
Lecture 16Resolution for Predicate LogicCS2209A 2017Applied Logic for Computer Science
Instructor: Yu Zhen Xie

1

Revisit: main rules of inference in propositional logic

2

• Valid argument: AND of premises → conclusion is a tautology
• Modus ponens: � → � ∧ � → � is a tautology
• Hypothetical syllogism: � → � ∧ � → � → � → � is a tautology
• Disjunctive syllogism:(� ∨) ∧ ¬� → 	 is a tautology
• Resolution: (� ∨ �) ∧ 		 ∨ ¬�	 → (� ∨) is a tautology

Rules of inference
• These patterns describe how new knowledge can be derived from existing knowledge, both in the form of propositional logic formulas (sentences).
• When describing an inference rule, the premise specifies the pattern that must match our knowledge base and the conclusion is the new knowledge inferred.

3

Modus ponens, modus tollens, AND elimination, AND introduction, and universal instantiation
• If the sentences P and P →	Q are known to be true, then modus ponens lets us infer Q.
• Under the inference rule modus tollens, if P →	Q is known to be true and Q is known to be false, we can infer P.
• AND elimination allows us to infer the truth of either of the conjuncts from the truth of a conjunctive sentence. E.g. P ∧	Q lets conclude both P and Q are true.
• AND introduction lets us infer the truth of a conjunction from the truth of its conjuncts. E.g. if both P and Q are true, then P ∧	Q are true.
• Universal instantiation states that if any universally quantified variable in a true sentence is replaced by any appropriate term from the domain, the result is a true sentence. Thus, if a is from the domain of X, ∀X p(X) lets us infer p(a). 4

Definition
• A predicate logic (or calculus) expression X logically follows from a set S of predicate calculus expressions if every interpretation and variable assignment that satisfies S also satisfies X.
– An interpretation is an assignment of specific values to domains and predicates.

• An inference rule is sound if every predicate calculus expressions also logically follows from S.
• An inference rule is complete if, given a set S of predicate calculus expressions, the rule can infer every expression that logically follows from S. 5

Logic and finding a proof
• Given
– a knowledge base represented as a set of propositional sentences.
– a goal stated as a propositional sentence
– list of inference rules

• We can write a program to repeatedly apply inference rules to the knowledge base in the hope of deriving the goal.
6

7

Developing a proof procedure
• Deriving (or refuting) a goal from a collection of logic facts corresponds to a very large search tree.
• A large number of rules of inference could be utilized.
• The selection of which rules to apply and when would itself be non-trivial.

8

Resolution and CNF
• Resolution is a single rule of inference that can operate efficiently on a special form of sentences.
• The special form is called conjunctive normal form (CNF) or clausal form, and has these properties:
– Every sentence is a disjunction (OR) of literals (clauses)
– All sentences are implicitly conjuncted (ANDed).

Predicate Logic Resolution
• We have to worry about the arguments to predicates, so it is harder to know when two literals match and can be used by resolution.
– For example, does the literal Father(Bill, Chelsea) match Father(x, y) ?

• The answer depends on how we substitute values for variables.

Proof procedure for predicate logic
• Same idea, but a few added complexities:
– conversion to CNF is much more complex.
–Matching of literals requires providing a matching of variables, constants and/or functions.

¬ Skates(x) ∨ LikesHockey(x)
¬ LikesHockey(y)We can resolve these only if we assume x and y refer to the same object.

Predicate Logic and CNF
• Converting to CNF is harder - we need to worry about variables and quantifiers.
– Eliminate all implications →
– Reduce the scope of all ¬ to single term
– Make all variable names unique
– Move quantifiers left (prenex normal form)
– Eliminate Existential Quantifiers
– Eliminate Universal Quantifiers
– Convert to conjunction of disjuncts
– Create separate clause for each conjunct.

Eliminate Existential Quantifiers
• Any variable that is existentially quantified means that
– there is some value for that variable that makes the expression true.

• To eliminate the quantifier, we can replace the variable with a function.
• We don’t know what the function is, we just know it exists.

Skolem functions
• Named after the Norwegian logician Thoralf Skolem
• Example: ∃ y President(y)We replace y with a new function func:President(func())func is called a Skolem function.
• In general the function must have the same number of arguments as the number of universal quantifiers in the current scope.

