CS2209A 2017 Applied Logic for Computer Science

Lecture 21, 22

Recursive definition of sets and structural induction

Instructor: Marc Moreno Maza

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?
 - Let us call the number of moves needed to transfer n disks H(n).
 - Names of pegs do not matter: from any peg i to any peg $j \neq i$ would take the same number of steps.
 - **Basis**: only one disk can be transferred in one step.
 - So H(1) = 1
 - Recursive step:
 - suppose we have n-1 disks. To transfer them all to peg 2, need H(n-1) number of steps.
 - To transfer the remaining disk to peg 3, 1 step.
 - To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
 - So H(n) = 2H(n-1)+1 (recurrence).
 - Closed form: $H(n) = 2^n 1$.

Recurrence relations

• Recurrence: an equation that defines an n^{th} element in a sequence in terms of one or more of previous terms.

```
- H(n) = 2H(n-1)+1

- F(n) = F(n-1)+F(n-2)

- T(n) = aT(n-1)
```

- A **closed form** of a recurrence relation is an expression that defines an n^{th} element in a sequence in terms of n directly.
 - Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.

Recursive definitions of sets

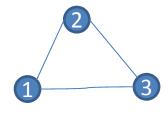
- So far, we talked about recursive definitions of sequences. We can also give recursive definitions of sets.
 - E.g. recursive definition of a set $S = \{0, 1\}^*$
 - Basis: empty string is in S.
 - Recursive step: if $w \in S$, then $w0 \in S$ and $w1 \in S$
 - -Here, w0 means string w with 0 appended at the end; same for w1

Recursive definitions of sets

- Recursive definition of a set $S = \{0, 1\}^*$
 - Alternatively:
 - Basis: empty string, 0 and 1 are in S.
 - Recursive step: if s and t are in S, then st $\in S$
 - -here, st is concatenation: symbols of s followed by symbols of t
 - -If s = 101 and t = 0011, then st = 1010011
 - Additionally, need a restriction condition: the set
 S contains only elements produced from basis
 using recursive step rule.

Trees

- In computer science, a tree is an undirected graph without cycles
 - Undirected: all edges go both ways, no arrows.
 - Cycle: sequence of edges going back to the same point.



Undirected cycle (not a tree)

Trees

Recursive definition of trees:

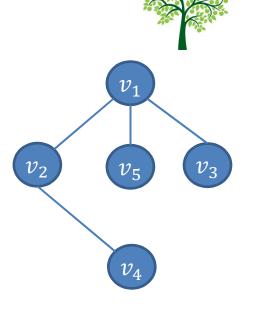
Base: A single vertex is a tree.

– Recursion:

- Let T be a tree, and v a new vertex.
- Then a new tree consist of T, v, and an edge (connection) between some vertex of T and v.

– Restriction:

 Anything that cannot be constructed with this rule from this base is not a tree.



Arithmetic expressions

 Suppose you are writing a piece of code that takes an arithmetic expression and, say evaluates it.

$$-$$
 "5*3-1", "40-(x+1)*7", etc

How to describe a valid arithmetic expression?

Arithmetic expressions

- How to describe a valid arithmetic expression?
- Define a set of all valid arithmetic expressions recursively.
 - Base: A number or a variable is a valid arithmetic expression.
 - 5, 100, x, a
 - Recursion:
 - If A and B are valid arithmetic expressions, then so are (A), A + B, A B, A * B, A / B.
 - Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then (x+1)*7, finally 40-(x+1)*7
 - Caveat: how do we know the order of evaluation? On that later.
 - Restriction: nothing else is a valid arithmetic expression.

Formulas

 What is a well-formed propositional logic formula?

$$-(p \lor \neg q) \land r \rightarrow (\neg p \rightarrow r)$$

- **Base**: a propositional variable p, q, r ...
 - Or a constant *TRUE*, *FALSE*
- Recursion:
 - If F and G are propositional formulas, so are (F), $\neg F$, $F \land G$, $F \lor G$, $F \to G$, $F \leftrightarrow G$.
- And nothing else.

Formulas

- What is a well-formed predicate logic formula?
 - $-\exists x \in D \ \forall y \in \mathbb{Z} \ P((x,y) \lor Q(x,z)) \land x = y$
 - Base: a predicate with free variables
 - P(x), x=y, ...

– Recursion:

- If F and G are predicate logic formulas, so are (F), $\neg F$, $F \land G$, $F \lor G$, $F \rightarrow G$, $F \leftrightarrow G$.
- If F is a predicate logic formula with a free variable x, then $\exists x \in D F$ and $\forall x \in D F$ are predicate logic formulas.
- And nothing else.
 - So $\exists x \in People \ Likes(x, y \land x), \ Likes(y \neq x)$ is not a well-formed predicate logic formula!

