CS2209A 2017
Applied Logic for Computer Science

Lecture 21, 22
Recursive definition of sets

and structural induction

Instructor: Marc Moreno Maza

Tower of Hanoi game

T ————
* Rules of the game:

— Start with all disks on the first peg.

— At any step, can move a disk to another peg, as
long as it is not placed on top of a smaller disk.

— Goal: move the whole tower onto the second peg.

* Question: how many steps are needed to move
the tower of 8 disks? How about n disks?

Tower of Hanoi game Al

* Rules of the game:

— Start with all disks on the first peg.

— At any step, can move a disk to another peg, as long as it is not placed on top of a
smaller disk.

— Goal: move the whole tower onto the second peg.
* Question: how many steps are needed to move the tower of 8 disks? How about n disks?

e Let us call the number of moves needed to transfer n disks H(n).

— Names of pegs do not matter: from any pegi to any pegj # i would
take the same number of steps.

* Basis: only one disk can be transferred in one step.
— SoH(1)=1
* Recursive step:

— suppose we have n-1 disks. To transfer them all to peg 2, need H(n — 1)
number of steps.

— To transfer the remaining disk to peg 3, 1 step.
— To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
— So H(n)=2H(n-1)+1 (recurrence).

* Closed form: H(n)=2" —1.

Recurrence relations

 Recurrence: an equation that defines an nt"

element in a sequence in terms of one or more of
previous terms.

— H(n) = 2H(n-1)+1

— F(n) = F(n-1)+F(n-2)

— T(n) =aT(n-1)

* Aclosed form of a recurrence relation is an
expression that defines an nt" element in a
sequence in terms of n directly.

— Often use recurrence relations and their closed forms
to describe performance of (especially recursive)
algorithms.

Recursive definitions of sets

e So far, we talked about recursive definitions of
sequences. We can also give recursive
definitions of sets.

— E.g: recursive definition of aset S ={0,1}"
* Basis: empty stringisin S.

* Recursive step: ifw € S, thenw0 € S and
wles

—Here, w0 means string w with 0 appended at
the end; same for wl

Recursive definitions of sets

* Recursive definition of asetS=1{0,1}"
— Alternatively:
* Basis: empty string, 0 and 1 are in S.
* Recursive step: if s andtareinS, thenste §

—here, st is concatenation: symbols of s
followed by symbols of t

—|f s =101 and t= 0011, then st = 1010011

— Additionally, need a restriction condition: the set
S contains only elements produced from basis
using recursive step rule.

Trees *%2?

* |n computer science, a tree is an undirected
graph without cycles

— Undirected: all edges go both ways, no arrows.
— Cycle: sequence of edges going back to the

same point.

Undirected cycle
(not a tree)

Trees

 Recursive definition of trees:

— Base: A single vertex Q IS a tree.
— Recursion:

 Let T be a tree, and v a new vertex.

* Then a new tree consist of T, v, and an edge
(connection) between some vertex of T and v.

— Restriction:

* Anything that cannot be constructed with this
rule from this base is not a tree.

Arithmetic expressions

e Suppose you are writing a piece of code that
takes an arithmetic expression and, say
evaluates it.

— “5%3-1” “40-(x+1)*7”, etc

 How to describe a valid arithmetic expression?

Arithmetic expressions

* How to describe a valid arithmetic expression?

* Define a set of all valid arithmetic expressions
recursively.

— Base: A number or a variable is a valid arithmetic
expression.

* 5 100, x, a
— Recursion:

* If A and B are valid arithmetic expressions, then so are (A),
A+B,A—B, A+*B,A/B.

— Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then (x+1). Then
(x+1)*7, finally 40-(x+1)*7

— Caveat: how do we know the order of evaluation? On that later.
— Restriction: nothing else is a valid arithmetic
expression.

Formulas

 What is a well-formed propositional logic
formula?

