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@ Number theory is the part of mathematics devoted to the
study of the integers and their properties.

® The key ideas in number theory include divisibility and the
primality of integers.
© Representations of integers, including binary and hexadecimal

representations, are part of number theory and essential to
computer science.

® Number theory has long been studied because of the beauty
of its ideas, its accessibility, and its wealth of open questions.

©® We will use many ideas developed in Chapter 1 about proof
methods and proof strategies in our exploration of number
theory.

® Mathematicians have long considered number theory to be
pure mathematics, but it has important applications to
computer science and cryptography studied in the second part
of this Chapter
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Divisibility

Definition
If a and b are integers with a # 0, then we say that a divides b if
there exists an integer ¢ such that b = ac holds.

@ When a divides b we say that a is a factor or a divisor of b
and we say that b is a multiple of a.

@® The notation a | b denotes the fact that a divides b.
® If a| b, then § is an integer.
O If a does not divide b, then we write a + b.

Example
Determine whether 3 | 7 holds and whether 3 | 12 holds.

Solution: 3 +7 but 3|12
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Properties of divisibility
Theorem
Let a, b, and c be integers, where a + 0.
® Ifalbanda|c, thenal|(b+c);
@ Ifa| b, then a| b c for all integers c ;
® Ifa|bandb|c, then a|c.

Proof.

@ We prove the first property. Suppose a| b and a| c, then it
follows that there are integers s and t with b = as and c = at.
Hence, b+ c=as+at=a(s+t). Hence, a| (b+c).

@® Parts (2) & (3) can be proven similarly. Try it as an exercise.

Corollary

If a,b, and c are integers, where a + 0, such that a| b and a| c,
then a| mb + nc for any integers m and n. (Proof left as exercise)
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If a is an integer and d is a positive integer, then there are unique
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The division a=d-(adiv d)+(a mod d)
Theorem (“Division Algorithm”)

If a is an integer and d is a positive integer, then there are unique
integers q and r with 0 < r < d, such that a=dq+ r (proved in the

tutorial. ]
@ a is called the dividend. Definitions div and mod:
® d is called the divisor. O qg=adiv d
©® q is called the quotient. ® r=amod d
O r is called the remainder. We have: a div d = [§J
Example

@ Quotient and remainder when 101 is divided by 117
We have 101divll =9 and 101mod 11 = 2.

® Quotient and remainder when 11 is divided by 37
We have 11div3 =3 and 11mod3 = 2.

©® Quotient and remainder when —11 is divided by 37
We have -11div3=-4 and -11mod3 =1.
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Congruence relation

Definition
If a and b are integers and m is a positive integer, then a is
congruent to b modulo m if m divides a — b.

@ The notations a= b (mod m) and a= b mod m say that
a is congruent to b modulo m.
® We say that a= b mod m is a congruence and that
m is its modulus.
® Two integers are congruent mod m if and only if they have the
same remainder when divided by m. (to be proved later)
O If a is not congruent to b modulo m, then we write
a#b mod m.

Example

@ Determine whether 17 is congruent to 5 modulo 6.
17=5 mod 6 because 6 divides 17 -5 =12.

® Determine whether 24 and 14 are congruent modulo 6.
24 #£14 mod 6 since 24 — 14 = 10 is not divisible by 6.
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More on congruences

Theorem

Let m be a positive integer. The integers a and b are congruent
modulo m if and only if there is an integer k such that a= b+ km.

Proof.
® If a= b mod m holds, then (by the definition of congruence)
we have: m|a-b.

® Hence, there is an integer k such that a— b = km holds and
equivalently a = b+ km.

© Conversely, if there is an integer k such that a= b+ km, then
we have: km=a-b.

@ Hence, we have m|a—-b. Thus, a= b mod m holds.
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Relationship between the mod m and mod m notations

The use of “mod” in a=b mod m is different from its use in
a=b mod m.

@ a=b mod m denotes a relation in the Cartesian product Z x Z
® a=b mod m denotes a function from Z x Z to Z.
The relationship between the two notions is stated below:
Theorem
Let a and b be integers, and let m be a positive integer. Then

a=b mod m ifandonlyif amod m = bmod m (See
Tutorial.)
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Theorem

Let a, b, c,d be integers. Let m be a positive integer. If
a=b modm and c=d mod m both hold, then we have:
a+c=b+d mod m and ac=bd mod m.

Proof.

