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Tower of Hanoi game
• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg.

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?   



Tower of Hanoi game
• Rules of the game: 

– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?   
• Let us call the number of moves needed to transfer n disks H(n). 

– Names of pegs do not matter:  from any peg � to any peg � ≠ �	 would take the same number of steps.
• Basis:  only one disk can be transferred in one step. 

– So H(1) = 1 
• Recursive step:  

– suppose we have n-1 disks.  To transfer them all to peg 2, need �(� − 1)number of steps.  
– To transfer the remaining disk to peg 3, 1 step. 
– To transfer n-1 disks from peg 2 to peg 3 need  H(n-1) steps again. 
– So H(n) = 2H(n-1)+1   (recurrence). 

• Closed form:  H(n) = 2� − 1.	



Recurrence relations
• Recurrence:  an equation that defines an ���element in a sequence in terms of one or more of previous terms. 
– H(n) = 2H(n-1)+1
– F(n) = F(n-1)+F(n-2) 
– T(n) = aT(n-1) 

• A closed form of a recurrence relation is an expression that defines an ��� element in a sequence in terms of � directly. 
– Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.



Recursive definitions of sets 
• So far, we talked about recursive definitions of sequences.  We can also give recursive definitions of sets. 
– E.g:  recursive definition of a set S = 0, 1 ∗
• Basis:  empty string is in S. 
• Recursive step:  if � ∈ �,	 then �0 ∈ �	 and �1 ∈ �	
–Here, �0 means string w with 0 appended at the end; same for w1 



Recursive definitions of sets 
• Recursive definition of a set S = 0, 1 ∗
– Alternatively:
• Basis: empty string, 0 and 1 are in S. 
• Recursive step: if s and t are in S, then st ∈ �	
–here, st is concatenation: symbols of s followed by symbols of  t 
–If s = 101 and t= 0011, then st = 1010011

– Additionally, need a restriction condition: the set S contains only elements produced from basis using recursive step rule. 



Trees 
• In computer science, a tree is an undirected graph without cycles 
–Undirected: all edges go both ways, no arrows. 
–Cycle: sequence of edges going back to the same point. 

1 2 3Undirected cycle(not a tree)



Trees 
• Recursive definition of trees: 
– Base: A single vertex         is a tree.
– Recursion:  
• Let � be a tree, and � a new vertex. 
• Then a new tree consist of �, �,	and an edge (connection) between some vertex of �	and �.

– Restriction: 
• Anything that cannot be constructed with this rule  from this base is not a tree. 
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Arithmetic expressions
• Suppose you are writing a piece of code that takes an arithmetic expression and, say evaluates it. 
– “5*3-1”,  “40-(x+1)*7”, etc

• How to describe a valid arithmetic expression? 



Arithmetic expressions
• How to describe a valid arithmetic expression? 
• Define a set of all valid arithmetic expressions recursively. 
– Base: A number or a variable is a valid arithmetic expression. 
• 5, 100, x, a

– Recursion: 
• If A and B are valid arithmetic expressions, then so are (A), � � �, � − �, � ∗ �, �	/ B.

– Constructing 40-(x+1)*7:  first construct 40, x, 1, 7. Then (x+1). Then (x+1)*7, finally 40-(x+1)*7
– Caveat:  how do we know the order of evaluation? On that later.

– Restriction:  nothing else is a valid arithmetic expression. 



Formulas
• What is a well-formed propositional logic formula? 
–  ∨ "# ∧ % → " → %
– Base:  a propositional variable  , #, % …
• Or a constant �()*, +�,�*

– Recursion: 
• If F and G are propositional formulas, so are + , "+, + ∧ -, + ∨ -, + → -, + ↔ -.	

– And nothing else. 