~(PVag)Ar - (=p o)

— Base: a propositional variable p, g, 7 ...
e Oraconstant TRUE, FALSE
— Recursion:

* If Fand G are propositional formulas, so are
(F), =F, FAG,FVG,F ->G,F o G.

— And nothing else.

Formulas

* What is a well-formed predicate logic formula?

—3dx €EDVy€ELZ P((x,y) \Y; Q(x,z)) AXx =1y
— Base: a predicate with free variables

* P(x), x=vy, ...
— Recursion:

* If Fand G are predicate logic formulas, so are (F),
-F, FANG,FVG,F - G,F < G.

* |f F is a predicate logic formula with a free variable x,
thendx € DF and Vx € D F are predicate logic
formulas.

— And nothing else.

* So dx € People Likes(x,y Ax), Likes(y # x) is
not a well-formed predicate logic formulal

Grammars) e ¢

* A context-free grammar consists of

— A set V of variables (using capital letters)
* Including a start variable S.

— A set X of terminals (disjoint from V; alphabet)

— A set R of rules, where each rule consists of a variable
from V and a string of variables and terminals.

 If A > wis arule, we say variable A yields string w.

— This is not the same “— " as implication, a different use of the
same symbol.

* We use shortcut “|” when the same variable might yield several
possible strings: A = wq| wy| ... [wy
* Can use A again within the rule: Recursion!

— Different occurrences of the same variable can be interpreted as
different strings.

 When left with just terminals, a string is derived.

Grammars

* A general recursive definition for these is

called a grammar.

— In particular, here we

have “context-free”

grammars, where symbols have the same meaning

wherever they are.

* A language generated by a grammar consists
of all strings of terminals that can be derived

from the start variab
— All strings are derived

e by applying the rules.
by repeatedly applying the

grammar rules to eac

n variable until there are no

variables left (just the terminals).

Examples of grammars

 Example: language {1, 00} consisting of two
strings 1 and 00
—S > 1] 00

e Variables: S. Terminals: 1 and 00.

 Example: strings over {0, 1} with all Os before
all 1s.

-S->085|851]|_

e Variables: S. Terminals: 0 and 1.

Examples of grammars

 Example: propositional formulas.
1. F—- FVF
2. F->FAF
3 F - aF
4. F > (F)
5 F - p|q|r|TRUE |FALSE

* Here, the only variableis F (it is a start variable),
and terminals are

VA, =, (), p,q,7, TRUE, FALSE

* To obtain (p V =q) A, first apply rule 2, then
rule 1, then rule 5 to get p, then rule 3, then rule
5to get g, thenrule 5 to get r.

Examples of grammars

 Example: arithmetic expressions

— EXPR - EXPR + EXPR | EXPR — EXPR | EXPR *
EXPR | EXPR /| EXPR | (EXPR) | NUMBER|-NUMBER

— NUMBER — ODIGITS |...|9DIGITS
— DIGITS » _| NUMBER

* Here, _ stands for empty string.
Variables: EXPR, NUMBER, DIGITS (S is starting).
Terminals: +,-,*%, /, 0,...,9.

o »”

* We used separate NUMBER to avoid multiple “-”".

* And separate DIGITS to have an empty string to
finish writing a number, but to avoid an empty
number.

Encoding order of precedence

e Easier to specify in which order to process
parts of the formula.

— Better grammar for arithmetic expressions (for
simplicity, with x,y,z instead of numbers):

1. EXPR - EXPR +TERM |EXPR —TERM|TERM

2. TERM - TERM * FACTOR | TERM /
FACTOR | FACTOR

3. FACTOR - (EXPR) |x|vy]|z

— Here, variables are EXPR, TERM and FACTOR
(with EXPR a starting variable).

— Now can encode precedence.

* And put parentheses more sensibly.

Parse trees.

Visualization of derivations:

parse trees.

1

2.

