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Power sets
• A power set of a set A, P � , is a set of allsubsets of A.  

– Think of sets as boxes of elements. 
– A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some). 
– Then  P � is a box containing boxes with elements of A.
– When you open the box P � , you don’t see chocolates (elements of A), you see boxes. 
– A={1,2},   P � � ∅, 1 , 2 , 1,2
– � � ∅, 	P � � ∅ .  

• They are not the same! There is nothing in A, and there is one element, an empty box, in P �
• If A has n elements, then  P � has 2�	elements.

A
Subsets of A: 

Power set  P �



Cartesian products
• Cartesian product of  A and B is a set of all pairs of elements with the first from A, and the second from B:  

– A x B = 	, 
 	 		 ∈ �, 
 ∈ �}	
– A={1,2,3},  B={a,b}
– � × � � 1, � , 1, � , 2, � , 2, � , 3, � , 3, �
– A={1,2},  � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }

• Order of pairs does not matter, order within pairs does: � × � ≠ � × �	.
• Number of elements in � × � is |� × �| � � ⋅ |�|
• Can define the Cartesian product for any number of sets:  

– �� × �� ×⋯× �� � 	�, 	�, … 	�) 		� ∈ ��…	� ∈ ��
– � � 1,2,3 , � �{a,b}, C={3,4}
– � × � × � � { 1, �, 3 , 1, �, 4 , 1, �, 3 , 1, �, 4 ,																											 2, �, 3 , 2, �, 4 , 2, �, 3 , 2, �, 4 ,3, �, 3 , 3, �, 4 , 3, �, 3 , 3, �, 4 }

B

A

A x B 

a b
1 (1,a) (1,b)
2 (2,a) (2,b)
3 (3,a) (3,b)



Proofs with sets
• Two ways to describe the purple area
• � ∪ �, 					 � ∩ �	
– 	 ∈ 		� ∪ �			when 	 ∉ 		� ∪ �	
– This happens when  	 ∉ �	 ∧ 	 ∉ �.			
– So 	 ∈ 	� ∩ �.  Since we picked an arbitrary x, then � ∪ � ⊆ � ∩ �	
– Not quite done yet …  Now let 	 ∈ 	� ∩ �
– Then 	 ∈ � ∧ 	 ∈ �.	 So 	 ∉ � ∧ 		 ∉ �.	
– 	 ∉ � ∧ 		 ∉ � ≡ 	%	 	 ∈ � ∨ 	 ∈ � .  So 	 ∉ � ∪ �.	 Thus 	 ∈ 		� ∪ �.   
– Since x was an arbitrary element of � ∩ �,  then  � ∩ �	 ⊆ 	� ∪ �. 
– Therefore � ∪ � �		� ∩ �	

A B
U         



Laws of set theory
• Two ways to describe the purple area

� � ∪ � � � ∩ �	
• By similar reasoning, 

� � ∩ � � � ∪ �	
• Does this remind you of something?... 
– % ' ∨ q ≡ %'	 ∧ %	)	
– De Morgan’s law works in set theory! 
– What about other equivalences from logic? 

A B
U         



More useful equivalences 
• For any formulas A, B, C: 
– A ∨ %� ≡ *+,- 																					� ∧ %� ≡ .�/0-
– *+,- ∨ � ≡ *+,-. 															*+,- ∧ � ≡ �
– .�/0- ∨ � ≡ �. 																				.�/0- ∧ � ≡ .�/0-
– A∨ � ≡ � ∧ � ≡ �

• Also, like in arithmetic (with ∨ as +, ∧	as *)
– � ∨ � ≡ � ∨ �				�12				 � ∨ � ∨ � ≡ � ∨ � ∨ � 	
– Same	holds	for	∧.		
– Also,  � ∨ � ∧ � ≡ � ∧ � ∨ � ∧ �

• And unlike arithmetic
– � ∧ �	 ∨ � ≡ 		 � ∨ � ∧ >� ∨ �)	