Formulas
• What is a well-formed predicate logic formula? 
– ∃0 ∈ 1	∀3 ∈ 4		5 0, 3 ∨ 6 0, 7 ∧ 0 8 3	
– Base:  a predicate with free variables
• P(x),  x=y, … 

– Recursion: 
• If F and G are predicate logic formulas, so are + ,"+, + ∧ -, + ∨ -, + → -, + ↔ -.	
• If +	is a predicate logic formula with a free variable x, then ∃0 ∈ 1	+	 and  ∀0 ∈ 1	+	 are predicate logic formulas. 

– And nothing else. 
• So   ∃0 ∈ 59: ;9			,�<9= 0, 3 ∧ 0 , ,�<9= 3 ≠ 0 is not a well-formed predicate logic formula! 



Grammars
• A context-free grammar consists of 
– A set V of variables (using capital letters) 

• Including a start variable S.   
– A set Σ of terminals (disjoint from V; alphabet) 
– A set R of rules, where each rule consists of a variable from V and a string of variables and terminals.

• If � → � is a rule, we say variable �	 yields string w.  
– This is not the same “→ "	as implication, a different use of the same symbol. 

• We use shortcut “|” when the same variable might yield several possible strings:  � → �� 	�� … |�A
• Can use A again within the rule: Recursion!  

– Different occurrences of the same variable can be interpreted as different strings. 
• When left with just terminals, a string is derived. 



Grammars
• A general recursive definition for these is called a grammar.  
– In particular, here we have “context-free” grammars, where symbols have the same meaning wherever they are. 

• A language generated by a grammar consists of all strings of terminals that can be derived from the start variable by applying the rules. 
– All strings are derived by repeatedly applying the grammar rules to each variable until there are no variables left (just the terminals).   



Examples of grammars
• Example:  language {1, 00} consisting of two strings 1 and 00
– �	 → 		1	|		00
• Variables: S. Terminals: 1 and 00. 

• Example:  strings over {0, 1}  with all 0s before all 1s. 
– � → 0�	 	�1	 	_
• Variables: S.  Terminals: 0 and 1. 



Examples of grammars
• Example:  propositional formulas. 1. + → 		+ ∨ +		2. + → + ∧ +		3. + →	"+4. + →	 +5. + →  	 	#	 %	 	�()*	 +�,�*	

• Here,  the only variable is  F (it is a start variable),  and terminals are ∨,∧, ", ,	 ,  , #, %, �()*, +�,�*	
• To obtain  ∨ "# ∧ %, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to get r. 



Examples of grammars
• Example:  arithmetic expressions
– *F5( → *F5( � *F5(	 		*F5( − *F5(	 	*F5( ∗*F5(	|	*F5(	/	*F5( | *F5( 		|	H)I�*(|-NUMBER 
– NUMBER → 01J-J��	 … 91J-J��
– 1J-J��	 → 		 _|	H)I�*(
• Here, _ stands for empty string.  Variables: EXPR, NUMBER, DIGITS (S is starting).  Terminals: +,-,*, /, 0,…,9.  
• We used separate NUMBER to avoid multiple “-”.  
• And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.   



Encoding order of precedence
• Easier to specify in which order to process parts of the formula. 
– Better grammar for arithmetic expressions (for simplicity, with x,y,z instead of numbers):1. *F5( → *F5( � �*(I	|*F5( − �*(I|	�*(I2. �*(I → �*(I	 ∗ +�L�M(	|	�*(I	/+�L�M(	|	+�L�M(	3. +�L�M(	 → *F5( 	| x | y | z
– Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable). 
– Now can encode precedence.
• And put parentheses more sensibly.  



Parse trees.Visualization of derivations: parse trees. 1. *F5( → *F5( ��*(I	|*F5( − �*(I|	�*(I2. �*(I → �*(I	 ∗+�L�M(	|	�*(I	/+�L�M(	|	+�L�M(	3. +�L�M(	 → *F5( 	| x | y | z
• String (x+y)*z

EXPRTERM
EXPR
TERM FACTORFACTOR z( )

*
EXPR TERM+TERMFACTOR FACTOR

x y
(        x        +           y     )   *      z



Parse trees.
• Visualization of derivations: parse trees. 
– Simpler example:
• � → 0�	 	�1	 	_
• String 001

S S S 1
0 0 S_0           0                1

SS S0
10 S_0        0                 1



Puzzle
• Do the following two English sentences have the same parse trees? 
– Time flies like an arrow. 
– Fruit flies like an apple. 



