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Power sets
• A power set of a set A, P � , is a set of allsubsets of A.  

– Think of sets as boxes of elements. 
– A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some). 
– Then  P � is a box containing boxes with elements of A.
– When you open the box P � , you don’t see chocolates (elements of A), you see boxes. 
– A={1,2},   P � � ∅, 1 , 2 , 1,2
– � � ∅, 	P � � ∅ .  

• They are not the same! There is nothing in A, and there is one element, an empty box, in P �
• If A has n elements, then  P � has 2�	elements.

ASubsets of A: 

Power set  P �



Cartesian products
• Cartesian product of  A and B is a set of all pairs of elements with the first from A, and the second from B:  
– A x B = 	, 
 	 		 ∈ �, 
 ∈ �}	
– A={1,2,3},  B={a,b}
– � × � �1, � , 1, � , 2, � , 2, � , 3, � , 3, �
– A={1,2},  � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }

• Order of pairs does not matter, order within pairs does: � × � ≠ � × �	.
• Number of elements in � × � is |� × �| � � ⋅ |�|

B
A
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Cartesian products
• We can define the Cartesian product for any number of sets:  
– �� × �� ×⋯× �� � 	�, 	�, … 	�) 		� ∈ ��…	� ∈ ��
– � � 1,2,3 , � �{a,b}, C={3,4}
– � × � × � � { 1, �, 3 , 1, �, 4 , 1, �, 3 , 1, �, 4 ,																											 2, �, 3 , 2, �, 4 , 2, �, 3 , 2, �, 4 ,3, �, 3 , 3, �, 4 , 3, �, 3 , 3, �, 4 }



Relations
• A relation is a subset of a Cartesian product of sets. 

– If of two sets (set of pairs), call it a binary relation.
– Of 3 sets (set of  triples), ternary.   Of k sets (set of tuples), k-nary
– A={1,2,3},  B={a,b}

• � × � � 1, � , 1, � , 2, � , 2, � , 3, � , 3, �
• R = {(1,a), (2,b),(3,a), (3,b)} is a relation.  So is R={(1,b)}.

– A={1,2},  
• � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }
• R={(1,1), (2,2)}  (all pairs (x,y) where x=y) 
• R={(1,1),(1,2),(2,2)}  (all pairs (x,y) where 	 ≤ 
).	

– A=PEOPLE
• COUPLES ={(x,y) |  Loves(x,y)} 
• PARENTS ={(x,y) |  Parent(x,y)} 

– A=PEOPLE, B=DOGS, C=PLACES
• WALKS = {(x,y,z) | x walks y in z} 

– Jane walks Buddy in spring bank park. 

123 abGraph of R (bipartite)1 2Graph of {(1,1),(2,2)}



Types of binary relations
• A binary relation   ⊆ � × �	is
– Reflexive if ∀	 ∈ �,  (	, 	)
• Every x is related to itself. 
• E.g. A={1,2},  � �	{ (1,1), (2,2), (1,2)}
• On  A = ℤ,  � � 	, 
 	 � 
} is reflexive
• But not  % � 	, 
 		 < 
}	

– Symmetric if  ∀	, 
 ∈ �, 	, 
 ∈  ↔ 
, 	 ∈  
•  � and  % above are not symmetric.  �	is.  
• A = ℤ,  ( � 	, 
 	 ≡ 
	*+,	3	} is symmetric. 
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Types of binary relations
• A binary relation   ⊆ � × �	is
– Transitiveif ∀	, 
, - ∈ �, 	, 
 ∈  ∧ 
, - ∈  → 	, - ∈  
•  �,  �,  %,  ( are all transitive. 
•  0 � 	, 
 	, 
 ∈ ℤ ∧ 	 + 1 � 
}	 is not transitive. 
• PARENT = 	, 
 	, 
 ∈ 234253 ∧ 			67	�	8�9:;<	+=	
}	is not.
• A transitive closure of a relation R is a relation  ∗ �	, - 	 	∃@ ∈ ℕ		∃
B, … , 
� ∈ �		(	 � 
B ∧ - � 
�) ∧ ∀6 ∈0,… , @ − 1 	 
E , 
EF� }

– That is,  can get from x to z following R arrows. 



Types of binary relations
• A binary relation   ⊆ � × �	is
– Anti-reflexive if ∀	 ∈ �,¬ 	, 	
• R can be neither reflexive nor anti-reflexive.  
• E.g. A={1,2},  H �	{(1,2)}

– but not   � �	{ (1,1), (2,2), (1,2)} (reflexive)
– nor   I �	{(1,1), (1,2)} (neither) 

• For � � ℤ, not 	 � � 	, 
 	 � 
}
– Nor   ( � 	, 
 	 ≡ 
	*+,	3	}

• But  % � 	, 
 		 < 
}		is anti-reflexive. 
– So are  0 � 	, 
 ∈ ℤ × ℤ	 		 + 1 � 
}
– And PARENT = 	, 
 ∈ 234253 × 234253	 			67	�	8�9:;<	+=	
}	

1 2Graph of {(1,2)}



Types of binary relations
• A binary relation   ⊆ � × �	is
– Anti-symmetricif  ∀	, 
 ∈ �, 	, 
 ∈  ∧ 
, 	 ∈  → 	 � 


•  �,  %,  0,  H,  I, 2� 3KL are	anti-symmetric.	 (		is	not.	
•  � is both symmetric and anti-symmetric. 
•  X � 1,2 , 2,1 , 1,3 is neither symmetric nor anti-symmetric. 



Equivalence  
• A binary relation   ⊆ � × �	is an equivalenceif R is reflexive, symmetric  and transitive.