Propositions vs. sets
A B

U         Propositional logic Set theory
Negation  %	' Complement 			�
�?@		' ∧ )	 Intersection  � ∩ 	�
OR    ' ∨ )	 Union  � ∪ �	
FALSE Empty set 		∅
TRUE Universe  U



Laws of set theory 
• For any sets A, B, C and universe U: 

– A ∪ � 	� A																													A ∩ � 	� ∅
– A	 ∪ � � A. 																											A ∩ � � 	�
– ∅	 ∪ � � �. 																											∅	 ∩ � � ∅
– A ∪ � � 	� ∩ � � �

• Also, like in arithmetic (with ∨ as +, ∧	as *)
– � ∪ � � � ∪ �			�12		 � ∪ � ∪ � � � ∪ � ∪ � 	
– Same	holds	for	∩.		
– Also,  � ∪ � ∩ � � � ∩ � ∪ � ∩ �

• And unlike arithmetic
– � ∩ �	 ∪ � ≡ 		 � ∪ � ∩ >� ∪ �)	 U         

U         
� ∪ �	

A

U         

U         
A-B

� ∩ �	



Boolean algebra 
• The “algebra” of both propositional logic and set theory is called   Boolean algebra (as opposed to algebra on numbers).   

Propositional logic Set theory Boolean algebra
Negation  %	' Complement 			� �
�?@		' ∧ )	 Intersection  � ∩ 	� � ⋅ �
OR    ' ∨ )	 Union  � ∪ �	 � + �	
FALSE Empty set 		∅ 0
TRUE Universe  U 1



Axioms of Boolean algebra
1. � + � � � + �, 											� ⋅ � � � ⋅ �
2. (a+b)+c = a+(b+c)									 a ⋅ �	 ⋅ E � � ⋅ � ⋅ E
3. � + � ⋅ E � � + � ⋅ � + E� ⋅ � + E � � ⋅ � + >� ⋅ E	)
4. There exist distinct elements 0	and 1	(among underlying set of elements B of the algebra) such that for all � ∈ �,		� + 0 � �																							� ⋅ 1 � �	
5. For each � ∈ �	there exists an element � ∈ � such that � + � � 1																		� ⋅ � � 0 	
How about De Morgan, etc.?  They can be derived from the axioms!



Relations
• A relation is a subset of a Cartesian product of sets. 

– If of two sets (set of pairs), call it a binary relation.
– Of 3 sets (set of  triples), ternary.   Of k sets (set of tuples), k-nary
– A={1,2,3},  B={a,b}

• � × � � 1, � , 1, � , 2, � , 2, � , 3, � , 3, �
• R = {(1,a), (2,b),(3,a), (3,b)} is a relation.  So is R={(1,b)}.

– A={1,2},  
• � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }
• R={(1,1), (2,2)}  (all pairs (x,y) where x=y) 
• R={(1,1),(1,2),(2,2)}  (all pairs (x,y) where 	 ≤ 
).	

– A=PEOPLE
• COUPLES ={(x,y) |  Loves(x,y)} 
• PARENTS ={(x,y) |  Parent(x,y)} 

– A=PEOPLE, B=DOGS, C=PLACES
• WALKS = {(x,y,z) | x walks y in z} 

– Jane walks Buddy in spring bank park. 
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Graph of R (bipartite)

1 2
Graph of {(1,1),(2,2)}



Types of binary relations
• A binary relation  G ⊆ � × �	is
– Reflexive if ∀	 ∈ �, G>	, 	)

• Every x is related to itself. 
• E.g. A={1,2}, G� �	{ (1,1), (2,2), (1,2)}
• On  A = ℤ, G� � 	, 
 	 � 
} is reflexive
• But not GJ � 	, 
 		 < 
}	

– Symmetric if  ∀	, 
 ∈ �, 	, 
 ∈ G ↔ 
, 	 ∈ G
• G� and GJ above are not symmetric. G�	is.  
• A = ℤ, GM � 	, 
 	 ≡ 
	NO2	3	} is symmetric. 

