CS2209A 2017 Applied Logic for Computer Science

Lecture 2 **Propositional Logic:** Syntax, semantics, truth table

Instructor: Yu Zhen Xie

Language of logic: building blocks

• Proposition:

A sentence that can be *true* or *false*.

- A: "It is raining in St. John's right now".
- B: "2+2=7"
- But not "Hi!" or "x is an even number"

• Propositional variables:

- A, B, C (or p, q, r)
- It is a shorthand to denote propositions:
 - "B is true", for the B above, means "2+2=7" is true.

Language of logic: connectives

Pronunciation	Notation	Meaning
A and B (conjunction)	A ∧ B	True if both A and B are true
A or B (disjunction)	A ∨ B	True if either A or B are true (or both)
If A then B (implication)	$A \rightarrow B$	True whenever if A is true, then B is also true
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false

- Let A be "It is sunny" and B be "it is cold"
 - $A \land B$: It is sunny and cold
 - A V B: It is either sunny or cold
 - $A \rightarrow B$: If it is sunny, then it is cold
 - A : It is not sunny

Language of logic: syntax Pronu

Pronunciation	Notation	True when
A and B	ΑΛΒ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \to B$	if A is true, then B is also true
Not A	¬ A	Opposite of A is true

- Now we can combine these operations to make longer formulas
- $A \land \neg B \lor \neg C \to A$
 - If it is either sunny and not cold or not snowing, then it is sunny.
- How is the precedence of the connectives?

Language	of	logic:
syntax		

Pronunciation	Notation	True when
A and B	ΑΛΒ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \rightarrow B$	if A is true, then B is also true
Not A	¬ A	Opposite of A is true

• **Precedence**: \neg first, then \land , then \lor , \rightarrow last

¬ is like a unary minus, ∧ like *, ∨ like + ¬A ∨ B ∧ C is like -5+3*8

• When in doubt or need a different order, use parentheses

 $A \wedge \neg B \vee \neg C \rightarrow A$ is $((A \wedge (\neg B)) \vee (\neg C)) \rightarrow A$

 $A \lor B \land C$ is **not** the same as $(A \lor B) \land C$

Language of logic: semantics

- Let
 - A be "It is sunny", 🥘
 - B be "it is cold",
 - C be "It's snowing"
- What are the translations of:
 - IF (🖓 AND 🎆) THEN NOT 🔅 • $B \land C \rightarrow \neg A$

- If it is cold and snowing, then it is not sunny
- IF 🥰 THEN (😹 OR 🔅) • $B \rightarrow (C \lor A)$
 - If it is cold, then it is either snowing or sunny
- IF (NOT 🔅 AND 🤅) THEN 🚼 $\neg A \land A \to C$
 - If it is sunny and not sunny, then it is snowing.

Pronunciation	Notation	True when
A and B	ΑΛΒ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \rightarrow B$	if A is true, then B is also true
Not A	¬ A	Opposite of A is true

The truth

The truth

 We talk about a sentence being true or false when the values of the variables are known.

➢ If we didn't know whether it is sunny, we would not know whether A ∧ B → C is true or false.

• **Truth assignment:** setting values of variables to true/false.

```
e.g. A=true, B=false, C=false
```

- **Satisfying assignment** for a sentence: assignment that makes it true.
 - (Otherwise, **falsifying** assignment).
 - A=true, B=false, C= false satisfies $A \land B \rightarrow C$
 - − A=true, B=true, C=false falsifies $A \land B \rightarrow C$

Truth assignment

Α	
True	 It is sunny
False	 It is not sunny
В	

• It is cold

• It is not cold

Let

- A be "It is sunny"
- B be "It is cold"
- C be "It is snowing

С	
True	 It is snowing
False	 It is not snowing

Α	В
True	True
True	False
False	True
False	False

True

False

- It is sunny and cold
- It is sunny and not cold
- It is not sunny and cold
- It is neither sunny nor cold

Truth assignment

Let

- A be "It is sunny"
- B be "It is cold"
- C be "It is snowing

Α	В	С
True	True	True
True	True	False
True	False	True
True	False	False
False	True	True
False	True	False
False	False	True
False	False	False

Given **n** variables, how many different truth assignments will there be?

Answer: 2ⁿ

Truth tables

Α	В
True	True
True	False
False	True
False	False

- Let
 - A be "It is sunny"
 - B be "it is cold"

- It is sunny and cold.
- It is sunny and not cold
- It is not sunny and cold
- It is neither sunny nor cold

Α	В	not A	A and B
True	True	False	True
True	False	False	False
False	True	True	False
False	False	True	False

Truth table: V

Α	В	A or B
True	True	True
True	False	True
False	True	True
False	False	False

• "It is raining or I am a dolphin"

Truth table: $\mathbf{p} \rightarrow \mathbf{q}$

р	q	if p then q
True	True	True
True	False	False
<mark>False</mark>	<mark>True</mark>	True
<mark>False</mark>	<mark>False</mark>	True

- Let
 - p be "It is raining"
 - q be "It is cloudy"
 - "If p then q"
 - "p implies q"

- The implication is only false if its left hand side (i.e., p) is true while the right hand side (q) is false.
- That is, *"if it is raining then it is cloudy"* is **false** only when it is raining out of blue sky. If it is not raining, this propositional formula is true no matter whether it is cloudy or not.

