
Lecture 17 Relations, first-order formula and database application
CS2209A 2017Applied Logic for Computer Science

Instructor: Marc Moreno Maza
1

Power sets
• A power set of a set A, P � , is a set of allsubsets of A.

– Think of sets as boxes of elements.
– A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some).
– Then P � is a box containing boxes with elements of A.
– When you open the box P � , you don’t see chocolates (elements of A), you see boxes.
– A={1,2}, P � � ∅, 1 , 2 , 1,2
– � � ∅, 	P � � ∅ .

• They are not the same! There is nothing in A, and there is one element, an empty box, in P �
• If A has n elements, then P � has 2�	elements.

ASubsets of A:

Power set P �

Cartesian products
• Cartesian product of A and B is a set of all pairs of elements with the first from A, and the second from B:
– A x B = 	,
 	 		 ∈ �,
 ∈ �}	
– A={1,2,3}, B={a,b}
– � × � �1, � , 1, � , 2, � , 2, � , 3, � , 3, �
– A={1,2}, � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }

• Order of pairs does not matter, order within pairs does: � × � ≠ � × �	.
• Number of elements in � × � is |� × �| � � ⋅ |�|

B
A

A x B
a b1 (1,a) (1,b)2 (2,a) (2,b)3 (3,a) (3,b)

Cartesian products
• We can define the Cartesian product for any number of sets:
– �� × �� ×⋯× �� � 	�, 	�, … 	�) 		� ∈ ��…	� ∈ ��
– � � 1,2,3 , � �{a,b}, C={3,4}
– � × � × � � { 1, �, 3 , 1, �, 4 , 1, �, 3 , 1, �, 4 ,																											 2, �, 3 , 2, �, 4 , 2, �, 3 , 2, �, 4 ,3, �, 3 , 3, �, 4 , 3, �, 3 , 3, �, 4 }

Relations
• A relation is a subset of a Cartesian product of sets.

– If of two sets (set of pairs), call it a binary relation.
– Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-nary
– A={1,2,3}, B={a,b}

• � × � � 1, � , 1, � , 2, � , 2, � , 3, � , 3, �
• R = {(1,a), (2,b),(3,a), (3,b)} is a relation. So is R={(1,b)}.

– A={1,2},
• � × �	 � { 1,1. , 1,2 , 2,1 , 2,2 }
• R={(1,1), (2,2)} (all pairs (x,y) where x=y)
• R={(1,1),(1,2),(2,2)} (all pairs (x,y) where 	 ≤
).	

– A=PEOPLE
• COUPLES ={(x,y) | Loves(x,y)}
• PARENTS ={(x,y) | Parent(x,y)}

– A=PEOPLE, B=DOGS, C=PLACES
• WALKS = {(x,y,z) | x walks y in z}

– Jane walks Buddy in spring bank park.

123 abGraph of R (bipartite)1 2Graph of {(1,1),(2,2)}

Types of binary relations
• A binary relation ⊆ � × �	is
– Reflexive if ∀	 ∈ �, (,)
• Every x is related to itself.
• E.g. A={1,2}, � �	{ (1,1), (2,2), (1,2)}
• On A = ℤ, � � 	,
 	 �
} is reflexive
• But not % � 	,
 		 <
}	

– Symmetric if ∀	,
 ∈ �, 	,
 ∈ ↔
, 	 ∈
• � and % above are not symmetric. �	is.
• A = ℤ, (� 	,
 	 ≡
	*+,	3	} is symmetric.

1 2 �

Types of binary relations
• A binary relation ⊆ � × �	is
– Transitiveif ∀	,
, - ∈ �, 	,
 ∈ ∧
, - ∈ → 	, - ∈
• �, �, %, (are all transitive.
• 0 � 	,
 	,
 ∈ ℤ ∧ 	 + 1 �
}	 is not transitive.
• PARENT = 	,
 	,
 ∈ 234253 ∧ 			67	�	8�9:;<	+=	
}	is not.
• A transitive closure of a relation R is a relation ∗ �	, - 	 	∃@ ∈ ℕ		∃
B, … ,
� ∈ �		(�
B ∧ - �
�) ∧ ∀6 ∈0,… , @ − 1 	
E ,
EF� }

– That is, can get from x to z following R arrows.

Types of binary relations
• A binary relation ⊆ � × �	is
– Anti-reflexive if ∀	 ∈ �,¬ 	, 	
• R can be neither reflexive nor anti-reflexive.
• E.g. A={1,2}, H �	{(1,2)}

– but not � �	{ (1,1), (2,2), (1,2)} (reflexive)
– nor I �	{(1,1), (1,2)} (neither)

• For � � ℤ, not 	 � � 	,
 	 �
}
– Nor (� 	,
 	 ≡
	*+,	3	}

• But % � 	,
 		 <
}		is anti-reflexive.
– So are 0 � 	,
 ∈ ℤ × ℤ	 		 + 1 �
}
– And PARENT = 	,
 ∈ 234253 × 234253	 			67	�	8�9:;<	+=	
}	

1 2Graph of {(1,2)}

Types of binary relations
• A binary relation ⊆ � × �	is
– Anti-symmetricif ∀	,
 ∈ �, 	,
 ∈ ∧
, 	 ∈ → 	 �

• �, %, 0, H, I, 2� 3KL are	anti-symmetric.	 (is	not.	
• � is both symmetric and anti-symmetric.
• X � 1,2 , 2,1 , 1,3 is neither symmetric nor anti-symmetric.

Equivalence
• A binary relation ⊆ � × �	is an equivalenceif R is reflexive, symmetric and transitive.