Skolemization Example
• In general the function must have the same number of arguments as the number of universal quantifiers in the current scope.
• Example: ∀x ∃y Father(y, x)
– create a new function named foo and replace ywith the function.
– ∀x Father(foo(x), x)

Unification
• Two formulas are said to unify if there are legal instantiations (assignments of terms to variables) that make the formulas in question identical.
• The act of unifying is called unification. The instantiation that unifies the formulas in question is called a unifier.
• There is a simple algorithm called the unification algorithm that does this.

Unification
• Example: Unify the formulas Q(a, y, z) and Q(y, b, c)
• Solution:
– Since y in Q(a, y, z) is a different variable than y in Q(y, b, c), rename y in the second formula to become y1.
– This means that one must unify Q(a, y, z) with Q(y1, b, c).
– An instance of Q(a, y, z) is Q(a, b, c) and an instance of Q(y1, b, c) is Q(a, b, c).
– Since these two instances are identical, Q(a, y, z) and Q(y, b, c) unify.
– The unifier is y1 = a, y = b, z = c.

Unification
17

• Unification: matching literals and doing substitutions that resolution can be applied.
• Substitution: when a variable name is replaced by another variable or element of the domain.
– Notation [a/x] means replacing all occurrences of x with a in the formula
– Example: substitution [5/x] in p(x) ∨ Q(x,y) results in p(5) ∨ Q(5,y)

Unification
• It is an algorithm for determining the substitutions needed to make two predicate logic expressions match.
• A variable cannot be unified with a term containing that variable. The test for it is called the occurs check.
– Example: cannot substitute � for � + � in p(� + �)
– Most applicable when rather than having variables we have whole expressions (terms) evaluating to elements of the domain.
– Example: � + � is a term; when	�, � ∈ ℤ	and	� +� ∈ ℤ, with terms we can write formulas such as � � + � 	∨	�(� − 2) 18

Algorithm to convert to clausal form (1)(1) Eliminate conditionals → , using the equivalence� → � ≡ ¬�	∨�e.g. (∃�)(� � ∧ ∀� � � → ℎ �, �) becomes								(∃�)(� � ∧ ∀� ¬� � 	∨	ℎ �, �)(2) Eliminate negations or reduce the scope of negation to one atom.e.g. ¬¬� ≡ �	¬ �	∧ � ≡ ¬�	∨	¬�													¬ ∀� ∈ , ! � ≡ ∃� ∈ , ¬!(�)													¬ ∃� ∈ , ! � ≡ ∀� ∈ , ¬!(�)(3) Standardize variables within a well-formed formula so that the bound or free variables of each quantifier have unique names. e.g. (∃�)¬� � 	∨ ∀� �(�) is replaced by (∃�)¬� � 	∨ ∀� �(�) 19

Algorithm to convert to clausal form (2)(4) Advanced step: if there are existential quantifiers, eliminate them by using Skolem functions e.g. (∃�)� � is replaced by � "											(∀�) ∃� #(�, �) is replaced by (∀�)	#(�, �(�))(5) Convert the formula to prenex forme.g. ∃� (� � ∧ (∀�) (¬� � 	∨ ℎ(�, �)))	 becomes (∀�) (� " 	∧ (¬� � 	∨ ℎ(", �)))	(6) Convert the formulas to CNF, which is a conjunctive of clauses. Each clause is a disjunction. e.g. �	∨ (�	∧ �) ≡ (�	∨ �)	∧ (�	∨	�)(7) Drop the universal quantifierse.g. the formula in (5) becomes � " 	∧ (¬� � 	∨ ℎ(", �)) 20

Algorithm to convert to clausal form (3)(8) Eliminate the conjunctive signs by writing the formula as a set of clauses e.g. � " 	∧ (¬� � 	∨ ℎ(", �)) becomes � " ,	 (¬� � 	∨ ℎ(", �))(9) Rename variables in clauses, if necessary, so that the same variable name is only used in one clause. e.g. � � 	∨ � � 	∨ #(�, �)	 and	¬� � 	∨ � � 	becomes � � 	∨ � � 	∨ #(�, �)	 and	¬� �1 	∨ � �1
21

Example: Resolution for predicate logic

22

23

