CS2209A 2017
Applied Logic for Computer Science

Lectures 14, 15
Set Theory and Related

Instructor: Yu Zhen Xie

Power sets

* A power set of aset A, P(A), is a set of all
subsets of A.

— Think of sets as boxes of elements. . A‘
— A subset of a set A is a box with elements of A

(maybe all, maybe none, maybe some).
— Then P(A) is a box containing boxes with Subsets of A:

elements of A.

— When you open the box 2(4), you don’t see
chocolates (elements of A), you see boxes.

- A={1,2}, P(4) = {0,{1},{2},{1,2}} . ‘

- A=0, 2(4) ={0}.

* They are not the same! There is nothing in A, and
there is one element, an empty box, in 2(4)
* If A has n elements, then 2(A) has Power set 2(4)

2" elements.

Cartesian products A

e Cartesian product of A and B is a set of all pairs of
elements with the first from A, and the second from B:

— AxB={(x,y)[x €A, y € B}

— A={1,2,3}, B={a,b}
— AXB={(,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

— A={1,2}, AxA ={(1,1),(1,2),(2,1),(2,2)}

* Order of pairs does not matter, order within pairs does:
AXB+#BXA.

* Number of elementsin A X Bis |A X B| = |A| - |B]

AxB

e Can define the Cartesian product for any number of sets: Py
- A1XA2 X'”XAk ={(x1,x2, ...xk)|x1 EAl e X EAk} ' "’h' '
~ A=1{1,23}, B ={a,b}, C={3,4} (.

— AXBxC={1,a3),1,a4), (1,b,3),(1b,4),

(2,a,3), (2, a0,4), (2,b,3),(2,b,4), -
@ (3,62,3), (3,2,4), (3,b,3), (3, b, 4)} % W E

Proofs with sets

* Two ways to describe the purple area A.
- AUB, ANB

—x€ AUB whenx¢& AUB
— This happenswhen x € A A x & B.

—Sox € ANB. o
Since we picked an arbitrary x,then AU B € ANEB

— Not quite done yet ... Now let x € ANB

— Thenx €EAAXEB.Sox & AN x & B.
—x€ANXEB= a(x€AVx€EB). Sox & AU B. Thus
x € AUB.

— Since x was an arbitrary element of A N B,
then AnNB © AUB.

— Therefore AUB = ANE

Laws of set theory

* Two ways to describe the purple area

= AUB=ANB

* By similar reasoning,
»ANB=AUB

* Does this remind you of something?...

—a(pV@ =-p Aag
— De Morgan’s law works in set theory!
— What about other equivalences from logic?

More useful equivalences

* For any formulas A, B, C:

— AV =A = True AN—=A = False
— TrueVv A = True. TrueNA=A
— False Vv A = A. False N A = False

—AVA=ANA=A

e Also, like in arithmetic (with V as +, A as *)

—AVB=BVA and (AVB)VC=AV(BVC(C)
— Same holds for A.
— Also, (AVB)AC=(AANC)V(BAC)

 And unlike arithmetic
—(AANB)vC= (AVC)AN(BVCO)

4

Propositions vs. sets R

i E ey
¥ '9_ g Y
] 4
;I% ™

Propositional logic

Negation - p Complement A
AND p Aq Intersection AN B
OR pVg Union AUB
FALSE Empty set @

TRUE Universe U

Laws of set theory

AUB

 Foranysets A, B, Cand universe U:

—AUA =U ANA =0
— U UA=U. UNA=A
— Q0 UA = A. D NA=0Q

—AUA=ANA=A

* Also, like in arithmetic (with V as +, A as *)

—AUB=BUA and (AUB)UC =AU (BUC(C)
— Same holds for n.
— Also, (AUB)NC=(ANC)Uu(BNC)

 And unlike arithmetic
—(ANnB)uC= (AuC)n(BUCO)

Boolean algebra

 The “algebra” of both propositional logic and set theory
is called Boolean algebra (as opposed to algebra on
numbers).

