CS2209A 2017 Applied Logic for Computer Science

Lectures 14, 15 Set Theory and Related

Instructor: Yu Zhen Xie

Power sets

- A **power set** of a set A, $\mathcal{P}(A)$, is a set of **all subsets** of A.
 - Think of sets as boxes of elements.
 - A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some).
 - Then $\mathcal{P}(A)$ is a box containing boxes with elements of A.
 - When you open the box $\mathcal{P}(A)$, you don't see chocolates (elements of A), you see boxes.

$$- A = \{1,2\}, \ \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$-A = \emptyset, \ \mathcal{P}(A) = \{\emptyset\}.$$

- They are not the same! There is nothing in A, and there is one element, an empty box, in $\mathcal{P}(A)$
- If A has n elements, then $\mathcal{P}(A)$ has 2^n elements.

Cartesian products

- **Cartesian product** of A and B is a set of all pairs of elements with the first from A, and the second from B:
 - $A \times B = \{(x, y) \mid x \in A, y \in B\}$
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - $A=\{1,2\}, A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
- Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$.
- Number of elements in $A \times B$ is $|A \times B| = |A| \cdot |B|$
- Can define the Cartesian product for any number of sets:
 - $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots x_k) | x_1 \in A_1 \dots x_k \in A_k\}$ - $A = \{1, 2, 3\}, B = \{a, b\}, C = \{3, 4\}$
 - $-A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)\}$

Proofs with sets

- Two ways to describe the purple area
- $\overline{A \cup B}$, $\overline{A} \cap \overline{B}$
 - $-x \in \overline{A \cup B}$ when $x \notin A \cup B$
 - This happens when $x \notin A \land x \notin B$.
 - So $x \in \overline{A} \cap \overline{B}$. Since we picked an arbitrary x, then $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$
 - Not quite done yet ... Now let $x \in \overline{A} \cap \overline{B}$
 - Then $x \in \overline{A} \land x \in \overline{B}$. So $x \notin A \land x \notin B$.
 - $-x \notin A \land x \notin B \equiv \neg (x \in A \lor x \in B)$. So $x \notin A \cup B$. Thus $x \in A \cup B$.
 - Since x was an arbitrary element of $A \cap \overline{B}$, then $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.
 - Therefore $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Laws of set theory

- Two ways to describe the purple area
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- By similar reasoning,
 - $\bullet \overline{A \cap B} = \overline{A} \cup \overline{B}$

• Does this remind you of something?...

$$-\neg (p \lor q) \equiv \neg p \land \neg q$$

- **De Morgan's law** works in set theory!
- What about other equivalences from logic?

More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$

$$- True \lor A \equiv True.$$

$$-$$
 False $\lor A \equiv A$.

 $- \mathsf{A} \lor A \equiv A \land A \equiv A$

 $A \land \neg A \equiv False$ $True \land A \equiv A$ $False \land A \equiv False$

- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic

 $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Propositions vs. sets

U

Propositional logic	Set theory	A B
Negation $\neg p$	Complement \overline{A}	
AND $p \land q$	Intersection $A \cap B$	
OR $p \lor q$	Union $A \cup B$	
FALSE	Empty set Ø	
TRUE	Universe U	

Laws of set theory

- For any sets A, B, C and universe U:
 - $A \cup \overline{A} = U \qquad A \cap \overline{A} = \emptyset$ $U \cup A = U. \qquad U \cap A = A$
 - $\phi \cup A = A. \qquad \phi \cap A = \phi$
 - $A \cup A = A \cap A = A$
- Also, like in arithmetic (with ∨ as +, ∧ as *)
 - $A \cup B = B \cup A \text{ and } (A \cup B) \cup C = A \cup (B \cup C)$
 - Same holds for ∩.
 - Also, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- And unlike arithmetic
 - $(A \cap B) \cup C \equiv (A \cup C) \cap (B \cup C)$

Boolean algebra

 The "algebra" of both propositional logic and set theory is called **Boolean algebra** (as opposed to algebra on numbers).

Propositional logic	Set theory	Boolean algebra		
Negation $\neg p$	Complement \overline{A}	\overline{a}		
AND $p \land q$	Intersection $A \cap B$	$a \cdot b$		
OR $p \lor q$	Union $A \cup B$	a + b		
FALSE	Empty set Ø	0		
TRUE	Universe U	1		

Axioms of Boolean algebra

- 1. a + b = b + a, $a \cdot b = b \cdot a$
- 2. (a+b)+c = a+(b+c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

3.
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

- 4. There exist distinct elements 0 and 1 (among underlying set of elements B of the algebra) such that for all $a \in B$, a + 0 = a $a \cdot 1 = a$
- 5. For each $a \in B$ there exists an element $\overline{a} \in B$ such that $a + \overline{a} = 1$ $a \cdot \overline{a} = 0$

How about De Morgan, etc.? They can be derived from the axioms!