• E.g. A={1,2},   � 1,1 , 2,2 or  � � × �
• Not  � �	{ (1,1), (2,2), (1,2)} nor  % � 	, 
 		 < 
}	
• On  A = ℤ,  � � 	, 
 	 � 
} is an equivalence
• So is  ( � 	, 
 	 ≡ 
	*+,	3	}

– Reflexive:  ∀	 ∈ ℤ, 		 ≡ 		*+,	3
– Symmetric: ∀	, 
 ∈ ℤ, 	 ≡ 
	mod	3	 → 
 ≡ 			*+,	3
– Transitive:  ∀	, 
, -	 ∈ ℤ, 	 ≡ 
	mod	3 ∧ 	
 ≡ -		*+,	3 →	 ≡ -		*+,	3
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Equivalence  
• An equivalence relation partitions A into equivalence classes:
– Intersection of any two equivalence classes is ∅
– Union of all equivalence classes is A.  
–  ( � 	, 
 	 ≡ 
	*+,	3	}:	ℤ � 		 		 ≡ 0	*+,	3} ∪									{		 		 ≡ 1	*+,	3 ∪		 		 ≡ 2	*+,	3}	
–  � � × �	gives rise to a single equivalence class.
–  � 1,1 , 2,2 to  two. 



Databases and predicates
– In a database, store relations as tables. 
– Then ask queries as predicate logic formulas
• Return the set of all database elements satisfying the formula. 

Relation R Predicate PA set of tuples True/false on a given tupleR= 	�, … , 	� 	2 	�, … , 	� is true}  2 	�, … , 	� ≡ 	�, … , 	� 	 ∈  	



Well-Formed Formula for First Order Predicate Logic
• Not all strings can represent propositions of the predicate logic. Those which produce a proposition when their symbols are interpreted must follow the rules given below, and they are called wffs (well-formed formulas) of the first order predicate logic.
• A predicate name followed by a list of variables such as P(x, y), where P is a predicate name, and x and y are variables, is called an atomic formula. 
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Well-Formed Formula for First Order Predicate Logic
• wffs are constructed using the following rules:
– True and False are wffs. 
– Each propositional constant (i.e. specific proposition), and each propositional variable (i.e. a variable representing propositions) are wffs. 
– Each atomic formula (i.e. a specific predicate with variables) is a wff. 
– If A, B, C are wffs, then so are ¬A, A ∧	B, A ∨	B, A →	B
– If 	 is a variable (representing objects of the universe of discourse), and A is a wff, then so is ∃		A and ∀		A.  14



Relational database and query
• A query using predicate logic is of the form { X1,...,Xn | P(X1,...,Xn) } , where P(X1,...,Xn) is a wffin predicate logic with free variables X1,...,Xn. 15

Example: three tables, student, course, and enroll



Relational database and query
• Now, some query examples: 

– Get names of students enrolled in CSc2510. { N | (exists S,G)(student(S,N) and enroll(S,'CSc2510',G)) } 
– Get CNO and TITLE of courses in which Smith is enrolled. { C,T | (exists S,G)(course(C,T) and enroll(S,C,G) and student(S,'Smith')) } 
– Get names of students who have enrolled in at least 2 courses. { N | (exists S,C1,G1,C2,G2)(student(S,N) and enroll(S,C1,G1) and enroll(S,C2,G2) and C1 <> C2) } 
– Get names of students who have an "A" grade in CSc2510. { N | (exists S)(student(S,N) and enroll(S,'CSc2510','A')) } 16



Limitations of first-order logic
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• With predicate logic, can we express everything?
• The fact is that some very natural properties cannot be expressed in predicate logic, because here the notion of “expressing" is quite different.
• A propositional formula only talks about finitely many things, and if worst comes to worst it can just list all the cases, describing a truth table.
• Whereas in the predicate logic case we have the ability to talk about infinitely many things at once.
• And it is not possible to list all infinitely many cases of relationships among, say, natural numbers, at least not with a finite-length formula.



Limitations of first-order logic
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• Here is an example of a very natural property which is not expressible in first-order logic. 
– Transitivity in databases: Consider an airline database such as the one that travel agents use to find and book flights.

• Now ask the database to “give me a way to fly from London Ontario to London UK, and I don't care how many times I need to change planes".
• This kind of query, called “transitivity", is notexpressible in first-order logic.



Limitations of first-order logic
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• A very natural property which is not expressible in first-order logic. 
– Transitivity in databases: Consider an airline database such as the one that travel agents use to find and book flights.

• For any fixed number of plane changes you can, indeed, ask if there is a way to get from London ON to London UK, however you always need to set a limit on the number of intermediate locations. 
• For example, to ask if there is a way to get to London UK via four intermediate cities you would write 
– ∃
1, 
2, 
3, 
4		]^6_`< 5+;,+;	4K, 
1 ∧ ]^6_`< 
1, 
2 ∧]^6_`< 
2, 
3 ∧ F^6_`< 
3, 
4 ∧ ]^6_`<(
4, 5+;,+;	bc)



Transitivity in databases
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• Some databases do have special ways of computing this kind of relation, but it is an addition to the language of first-order logic and can be quite computationally intensive, especially in large databases.
• More often, it seems, the database system just tries the first several queries, until they reach a number of intermediate steps that seems too large for them



Transitivity in databases
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• You might have noticed that you pretty much never see a route with more than three intermediate cities, and sometimes get an answer “there is no way“
• You can also ask a combination of such queries: for example, “Is there a direct flight from London ON to London UK, or a flight with one intermediate city”?
– ∃
	]^6_`< 5+;,+;	4K, 5+;,+;	bc ∨]^6_`< 5+;,+;	4K, 
 ∧	 ]^6_`<(
, 5+;,+;	bc)


