whenever all premises are

true, the conclusion is also true.

— So if premises are Py, ..., P,, and
conclusion is Py, 1,

— then the argument is valid
I if and only if

—Pl/\Pz/\"‘Pn —)Pn+1 IS a
tautology




Rules of inference

* Can apply tautologies of the
formF — G .
e |f Socrates is a

— so that if Fis an AND of several man. then
formulas derived so far, then we ’
get G, and add G to the premises.

— Such asfrom ((p - q) Ap) = q
we can deduce g. Now we canadd ¢ Socrates is a man

q to the list of premises.

Socrates is
mortal

* Keep going until we get the ~. Socrates is mortal
conclusion.



Modus ponens: treasure hunt

+ If p then q * If house is next to .the IaI.<e
then the treasure is not in
p the kitchen
e The house is next to the lake
1 * Therefore, the treasure is
not in the kitchen.

» Here, p is “the house is next to

the lake”, and g is “the
treasure is not in the kitchen”.



Resolution rule

 Middle ground between truth tables and
natural deduction

— Basis for many practical provers (SAT solvers).
— Used in verification, scheduling, etc...

CVx
DV ax

~CVD

* (CVx)N (DV—=x)->(CVvD)isatautology



Resolution rule

DV ax u v -aw —Z V aw
~CVD ~yV-az Vu LYV Az

* Ignore order in an OR and remove duplicates.

 Cand D are possibly empty X
—X
» XN\ -x = False

(same as saying it
is a contradiction)

- False



Resolution proofs

e Rather than proving that F is a tautology, prove
that = F = FALSE. Thatis, a proof of Fis a
refutation of = F

— To check that an formula A is a tautology, refute =4

— To check that an argument is valid, refute AND of
premises AND NOT conclusion.

e Last step of the resolution refutation of —F:
— from x and =x derive FALSE, for some variable x.
— If you cannot derive anything new, then the formula

is satisfiable.
YV-az)A (A (yV2z)
N SN S
(_IZ) (Z)
N

FALSE



Exp. Prove Modus Ponens by resolution

* If p then q

* P » Prove by resolution refutation:
(p > q) Ap A (—q) is false

q

(-pVq)ADPA-q
p=a)rp>q (=pVvq@)ApA (1q)

is a tautology
\C] / /
N\

FALSE
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Predicate logic (first-order formula)

 AformulaVx €S, F(x),where F(x) is aformula
containing predicates, is true (on the domain of
predicates) if it is true on every value of x from the
domain. Here, Y is called a universal quantifier, usually
pronounced as “for all ...".

 Aformuladx €S, F(x),where F(x) is aformula
containing predicates, is true (on the domain of
predicates) if it is true on some value of x from the
domain. Here, 3 is called an existential quantifier, usually
pronounced as “exists ...".

* Universal and existential quantifiers are opposites of
each other.

— —(Vx €S, F(x)) =3x €S, =F(x)
— —(3x € S, F(x)) =Vx €S, —F(x)
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Scope of quantifiers

* Like in programming, a scope of a quantified variable continues
until a new variable with the same name is introduced.

- vx(3y P(x,y)) A(3y Q(x,y))

* For everybody there is somebody who loves them and somebody who hates
them.

— Notthesameas Vx (3y P(x,y) A Q(x,y))

* For everybody there is somebody who both loves and hates them.

* Better to avoid using same names for different variables since it is
confusing.

- vx(3y P(x,y)) A3y Q(x,y))

— Vx (Ely P(x, y)) A (Elz Q(x, z))

— Vx Ely;z P(x,y) A Q(x,z)

— Vx Elz;y P(x,y) AQ(x,z)
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Prenex normal form

 When all quantified variables have different names, can
move all quantifiers to the front of the formula, and get an
equivalent formula: this is called prenex normal form.

— Vx3dy Iz P(x,y) A Q(x,z) isin prenex normal form
— Vx (EI y P(x, y)) A (EIZ 0 (x, Z)) is not in prenex normal form.

e Order of variables under the same quantifier does not
matter. Under different ones does.

— Vx3Ay 3z P(x,y) ANQ(x,z)and Iy Vx Az P(x,v) A Q(x,z) are
not equivalent

* Be careful with implications: when in doubt, open into
—A VvV B. Move all negations inside.

— vx ((Fy P(x,v)) = Q(x)) actually has two universal
quantifiers!

— Its equivalence in prenex normal form is Vx Vy (—|P(x, y)V

Q(x)
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Universal Modus Ponens

* Vx, P(x) »Q(x)
* P(a)

* Qa)
Mortals

* All men are mortal (Vx, Man(x) —» Mortal(x))
* Socratesisaman (Man(Socrates))
* Therefore, Socrates is mortal (Mortal(Socrates)

 All numbers are either odd or even
e 2isanumber
* Therefore, 2 is either odd or even.