Relations

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-nary
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - R = {(1,a), (2,b),(3,a), (3,b)} is a relation. So is R={(1,b)}.
 - A={1,2},
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - R={(1,1), (2,2)} (all pairs (x,y) where x=y)
 - $R=\{(1,1),(1,2),(2,2)\}$ (all pairs (x,y) where $x \le y$).
 - A=PEOPLE
 - COUPLES ={(x,y) | Loves(x,y)}
 - PARENTS ={(x,y) | Parent(x,y)}
 - A=PEOPLE, B=DOGS, C=PLACES
 - WALKS = {(x,y,z) | x walks y in z}
 - Jane walks Buddy in spring bank park.

Graph of R (bipartite)

Types of binary relations

- A binary relation $R \subseteq A \times A$ is
 - Reflexive if $\forall x \in A, R(x, x)$
 - Every x is related to itself.
 - E.g. A={1,2}, $R_1 = \{ (1,1), (2,2), (1,2) \}$
 - On A = \mathbb{Z} , $\mathbb{R}_2 = \{(x, y) | x = y\}$ is reflexive
 - But not $R_3 = \{(x, y) | x < y\}$

- Symmetric if $\forall x, y \in A$, $(x, y) \in R \leftrightarrow (y, x) \in R$
 - R_1 and R_3 above are not symmetric. R_2 is.
 - A = \mathbb{Z} , $\mathbb{R}_4 = \{(x, y) | x \equiv y \mod 3\}$ is symmetric.

- Transitive if $\forall x, y, z \in A$, $(x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

- R_1 , R_2 , R_3 , R_4 are all transitive.
- $R_5 = \{(x, y) | x, y \in \mathbb{Z} \land x + 1 = y\}$ is not transitive.
- PARENT = { $(x, y) | x, y \in PEOPLE \land x \text{ is a parent of } y$ } is not.
- A transitive closure of a relation R is a relation $R^* = \{(x, z) \mid \exists k \in \mathbb{N} \exists y_0, \dots, y_k \in A \ (x = y_0 \land z = y_k \land \forall i \in \{0, \dots, k-1\} R(y_i, y_{i+1})\}$ - That is, can get from x to z following R arrows.

Types of binary relations

- A binary relation $R \subseteq A \times A$ is
 - Anti-reflexive if $\forall x \in A, \neg R(x, x)$
 - R can be neither reflexive nor anti-reflexive.
 - E.g. A={1,2}, $\frac{R_6}{R_6}$ = {(1,2)}
 - but not $R_1 = \{ (1,1), (2,2), (1,2) \}$ (reflexive)
 - nor $R_7 = \{(1,1), (1,2)\}$ (neither)
 - For $A = \mathbb{Z}$, not $\frac{R_2}{R_2} = \{(x, y) | x = y\}$
 - Nor $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - But $R_3 = \{(x, y) | x < y\}$ is anti-reflexive.
 - So are $\mathbb{R}_5 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + 1 = y\}$
 - And PARENT = { $(x, y) \in PEOPLE \times PEOPLE | x \text{ is a parent of } y$ }

– Anti-symmetric

- if $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \rightarrow x = y$
 - $R_1, R_3, R_5, R_6, R_7, PARENT$ are anti-symmetric. R_4 is not.
 - R_2 is both symmetric and anti-symmetric.
 - $R_8 = \{(1,2), (2,1), (1,3)\}$ is neither symmetric nor anti-symmetric.