@ Since we have a=b mod m and c=d mod m, there exist
integers s and t with b=a+sm and d =c+ tm.
® Therefore, we have:
®b+d=(a+sm)+(c+tm)=(a+c)+m(s+t) and
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Congruences of sums and products

Theorem

Let a, b, c,d be integers. Let m be a positive integer. If
a=b modm and c=d mod m both hold, then we have:
a+c=b+d mod m and ac=bd mod m.

Proof.

@ Since we have a=b mod m and c=d mod m, there exist
integers s and t with b=a+sm and d =c+ tm.
® Therefore, we have:
®b+d=(a+sm)+(c+tm)=(a+c)+m(s+t) and
® bd =(a+sm)(c+tm)=ac+ m(at+cs+stm).
©® Hence, we have:

® a+tc=b+d mod m, and
® ac=bd mod m.

Because 7=2 mod 5 and 11 =1 mod 5, it follows that:
18=7+11=2+1=3 modband 77=7-11=2-1= mod b.
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Algebraic manipulation of congruences

@ Multiplying both sides of a valid congruence by an integer
preserves the congruence.
If a=b mod m holds, then c-a=c-b mod m, where c is
any integer, holds from the previous slide with d = c.

® Adding an integer to both sides of a valid congruence
preserves the congruence.
If a=b mod m holds, then c+a=c+ b mod m, where c is
any integer, holds from the previous slide with d = c.

® NOTE : dividing a congruence by an integer may not produce
a valid congruence.
® The congruence 14 =8 mod 6 holds.
@ Dividing both sides by 2 gives an invalid congruence since
Y =7and &=4but 744 mod6.
® Later, we will give conditions for this division to yield a valid
congruence.
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following properties:
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Computing the mod m function of products and sums

Given integers a, b, c,d and a a positive integer m, recall the
following properties:

@ az=bmodm < amodm = bmod m
® (a=b modm)A(c=d modm) -
(a+c=b+d modm)A(ac=bd mod m)
From there, we deduce the following properties:
® (a+b)modm = ((amod m)+( bmod m)) mod m,
® (ab)modm = ((amodm)x( bmodm)) mod m.

See the tutorial for a proof.
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Arithmetic modulo m

Definition
Let Z, ={0,1,...,m— 1} be the set of non-negative integers less
than m. Assume a, b € Z,.

@ The operation +, is defined as a+,, b=a+ b mod m . This
is the addition modulo m.

® The operation -, is defined as a-,, b=a-b mod m . This is
the multiplication modulo m.

©® Using these operations is said to be doing arithmetic modulo
m.

Example

@ Using the definitions above, find 7 +11 9
® Solution: 7+119=(7+9) mod 11 =16 mod 11 =5
® Using the definitions above, find 711 9.



Arithmetic modulo m

Definition
Let Z, ={0,1,...,m— 1} be the set of non-negative integers less
than m. Assume a, b € Z,.

@ The operation +, is defined as a+,, b=a+ b mod m . This
is the addition modulo m.

® The operation -, is defined as a-,, b=a-b mod m . This is
the multiplication modulo m.

© Using these operations is said to be doing arithmetic modulo
m.

Example

@ Using the definitions above, find 7 +11 9

® Solution: 7+119=(7+9) mod 11 =16 mod 11 =5
® Using the definitions above, find 711 9.

® Solution: 7-119=(7-9) mod 11 =63 mod 11=38
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication:
@ Closure: If a and b belong to Z,,, then a+,, band a-p, b
belong to Z,,.
® Associativity: If a, b, and ¢ belong to Z,,, then
(a+mb)+mc=a+m(b+mc)and (a-mb) mc=a-m(b-mc).
©® Commutativity: If a and b belong to Z,, then a+, b=b+n a
and a-;;b=b-, a.
O Identity Elements: The elements 0 and 1 are identity elements
for addition and multiplication modulo m, respectively.
® If a belongs to Z,, then a+,,0=aand a-,1 = a.

continued —
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©® Additive inverses: If a # 0 belongs to Z,, then m — a is the
additive inverse of a modulo m and 0 is its own additive
inverse.
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Multiplicative inverses have not been included since they do
not always exist. For example, there is no multiplicative
inverse of 2 modulo 6, i.e.

2-ma=+1forany aeZg



Arithmetic modulo m

©® Additive inverses: If a # 0 belongs to Z,, then m — a is the
additive inverse of a modulo m and 0 is its own additive
inverse.

a+m(m-2a)=0and0+,0=0

® Distributivity: If a, b, and ¢ belong to Z,, then
am(b+mc)=(amb)+m(a-mc) and
(a+mb) mec=(amc)+m(bmc)

Multiplicative inverses have not been included since they do
not always exist. For example, there is no multiplicative
inverse of 2 modulo 6, i.e.