Propositional logic | Set theory Boolean algebra

Negation = p Complement A a
AND p Aq Intersection AN B a-b
OR pVgq Union AUB a+b
FALSE Empty set @

TRUE Universe U 1

Axioms of Boolean algebra

1. a+b=>b+aq, a-b=>b-a
2. (a+b)+c = a+(b+c) (a-b)-c=a-(b-c)

3 a+Mb-c)=((@+b):-(a+c)
a-(b+c)=(@-b)+(a-c)

4. There exist distinct elements 0 and 1 (among underlying set
of elements B of the algebra) such that for all a € B,

a+0=a a-1=a

5. Foreach a € B there exists an element a € B such that
at+a=1 a-a=0

How about De Morgan, etc.? They can be derived from the axioms!

Relations

* Arelation is a subset of a Cartesian product of sets.
— If of two sets (set of pairs), call it a binary relation.
— Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-nary

- A={1;213}; B={a,b}
« AXB={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

« R={(1,a), (2,b),(3,a), (3,b)}is a relation. Sois R={(1,b)}. . o
— A={1,2}, Graph of R (bipartite)
« AXA ={(1,1),(01,2),(2,1),(2,2)}
. R={(1,1), (2,2)} (all pairs (x,y) where x=y) ‘p aQ
* R={(1,1),(1,2),(2,2)} (all pairs (x,y) where x < y). . 4

_ A=PEOPLE Graph of {(1,1),(2,2)}

e COUPLES ={(x,y) | Loves(x,y)}
« PARENTS ={(x,y) | Parent(x,y)}
— A=PEOPLE, B=DOGS, C=PLACES

 WALKS ={(x,y,z) | x walks y in z}
— Jane walks Buddy in spring bank park.

Types of binary relations

* Abinaryrelation RS AXAis
— Reflexive if Vx € A, R(x, x)

* Every x is related to itself. : 2 ‘p
E.g. A={1,2}, R, ={(1,1),(2,2), (1,2)} R,
On A=17Z, R, = {(x,y)|x = y}is reflexive

But not R; = {(x,y)| x < y}

— Symmetricif Vx,y €A, (x,v) ER < (y,x) ER
* R, and R; above are not symmetric. R, is.
* A=7Z, R, ={(x,y)|x = ymod 3 } is symmetric.

— Transitive if Vx, v,z € A, (x,y) ERN(v,z) ER — (x,z) ER
* Ry, R,, R5, R, are all transitive.
* Re ={(x,y)|x,y € ZAx+ 1=y} is not transitive.
* PARENT ={(x,y)|x,y € PEOPLE A x is a parent of y}is not.

* A transitive closure of a relation R is a relation R* = {(x,z) | 3k €
N 3yg, .., Vi EA (x =y Az=y, AVIi€{0,...,k — 1} R(Y;, ¥i+1)}

— Thatis, can get from x to z following R arrows.

Types of binary relations \.,,

* Abinaryrelation RS A X Ais

— Anti-reflexive if Vx € A, =R (x, x)
* R can be neither reflexive nor anti-reflexive. @—0
 E.g. A={1,2}, R, ={(1,2)} Graph of {(1,2)}
— butnot R, =1{(1,1), (2,2), (1,2)} (reflexive)
— nor R, ={(1,1), (1,2)} (neither)
* ForA=7Z,not R, ={(x,y)|x = y}
— Nor R, ={(x,y)|x = ymod 3}
* But R5; = {(x,y)| x < y} is anti-reflexive.
—Soare R ={(x,y) EZXZ|x+ 1=y}
— And PARENT = {(x,y) € PEOPLE X PEOPLE |x is a parent of y}
— Anti-symmetric
if Vx,y€A (x,y) ERA(y,x) ER—>x=Yy
* R{,R3,Rs,Rg, R-, PARENT are anti-symmetric. R, is not.
* R, is both symmetric and anti-symmetric.
* Rg ={(1,2),(2,1),(1,3)} is neither symmetric nor anti-symmetric.