Graph of {(1,2)}

>())

Equivalence

- A binary relation *R* ⊆ *A* × *A* is an **equivalence** if R is reflexive, symmetric and transitive.
 - E.g. A={1,2}, $R = \{(1,1), (2,2)\}$ or $R = A \times A$
 - Not $R_1 = \{ (1,1), (2,2), (1,2) \}$ nor $R_3 = \{ (x,y) | x < y \}$
 - On $A = \mathbb{Z}$, $R_2 = \{(x, y) | x = y\}$ is an equivalence
 - So is $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - Reflexive: $\forall x \in \mathbb{Z}, x \equiv x \mod 3$
 - Symmetric: $\forall x, y \in \mathbb{Z}, x \equiv y \mod 3 \rightarrow y \equiv x \mod 3$
 - Transitive: $\forall x, y, z \in \mathbb{Z}, x \equiv y \mod 3 \land y \equiv z \mod 3 \rightarrow x \equiv z \mod 3$
- An equivalence relation partitions A into equivalence classes:
 - Intersection of any two equivalence classes is Ø
 - Union of all equivalence classes is A.
 - $\begin{array}{l} R_4 : \mathbb{Z} = \{x \mid x \equiv 0 \bmod 3\} \cup \{x \mid x \equiv 1 \bmod 3\} \cup \{x \mid x \equiv 2 \bmod 3\} \end{array}$
 - $-R = A \times A$ gives rise to a single equivalence class. $R = \{(1,1), (2,2)\}$ to two.

Partial and total orders

- A binary relation $R \subseteq A \times A$ is an **order** if R is **reflexive**, **anti-symmetric** and ۲ transitive.
 - R is a **total order** if $\forall x, y \in A$ $R(x, y) \lor R(y, x)$
 - That is, every two elements of A are related.
 - E.g. $R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \leq y\}$ is a total order.
 - So is alphabetical order of English words.
 - But not $R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\}$
 - not reflexive, so not an order.
 - Otherwise, R is a **partial order**.
 - SUBSETS = { $(A, B) \mid A, B \text{ are sets } \land A \subseteq B$ } is a partial order.
 - Reflexive: $\forall A, A \subseteq A$
 - Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 - Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 - Not total: if A ={1,2} and B ={1,3}, then neither $A \subseteq B$ nor $B \subseteq A$
 - DIVISORS = {(x,y) | $x, y \in \mathbb{N} \land x, y \ge 2 \land \exists z \in \mathbb{N} \ y = z \cdot x$ } is a partial order.
 - PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves. It is a partial order.
- An order may have **minimal** and **maximal** elements (maybe multiple) ۰
 - $-x \in A$ is minimal in R if $\forall y \in A \ y \neq x \rightarrow \neg R(y, x)$
 - and maximal if $\forall y \in A \ y \neq x \rightarrow \neg R(x, y)$
 - Ø is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in DIVISORS, and there are no maximal elements.

Functions

- A function $f: X \to Y$ is a relation on $X \times Y$ such that for every $x \in X$ there is at most one $y \in Y$ for which (x, y) is in the relation.
 - Usual notation: f(x) = y
 - y is an **image** of x under f.
 - X is the **domain** of f
 - Y is the **codomain** of f
 - Range of f (image of X under f):
 - $\{y \in Y \mid \exists x \in X, f(x) = y\}$
 - **Preimage** of a given $y \in Y$:
 - $\{x \in X \mid f(x) = y\}$
 - Preimage of b is {2,3}.

Functions

- A function $f: X \to Y$ is
 - Total: $\forall x \in X \exists y \in Y f(x) = y$
 - f: $\mathbb{Z} \to \mathbb{Z}$
 - f(x) = x + 1 is total.
 - $f(x) = \frac{100}{x}$ is not total. Why?
 - Onto: $\forall y \in Y \exists x \in X f(x) = y$
 - f(x) = x + 1 is onto over \mathbb{Z} , but not over \mathbb{N}
 - One-to-one: $\forall x_1, x_2 \in X (f(x_1) = f(x_1) \rightarrow x_1 = x_2)$
 - f(x) = x + 1 is one-to-one.
 - $f(x) = x^2$ is not one-to-one
 - Bijection: both one-to-one and onto.
 - f(x) = x + 1 is a bijection over \mathbb{Z} .

Not total

えつ

0

Functions

• An **inverse** of f is $f^{-1}: Y \to X$, such that $f^{-1}(y) = x$ iff f(x) = y

$$-f(x) = x + 1, f^{-1}(y) = y - 1$$

- Only one-to-one functions have an inverse

- **Composition** of $f: X \to Y$ and $g: Y \to Z$ is $g \circ f: X \to Z$ such that $(g \circ f)(x) = g(f(x))$

$$-f(x) = \frac{x}{5}, g(x) = [x], \text{ over } \mathbb{R}$$

• [x] is ceiling: x rounded up to nearest integer.

$$-(g \circ f)(x) = g(f(x)) = \left[\frac{x}{5}\right]$$

$$- (f \circ g)(x) = f(g(x)) = \frac{[x]}{5}$$

$$-(g \circ f)(12.5) = [2.5] = 3$$

$$-(f \circ g)(12.5) = 13/5 = 2.6$$

Puzzle: the barber

 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

• Question: who shaves the barber?

