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Applied Logic for Computer Science

Lecture 18, 19
Well-ordering and induction

Instructor: Marc Moreno Maza
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Partial and total orders i"if‘

* Abinaryrelation R € A X Ais an order if R is reflexive,
anti-symmetric and transitive.

— Ris atotal orderif Vx,y € A R(x,y) V R(y, x)
* That s, every two elements of A are related.

 Eg. R, ={(x,v)|x,vy € ZNx < y}is atotal order.

* So is alphabetical order of English words. ; ) i ) @Q

* ButnotR, ={(x,y)|x,yEZANx <y} ] )
\/

— not reflexive, so not an order.
— Otherwise, R is a partial order.

* SUBSETS = {(A,B) | A,B are sets A A € B } is a partial order.
— Reflexive: VA, A€ A
— Anti-symmetric: VAL B ACSBAB<SCA->A=8B
— Transitive: VA,B,C A€S BAB<S(C-ACcC
— Not total: if A={1,2} and B ={1,3}, then neither A €S BnorB € A

* DIVISORS ={(x,y)| x, yENAx,y=>2 AN3z€N y=2z-x} isa

partial order.

 PARENT is not an order. But ANCESTOR would be, if defined so that
each person is an ancestor of themselves. It is a partial order.
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Partial and total orders § .

* An order may have minimal and maximal
elements (maybe multiple)
—x € Ais minimal inRifVy €A y#x - —=R(y, x)
e and maximalifVy € Ay + x - =R(x,y)

— @ is minimal in SUBSETS (its unique minimum);
universe is maximal (its uniqgue maximum).

— All primes are minimal in DIVISORS, and there are no
maximal elements.



Functions

* Afunction f: X — Y is arelation on X X Y such
that for every x € X there is at mostone y € Y for
which (x, y) is in the relation.

— Usual notation: f(x) =y \[
* v is an image of x under f. AR

— Xis the domain of f
— Y is the codomain of f

This R is not a function

— Range of f (image of X under f): \
c{yeY|AxeX, f(x) =y} i I
— Preimage of agiveny € Y 0
c{xeX|f(x) =y} This R is a function
— Preimage of b is {2,3}. with domain {1,2,3,4},

codomain {a,b,c} and
range {a,b}



Functions

* Afunction f: X - Yis Not total

—Total: VxeXAyeY f(x)=vy
e 1 Z -1 '@
o f(x) = x + 1 is total.

« f(x) = % is not total. Why?
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Not onto

—Onto: VyeYdxeXf(x)=y -
* f(x) =x+ 1isontooverZ, but not B
over N
— One-to-one: Vx; x, € X (f(x;) =  Notone-to-one
F(x,) - %1 = %) -
* f(x) =x + 1isone-to-one. | &
e f(x) = x*? is not one-to-one
Bijection

— Bijection: both one-to-one and onto. W
* f(x) =x+ 1 is a bijection over Z. ‘



Functions
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* Aninverseof fis /~':V — X, such that

7o) =x iff flx) =y f‘l
- f)=x+1f"(»=y-1 e-%

— Only one-to-one functions have an inverse

* Compositionof f: X ->Y andg:Y - Zis
gef:X = Zsuchthat (g e f)(x) = g(f(x))

- f(x) = g g(x) = [x], over R

* [x] is ceiling: x rounded up to nearest integer. A’ ™
- (gof)®) =g(fe0) = [} 9 >

~ (fog)@) = f(g) =2

— (gof)12.5)=]2.5] =3
— (f o g)(12.5)=13/5= 2.6

 Order matters!



* A not-too-far-away country recently got rid of
a penny coin, and now everything needs to be
rounded to the nearest multiple of 5 cents...

— Suppose that instead of just dropping the penny,
they would introduce a 3 cent coin.

* Like British three pence.
— What is the largest amount that cannot be paid by
using only existing coins (5, 10, 25) and a 3c coin?

/c
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).



Well-ordering principle L LE3Y

* Any non-empty subset of natural numbers
contains the least element

— With respect to the usual total order x <y
— Very useful for proofs!



Well-ordering principle ‘!w!

* Coins: Vx € N, if x>7then3y,z € N such that x =
3y+5z. So any amount >7 can be paid with 3s and 5s.

— Suppose, for the sake of contradiction, that there are
amounts greater than 7 which cannot be paid with 3s and 5s.