• E.g. A={1,2}, � 1,1 , 2,2 or � � × �
• Not � �	{ (1,1), (2,2), (1,2)} nor % � 	,
 		 <
}	
• On A = ℤ, � � 	,
 	 �
} is an equivalence
• So is (� 	,
 	 ≡
	*+,	3	}

– Reflexive: ∀	 ∈ ℤ, 		 ≡ 		*+,	3
– Symmetric: ∀	,
 ∈ ℤ, 	 ≡
	mod	3	 →
 ≡ 			*+,	3
– Transitive: ∀	,
, -	 ∈ ℤ, 	 ≡
	mod	3 ∧ 	
 ≡ -		*+,	3 →	 ≡ -		*+,	3

1 21 2

Equivalence
• An equivalence relation partitions A into equivalence classes:
– Intersection of any two equivalence classes is ∅
– Union of all equivalence classes is A.
– (� 	,
 	 ≡
	*+,	3	}:	ℤ � 		 		 ≡ 0	*+,	3} ∪									{		 		 ≡ 1	*+,	3 ∪		 		 ≡ 2	*+,	3}	
– � � × �	gives rise to a single equivalence class.
– � 1,1 , 2,2 to two.

Databases and predicates
– In a database, store relations as tables.
– Then ask queries as predicate logic formulas
• Return the set of all database elements satisfying the formula.

Relation R Predicate PA set of tuples True/false on a given tupleR= 	�, … , 	� 	2 	�, … , 	� is true} 2 	�, … , 	� ≡ 	�, … , 	� 	 ∈ 	

Well-Formed Formula for First Order Predicate Logic
• Not all strings can represent propositions of the predicate logic. Those which produce a proposition when their symbols are interpreted must follow the rules given below, and they are called wffs (well-formed formulas) of the first order predicate logic.
• A predicate name followed by a list of variables such as P(x, y), where P is a predicate name, and x and y are variables, is called an atomic formula.

13

Well-Formed Formula for First Order Predicate Logic
• wffs are constructed using the following rules:
– True and False are wffs.
– Each propositional constant (i.e. specific proposition), and each propositional variable (i.e. a variable representing propositions) are wffs.
– Each atomic formula (i.e. a specific predicate with variables) is a wff.
– If A, B, C are wffs, then so are ¬A, A ∧	B, A ∨	B, A →	B
– If 	 is a variable (representing objects of the universe of discourse), and A is a wff, then so is ∃		A and ∀		A. 14

Relational database and query
• A query using predicate logic is of the form { X1,...,Xn | P(X1,...,Xn) } , where P(X1,...,Xn) is a wffin predicate logic with free variables X1,...,Xn. 15

Example: three tables, student, course, and enroll

Relational database and query
• Now, some query examples:

– Get names of students enrolled in CSc2510. { N | (exists S,G)(student(S,N) and enroll(S,'CSc2510',G)) }
– Get CNO and TITLE of courses in which Smith is enrolled. { C,T | (exists S,G)(course(C,T) and enroll(S,C,G) and student(S,'Smith')) }
– Get names of students who have enrolled in at least 2 courses. { N | (exists S,C1,G1,C2,G2)(student(S,N) and enroll(S,C1,G1) and enroll(S,C2,G2) and C1 <> C2) }
– Get names of students who have an "A" grade in CSc2510. { N | (exists S)(student(S,N) and enroll(S,'CSc2510','A')) } 16

Limitations of first-order logic

17

• With predicate logic, can we express everything?
• The fact is that some very natural properties cannot be expressed in predicate logic, because here the notion of “expressing" is quite different.
• A propositional formula only talks about finitely many things, and if worst comes to worst it can just list all the cases, describing a truth table.
• Whereas in the predicate logic case we have the ability to talk about infinitely many things at once.
• And it is not possible to list all infinitely many cases of relationships among, say, natural numbers, at least not with a finite-length formula.

Limitations of first-order logic

18

• Here is an example of a very natural property which is not expressible in first-order logic.
– Transitivity in databases: Consider an airline database such as the one that travel agents use to find and book flights.

• Now ask the database to “give me a way to fly from London Ontario to London UK, and I don't care how many times I need to change planes".
• This kind of query, called “transitivity", is notexpressible in first-order logic.

Limitations of first-order logic

19

• A very natural property which is not expressible in first-order logic.
– Transitivity in databases: Consider an airline database such as the one that travel agents use to find and book flights.

• For any fixed number of plane changes you can, indeed, ask if there is a way to get from London ON to London UK, however you always need to set a limit on the number of intermediate locations.
• For example, to ask if there is a way to get to London UK via four intermediate cities you would write
– ∃
1,
2,
3,
4]^6_`< 5+;,+;	4K,
1 ∧]^6_`<
1,
2 ∧]^6_`<
2,
3 ∧ F^6_`<
3,
4 ∧]^6_`<(
4, 5+;,+;	bc)

Transitivity in databases

20

• Some databases do have special ways of computing this kind of relation, but it is an addition to the language of first-order logic and can be quite computationally intensive, especially in large databases.
• More often, it seems, the database system just tries the first several queries, until they reach a number of intermediate steps that seems too large for them

Transitivity in databases

21

• You might have noticed that you pretty much never see a route with more than three intermediate cities, and sometimes get an answer “there is no way“
• You can also ask a combination of such queries: for example, “Is there a direct flight from London ON to London UK, or a flight with one intermediate city”?
– ∃
]^6_`< 5+;,+;	4K, 5+;,+;	bc ∨]^6_`< 5+;,+;	4K,
 ∧]^6_`<(
, 5+;,+;	bc)