– Transitive if ∀	, 
, P ∈ �, 	, 
 ∈ G ∧ 
, P ∈ G → 	, P ∈ G
• G�, G�, GJ, GM are all transitive. 
• GR � 	, 
 	, 
 ∈ ℤ ∧ 	 + 1 � 
}	 is not transitive. 
• PARENT = 	, 
 	, 
 ∈ STUSVT ∧ 			W0	�	'�+-1X	OY	
}	is not.
• A transitive closure of a relation R is a relation G∗ � 	, P 	 	∃\ ∈ℕ		∃
^, … , 
� ∈ �		>	 � 
^ ∧ P � 
� ∧ ∀W ∈ 0,… , \ − 1 	G 
` , 
`a� }

– That is,  can get from x to z following R arrows. 

1 2G�



Types of binary relations
• A binary relation  G ⊆ � × �	is
– Anti-reflexive if ∀	 ∈ �,%G 	, 	

• R can be neither reflexive nor anti-reflexive.  
• E.g. A={1,2}, Gb �	{(1,2)}

– but not  G� �	{ (1,1), (2,2), (1,2)} (reflexive)
– nor  Gc �	{(1,1), (1,2)} (neither) 

• For � � ℤ, not 	G� � 	, 
 	 � 
}
– Nor  GM � 	, 
 	 ≡ 
	NO2	3	}

• But GJ � 	, 
 		 < 
}		is anti-reflexive. 
– So are GR � 	, 
 ∈ ℤ × ℤ	 		 + 1 � 
}
– And PARENT = 	, 
 ∈ STUSVT × STUSVT	 			W0	�	'�+-1X	OY	
}	

– Anti-symmetricif  ∀	, 
 ∈ �, 	, 
 ∈ G ∧ 
, 	 ∈ G → 	 � 

• G�, GJ, GR, Gb, Gc, S�GT?* are	anti-symmetric.	GM		is	not.	
• G� is both symmetric and anti-symmetric. 
• Gj � 1,2 , 2,1 , 1,3 is neither symmetric nor anti-symmetric. 

1 2
Graph of {(1,2)}



Equivalence  
• A binary relation  G ⊆ � × �	is an equivalence if R is reflexive, symmetric  and transitive.

• E.g. A={1,2},  G � 1,1 , 2,2 or G � � × �
• Not G� �	{ (1,1), (2,2), (1,2)} nor GJ � 	, 
 		 < 
}	
• On  A = ℤ, G� � 	, 
 	 � 
} is an equivalence
• So is GM � 	, 
 	 ≡ 
	NO2	3	}

– Reflexive:  ∀	 ∈ ℤ, 		 ≡ 		NO2	3
– Symmetric: ∀	, 
 ∈ ℤ, 	 ≡ 
	mod	3	 → 
 ≡ 			NO2	3
– Transitive:  ∀	, 
, P	 ∈ ℤ, 	 ≡ 
	mod	3 ∧ 	
 ≡ P		NO2	3 → 	 ≡ P		NO2	3

• An equivalence relation partitions A into equivalence classes:
– Intersection of any two equivalence classes is ∅
– Union of all equivalence classes is A.  
– GM:	 ℤ � 		 	 ≡ 0	NO2	3} ∪ {x	 	x ≡ 1	NO2	3 ∪ 		 	 ≡2	NO2	3}	
– G � � × �	gives rise to a single equivalence class. 				G � 1,1 , 2,2 to  two. 

1 2
1 2



Partial and total orders 
• A binary relation  G ⊆ � × �	is an order if R is reflexive, anti-symmetric and transitive. 

– R is a total order if ∀	, 
 ∈ �		G 	, 
 ∨ G>
, 	)
• That is, every two elements of A are related. 
• E.g.  G� � 	, 
 	, 
 ∈ ℤ ∧ 	 ≤ 
}	is a total order.  
• So is alphabetical order of English words.  
• But not G� � 	, 
 	, 
 ∈ ℤ ∧ 	 < 
}

– not reflexive, so not an order. 
– Otherwise, R is a partial order. 