— Take a set S of all such amounts. Since S € N, and we
assumed that S # @, by well-ordering principle S has the
least element. Call it n.

— Now, look at n-3; it cannot be paid by 3s and 5s either.
— Since nis the least elementof S, n —3<7<n

— 3 cases:
e n-3=7.Then n=10=2%*5,
* n-3=6.Then n=9=3*3
* n-3=5. Then n=8=3+5.
— In all three cases, got a contradiction.

— Therefore, for every x € N, if x >7 then x=3y+5z for some
v,z € N.
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 How to write long sums, e.g., 1+2+... (n-1)+n
concisely?
— Sum notation (“sum from 1 to n”):
i il=1+4+2+ ..+n
* Ifn=3,Y7_ 1 i = 1+2+3=6.

* The name “i“ does not matter. Could use another letter
not yet in use.

* Ingeneral,let f:Z > R, m,n€Z,m < n.

—2iem SO = fm) + f(m+ 1) + -+ f(n)
* If m=n, Y;ir, f(i)=f(m)=f(n).
e Ifn=m+1, 27 f(i) = f(m)+f(m+1)

* Ifn>m, YL, f(i)= (l))"'f(n)
« Example: f(x) = x2. 22+32+42 ¥, i2 =129
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e Similarly for product notation (product from
m to n):
—H"mf(l) =fm)-f(m+1)-..-f(n) =
(M5 F(D) - f(n)
—For f(x)=x, 2-3-4 =1, i=24
—1:2-...-n=1jL, i =n! (nfactorial)



e Claim: foranyne N, ),i*

Sum of numbers formula

n(n+ 1)
2

Proof.
— Suppose not.

— Let S be a set of all numbers n’ such that Zl gl #

Gauss’ proof:

1 +2 + ..+99 +100+
100+99 +..+ 2 +1 =

101 + 101+ ...+101 + 101 =100*101
SO 142+ ... + 99 + 100 =12

Works for any n, not just n=100

n'(n'+1)

By well-ordering principle, if S # @, then there is the Izeast

number k in S.

— Case 1: k=0. ButY? ,i =0 =

— Case 2: k>0. Then k—lZO.
°SoZ Oi—(Z L) +k.

0(0+1)

. So formula works for k=0.

* Askisthe smaIIest bad number, the formula works for k-1.

. So Zk (k 21)k

(k—1Dk kK2—k+2k _ K2+k _ k(k+1)

« Now, YK ,i= (XK {i)+k= +k =

* So the formula works for k>0, too.

2

2 2

— Contradiction. So S is empty, thus the formula works for all n € N.



Mathematical induction

e Want to prove a statement Vx € N P(x).
— Check that P(0) holds

— And whenever P (k) does not hold for some k,
P(k — 1) does not hold either

* Contradicting well-ordering principle.

* Contrapositive:
—if P(k-1) holds for arbitrary k,
—then P(k) also must be true.

— Conclude that Vx € N P(x)



Mathematical induction

e Want to prove a statement Vx € N P(x).

Proving that P(0) holds

— Check that P(O) holds is called the base case.

— And whenever P (k) does not hold for some k,
P(k — 1) does not hold either

* Contradicting well-ordering principle.
e Contra pOSitiVGZ That P(k-1) holds is an induction hypothesis

—if P(k-1) holds for arbitrary k, proving that P(k-1) — P(K)
—then P(k) also must be true: Is the induction step

— Conclude that Vx € N P(x)

Mathematical Induction principle:
If P(O)AV k €N P(k) - P(k+1) then Vx € N P(x)



Sum of numbers formula

: . +1
e Claim:foranyne N, )i = n(nz )
* Proof (by induction).
— P(n) is Yty i = n(n;l) (statement we are proving by
induction on n)
— Base case: k=0. ThenY{_,i=0 = 00+1)
2
— Induction hypothesis: Assume that Y"1 = U=DX for an

arbitrary k >0
* That s, for an arbitrary number k-1 € N
* Can take k instead of k-1, but k-1 makes calculations simpler.

— Induction step: show that P(k-1) implies P(k).
o Y& i= k) k.
« By induction hypothesis, Y- 1i = (k_zl)k
_ 2_ 2
. Now, Zf:l [ — (25;11 i) +k = (k-1Dk k= k 12<+2k _k 2+k _ k(k2+1)

— By induction, therefore, P(n) holds for alln € N.