Gt

Equivalence o

0
 Abinaryrelation R € A X A is an equivalence if R is

reflexive, symmetric and transitive.
e E.g. A={1,2}, R ={(1,1),(2,2)}orR =A X A (%D
* Not Ry ={(1,1),(2,2), (1,2)} nor R = {(x,y)| x < y}
* On A=7Z, R, = {(x,y)|x = y}is an equivalence ‘p ‘p

* Sois R, = {(x,y)|x = ymod 3}
— Reflexive: Vx € Z, x = x mod 3
— Symmetric:Vx,y €Z, x=ymod3 -y =x mod 3
— Transitive: Vx,y,z €Z, x=ymod3A y=z mod3 = x =z mod 3

* An equivalence relation partitions A into equivalence
classes:
— Intersection of any two equivalence classes is @
— Union of all equivalence classes is A.
— Ry Z={x|x=0mod3}U{x|x=1mod 3} U {x |x =
2 mod 3}
— R = A X A gives rise to a single equivalence class.

R ={(1,1),(2,2)} to two.

1 ‘i Y ¢ o
Partial and total orders | JITH
 Abinaryrelation R € A X A is an order if R is reflexive, anti-symmetric and

transitive.
— Risatotalorderif Vx,y € A R(x,y)V R(y, x)

* Thatis, every two elements of A are related.
E.g. R, = {(x,y)|x,y € ZNx < y}is atotal order.
* Sois alphabetical order of English words.

* ButnotR, ={(x,y)|lx,y EZAXx <y}

— not reflexive, so not an order.
— Otherwise, R is a partial order.
* SUBSETS ={(A,B) | A, B are sets A A © B }is a partial order. '\—_/

— Reflexive: VA, AS A
— Anti-symmetric: VA, B ACSBABCA—->A=B
— Transitive: VA,B,C ACSBABCS(C-ACcC(C
— Not total: if A={1,2}and B ={1,3}, then neither A €S BnorB S A
DIVISORS ={(xy)| x,y e NAx,y =2 Ndz€ N y = z-x} isa partial order.

PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor
of themselves. It is a partial order.

An order may have minimal and maximal elements (maybe multiple)
— x € AisminimalinRifVy €A y #x - —=R(y,x)
* and maximalifVy € Ay # x - =R(x,y)

— @ is minimal in SUBSETS (its unigue minimum); universe is maximal (its unique
maximum).

— All primes are minimal in DIVISORS, and there are no maximal elements.

Functions

* Afunction f: X — Y is arelation on X X Y such
that for every x € X there is at mostone y € Y for
which (x, y) is in the relation.

— Usual notation: f(x) =y \[
* v is an image of x under f. AR

— Xis the domain of f
— Y is the codomain of f

This R is not a function

— Range of f (image of X under f): \
c{yeY|AxeX, f(x) =y} i I
— Preimage of agiveny € Y 0
c{xeX|f(x) =y} This R is a function
— Preimage of b is {2,3}. with domain {1,2,3,4},

codomain {a,b,c} and
range {a,b}

Functions

* Afunction f: X - Yis Not total

—Total: VxeXAyeY f(x)=vy
e 1 Z -1 '@
o f(x) = x + 1 is total.

« f(x) = % is not total. Why?

&%«-

Not onto

—Onto: VyeYdxeXf(x)=y -
* f(x) =x+ 1isontooverZ, but not B
over N
— One-to-one: Vx; x, € X (f(x;) = Notone-to-one
F(x,) - %1 = %) -
* f(x) =x + 1isone-to-one. | &
e f(x) = x*? is not one-to-one
Bijection

— Bijection: both one-to-one and onto. W
* f(x) =x+ 1 is a bijection over Z. ‘

Functions

=

* Aninverseof fis /~':V — X, such that

7o) =x iff flx) =y f‘l
- f)=x+1f"(»=y-1 e-%

— Only one-to-one functions have an inverse

* Compositionof f: X ->Y andg:Y - Zis
gef:X = Zsuchthat (g e f)(x) = g(f(x))

- f(x) = g g(x) = [x], over R

* [x] is ceiling: x rounded up to nearest integer. A’ ™
- (gof)®) =g(fe0) = [} 9 >

~ (fog)@) = f(g) =2

— (gof)12.5)=]2.5] =3
— (f o g)(12.5)=13/5= 2.6

 Order matters!

