Proving Theorems and Verifying Programs
Automatically

Applied Logic for Computer Science

UWO - December 3, 2017

I T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 1/ 36

Plan

© Introduction to SMT solving

© Using Yices for checking assertions

© Equality Reasoning

@ Theory Reasoning

Proving Theorems and Verifying Prograr UWO — December 3, 2017 2/ 36

Plan

© Introduction to SMT solving

Proving Theorems and Verifying Prograr UWO — December 3, 2017 3/ 36

A logical formula . ..

sorted(t,i,j) =

Vkl,kgil'nt.l'gkl A ki <k N ky <j= t[kl]gt[kz]

I T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 4/ 36

...as seen by an SMT solver

sorted(t,i,j) =

i<k ki < ko ky <j tlki] < tlko]
Dlnstantiation

|:| Logic reasoning

DTheory reasoning (here: Arithmetic)

I T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 5 / 36

Satisfiability Modulo Theories

SMT provers divide the problem in three parts

» The theory part: equality reasoning, arithmetic reasoning, ...

» The satisfiability part: deals with logical connectors
AN, V,=, ...

» The instantiation of quantified axioms

We will look at each of the three parts in turn

Applied Log er § Sl oving Theorems and Verifying Prograi UWO — December 3, 2017 6/ 36

The different parts of an SMT solver

(Arithmetic) (Equality)

> T >

Instantiation
V3

Sat-Sol ver

AV, = “

Congruence Closure]

[(Congruence)

Applied Log er § Sl oving Theorems and Verifying Prograi UWO — December 3, 2017 7 / 36

A more detailed example

Hypotheses

» Hi:a>0
> Hy:Vxy.x >y — max(x,y) = x

Goal
G : f(max(a,0)) = f(a)

Applied Lo e R P roving Theorems and Verifying Prograr UWO — December 3, 2017 8/ 36

Solved by an SMT Solver (1)

Negate the Goal
Hi AN Hb— G becomes H;i AN Hy A =G

Launch Sat-Solver

Instantiation
Specialize the lemma by applying it to a and 0 and replace —:
a>0—max(a,0)=a & a<0 V max(a,0)=a

[Proving Theorems and Verifying Prograi UWO — December 3, 2017 9 / 36

Applied Logic for Computer Science

Applied

Solved by an SMT Solver (2)

Split the disjunction

Assuming a < 0

Assuming —(a < 0)

We have obtained a contradiction in all cases, the negated formula
is unsatisfiable, that means the input formula is valid!

[S R e AL s e At el P roving Theorems and Verifying Prograt UWO — December 3, 2017

10 / 36

Plan

© Using Yices for checking assertions

Proving Theorems and Verifying Prograt UWO — December 3, 2017 11 / 36

Using yices interactively

moreno@gorgosaurus:~$ yices -i

Yices (version 1.0.40). Copyright SRI International.

GMP (version 5.1.1). Copyright Free Software Foundation, Inc.
Build date: Wed Dec 4 09:42:16 PST 2013

Type ‘(exit)’ with parentheses to exit.

Type ¢(help)’ with parentheses for help.

yices > (define f::(-> int int))

yices > (define i::int)
yices > (define j::int)
yices > (assert (= (- i 1) (+ j 2)))

yices > (assert (/= (£ (+ 1 3)) (£ (+ j 6))))
unsat

yices >

S T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 12 / 36

Using yices interactively

moreno@gorgosaurus: ~$ yices -i

Yices (version 1.0.40). Copyright SRI International.

GMP (version 5.1.1). Copyright Free Software Foundation, Inc.
Build date: Wed Dec 4 09:42:16 PST 2013

Type ‘(exit)’ with parentheses to exit.

Type ‘(help)’ with parentheses for help.

yices > (define x::int)

yices > (define y::int)
yices > (define z::int)
yices > (assert (= (+ (x 3 x) (x 6 y) z) 1))
yices > (assert (= z 2))

yices > (check)
unsat

S T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 13 / 36

Using yices interactively

Input file smt.ys

(define x::int)

(define y::int)

(define f::(-> int int))

(assert (/= (£ (+ x 2)) (£ (- y 1))
(assert (= x (-y 4)))

(check)

Call on the command line

moreno@gorgosaurus:~$ yices -e smt.ys

sat

(= x 0)
(=y 4)

(= 2) D
(= (£ 3) 5)

Applied Lo Co TSI TSIl P roving Theorems and Verifying Prograt UWO — December 3, 2017 14 / 36

Plan

© Equality Reasoning

Proving Theorems and Verifying Prograt UWO — December 3, 2017 15 / 36

Equality Reasoning

-
Theory 1 Union I_:ind
(Arithmetic) (Equality)

> T >

Instantiation
va

Sat-Solver

AV, = |

Congruence Closure
(Congruence)

Applied or Proving Theorems and Verifying Prograr UWO — December 3, 2017 16 / 36

Equality reasoning - The problem

Terms
to=c|f(ty, - ,tn)

Given
a list of equations t = t/

We want to know .
Does the equation t; = t, follow?