Grammars

- A context-free grammar consists of
 - A set V of variables (using capital letters)
 - Including a **start variable** S.
 - A set Σ of **terminals** (disjoint from V; alphabet)
 - A set R of rules, where each rule consists of a variable from V and a string of variables and terminals.
 - If $A \rightarrow w$ is a rule, we say variable A yields string w.
 - This is not the same "→" as implication, a different use of the same symbol.
 - We use shortcut "|" when the same variable might yield several possible strings: $A \rightarrow w_1 | w_2 | ... | w_k$
 - Can use A again within the rule: Recursion!
 - Different occurrences of the same variable can be interpreted as different strings.
 - When left with just terminals, a string is derived.

Grammars

- A general recursive definition for these is called a grammar.
 - In particular, here we have "context-free"
 grammars, where symbols have the same meaning wherever they are.
- A language generated by a grammar consists of all strings of terminals that can be derived from the start variable by applying the rules.
 - All strings are derived by repeatedly applying the grammar rules to each variable until there are no variables left (just the terminals).

Examples of grammars

• Example: language {1, 00} consisting of two strings 1 and 00

$$-S \rightarrow 1 \mid 00$$

- Variables: S. Terminals: 1 and 00.
- Example: **strings** over {0, 1} with all 0s before all 1s.

$$-S \rightarrow 0S \mid S1 \mid$$

• Variables: S. Terminals: 0 and 1.

Examples of grammars

Example: propositional formulas.

```
1. \quad F \rightarrow F \vee F
```

2.
$$F \rightarrow F \wedge F$$

3.
$$F \rightarrow \neg F$$

4.
$$F \rightarrow (F)$$

- 5. $F \rightarrow p \mid q \mid r \mid TRUE \mid FALSE$
 - Here, the only variable is F (it is a start variable), and terminals are

$$\vee, \wedge, \neg, (,), p, q, r, TRUE, FALSE$$

• To obtain $(p \lor \neg q) \land r$, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to get r.

Examples of grammars

- Example: arithmetic expressions
 - $-EXPR \rightarrow EXPR + EXPR \mid EXPR EXPR \mid EXPR *$ $EXPR \mid EXPR \mid (EXPR) \mid NUMBER \mid -NUMBER$
 - NUMBER → 0DIGITS |...|9DIGITS
 - DIGITS \rightarrow $_$ NUMBER
 - Here, _ stands for empty string.
 Variables: EXPR, NUMBER, DIGITS (S is starting).
 Terminals: +,-,*, /, 0,...,9.
 - We used separate NUMBER to avoid multiple "-".
 - And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.

Encoding order of precedence

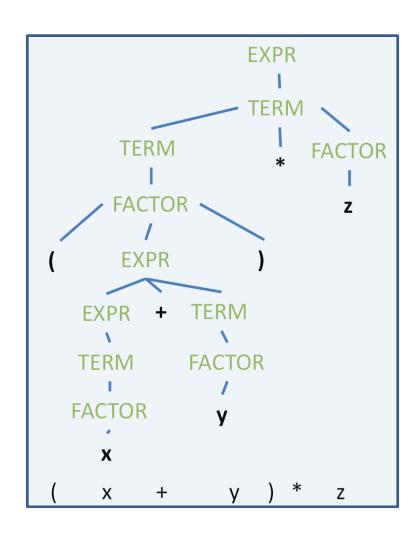
- Easier to specify in which order to process parts of the formula.
 - Better grammar for arithmetic expressions (for simplicity, with x,y,z instead of numbers):
 - 1. $EXPR \rightarrow EXPR + TERM | EXPR TERM | TERM$
 - 2. $TERM \rightarrow TERM * FACTOR \mid TERM / FACTOR \mid FACTOR$
 - 3. $FACTOR \rightarrow (EXPR) \mid x \mid y \mid z$
 - Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable).
 - Now can encode precedence.
 - And put parentheses more sensibly.

Parse trees.

Visualization of derivations:

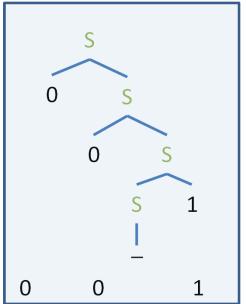
parse trees.

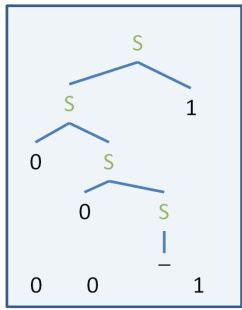
- 1. $EXPR \rightarrow EXPR + \\ TERM | EXPR TERM | TERM$
- 2. $TERM \rightarrow TERM *$ $FACTOR \mid TERM /$ $FACTOR \mid FACTOR$
- 3. $FACTOR \rightarrow (EXPR) \mid x \mid y \mid z$
- String (x+y)*z



Parse trees.