* |n a certain village, there is a
(male) barber who shaves all and
only those men of the village who
do not shave themselves.

 Question: who shaves the barber?

CO Cardinalities of infinite sets

 Two finite sets A and B have the same cardinality if
they have the same number of elements

— That is, for each element of A there is exactly one
matching element of B.

T

* Forinfinite sets A and B, define |A|=|B]| iff there exists
a bijection between A and B.

— If there is both a one-to-one function from A to B, and an
onto function from A to B.

 Aset Ais countable iff |[A]| = |N]|.
— Zis countable: take f:Z - N, f(x) = 2x ifx = 0, else

flx) =—-(1+2x)
— Set of all finite strings over {0,1}, denoted {0,1}", is
countable.
* Empty string, O, 1, 00, 01, 10, 11, 000, 001, ...
— An infinite subset of a countable language is countable.
A Cartesian product of countable languages is countable:
- N x N: (0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),...
— Qiscountable: Q Cc Z X Z

0, Diagonalization: R

* |sthere a bigger infinity?
— Yes! In particular, R is uncountable. Even [0,1) interval
of the real line is uncountable!
* Reals may have infinite strings of digits after the decimal point.
* Imagine if there were a numbered list of all reals in [0,1)

oty B3 o | |21 |3 |9 |1 |- |a] |
1 4 5

* For example: ;
— a; =0.23145...
— a, =0.30000...

— Let nur.r.iber d be:
* d[i]=(a;[i] + 1) mod 10

Ea
* Here, [i] is i™" digit. L S L LR

e This d is a valid real number!

— But if number d were in the list, e.g. kt"*, a contradiction
* It would have to differ from itself in k" place.

CO Diagonalization: languages

An alphabet is a finite set of symbols.
— For example, {0,1}is the binary alphabet.
A language is a set of finite strings over a given alphabet.
— For example, {0,1}" is the set of all finite binary strings.
— PRIMES c {0,1}" is all strings coding prime numbers in binary.

— PYTHON c {0,1}"* is all strings coding valid Python programs in
binary.

Every language is countable. =-__“ﬂ-ﬂ.l
— {0,1}*, PRIMES, PYTHON are countable — S I

Set of all languages is uncountable.
— Put “yes” ifs €L, “no”ifs &L T T T
— Let language D be:

=
c seDiffs¢L e e e = = [e =]]
¢ Ls

— If D were in the list, e.g. as Ly, a contradiction
* It would have to differ from itself in k" place.

So there is a language for which there is no Python program
which would correctly print “yes” on strings in the language,
and “no” otherwise.

yes no yes no yes

no no no no no

Puzzle: the barber club

* In a certain barber’s club,

— Every member has shaved at least one other
member

— No member shaved himself

— No member has been shaved by more than one
member

— There is a member who has never been shaved.

* Question: how many barbers are in this C/\/)

Infinitely many!
Barber O grows a beard.
For all n€ N, barber n shaves barber n+1

O The Halting Problem

* A specific example of a problem not solvable by any program: the
Halting problem, invented by Alan Turing:

— Input:
* Prog: A program as piece of code (e.g., in Python):
* x: Input to that program.

— Output:
» “yes” if this Prog(x) stops (that is, program Prog stops on input x).
* “no” if Prog goes into an infinite loop on input x.

— Suppose there is a program Halt(Prog, x) which always stops and prints
“yes” or “no” correctly.
* Nothing wrong with giving a piece of code as an input to another program.

— Then there is a program HaltOnltself(Prog) = Halt(Prog,Prog)

— And a program Diag(Prog):

* if Halt(Prog, Prog) says “yes”, go into infinite loop (e.g. add “while 0 <1: “ to
Halt’s code).

* if Halt(Prog, Prog) says “no”, stop.

— Now, what should Diag(Diag) do?...
* Paradox! lItis like a barber who shaves everybody who does not shave himself.
* So the program Diag does not exist... Thus the program Halt does not exist!

* Sothereis no program that would always stop and give the right
answer for the Halting problem.