Changing the base case

* Mathematical Induction principle:
—(P(O)AVEKkEN P(k)—>P(k+1)) - Vx € N P(x)

 What if want to prove it only for x = a?

— Make a the base case (when a = 0). For the rest,
assume k = a.

—(P(@)AVk >=a P(k)—Pk+l) - Vx=a P(x)

* Here, Vx = a P(x) is a shorthand for
VxeN (x=a-PXx))

— To prove it works, prove P(n’) where n’ = n-a.



Changing the base case

e Example: show that foralln = 4, 2™ > n?
— P(n): 2™ > n?
— Base case: n=4. 2% = 16 = 4%
— Induction hypothesis: assume that for an arbitrary k = a,
2Kk > k2
— Induction step: show that 2% > k? implies 2%*1 > (k + 1)2
o« 2ftl = 2.2k =2k 4 2 > k2 4 k2
e (k+1)?=k?*+2k+1.
e Want: k2 +k?>k?+2k+1,s0k?>2k+1
— Dividing both sides of the inequality by k: k > 2 +%

— Sincek24,and2+lS3, 2+1S3<4Sk. Sok22+landthus
’ k k k
ke >=>2k+1

¢ S02kt1 =2.2k =2k 4 2K > k2 + k2 > k2 + 2k +1 = (k + 1)?
— By induction, for alln > 4, 2" > n?

e Corollary: as n grows, an algorithm running in time n*

will quickly outperform an algorithm running in time 2™



Strong induction

* For our coins problem, needed not just P(k-1),
but P(k-3), and to look at three cases.

* Mathematical Induction principle:
—(P(0O)AVEk€EN P(k)—>P(k+1)) - Vx € NP(x)
e Strong Induction principle:
—(EIbEN ‘v’cEN(OSc/\che P(c)))

AVk>b (Vi €{0,...,k—1} P(i)) = P(k))
— Vx € N P(x)



Strong induction

e Strong induction seems stronger...

— But in fact, mathematical induction, strong
induction and well-order principles are
equivalent to each other.

— So choose the most convenient one.



* A not-too-far-away country recently got rid of
a penny coin, and now everything needs to be
rounded to the nearest multiple of 5 cents...

— Suppose that instead of just dropping the penny,
they would introduce a 3 cent coin.

* Like British three pence.
— What is the largest amount that cannot be paid by
using only existing coins (5, 10, 25) and a 3c coin?

/c
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).



Strong induction

e Strong Induction principle (general form):

— (3b N VcEN(aSc/\chﬁ P(c))
AVk>b (Vi €{a,.., k—1} P(i)) = P(k))
—>‘v’xEN(x2a—> P(x))

* Coins: Vx € N, if x>7 then 3 y,z € N such that x = 3y+5z.
— P(n): 3y,z€ N n=3y+5z. Also, a=8.
— Base cases: b =10, so ¢ € {8,9,10}
e n=8. 8=3:-14+5-1,s0y=1, z=1.
e n=9. 9=3-3, y=3,z=0
 n=10. 10=5-5. y=0, z=2.
— Induction hypothesis: Let k be an arbitrary integer such that
k > 10. Assume that foralli € N suchthat8 <i <
kEIyl-,Zl- EN i=3yi+5Zi
— Induction step. Show that induction hypothesis implies that
dy,z€N k =3y + 5z
* Sincek = b, k— 3 = a.So by induction hypothesis 3 y,,_3,z,_3 €
N k—3=3y,_3+ 5z;,_3. Now take z=z;,_; andy =y, _3 +1.
Then k = 3y+5z.
— By strong induction, get that for all x> 7, 3 y,z € N such that x
= 3y+5z.




Puzzle: all horses are white A4

w9
e Claim: all horses are white. K@
e Proof (by induction):
— P(n): any n horses are white.
— Base case: P(0) holds vacuously
— Induction hypothesis: any k horses are white.
— Induction step: if any k horses are white, then

any k+1 horses are white.

* Take an arbitrary set of k+1 horses. Take a horse out.
— The remaining k horses are white by induction hypothesis.

* Now put that horse back in, and take out another
horse.

— Remaining k horses are again white by induction
hypothesis.

* Therefore, all the k+1 horses in that set are white.
— By induction, all horses are white.

What’s wrong here?



