CS2209A 2017
Applied Logic for Computer Science

Lecture 16

Resolution for Predicate Logic

Instructor: Yu Zhen Xie

Revisit: main rules of inference in propositional logic

* Valid argument:
AND of premises — conclusion is a tautology

* Modus ponens:
(p — q) Ap — qis a tautology

* Hypothetical syllogism:
(p > qg)N(qg—71)— (p—71)isatautology

* Disjunctive syllogism:
(AV B) A=A — B is atautology

* Resolution:
(AVC)AN(BV—=C)—(AVEB)isatautology

Rules of inference

* These patterns describe how new knowledge
can be derived from existing knowledge, both
in the form of propositional logic formulas
(sentences).

* When describing an inference rule, the
premise specifies the pattern that must match
our knowledge base and the conclusion is the
new knowledge inferred.

Modus ponens, modus tollens, AND elimination, AND introduction,
and universal instantiation

* Ifthe sentences P and P — Q are known to be true, then
modus ponens lets us infer Q.

 Under the inference rule modus tollens, if P — Q is known to
be true and Q. is known to be false, we can infer P.

* AND elimination allows us to infer the truth of either of the
conjuncts from the truth of a conjunctive sentence.
E.g. P A Q lets conclude both P and Q are true.

 AND introduction lets us infer the truth of a conjunction from
the truth of its conjuncts.
E.g. if both P and Q are true, then P A Q are true.

* Universal instantiation states that if any universally quantified
variable in a true sentence is replaced by any appropriate term
from the domain, the result is a true sentence. Thus, if a is
from the domain of X, VX p(X) lets us infer p(a).

Definition

* A predicate logic (or calculus) expression X
logically follows from a set S of predicate calculus
expressions if every interpretation and variable
assignment that satisfies S also satisfies X.

— An interpretation is an assignment of specific values to
domains and predicates.

* Aninference rule is sound if every predicate
calculus expressions also logically follows from S.

* Aninference rule is complete if, given a set S of
predicate calculus expressions, the rule can infer
every expression that logically follows from S.

Logic and finding a proof

e Given

— a knowledge base represented as a set of
propositional sentences.

— a goal stated as a propositional sentence
— list of inference rules

 We can write a program to repeatedly apply
inference rules to the knowledge base in
the hope of deriving the goal.

Developing a proof procedure

* Deriving (or refuting) a goal from a collection
of logic facts corresponds to a very large
search tree.

* Alarge number of rules of inference could be
utilized.

* The selection of which rules to apply and
when would itself be non-trivial.

Resolution and CNF

* Resolution is a single rule of inference that
can operate efficiently on a special form of
sentences.

* The special form is called conjunctive normal
form (CNF) or clausal form, and has these
properties:

— Every sentence is a disjunction (OR) of literals
(clauses)

— All sentences are implicitly conjuncted (ANDed).

Predicate Logic Resolution

* We have to worry about the arguments to
predicates, so it is harder to know when two
literals match and can be used by resolution.

— For example, does the literal
Father(Bill, Chelsea) match Father(x, y) ?

* The answer depends on how we substitute
values for variables.

Proof procedure for predicate logic

* Same idea, but a few added complexities:
—conversion to CNF is much more complex.

— Matching of literals requires providing a
matching of variables, constants and/or
functions.

— Skates(x) v LikesHockey(x)
— LikesHockey(y)

We can resolve these only if we assume x and
y refer to the same object.

Predicate Logic and CNF

* Converting to CNF is harder - we need to worry
about variables and quantifiers.

— Eliminate all implications —

— Reduce the scope of all — to single term

— Make all variable names unique

— Move quantifiers left (prenex normal form)
— Eliminate Existential Quantifiers

— Eliminate Universal Quantifiers

— Convert to conjunction of disjuncts

— Create separate clause for each conjunct.

Eliminate Existential Quantifiers

* Any variable that is existentially quantified
means that

— there is some value for that variable that makes the
expression true.

* To eliminate the quantifier, we can replace the
variable with a function.

 We don’t know what the function is, we just
know it exists.

Skolem functions

* Named after the Norwegian logician
Thoralf Skolem

 Example: 3 y President(y)
We replace y with a new function func:
President(func())
func is called a Skolem function.

* In general the function must have the same
number of arguments as the number of
universal quantifiers in the current scope.

Skolemization Example

* In general the function must have the same number
of arguments as the number of universal quantifiers
in the current scope.

 Example: Vx -y Father(y, x)

— create a new function named foo and replace y
with the function.

— Vx Father(foo(x), x)

Unification

 Two formulas are said to unify if there are legal
instantiations (assignments of terms to variables)
that make the formulas in question identical.

* The act of unifying is called unification. The
instantiation that unifies the formulas in question
is called a unifier.