EXPR — EXPR +

TERM |EXPR — TERM| TERM

TERM - TERM *
FACTOR | TERM /
FACTOR | FACTOR

FACTOR = (EXPR) | x|y]|z

e String (x+vy)*z

EXPR
|

_— TERM

TERM l FACTOR
| |
FACTOR Z
/ / \

(EXPR)

/N
EXPR + TERM

\

TERM
I

FACTOR

\
FACTOR
/

Y

Parse trees.

* Visualization of derivations: parse trees.

— Simpler example:

- 05 |
* String 001

1]_

by

Puzzle

* Do the following two English sentences have
the same parse trees?

— Time flies like an arrow. -

-4

— Fruit flies like an apple.

Structural induction

e Let S © U be a recursively defined set, and
F(x) is a property (of x € U).

* Then
—if all x in the base of S have the property,

—and applying the recursion rules preserves
the property,

— then all elements in S have the property.

Multiples of 3

e Let’s define a set S of numbers as follows.
—Base: 3 5
— Recursion: if x,y €5, thenx+vyv €S

* Claim: all numbers in S are divisible by 3
—Thatis, Vx e S3dz e Nx = 3z

Multiples of 3

* Proof (by structural induction).
—Base case: 3 is divisible by 3 (y=1).
—Recursion: Let x,y € S. Then3z,u e Nx =3z A
y = 3U.
*Thenx +y =3z + 3u =3(z + u).
* Therefore, x + y is divisible by 3.
— As there are no other elements in S except for

those constructed from 3 by the recursion rule,
all elements in S are divisible by 3.

Binary trees %

* Rooted trees are trees with a special vertex
designated as a root.

— Rooted trees are binary if every vertex has at most
three edges: one going towards the root, and two
going away from the root. Full if every vertex has
either 2 or 0 edges going away from the root.

Binary trees %

* Recursive definition of full binary trees:

— Base: A single vertex @ is a full binary tree
with that vertex as a root.

— Recursion:

* Let T;, T, be full binary trees with roots ry, 1,
respectively. Let v be a new vertex.

* A new full binary tree with root v is formed by
connecting r; and r, to v.

— Restriction:

* Anything that cannot be constructed with this
rule from this base is not a full binary tree.

Height of a full binary tree %%%«

* The height of a rooted tree, h(T), is the maximum
number of edges to get from any vertex to the root.

— Height of a tree with a single vertex is O.

* Claim: Let n(7T") be the number of vertices in a full
binary tree T. Then n(7) < 2"+ 1

Height 2

Height of a full binary tree %

* Proof (by structural induction)

— Base case: a tree with a single vertex has n(7) = 1 and
h(T) =0. So2hDM+1 _1=-1>1

— Recursion: Suppose T was built by attaching Ty, T, to a new
root vertex v.

* Number of verticesin T isn(T) = n(7T,) + n(T,) + 1

* Every vertex in T; or T, now has one extra step to get to
the newrootinT. So h(T) =1 + max(h(T,), h(T,))

« By the induction hypothesis, n(7;) < 2"7)+1 _ 1 and
n(T,) < 2hT2)+1 _q

* n(T) =n(Ty) +n(T2) + 1
<1+ (Zh(T1)+1_1)+(2h(T2)+1 —1) Height 2
< 2. max(zh(Tl)'l'l’ 2h(T2)+1) —1
<?2. omax(h(T),h(T))+1 _ 1
—2. Zh(T) —1 = 2h(T)+1 -1
— Therefore, the number of vertices of any binary tree T is less
than 2"(M+1 _ 1

Height of a full binary tree %

* Claim: Let n(T) be the number of vertices in a
full binary tree T. Then n(7) < 2M7+1 1

e Alternatively, height of a binary tree is at least

log, n(T)
— If you have a recursive program that calls Height 2
itself twice (e.g, within if ... then ... else ...)

— Then if this code executes n times (maybe on
n different cases)

— Then the program runs in time at least
log, n, even when cases are checked in
parallel.