2-ma=+1forany aeZg

(optional) Using the terminology of abstract algebra, Z,, with
+m is a commutative group and Z,, with +,, and -, is a
commutative ring.
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Representations of integers

@ In the modern world, we use decimal, or base 10, to represent
integers. For example when we write 965, we mean
9-10%+6-10' +5-10°.

® We can represent numbers using any base b, where b is a
positive integer greater than 1.

© The bases b =2 (binary), b =8 (octal), and b =16
(hexadecimal) are important for computing and
communications

O The ancient Mayas used base 20 and the ancient Babylonians
used base 60.
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Base b representations

@ We can use any positive integer b greater than 1 as a base,
because of this theorem:

Theorem

® Let b be a positive integer greater than 1.

® Then if n is a positive integer, it can be expressed uniquely in the
form:

n=agb+a_1b¥ '+ +ab+a

where k is a non-negative integer, such that ag, a1, ... ayx are
non-negative integers less than b, and ay + 0.

® Theaj, forj=0,...,k are called the base-b digits of the
representation.

® We will prove this using mathematical induction in Chapter 5.

® The representation of n given in the theorem is called the base
b expansion of n and is denoted by (akxak_1...a130)p-

© We usually omit the subscript 10 for base 10 expansions.
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Binary expansions

Most computers represent integers and do arithmetic with binary
(base 2) expansions of integers. In these expansions, the only
digits used are 0 and 1.

Example
@ What is the decimal expansion of the integer that has
(10101 1111), as its binary expansion?

Solution: (10101 1111), =

1-2840.2741-2640-254+1-24+1.2341.2241.21+1.20 = 351.
® What is the decimal expansion of the integer that has

(11011)7 as its binary expansion?

Solution: (11011),=1-2%+1-23+0-22+1-21 +1.20=27.
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Octal expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example

@ What is the decimal expansion of the number with octal
expansion (7016)g ?

Solution: 7-83+0-82+1-81+6-8%=3598



Octal expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example
@ What is the decimal expansion of the number with octal
expansion (7016)g ?
Solution: 7-8%+0-82+1-8'+6-8%=3598

® What is the decimal expansion of the number with octal
expansion (111)g ?



Octal expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example

@ What is the decimal expansion of the number with octal
expansion (7016)g ?
Solution: 7-8%+0-82+1-8'+6-8%=3598

® What is the decimal expansion of the number with octal
expansion (111)g ?
Solution: 1-82+1-81+1-8°=64+8+1=73
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represent the decimal numbers 10 through 15.

Example
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system provides only 10. So letters are used for the additional
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Hexadecimal expansions

The hexadecimal expansion needs 16 digits, but our decimal
system provides only 10. So letters are used for the additional
symbols. The hexadecimal system uses the digits
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F
represent the decimal numbers 10 through 15.

Example

@ What is the decimal expansion of the number with
hexadecimal expansion (2AE0B)16 7

Solution: 2-16*+10-163+14-16%2+0-16' +11-16° = 175627

® What is the decimal expansion of the number with
hexadecimal expansion (1E5)16 ?



Hexadecimal expansions

The hexadecimal expansion needs 16 digits, but our decimal
system provides only 10. So letters are used for the additional
symbols. The hexadecimal system uses the digits
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F
represent the decimal numbers 10 through 15.

Example

@ What is the decimal expansion of the number with
hexadecimal expansion (2AE0B)16 7

Solution: 2-16*+10-163+14-16%2+0-16' +11-16° = 175627

® What is the decimal expansion of the number with
hexadecimal expansion (1E5)16 ?

Solution: 1-162+14-161 +5-16° = 256 + 224 + 5 = 485
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To construct the base b expansion of an integer n (given in base
10):
@ Divide n by b to obtain the quotient gg and remainder ag:
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expansion of n.
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Base conversion
To construct the base b expansion of an integer n (given in base
10):
@ Divide n by b to obtain the quotient gg and remainder ag:
n=bqgy+ap, 0<ay<b
® The remainder, ag, is the rightmost digit in the base b
expansion of n.
® If go =0, then n=(ap)p.
O If 0< qo < b, then n=(qoao)p.
® If b < qo, then divide go by b to obtain the quotient g1 and
remainder ay:
go=bgi+a1, 0<ai<b
® The remainder, aj, is the second digit from the right in the
base b expansion of n.
@ Continuing in this manner (by successively dividing the
quotients by b) we obtain the additional base b digits as
remainders. The process terminates when a quotient is 0.