* There is a simple algorithm called the unification
algorithm that does this.

Unification

 Example: Unify the formulas Q(a, v, z7) and Q(y, b, c¢)

e Solution:

— Since yin Q(a, y, z) is a different variable than y in
Q(y, b, c), rename y in the second formula to
become yl1.

— This means that one must unify Q(a, v, 7) with
Q(y1, b, c).

— Aninstance of Q(aq, y, z) is Q(a, b, c) and an
instance of Q(y1, b, c) is Q(a, b, c).

— Since these two instances are identical, Q(a, y, z)
and Q(y, b, c) unify.

— The unifierisyl =a,y=b, 7 =c.

Unification

* Unification: matching literals and doing
substitutions that resolution can be applied.

e Substitution: when a variable name is
replaced by another variable or element of
the domain.

— Notation [a/x] means replacing all occurrences of
x with a in the formula

— Example: substitution [5/x] in p(x) V Q(x,y) results
inp(5) v Q(5,y)

17

Unification

* |tis an algorithm for determining the
substitutions needed to make two predicate
logic expressions match.

e A variable cannot be unified with a term
containing that variable. The test for it is called
the occurs check.

— Example: cannot substitute x for x + vinp(x + y)

— Most applicable when rather than having variables
we have whole expressions (terms) evaluating to
elements of the domain.

— Example: x + yisaterm; whenx,y € Z and x +
vy € 7, with terms we can write formulas such as

p(x+y)VQ(ly —2)

Algorithm to convert to clausal form (1)

(1) Eliminate conditionals — , using the equivalence
p—q=-pVq
e.g. @x) (@)ANWY)(f (v) = h(x,y))) becomes
@A) @EANY)(~f (V) v h(x, 1))

(2) Eliminate negations or reduce the scope of negation to one atom.
e.g P =p
—(pAgq) =-pV—q
—|(Vx = S,F(x)) =3dx €85, =F(x)
—|(E|x = S,F(x)) =Vx €S, =F(x)

(3) Standardize variables within a well-formed formula so that the
bound or free variables of each quantifier have unigue names. e.g.

(Fx)—=p(x) VvV (Vx)p(x)is replaced by (Fx)—=p(x) vV (Vy)p(v)

19

Algorithm to convert to clausal form (2)

(4) Advanced step: if there are existential quantifiers, eliminate them
by using Skolem functions

e.g. (3x)p(x) is replaced by p(a)
(Vx)(Jy)k(x,v) isreplaced by (Vx) k(x, f(x))

(5) Convert the formula to prenex form

e.g. (3x)(p(x) A (Vy) (=f(y) V h(x,y))) becomes
(vy) (p(@) A (=f(¥) V h(a, ¥)))

(6) Convert the formulas to CNF, which is a conjunctive of clauses.
Each clause is a disjunction.

eg.pV(@ATr)=(@EVaA(pVr)

(7) Drop the universal quantifiers
e.g. the formulain (5) becomes p(a) A (=f(y) V h(a,y))

20

Algorithm to convert to clausal form (3)

(8) Eliminate the conjunctive signs by writing the formula as a
set of clauses

e.g.p(a) A(=f(y)Vh(a,y)) becomes p(a),
(=f)V h(a,y))

(9) Rename variables in clauses, if necessary, so that the same
variable name is only used in one clause.

eg.p(x)Vvq(ly)Vk(x,y) and =p(x)V q(y) becomes
p(x)Vq(y)Vk(x,y) and =p(x1) v q(y1)

21

Example: Resolution for predicate logic
Anyone passing his history exams and winning the lottery is happy.
vV X (pass (X,history) A win (X,lottery) — happy (X))
Anyone who studies or is lucky can pass all his exams.
vV XVY (study (X) v lucky (X) —» pass (X,Y))
John did not study but he is lucky.
— study (john) A lucky (john)
Anyone who is lucky wins the lottery.
vV X (lucky (X) — win (X,lottery))

These four predicate statements are now changed to clause form (Section 12.2.2):

1. — pass (X, history) v — win (X, lottery) v happy (X)
— study (Y) v pass (Y, Z)

— lucky (W) v pass (W, V)

— study (john)

lucky (john)

6. — lucky (U) v win (U, lottery)

o kN

Into these clauses 1s entered, in clause form, the negation of the conclusion:

7. — happy (john)

- pass(X, history) v - win(X, lottery) v happy(X) - lucky(U) v win(U, lottery)

W

- pass(U, history) v happy(U) v - lucky(U) - happy(john)

Uohw

lucky(john) - pass(john, history) v = lucky(john)

T

- pass(john, history) - lucky(V) v pass(V, W)

{iohn/V., histoW

- lucky(john) lucky(john)

\/

{}
[]