Using the axioms
Reflexivity t =t
Symmetry th=6Hh ===
Transitivity t1 =th AN th=t3 = t1 =13
Congruence t; = tp — f(t1) = f(t2)

Applied Log Jo ser § [SIProving Theorems and Verifying Progrart UWO — December 3, 2017 17 / 36

Example

Given
> () = F(£(2)
> f°(a) = f(f(f(f(f(a))) = a

We want to prove

f(a)=a
Proof
1. f3(a) =f3(a) (Congruence)
2. f2(a) =1f3(a) = a (Transitivity, Symmetry)
3. f3(a) = f(f%(a)) = f(a) (Congruence)
4. f(a)=a (Transitivity of (2) and (3))

and Verifying Progrart UWO — December 3, 2017

18 / 36

Disjoint Sets

» Goal: deal with the first three axioms efficiently
» |dea: put all terms into disjoint sets
» When two terms are in the same set, they are equal

» Initial state: every term is in his own set:

@ & ® ® 6

> After treating t; = t3 and t, = t5:

@5 ko ®

> After treating t; = tp:

- ? L .
» Deciding t = t’ amounts to checking if ¢, ¢’ are in the same set

Applied L for Computer Sl oving Theorems and Verifying Prograi UWO — December 3, 2017 19 / 36

Union-Find (1975)

» Represent each set by a tree with upward pointers:

» The root is the representative

» Operation find to find the representative of any term: just
follow the arrows

» Operation union to treat an equality: simply point one root to
the other

'+"

Applied Logic for Computer Pl -oving Theorems and Verifying Prograi UWO — December 3, 2017 20 / 36

Two important optimizations

» Keep trees small: let point root of smaller tree to root of
larger tree

» Path compression: “flatten” trees, each time we are searching
for a root r starting from t, let t point directly to r afterwards

» Result: Algorithm is quasi-linear (optimal)
» Incrementality: we can add equations one by one, interleave

. . . ?
equations t;] =t with queries t; = tp

Inequalities t; # t,

» Simply maintain the information that two sets of terms must
be different

» Merging sets for which an inequality was registered leads to an
inconsistency

Applied Logic for Computer Pl -oving Theorems and Verifying Prograi UWO — December 3, 2017 21 / 36

Congruence Closure (1980)
» Deal with the fourth axiom: Congruence
Vxy.x =y — f(x) = f(y)

for any function symbol f
> Solution: represent a term by a directed acyclic graph (DAG)
with sharing. Example: f(f(a, b), b)

f'

/
if\
a b
» Add an equivalence relation to this graph (using union-find):

f
)

' lf\‘
% b

represents f(f(a, b), b) = a

r Computer [SIProving Theorems and Verifying Progrart UWO — December 3, 2017

22 / 36

Finding new equalities

» Build a reverse dictionary mapping nodes to their fathers:

a — f(a,b),g(a)
b — f(a,b)

» Two new operations: find and merge.
merge(ty,ty) =
union(ty,ts);
F1,Fy = fathers(ti), fathers(ts);
for each x in F1, y in Fy do
if congruent(x,y) then merge(x,y);
done

Applied L for Computer Sl oving Theorems and Verifying Prograi UWO — December 3, 2017

23 / 36

Congruence Closure — Example

Given
» f2(a) =f(f(a))=a
> 3(a) = F(f(f(f(f(a))))) = a

(Ml roving Theorems and Verifying Prograt UWO — December 3, 2017 24 / 36

r Computer

Congruence Closure — Example

Given
» f2(a) =f(f(a))=a
> 3(a) = F(f(f(f(f(a))))) = a

Proving Theorems and Verifying Prograit UWO — December 3, 2017

r Computer

25 / 36

Congruence Closure — Example

Given
- £2(a) = F(f(2) = 2
» £2(a) = f(f(f(f(f(a))))) =a

Proving Theorems and Verifying Prograit UWO — December 3, 2017

r Computer

26 / 36

Congruence Closure — Example

Given
- £2(a) = F(f(2) = 2
» £2(a) = f(f(f(f(f(a))))) =a

[SIProving Theorems and Verifying Progrart UWO — December 3, 2017

r Computer

27 / 36

Congruence Closure — Example

Given
- £2(a) = F(f(2) = 2
» £2(a) = f(f(f(f(f(a))))) =a

[SIProving Theorems and Verifying Progrart UWO — December 3, 2017

r Computer

28 / 36

Plan

@ Theory Reasoning

Proving Theorems and Verifying Prograt UWO — December 3, 2017 29 / 36

Theory Reasoning (Arithmetic)