* All trees drop leaves
* Pine does not drop leaves
* Therefore, pine is not a tree
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Counterexamples

* To disprove a statement, enough to give a
counterexample: a scenario where it is false
— Todisprove that A - B =5 = A

* Take A = true, B = false,
e Then A —» B isfalse, but B = A s true.

— To disprove that if Vx 3y P(x,y), then 3y Vx P(x,v),
* Set the domain of xandy to be {0,1}
e Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
* Then Vx 3y P(x,y) is true, but 3y Vx P(x,y) is false.

— Because (P(0,0) vV P(1,0)) A (P(0,1) v P(1,1)) is true,
— But (P(0,0) AP(1,0)) v (P(0,1) AP(1,1)) is false.
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Constructive proofs

* To prove a statement of the form 3x, sometimes

can just find that x
— 3x € N Even(x) A Prime(x)
* Setx=2.
e Even(x) holds.
* Prime(x) holds.
* Therefore, Even(x) A Prime(x) holds.

* Done.

— This proof is constructive, because we constructed
an x which makes the formula Even(x) A Prime(x)
true.
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Existential instantiation/generalization

* |f you can find an element a € S such that
F(a),then3x € S, F(x)

— This is called existential generalization.

* Alternatively,if 3 x € S F(x) is true, then
you can give that element of S for which F (x)
is true a name, as long as that name has not
been used elsewhere.

— This is called the existential instantiation rule.
e dx €N (x —5=0)
e & k=045
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Proof of the form Vx F(x)

* To prove that something of the form Vx F(x):

— Make sure it holds in every scenario (method of
exhaustion)

* For all possible values of Aand B, -5 — —A is equivalent to
A — B, by checking the truth table.

— But there can be too many scenarios!
* For any integer, there is a larger integer which is a prime.
* For any two reals, there is a real between them.

— Instead, use axioms and rules of inference to derive it.
—_B—>—-A= -—-BV-A =BVvV-A =-AvB=A—-B
* So (=B — —A) & (A — B) is atautology.
* And, therefore, VA,B € { True, False}, =B - -A=A - B
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Universal instantiation/generalization

* Ingeneral,if Vx € S F(x)istrue for some
formula F(x), if you take any specific element
a € S, then F(a) must be true.

— This is called the universal instantiation rule.
e VxeN (x>-1)
e &~ 5> -1

* If you prove F(a) without any assumptions
about a otherthana € S, thenVx € S, F(x)

— This is called universal generalization.
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Types of proofs
Direct proof of Vx F(x)
— Show that F(x) holds for arbitrary x, then use universal generalization.
» Often, F(x) is of the form G(x) —» H(x)
— Example: A sum of two even numbers is even.
Proof by cases
— If can write Vx F(x) as Vx(G{(x) V G,(x) V-V G (x)) = H(x), prove
(6:(x) > H@)) A (G2(x) = HGO)) A+ A (G (x) = H(x))
— Example: Sum of an integer with a consecutive integer is odd.
Proof by contraposition
— To prove Vx G(x) - H(x), prove Vx =H(x) —» =G (x)
— Example: If square of an integer is even, then this integer is even.
Example: The Pigeonhole Principle
Proof by contradiction: To prove Vx F(x), prove Vx —F(x) — FALSE

— Example: To prove “v/2 is not a rational number”, we prove that ”v2 is
rational” leads to a contradiction.

— Example: Toprove ((CVx)A (DV —=x)— (CV D)) is atautology, we can
prove = ((CVx )N (DV—=x)—(CVD))isfalse.
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Set Theory



Sets by

* Asetis a collection of objects.
—S5:=11, 2, 3}, S, ={Cathy, Alan, Keiko, Daniela}
— 53 =[-1, 2] (real numbers from -1 to 2, inclusive)
— PEOPLE = {x | x is a person living on Earth now}

e {x | suchthatx ...}is called set builder notation
— S, ={(xy) | xand y are people, and x is a parent of y}
— BANKTELLERS = { x | x is a person who is a bank teller}

e The order of elements does not matter.

 There are no duplicates.
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Special sets atn

* Notation for some special sets (much of which
you are likely to have seen):

— Empty set 0

— Natural numbers N = {1, 2, 3, ... } (sometimes with 0)
—IntegersZ=1{..—2,-1,0,1,2, ...}

— Rational numbers Q = {% ‘ m,ninzZn # 0}

— Real numbers R
— complex numbers C
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Set elements iy

* a €5 meansthatanelementaisinasets,
and a S thata is not in S.
Thatis, aeS=-(a&8)

— Susan € PEOPLE,
Susan € BANKTELLERS tellers

— 023 €[-1,2]. 3.14 ¢ [-1,2]

Bank

* Also, write x € S for a variable x.
— BANKTELLERS ={ x € PEOPLE | x is a bank teller}

)

* How do we generalize sentences like “x is a bank teller’
where x is an element of some set?