The fun game

• You see the following cards. Each has a letter on one side and a number on the other.

Which cards do you need to turn to check that
 "if a card has a J on it then it has a 5 on the other side"?

"if ... then" in logic

• This puzzle has a logical structure:

"if A then B"

- What circumstances make this true?
 - A is true and B is true
 - A is true and B is false
 - A is false and B is true
 - A is false and B is false

Language of logic

Pronunciation	Notation	Meaning
A and B (conjunction)	A ∧ B	True if both A and B are true
A or B (disjunction)	A ∨ B	True if either A or B are true (or both)
If A then B (implication)	$A \rightarrow B$	True whenever if A is true, then B is also true
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false

- "If and only if", iff, \leftrightarrow
 - $A \leftrightarrow B$:
 - $\circ \quad A \rightarrow B \text{ and } B \rightarrow A$
 - $\circ~$ A if and only if B
 - A and B either both true or both false

Knights and knaves

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says "Either I am a knave, or Bob is a knight". Is Arnold a knight or a knave? What about Bob?

- Puzzle 1: Arnold says "Either I am a knave, or Bob is a knight".
 Is Arnold a knight or a knave? What about Bob? To solve:
 - A: Arnold is a knight
 - **B**: Bob is a knight
 - Formula: $\neg A \lor B$: "Either Arnold is a knave, or Bob is a knight"
 - Want: scenarios where either both A is a knight and the formula is true, or A is a knave and the formula is false.
 - Use "if and only if" notation: $(\neg A \lor B) \leftrightarrow A$ True if both formulas have same value.

Α	В	$\neg A$	$\neg A \lor B$	$(\neg A \lor B) \leftrightarrow A$
True	True	False	True	True
True	False	False	False	False
False	True	True	True	False
False	False	True	True	False

Truth tables: equivalence

Α	В	not A	if A then B	(not A) or B
True	True	False	<mark>True</mark>	<mark>True</mark>
True	False	False	<mark>False</mark>	<mark>False</mark>
False	True	True	<mark>True</mark>	<mark>True</mark>
False	False	True	<mark>True</mark>	<mark>True</mark>

- Now, $\neg A \lor B$ is the same as $A \to B$
 - So $\neg A \lor B$ and $A \rightarrow B$ are equivalent.
- "if it rains it must be cloudy" is equivalent to say "it can't happen that both it's not cloudy and raining".

Special types of sentences

- A sentence that has a satisfying assignment is **satisfiable**.
 - Some row in the truth table ends with True.
 - Example: $\mathbf{B} \rightarrow \mathbf{A}$

• Sentence is a contradiction:

- All assignments are falsifying.
- All rows end with False.
- Example: $A \wedge \neg A$
- Sentence is a **tautology**:
 - All assignments are satisfying
 - All rows end with True.
 - Example: $\mathbf{B} \rightarrow \mathbf{A} \lor \mathbf{B}$

Α	В	$B \rightarrow A$
True	True	True
True	False	True
False	True	False
False	False	True

Α	В	A ∨ B	$\mathbf{B} \to \mathbf{A} \lor \boldsymbol{B}$
True	True	True	True
True	False	True	True
False	True	True	True
False	False	False	True

Determining formula type

- How long does it take to check if a formula is satisfiable?
 - If somebody gives you a satisfying assignment, then in time roughly the size of the formula.
 - On a *m*-symbol formula, take time O(*m*) = constant * *m*, for some constant depending on the computer/software.
 - What if you don't know a satisfying assignment?
 How hard it is to find it?
 - Using a truth table: in time $O(m * 2^n)$ on a length m *n*-variable formula.
 - Is it efficient?...

Complexity of computation

- Would you still consider a problem really solvable if it takes very long time?
 - Say 10ⁿ steps on an n-symbol string?
 - At a billion (10⁹) steps per second (~1GHz)?
 - To process a string of length 100...
 - will take $10^{100}/10^9$ seconds, or ~3x10⁷² centuries.

- Age of the universe: about 1.38x10¹⁰ years.
- Atoms in the observable universe: 10^{78} - 10^{82} .

Complexity of computation

- What strings do we work with in real life?
 - A DNA string has 3.2×10^9 base pairs
 - A secure key in crypto: 128-256 bits
 - Number of Walmart transactions per day: 10⁶.
 - URLs searched by Google in 2012: $3x10^{12}$.

Determining formula type

- How long does it take to check if a formula is satisfiable?
 - Using a truth table: in time $O(m * 2^n)$ on a length m, n-variable formula.
 - Is it efficient?
 - Not really!

- Formula with 100 variables is already too big!
- In software verification: millions of variables!
- Can we do better?

A million-dollar question!