CS2209A 2017
Applied Logic for Computer Science

Lecture 17

Relations, first-order formula
and database application

Instructor: Marc Moreno Maza

Power sets

* A power set of aset A, P(A), is a set of all
subsets of A.

— Think of sets as boxes of elements. . A‘
— A subset of a set A is a box with elements of A

(maybe all, maybe none, maybe some).
— Then P(A) is a box containing boxes with Subsets of A:

elements of A.

— When you open the box 2(4), you don’t see
chocolates (elements of A), you see boxes.

- A={1,2}, P(4) = {0,{1},{2},{1,2}} . ‘

- A=0, 2(4) ={0}.

* They are not the same! There is nothing in A, and
there is one element, an empty box, in 2(4)
* If A has n elements, then 2(A) has Power set 2(4)

2" elements.

Cartesian products

Cartesian product of A and B is a set of all

pairs of elements with the first from A,
and the second from B:

— AxB={(x,y)|x €A, y € B}

(1,b)

— A={1,2,3}, B={a,b} (2,2)

(2,b)

(3,b)

—AXB= =
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

— A={1,2},
AxA ={(1,1),(1,2),(21),(22)}

Order of pairs does not matter, order
within pairsdoes: A X B +# B X A.

Number of elementsin A X Bis |A X B|
= |A] - |B]

Cartesian products

@

* We can define the Cartesian product for any
number of sets:
— Ay XAy X X Ay ={(x1, X9, . X3)| X1 € Ay ... x3, € Ay}
— A =1{1,2,3}, B ={a,b}, C={3,4}
—-AxXxBXxC={1,a,3),(1,a,4), (1,b,3),(1,b,4),
(2,a,3),12,a,4), (2,b,3),(2,b,4),
(3,a,3),(3,a,4), (3,b,3),(3,b,4)}

Relations

* Arelation is a subset of a Cartesian product of sets.
— If of two sets (set of pairs), call it a binary relation.
— Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-nary

- A={1;213}; B={a,b}
« AXB={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

« R={(1,a), (2,b),(3,a), (3,b)}is a relation. Sois R={(1,b)}. . o
— A={1,2}, Graph of R (bipartite)
« AXA ={(1,1),(01,2),(2,1),(2,2)}
. R={(1,1), (2,2)} (all pairs (x,y) where x=y) ‘p aQ
* R={(1,1),(1,2),(2,2)} (all pairs (x,y) where x < y). . 4

_ A=PEOPLE Graph of {(1,1),(2,2)}

e COUPLES ={(x,y) | Loves(x,y)}
« PARENTS ={(x,y) | Parent(x,y)}
— A=PEOPLE, B=DOGS, C=PLACES

 WALKS ={(x,y,z) | x walks y in z}
— Jane walks Buddy in spring bank park.

Types of binary relations

\-‘w&!’ ;

* Abinaryrelation RS A X Ais
— Reflexive if Vx € A, R(x, x) Q@Q
Ry

* Every x is related to itself.

Eg A:{llz}l Rl — { (111)1 (212)1 (112)}

On A=7Z, R, ={(x,y)|x = y}is reflexive
But not R; = {(x,y)| x < y}

— Symmetricif Vx,yv €A, (x,y) ER < (v,x) ER
* R, and R5 above are not symmetric. R, is.
e A=7Z, R, ={(x,y)|x = ymod 3 } is symmetric.

Types of binary relations

\-‘wif :

* Abinaryrelation RS A X Ais

— Transitive
ifvVx,y,z€ A, (x,y) ERA(y,z) ER - (x,z) ER
* Ry, R,, R3, R, are all transitive.
* Re ={(x,y)|x,y €EZ ANx + 1 =y} is not transitive.
* PARENT ={(x,y)|x,y € PEOPLE A x is a parent of y}is not.

e A transitive closure of a relation R is a relation R* =
{(x,z) |3k €N Tyy, ...,y EA (x =y ANz =y,)AVi E
{O, er k — 1} R(yi' yi+1)}

— That is, can get from x to z following R arrows.

Types of binary relations *

* Abinaryrelation RS A X Ais

— Anti-reflexive if Vx € A, —R(x, x) o0

* R can be neither reflexive nor anti-reflexive. Graph of {(1,2)}
* E.g. A={1,2}, R, ={(1,2)}
— butnot Ry ={(1,1), (2,2), (1,2)} (reflexive)
— nor R, ={(1,1), (1,2)} (neither)
* ForA =17Z,not R, = {(x,y)|x =y}
— Nor R, = {(x,y)|x = ymod 3}
* But R5 = {(x,y)| x < y} is anti-reflexive.
—Soare R ={(x,y) EZXZ|x+ 1=y}
— And PARENT = {(x,y) € PEOPLE X PEOPLE |x is a parent of y}

Types of binary relations \§

* Abinaryrelation RS A X Ais
— Anti-symmetric
if Vx,yeA (x,y) ERA(y,x) ER->x=1Yy
* R{,R3,Re, Rg, R7, PARENT are anti-symmetric. R, is not.

* R, is both symmetric and anti-symmetric.

* Rg ={(1,2),(2,1),(1,3)} is neither symmetric nor anti-
symmetric.

' Bl
Equivalence IO
* Abinaryrelation R € A X A is an equivalence

if R is reflexive, symmetric and transitive.
e E.g.A={1,2}, R={(1,1),(2,2)}orR=A XA
* Not R, ={(1,1), (2,2), (1,2)}
nor Rz = {(x,¥)| x <y}
*On A=7Z, R, = {(x,y)|x = y}is an equivalence
* Sois R, ={(x,y)|x = ymod 3}
— Reflexive: Vx € Z, x = x mod 3

— Symmetric: Vx,y €EZ, x=ymod3 -y =x mod 3

— Transitive: Vx,y,z €Z, x=ymod3A y=z mod 3 -
X =z mod 3

Equivalence

* An equivalence relation partitions A into
equivalence classes:
— Intersection of any two equivalence classes is @
— Union of all equivalence classes is A.
— R, ={(x,y)|x = ymod 3 }:
Z ={x|x=0mod 3} U
{x|x=1mod 3} U
{x|x=2mod 3}

— R = A X A gives rise to a single equivalence class.
-R ={(1,1),(2,2)} to two.