Cardinalities of infinite sets

- Two finite sets A and B have the **same cardinality** if they have the same number of elements
 - That is, for each element of A there is exactly one matching element of B.

- For infinite sets A and B, define |A|=|B| iff there exists a bijection between A and B.
 - If there is both a one-to-one function from A to B, and an onto function from A to B.
- A set A is **countable** iff |A| = |N|.
 - \mathbb{Z} is countable: take $f: \mathbb{Z} \to \mathbb{N}$, f(x) = 2x if $x \ge 0$, else f(x) = -(1+2x)
 - Set of all finite strings over {0,1}, denoted {0,1}*, is countable.
 - Empty string, 0, 1, 00, 01, 10, 11, 000, 001, ...
 - An infinite subset of a countable language is countable.
 A Cartesian product of countable languages is countable:
 - $\mathbb{N} \times \mathbb{N}$: (0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),...
 - \mathbb{Q} is countable: $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$

Diagonalization: \mathbb{R}

- Is there a bigger infinity?
 - Yes! In particular, ℝ is uncountable. Even [0,1) interval of the real line is uncountable!
 - Reals may have infinite strings of digits after the decimal point.
 - Imagine if there were a numbered list of all reals in [0,1)
 - $-a_0, a_1, a_2, a_3, \dots$
 - For example:
 - $a_1 = 0.23145...$
 - $-a_2 = 0.30000...$

— ...

- Let number d be:
 - $d[i]=(a_i[i]+1) \mod 10$
 - Here, [i] is i^{th} digit.
 - This *d* is a valid real number!
- But if number d were in the list, e.g. k^{th} , a contradiction
 - It would have to differ from itself in k^{th} place.

0.	r[1]	r[2]	r[3]	r[4]	r[5]	 r[k]	
a_0	2	3	1	4	5		
1	3	0	0	0	0		
2	9	9	9	9	9		
k	2	1	3	4	3	 5	
d	3	1	0			 6	

O Diagonalization: languages

- An **alphabet** is a finite set of symbols.
 - For example, {0,1} is the binary alphabet.
- A language is a set of finite strings over a given alphabet.
 - For example, $\{0,1\}^*$ is the set of all finite binary strings.
 - − PRIMES ⊂ $\{0,1\}^*$ is all strings coding prime numbers in binary.
 - PYTHON ⊂ {0,1}* is all strings coding valid Python programs in binary.
- Every language is countable.
 - $\{0,1\}^*$, PRIMES, PYTHON are countable
- Set of all languages is uncountable.
 - Put "yes" if $s \in L$, "no" if $s \notin L$
 - Let language D be:
 - $s \in D$ iff $s \notin L_s$
 - If D were in the list, e.g. as L_k , a contradiction
 - It would have to differ from itself in k^{th} place.
- So there is a language for which there is no Python program which would correctly print "yes" on strings in the language, and "no" otherwise.

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member
 - No member shaved himself
 - No member has been shaved by more than one member
 - There is a member who has never been shaved.
- Question: how many barbers are in this club?

Infinitely many!

Barber 0 grows a beard. For all $n \in \mathbb{N}$, barber n shaves barber n+1

\sim

The Halting Problem

- A specific example of a problem not solvable by any program: the Halting problem, invented by Alan Turing:
 - Input:
 - Prog: A program as piece of code (e.g., in Python):
 - x: Input to that program.
 - Output:
 - "yes" if this Prog(x) stops (that is, program Prog stops on input x).
 - "no" if Prog goes into an infinite loop on input x.
 - Suppose there is a program Halt(Prog, x) which always stops and prints "yes" or "no" correctly.
 - Nothing wrong with giving a piece of code as an input to another program.
 - Then there is a program HaltOnItself(Prog) = Halt(Prog, Prog)
 - And a program Diag(Prog):
 - if Halt(Prog, Prog) says "yes", go into infinite loop (e.g. add "while 0 <1: " to Halt's code).
 - if Halt(Prog, Prog) says "no", stop.
 - Now, what should Diag(Diag) do?...
 - Paradox! It is like a barber who shaves everybody who does not shave himself.
 - So the program Diag does not exist... Thus the program Halt does not exist!
- So there is no program that would always stop and give the right answer for the Halting problem.

