CS2209A 2017 Applied Logic for Computer Science

Lecture 3 Propositional Logic: Equivalence and identities

Instructor: Yu Zhen Xie

Revisit: truth table for $\mathbf{p} \rightarrow \mathbf{q}$

р	q	if p then q
True	True	True
True	False	False
<mark>False</mark>	<mark>True</mark>	True
<mark>False</mark>	<mark>False</mark>	True

Let

- p be "It is raining"
- q be "It is cloudy"
- "If p then q"
- "p implies q"

- The implication is only false if its left hand side (i.e., p) is true while the right hand side (q) is false.
- That is, *"if it is raining then it is cloudy"* is **false** only when it is raining out of blue sky. If it is not raining, this propositional formula is true no matter whether it is cloudy or not.

Logic with fun

- "If pigs can fly, then 2 + 2 = 4."
 True or False?
- "If pigs can fly, then 2 + 2 = 5."
 True or False?

Truth tables: equivalence

Α	В	not A	if A then B	(not A) or B
True	True	False	<mark>True</mark>	True
True	False	False	<mark>False</mark>	<mark>False</mark>
False	True	True	<mark>True</mark>	<mark>True</mark>
False	False	True	<mark>True</mark>	<mark>True</mark>

- Now, $\neg A \lor B$ is the same as $A \to B$
 - So $\neg A \lor B$ and $A \rightarrow B$ are equivalent.
- "if it rains it must be cloudy" is equivalent to say "it can't happen that both it's not cloudy and raining".

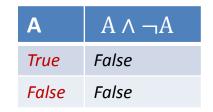
Special types of sentences

- A sentence that has a satisfying assignment is **satisfiable**.
 - Some row in the truth table ends with True.
 - Example: $\mathbf{B} \rightarrow \mathbf{A}$

• Sentence is a contradiction:

- All assignments are falsifying.
- All rows end with False.
- Example: $A \wedge \neg A$
- Sentence is a **tautology**:
 - All assignments are satisfying
 - All rows end with True.
 - Example: $\mathbf{B} \rightarrow \mathbf{A} \lor \mathbf{B}$

Α	В	$B \rightarrow A$
True	True	True
True	False	True
False	True	False
False	False	True



Α	В	A ∨ B	$\mathbf{B} \to \mathbf{A} \lor \boldsymbol{B}$
True	True	True	True
True	False	True	True
False	True	True	True
False	False	False	True

Logical equivalence

- Two formulas F and G are logically equivalent
 (F ⇔ G or F ≡ G) if they have the same value for every row in the truth table on their variables.
 - $-A \wedge \neg A \equiv False$ (same as saying it is a contradiction)
 - $-(\neg A \lor B) \equiv (A \to B)$
 - $-(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$
 - \leftrightarrow is sometimes called the "bi-conditional"
 - ↔ often pronounced as "if and only if", or "iff"
- Useful fact: proving that F ≡ G can be done by proving that F ↔ G is a tautology

Double negation

• Negation cancels negation

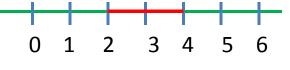
- $\neg \neg A \equiv A$
- "I do not disagree with you" = "I agree with you"
- For a human brain, harder to parse a sentence with multiple negations:
 - Alice says: "I refuse to vote against repealing the ban on smoking in public."
 - Does Alice like smoking in public or hate it?

De Morgan's Laws

- Simplifying negated formulas
 - For AND: $\neg (A \land B)$ is equivalent to $(\neg A \lor \neg B)$
 - For **OR**: \neg ($A \lor B$) \equiv ($\neg A \land \neg B$)
- Example:
 - $-\neg (\neg A \lor B) \text{ is } \neg \neg A \land \neg B, \text{ same as } A \land \neg B$ - So, since $(A \to B)$ is equivalent to $(\neg A \lor B),$ $\neg (A \to B)$ is equivalent to $A \land \neg B$
 - Can be proved simply by truth tables

De Morgan's laws: examples

- Let A be "it's sunny" and B "it's cold".
 - "It's sunny and cold today"! -- No, it's not!
 - That could mean
 - No, it's not sunny.
 - No, it's not cold.
 - No, it's neither sunny nor cold.
 - In all of these scenarios, "It's either not sunny or not cold" is true.
- Let A be "x < 2", B be "x > 4".
 - "Either x < 2 or x > 4" No, it is not!
 - Then $2 \le x \le 4$



More examples

- Let A be "I play" and B "I win".
 - $A \rightarrow B$: "If I play, then I win"
 - Equivalent to $\neg A \lor B$: "Either I do not play, or I win".
- Negation: $\neg(A \rightarrow B)$: "It is not so that if I play then I win".
 - By de Morgan's law: $\neg(\neg A \lor B) \equiv (\neg \neg A \land \neg B)$
 - By double negation: $(\neg \neg A \land \neg B) \equiv (A \land \neg B)$
 - So negation of "If I play then I win" is "I play and I don't win".

More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$

 $A \land \neg A \equiv False$

- $True \lor A \equiv True.$
- False $\lor A \equiv A$.
- $\operatorname{AV} A \equiv A \wedge A \equiv A$

 $True \land A \equiv A$

- $False \land A \equiv False$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic

 $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Logical identities

Name	∧-version	∨-version
Double negation	$\neg \neg p \iff p$	
DeMorgan's laws	$\neg (p \land q) \iff (\neg p \lor \neg q)$	$\neg (p \lor q) \iff (\neg p \land \neg q)$
Commutativity	$(p \wedge q) \iff (q \wedge p)$	$(p \lor q) \iff (q \lor p)$
Associativity	$(p \land (q \land r)) \iff ((p \land q) \land r)$	$(p \lor (q \lor r)) \iff ((p \lor q) \lor r)$
Distributivity	$p \land (q \lor r) \iff (p \land q) \lor (p \land r)$	$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
Identity	$p \wedge T \iff p$	$p \lor F \iff p$
	$p \wedge F \iff F$	$p \lor T \iff T$
Idempotence	$p \wedge p \iff p$	$p \lor p \iff p$
Absorption	$p \land (p \lor q) \iff p$	$p \lor (p \land q) \iff p$

Longer example of negation

- Start with the outermost connective and keep applying de Morgan's laws and double negation. Stop when all negations are on variables.
- $\neg ((A \lor \neg B) \rightarrow (\neg A \land C))$
 - $(A \lor \neg B) \land \neg (\neg A \land C)$ (negating \rightarrow)
 - $(A \lor \neg B) \land (\neg \neg A \lor \neg C)$ (de Morgan)
 - $(A \lor \neg B) \land (A \lor \neg C)$ (removing $\neg \neg$)
- Can now simplify further, if we want to.
 - $A \lor (\neg B \land \neg C)$ (taking A outside the parentheses)

Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - By $(\mathbf{F} \to G) \equiv (\neg F \lor G)$
 - equivalent to $\neg(A \land C) \lor (\neg B \lor C)$
 - De Morgan's law
 - $\neg (A \land C)$ is equivalent to $(\neg A \lor \neg C)$
 - So the whole formula becomes
 - $\neg A \lor \neg C \lor \neg B \lor C$
 - But $\neg C \lor C$ is always **true**!
 - So the whole formula is a tautology.