Applied Log

'SR

Theory 1
(Arithmetic)

~—

Union-Find
(Equality)

Sat-Solver

“ ! TNV, >,

<~

Instantiation

V3

Congruence Closure
(Congruence)

[SIProving Theorems and Verifying Progrart UWO — December 3, 2017

30 / 36

Arithmetic reasoning

Arithmetic

» Interprets the function symbols +, —, X, =+, and the
arithmetic constants

» But also the relation symbols <, <, >, >

There are a few algorithms to deal with Linear Arithmetic

» Gauss Elimination (Equality only)
» Fourier-Motzkin

» Simplex Algorithm

We will look more closely at these methods

Applied L for Computer Sl oving Theorems and Verifying Prograi UWO — December 3, 2017 31 / 36

Gauss Elimination

Goal: deal with equalities in linear arithmetics
. . k
» Transform term into sums of monomials: >/ cit;

» When treating an equality between such polynomes

k k
Z Citi = Z d;s;
i J

isolate a monomial, say, t;, and build the equation

kg k¢
t1 = g _,Si - g _’tl
1 - C1
J i#1

Proving Theorems and Verifying Prograit UWO — December 3, 2017

32 / 36

Fourier-Motzkin Algorithm (1)

Goal: deal with inequalities in linear arithmetics
basic notions

» An inequality C in canonical form:
n
daxi<a a€Q
i=1
» Note aoC the multiplication of an inequation with a coefficient

a:
n
E aajx;i < aag
i=1

» Note C; + G, the addition of two inequations :

Z(ai + bi)xi < ag + by
im1

Applied L for Computer Sl oving Theorems and Verifying Prograi UWO — December 3, 2017 33 / 36

Fourier-Motzkin Algorithm (2)

Set | = {C; - -- C,} the starting set of inequations. Each step of the
algorithm will eliminate a variable from the set of the equations.

» Let /T (/™) be the set of equations where x appears with
positive (negative) coefficient
» Compute

h= |J BC+aD axeC,—pxeD
Cel=,Del*

> Let Iy the set of inequations in /| without x

» Replace / par I’ = lp U Iy

» In particular, if x appears only with coefficients of the same
sign in [, suppress all inequations where x appears

» When /| does not contain variables any more, either we have
satisfiable inequalities (like 1 < 2) or an inconsistency

Applied Logic for Computer Pl -oving Theorems and Verifying Prograi UWO — December 3, 2017 34 / 36

Fourier-Motzkin Algorithm (3)

v

Complexity: double exponential

» Not incremental

v

Still behaves well in practice

>

Can be easily extended to deduce equations between terms

Proving Theorems and Verifying Prograit UWO — December 3, 2017 35 / 36

References

@ http://yices.csl.sri.com/old/download-yicesl-full.html (The
yices software)

@ http:

//www.cs.cornell.edu/gomes/papers/SATSolvers-KR-Handbook . pdf

SAT solvers handbook

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

(SAT)

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

(SMT)

https://en.wikipedia.org/wiki/DPLL_algorithm (DPLL)

http:

//0a.io/boolean-satisfiability-problem-or-sat-in-5-minutes/

This lecture follows partly a presentation by Hans Zantema (Eindhoven University
of Technology), another by Luciano Serafini (Fondazione Bruno Kessler, Trento)
and another by David L. Dill (Stanford University).

S T S Sl P roving Theorems and Verifying Prograr UWO — December 3, 2017 36 / 36

http://yices.csl.sri.com/old/download-yices1-full.html
http://www.cs.cornell.edu/gomes/papers/SATSolvers-KR-Handbook.pdf
http://www.cs.cornell.edu/gomes/papers/SATSolvers-KR-Handbook.pdf
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/DPLL_algorithm
http://0a.io/boolean-satisfiability-problem-or-sat-in-5-minutes/
http://0a.io/boolean-satisfiability-problem-or-sat-in-5-minutes/

	Introduction to SMT solving
	Using Yices for checking assertions
	Equality Reasoning
	Theory Reasoning