Databases and predicates

Relation R Predicate P

A set of tuples True/false on a given tuple
R={(xq, ..., x3)| P(xq, ..., X) is true} P(xq, .., x;) = (X1, ..., X)) ER

— In a database, store relations as tables.

— Then ask queries as predicate logic formulas

* Return the set of all database elements satisfying the
formula.

Well-Formed Formula for First Order Predicate Logic

* Not all strings can represent propositions of
the predicate logic. Those which produce a
proposition when their symbols are
interpreted must follow the rules given below,
and they are called wffs (well-formed
formulas) of the first order predicate logic.

* A predicate name followed by a list of
variables such as P(x, y), where P is a predicate
name, and x and y are variables, is called an

atomic formula.

Well-Formed Formula for First Order Predicate Logic

« wffs are constructed using the following rules:
— True and False are wffs.

— Each propositional constant (i.e. specific
proposition), and each propositional variable (i.e. a
variable representing propositions) are wffs.

— Each atomic formula (i.e. a specific predicate with
variables) is a wff.

— If A, B, C are wffs, then soare =A, AANB,AVB, A—B

— If x is a variable (representing objects of the universe
of discourse), and A is a wff, then so is 3x A and
Vx A.

14

Relational database and query

Example: three tables, student, course, and enroll

ENROLL
COURSE STUDENT SID | CNO |GRADE
CNO |[TITLE SID INAME 1111 |CSe2310

CSc2310 Java 1111 [Jones 1111 |CSc2510

CSe2510[Theory | [2222 [Smith | [2222[€5¢2010

3333|CSc2310
4444 \Damon

F
F
A
CSc4710 [Database 1233 |Blake 2222|C5¢4710|B
A
A
F

3333 |CSc2510
5555 |Bell
3333 |CSc4710

* A query using predicate logic is of the form
{X1,...Xn | P(X1,...,Xn) }, where P(X1,...,Xn) is a wff
in predicate logic with free variables X1,...,Xn.

15

Relational database

and query

STUDENT

ENROLL

COURSE

SID

NAME

SID

CNO

GRADE

CNO

TITLE

1111

Jones

1111

CSc2310

CSc2310

Java

PRI

Smith

1111

CSc2510

CSc2510

Theory

EEEE

Blake

2222

CSc2510

CSc4710

Database

4444

Damon

2222

CSc4710

* Now, some query examples:

— Get names of students enrolled in CSc2510.
{N | (exists S,G)(student(S,N) and enroll(S,'CSc2510',G)) }

— Get CNO and TITLE of courses in which Smith is enrolled.
{C,T | (exists S,G)(course(C,T) and enroll(S,C,G) and
student(S,'Smith')) }

5555

Bell

3333

CSc2310

3333

CSc2510

F
F
A
B
A
A
F

3333

CSc4710

— Get names of students who have enrolled in at least 2 courses.
{N | (exists S,C1,G1,C2,G2)(student(S,N) and enroll(S,C1,G1) and
enroll(S,C2,G2) and C1 <> C2) }

— Get names of students who have an "A" grade in CSc2510.
{ N | (exists S)(student(S,N) and enroll(S,'CSc2510','A")) }

16

Limitations of first-order logic

* With predicate logic, can we express everything?

 The fact is that some very natural properties cannot
be expressed in predicate logic, because here the
notion of “expressing" is quite different.

* A propositional formula only talks about finitely
many things, and if worst comes to worst it can just
list all the cases, describing a truth table.

 Whereas in the predicate logic case we have the
ability to talk about infinitely many things at once.

 And itis not possible to list all infinitely many cases of
relationships among, say, natural numbers, at least
not with a finite-length formula.

Limitations of first-order logic

* Here is an example of a very natural property
which is not expressible in first-order logic.

— Transitivity in databases: Consider an airline

database such as the one that travel agents use to
find and book flights.

* Now ask the database to “give me a way to fly
from London Ontario to London UK, and | don't
care how many times | need to change planes".

* This kind of query, called “transitivity", is not
expressible in first-order logic.

Limitations of first-order logic

* Avery natural property which is not expressible in first-
order logic.

— Transitivity in databases: Consider an airline database such
as the one that travel agents use to find and book flights.

* For any fixed number of plane changes you can, indeed,
ask if there is a way to get from London ON to London
UK, however you always need to set a limit on the
number of intermediate locations.

* For example, to ask if there is a way to get to London UK
via four intermediate cities you would write

— 3y,,¥, V3 Y, Flight(London ON,y,) A Flight(y,,y,) A
Flight(y,,y;) A Flight(y,,v,) A Flight(y,, London UK)

19

Transitivity in databases

 Some databases do have special ways of
computing this kind of relation, but it is an
addition to the language of first-order logic and
can be quite computationally intensive,
especially in large databases.

* More often, it seems, the database system just
tries the first several queries, until they reach a
number of intermediate steps that seems too
large for them

Transitivity in databases

* You might have noticed that you pretty much
never see a route with more than three
intermediate cities, and sometimes get an
answer “there is no way“

* You can also ask a combination of such queries:
for example, “Is there a direct flight from
London ON to London UK, or a flight with one
intermediate city”?

— 3y Flight(London ON, London UK) vV
Flight(London ON,y) A Flight(y, London UK)

21