- Visualization of derivations: parse trees.
 - Simpler example:
 - $S \rightarrow 0S \mid S1 \mid$
 - String 001





Puzzle

 Do the following two English sentences have the same parse trees?

- Time flies like an arrow.

Fruit flies like an apple.

Structural induction

- Let $S \subseteq U$ be a recursively defined set, and F(x) is a property (of $x \in U$).
- Then
 - if all x in the base of S have the property,
 - and applying the recursion rules preserves the property,
 - then all elements in S have the property.

Multiples of 3

- Let's define a set S of numbers as follows.
 - − Base: $3 \in S$
 - Recursion: if $x, y \in S$, then $x + y \in S$
- Claim: all numbers in S are divisible by 3
 - That is, $\forall x \in S \exists z \in \mathbb{N} \ x = 3z$.

Multiples of 3

- Proof (by structural induction).
 - -Base case: 3 is divisible by 3 (y=1).
 - **Recursion**: Let $x, y \in S$. Then $\exists z, u \in \mathbb{N} \ x = 3z \land y = 3u$.
 - Then x + y = 3z + 3u = 3(z + u).
 - Therefore, x + y is divisible by 3.
 - As there are **no other elements** in S except for those constructed from 3 by the recursion rule, all elements in S are divisible by 3.

Binary trees

- Rooted trees are trees with a special vertex designated as a root.
 - Rooted trees are binary if every vertex has at most three edges: one going towards the root, and two going away from the root. Full if every vertex has either 2 or 0 edges going away from the root.

Binary trees

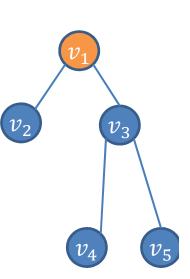
- Recursive definition of full binary trees:
 - Base: A single vertex v is a full binary tree
 with that vertex as a root.

– Recursion:

- Let T_1, T_2 be full binary trees with roots r_1, r_2 , respectively. Let v be a new vertex.
- A new full binary tree with root v is formed by connecting r_1 and r_2 to v.

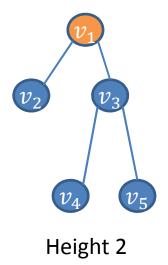
– Restriction:

 Anything that cannot be constructed with this rule from this base is not a full binary tree.



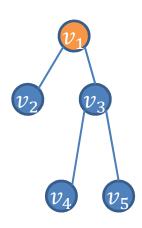
Height of a full binary tree

- The **height** of a rooted tree, h(T), is the maximum number of edges to get from any vertex to the root.
 - Height of a tree with a single vertex is 0.
- Claim: Let n(T) be the number of vertices in a full binary tree T. Then $n(T) \le 2^{h(T)+1} 1$



Height of a full binary tree

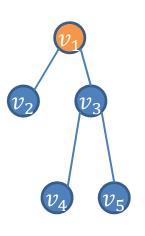
- Proof (by structural induction)
 - Base case: a tree with a single vertex has n(T) = 1 and h(T) = 0. So $2^{h(T)+1} 1 = 1 \ge 1$
 - **Recursion**: Suppose T was built by attaching T_1 , T_2 to a new root vertex v.
 - Number of vertices in T is $n(T) = n(T_1) + n(T_2) + 1$
 - Every vertex in T_1 or T_2 now has one extra step to get to the new root in T. So $h(T) = 1 + \max(h(T_1), h(T_2))$
 - By the induction hypothesis, $n(T_1) \leq 2^{h(T_1)+1} 1$ and $n(T_2) \leq 2^{h(T_2)+1} 1$
 - $n(T) = n(T_1) + n(T_2) + 1$ $\leq 1 + (2^{h(T_1)+1}-1) + (2^{h(T_2)+1}-1)$ $\leq 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) - 1$ $\leq 2 \cdot 2^{\max(h(T_1),h(T_2))+1} - 1$ $= 2 \cdot 2^{h(T)} - 1 = 2^{h(T)+1} - 1$
 - Therefore, the number of vertices of any binary tree T is less than $2^{h(T)+1}-1$



Height 2

Height of a full binary tree

- Claim: Let n(T) be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1} 1$
- Alternatively, height of a binary tree is at least $\log_2 n(T)$
 - If you have a recursive program that calls itself twice (e.g, within if ... then ... else ...)
 - Then if this code executes n times (maybe on n different cases)
 - Then the program runs in time at least $log_2 n$, even when cases are checked in parallel.



Height 2