• mA�mT*m � �, � 	 	�, �	�+-	0-X0 ∧ 	� ⊆ �	} is a partial order. 
– Reflexive:  ∀�, � ⊆ �	
– Anti-symmetric:  ∀	�, �		� ⊆ � ∧ � ⊆ � → � � �	
– Transitive:  ∀�, �, �		� ⊆ � ∧ � ⊆ � → � ⊆ �
– Not total:   if A ={1,2} and B ={1,3}, then neither � ⊆ �	nor � ⊆ �	

• @nonmUGm �	{(x,y)| 	, 
 ∈ ℕ ∧ 	, 
 ≥ 2	 ∧ ∃P ∈ ℕ		
 � P ⋅ 	}	 is a partial order.
• PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves. It is a partial order. 

• An order may have minimal and maximal elements (maybe multiple)
– 	 ∈ �	is minimal in R if ∀
 ∈ �		
 ≠ 	 → 	%G>
, 	)

• and maximal if ∀
 ∈ �	
 ≠ 	 → %G 	, 

– ∅	is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum). 
– All primes are minimal in DIVISORS, and there are no maximal elements. 

1 2 3

1 2 3



Functions
• A function Y: q → r	is a relation on X	× r	such that for every 	 ∈	X there is at most one 
 ∈ r	for which 	, 
 is in the relation. 
– Usual notation: Y 	 � 


• y is an image of x under f.
– X is the domain of f 
– Y is the codomain of f
– Range of f (image of X under f): 

• y ∈ r	 ∃	 ∈ q, Y 	 � 
}
– Preimage of a given 
 ∈ r:	

• 	 ∈ q	 Y 	 � 
}
– Preimage of b is {2,3}. 

This R is not a function

12
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a
b
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a
b

This R is a functionwith domain {1,2,3,4}, codomain {a,b,c} and range {a,b}

4 c



Functions
• A function Y: q → r	is 
– Total:  ∀	 ∈ q	∃
 ∈ r	Y 	 � 


• f: ℤ → ℤ	
• Y 		 � 	 + 1 is total.   
• Y 	 � �^^

s is not total. Why?
– Onto: 	∀
 ∈ r	∃	 ∈ q	Y 	 � 


• Y 		 � 	 + 1 is onto over ℤ, but not over ℕ
– One-to-one: 	∀	�,	� ∈ q	>Y 	� �	f x� → 	� � 	�	)

• Y 	 � 	 + 1 is one-to-one. 
• Y 	 � 	�	 is not one-to-one 

– Bijection: both one-to-one and onto.
• Y 	 � 	 + 1	 is a bijection over ℤ.

12
3
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Not total 
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Not onto 
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Not one-to-one 
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Bijection



Functions
• An inverse of Y	is Yt�: r → q,	such that Yt� 
 � 		 iff 	Y 	 � 


– Y 	 � 	 + 1, Yt� 
 � 
 − 1
– Only one-to-one functions have an inverse

• Composition of Y: q → r	 and u: r → v is u ∘ Y: q → v	such that >u ∘ Y) 	 � u>Y 	 )
– Y 	 � s

R , u 	 � x	y, over z
• x	y is ceiling: x rounded up to nearest integer.

– u ∘ Y	 	 � u Y 	 � s
R

– Y ∘ u	 	 � Y u 	 � s
R

– u ∘ Y	 (12.5) = 2.5 � 3
– Y ∘ u	 (12.5) = 13/5� 2.6

• Order matters! 

12
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Puzzle: the barber
• In a certain village, there is a (male)  barber who shaves all and only  those men of the village who do not shave themselves.
• Question: who shaves the barber? 



Cardinalities of infinite sets
• Two finite sets A and B  have the same cardinality if they have the same number of elements

– That is, for each element of A there is  exactly one matching element of B. 
• For infinite sets A and B, define |A|=|B| iff there exists a bijection between A and B. 

– If there is both a one-to-one function from A to B, and an onto function from A to B. 
• A set A is countable iff |A| = |ℕ|. 