Structural induction
• Let � ⊆ )		be a recursively defined set, and F(x) is a property (of 0 ∈ )).	
• Then 
– if all 0	in the base of S have the property,  
– and applying the recursion rules preserves the property,
– then all elements in S have the property. 



Multiples of 3
• Let’s define a set S of numbers as follows. 
– Base:  3 ∈ �	
– Recursion: if  0, 3 ∈ �,	 then 0 � 3 ∈ �

• Claim: all numbers in S are divisible by 3 
– That is, ∀0 ∈ �	∃	7 ∈ O	0 8 37.	



Multiples of 3
• Proof (by structural induction). 
–Base case:  3 is divisible by 3 (y=1). 
–Recursion: Let 0, 3 ∈ �. Then ∃7, P ∈ O	0 8 37 ∧3 8 3P.	
• Then 0 � 3 8 37 � 3P 8 3 7 � P .	
• Therefore, 0 � 3	is divisible by 3. 

–As there are no other elements in S except for those constructed from 3 by the recursion rule, all elements in S are divisible by 3.   



Binary  trees 
• Rooted trees are trees with a special vertex designated as a root.  
– Rooted trees are binary if every vertex has at most three edges: one going towards the root, and two going away from the root. Full if every vertex has either 2 or 0 edges going away from the root. 



Binary  trees 
• Recursive definition of full binary trees: 
– Base: A single vertex         is a full binary tree with that vertex as a root.
– Recursion:  
• Let ��, �� be full binary trees with roots %�, %�, respectively.  Let � be a  new vertex. 
• A new full binary tree with root �	 is formed by connecting %� and %� to �.	

– Restriction: 
• Anything that cannot be constructed with this rule  from this base is not a full binary tree. 
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Height of a full binary tree
• The height of a rooted tree, ℎ � ,	 is the maximum number of edges to get from any vertex to the root.  
– Height of a tree with a single vertex is 0. 

• Claim:  Let �(�) be the number of vertices in a full binary tree T.  Then � � ≤ 2� S T� − 1
	��	�� 	��
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Height of a full binary tree
• Proof (by structural induction) 

– Base case:  a tree with a single vertex has � � 8 1	 and ℎ � 8 0.	 So 2� S T� − 1 = 1 ≥ 1
– Recursion:  Suppose  �	was built by attaching ��, �� to a new root vertex �.

• Number of vertices in � is n T 8 � �� � � �� � 1
• Every vertex in �� or �� now has one extra step to get to the new root in �.	 So ℎ � 8 1 �max	(ℎ �� , ℎ �� )
• By the induction hypothesis, � �� ≤ 2� S[ T� − 1 and � �� ≤ 2� S\ T� − 1
• n T 8 � �� � � �� � 1≤ 1 � (2� S[ T�−1)+(2� S\ T� − 1 )≤ 2 ⋅ max	(2� S[ T�, 2� S\ T�) 		− 1≤ 2 ⋅ 2^_` � S[ ,� S\ T� − 1																	8 2 ⋅ 2� S − 1 8 2� S T� − 1

– Therefore, the number of vertices of any binary tree � is less than 2� S T� − 1
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Height of a full binary tree
• Claim:  Let �(�) be the number of vertices in a full binary tree T.  Then � � ≤ 2� S T� − 1
• Alternatively,  height of a binary tree is at least log� �(�)
– If you have a recursive program that calls itself twice (e.g, within if … then … else …)
– Then if this code executes n times (maybe on n different cases) 
– Then the program runs in time at least log� � ,	even when cases are checked in parallel. 
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