-
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Set inclusion. o

e Let A and B be two sets.
— Such as A={2,3,4} and B={1,2,3,4,5}

 Ais asubset of B: SEOPLE
—~ACBiff Yx(x €A - x €B) @
e AS B. FEMINISTS € PEOPLE tellers
— A'is a strict subset of B:
e A C B iff
Vx(x€EA->x€E€B)AIYy(YEBAYy &A)
e Ac B. FEMINISTS c PEOPLE
— Whenboth A S B and B< A, thenA =B

* Aand B aredisjoint iff Vx (x € AVx & B)

—{1,5}and {2,3,6,9} are disjoint. So are BANKTELLERS and
FEMINISTS in the diagram above.




Operations on sets

Let A and B be two sets.
— Such as A={1,2,3} and B={ 2,3,4}

Intersection ANB ={x|x € AAx € B}
— The blue part in the picture

— ANB ={2,3}

UnionAUB ={x|x €AV x € B}
— The blue part in the picture.

_ AUB ={1,2,3,4)
Difference A— B ={x|x € AANx & B}

— The yellow part in the picture
— A—B ={1}

Complement A ={x €U |x ¢ A}
— The blue part on the bottom diagram

— IfuniverseU=N, A ={x e N |x ¢ {1,2,3} }

AUB




Subsets and operations

e If A € B then
— Intersection AN B = U
L
— UnionAUB =
B

— Difference A — B =
0

— Difference B—A =
A — B




Size (cardinality) o
Y-
* |f aset A has n elements, for a natural number n, then
A is a finite set and its cardinality is |A|=n.
- 1{1,2,3}| = 3
-9l =0

* Sets that are not finite are infinite. More on cardinality
of infinite sets in a couple of lectures ...

- N)Z)@

- R,C
— {0,1}*: set of all finite-length binary strings. m



Rule of inclusion-exclusion

* Let A and B be two sets. Then the cardinality:] A0

|JAUB| = |A| + |B| — |A N B
— Proof idea: notice that elementsin |A N B| are
counted twice in |A|+]|B|, so need to subtract one
copy.
— If A and B are disjoint, then |A U B| = |A| + |B|
— If there are 220 students in CS2209A, 100 in CS2210A,

and 50 of them are in both, then the total number of
studentsin 2209 or 2210is 220+100-50=270.

* For three sets (and generalizes)

e [AUBUC| = |A|+ |B|+ |C]| A*
—|AnNnB|—-|ANnC|—|BnC]|

+|ANBNC|



Power sets

* A power set of aset A, P(A), is a set of all
subsets of A.

— Think of sets as boxes of elements. . A‘
— A subset of a set A is a box with elements of A

(maybe all, maybe none, maybe some).
— Then P(A) is a box containing boxes with Subsets of A:

elements of A.

— When you open the box 2(4), you don’t see
chocolates (elements of A), you see boxes.

- A={1,2}, P(4) = {0,{1},{2},{1,2}} . ‘

- A=0, 2(4) ={0}.

* They are not the same! There is nothing in A, and
there is one element, an empty box, in 2(4)
* If A has n elements, then 2(A) has Power set 2(4)

2" elements.



Cartesian products A

e Cartesian product of A and B is a set of all pairs of
elements with the first from A, and the second from B:

— AxB={(x,y)[x €A, y € B}

— A={1,2,3}, B={a,b}
— AXB={(,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

— A={1,2}, AxA ={(1,1),(1,2),(2,1),(2,2)}

* Order of pairs does not matter, order within pairs does:
AXB+#BXA.

* Number of elementsin A X Bis |A X B| = |A| - |B]

AxB

e Can define the Cartesian product for any number of sets: Py
- A1XA2 X'”XAk ={(x1,x2, ...xk)|x1 EAl e X EAk} ' "’h' '
~ A=1{1,23}, B ={a,b}, C={3,4} (.

— AXBxC={1,a3),1,a4), (1,b,3),(1b,4),

(2,a,3), (2, a0,4), (2,b,3),(2,b,4), -
@ (3,62,3), (3,2,4), (3,b,3), (3, b, 4)} % W E




Proofs with sets

* Two ways to describe the purple area A.
- AUB, ANB

—x€ AUB whenx¢& AUB
— This happenswhen x € A A x & B.

—Sox € ANB. o
Since we picked an arbitrary x, thenAUB € ANB

— Not quite done yet ... Now let x € ANB

— Thenx €EAAXEB.Sox & AN x & B.
—x¢€ANXE€B= —-(x€AVx€EB). Sox¢& AUB.Thus
x € AUB.

— Since x was an arbitrary element of ANB, then ANB C
AUB.

— Therefore AUB = ANB