– ℤ	is countable:  take Y: ℤ → ℕ,  Y 	 � 2		 if 	 ≥ 0, else Y 	 � −>1 + 2	)
– Set of all finite strings over {0,1}, denoted 0,1 ∗, is countable.

• Empty string, 0, 1, 00, 01, 10, 11, 000, 001, …
– An infinite  subset of a countable language is countable. A Cartesian product of countable languages is countable: 

• ℕ ×ℕ:	 (0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),… 
– ℚ is countable:  ℚ ⊂ ℤ × ℤ

12
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Diagonalization: 
• Is there a bigger infinity?  
– Yes! In particular, 	z is uncountable. Even [0,1) interval of the real line is uncountable!

• Reals may have infinite strings of digits after the decimal point.
• Imagine if there were a numbered list of all reals in [0,1)

– �^, ��, ��, �J, …
• For example: 

– �� = 0.23145…
– �� = 0.30000…
– …

– Let number d be:
• d[i]=>�` W + 1)		NO2	10	
• Here,  W is W�� digit.
• This d is a valid real number!

– But if number d were in the list, e.g. \��, a contradiction
• It would have to differ from itself in \�� place.  

0. r[1] r[2] r[3] r[4] r[5] … r[k]
�^ 2 3 1 4 5 …

1 3 0 0 0 0 …
2 9 9 9 9 9 …
…
k 2 1 3 4 3 … 5 …
…
d 3 1 0 … … … 6 …



Diagonalization: languages
• An alphabet is a finite set of symbols.  

– For example, {0,1} is the binary alphabet. 
• A language is a set of finite strings over a given alphabet.  

– For example, 0,1 ∗ is the set of all finite binary strings. 
– PRIMES ⊂ 0,1 ∗	 is all strings coding prime numbers in binary.   
– PYTHON ⊂ 0,1 ∗	 is all strings coding valid Python programs in binary. 

• Every language is countable. 
– 0,1 ∗,	PRIMES, PYTHON are countable

• Set of all languages is uncountable.
– Put “yes” if 0 ∈ V, “no” if 0 ∉ V	
– Let language D  be:

• s ∈ D iff 0 ∉ V�
– If D were in the list, e.g. as  V�, a contradiction

• It would have to differ from itself in \�� place.  
• So there is a language for which there is no Python program which would correctly print “yes” on strings in the language, and “no” otherwise.  

0 1 00 01 … ��
V^ yes yes no yes yes …
V� yes no yes no yes …

no no no no no …
…
V� no yes yes no yes … yes …

…
D no yes yes … … … no …



Puzzle: the barber club
• In a certain barber’s club,
– Every member has shaved at least one other member
– No member shaved himself
– No member has been shaved by more than one member
– There is a member who has never been shaved. 

• Question: how many barbers are in this club? Infinitely many!Barber 0 grows a beard. For all n∈ ℕ, barber n shaves barber n+1…



The Halting Problem
• A specific example of a problem not solvable by any program:  the Halting problem, invented by Alan Turing:  

– Input:  
• Prog:  A program as piece of code (e.g., in Python): 
• x:  Input to that program. 

– Output: 
• “yes” if this Prog(x) stops (that is, program Prog stops on input x).   
• “no” if Prog goes into an infinite loop on input x. 

– Suppose there is a program Halt(Prog, x) which always stops and prints “yes” or “no” correctly.  
• Nothing wrong with giving a piece of code as an input to another program. 

– Then there is a program HaltOnItself(Prog) = Halt(Prog,Prog)
– And a program Diag(Prog): 

• if Halt(Prog, Prog) says “yes”,  go into infinite loop (e.g. add “while 0 <1: “  to Halt’s code).
• if Halt(Prog, Prog) says “no”, stop.  

– Now, what should Diag(Diag) do?...  
• Paradox!  It is like a barber who shaves everybody who does not shave himself.
• So the program Diag does not exist…  Thus the program Halt does not exist! 

• So there is no program that would always stop and give the right answer for the Halting problem.    