continued —



Algorithm: constructing base b expansions

Algorithm 1 base_b_expansion(n, b)

Require: n,bcZ", b>1
Ensure: base b expansion of n: (ax_1--a130)5.
g<n
k<0
while g # 0 do
ax < q mod b
g< qgdiv b
k< k+1
end while
return (ax_1---a13p)

NG AWy
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Algorithm 1 base_b_expansion(n, b)

Require: n,bcZ", b>1
Ensure: base b expansion of n: (ax_1--a130)5.
g<n
k<0
while g # 0 do
ax < q mod b
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end while
return (ax_1---a13p)

NG AWy

@ g represents the quotient obtained by successive divisions by
b, starting with g = n.
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Ensure: base b expansion of n: (ax_1--a130)5.
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while g # 0 do
ax < q mod b
g< qgdiv b
k< k+1
end while
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NG AWy

@ g represents the quotient obtained by successive divisions by
b, starting with g = n.

® The digits in the base b expansion are the remainders of the
division given by ¢ mod b.



Algorithm: constructing base b expansions

Algorithm 1 base_b_expansion(n, b)

Require: n,bcZ", b>1
Ensure: base b expansion of n: (ax_1--a130)5.
g<n
k<0
while g # 0 do
ax < q mod b
g< qgdiv b
k< k+1
end while
return (ax_1---a13p)

NG AWy

@ g represents the quotient obtained by successive divisions by
b, starting with g = n.

® The digits in the base b expansion are the remainders of the
division given by ¢ mod b.

©® The algorithm terminates when g = 0 is reached.
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Base conversion

Example

Find the octal expansion of (12345)1¢
Solution: Successively dividing by 8 gives:

@ 12345=8-1543+1
® 1543=8-192+7
©® 192=8-24+0



Base conversion

Example

Find the octal expansion of (12345)19
Solution: Successively dividing by 8 gives:

@ 12345=8-1543+1
® 1543=8-192+7
©® 192=8-24+0

0 24=8-3+0



Base conversion

Example

Find the octal expansion of (12345)19
Solution: Successively dividing by 8 gives:

@ 12345=8-1543+1
® 1543=8-192+7
©® 192=8-24+0

0 24=8-3+0
®3=8-0+3



Base conversion

Example

Find the octal expansion of (12345)1¢
Solution: Successively dividing by 8 gives:

@ 12345=8-1543+1
D 1543=8-192+7
©® 192=8-24+0
0 24=8-3+0
®3=8-0+3
The remainders are the digits from right to left yielding (30071)s.



Comparison of the hexadecimal, octal, and binary

representations
TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.
Decimal 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal | 0 | 1 | 2 3 4 5 6 7 8 9 A B C D E F
Octal 01 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Binary O 1|10 11| 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

Initial Os are not shown




Comparison of the hexadecimal, octal, and binary

representations
TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.
Decimal 011 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal | 0 | 1 | 2 3 4 5 6 7 8 9 A B C D E F
Octal 01 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Binary O 1|10 11| 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

@ Each octal digit corresponds to a block of 3 binary digits.

Initial Os are not shown




Comparison of the hexadecimal, octal, and binary
representations

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 011 2 3 4 5 6 7 8 9 10 11 12 13 14
Hexadecimal | 0 | 1 | 2 3 4 5 6 7 8 9 A B C D E
Octal 01 2 3 4 5 6 7 10 11 12 13 14 15 16
Binary O 1|10 11 100 | 101 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110

Initial Os are not shown

@ Each octal digit corresponds to a block of 3 binary digits.

® Each hexadecimal digit corresponds to a block of 4 binary
digits.



Comparison of the hexadecimal, octal, and binary
representations

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal | 0 | 1 | 2 3 4 5 6 7 8 9 A B C D E F
Octal 01 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Binary 01|10 11 100 | 101 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 1110 | 1111

Initial Os are not shown

@ Each octal digit corresponds to a block of 3 binary digits.

® Each hexadecimal digit corresponds to a block of 4 binary
digits.

® So, conversion between binary, octal, and hexadecimal is easy.




Conversion between the binary, octal, and hexadecimal
expansions

Example

® Find the octal expansion of (11111010111100)5.



Conversion between the binary, octal, and hexadecimal
expansions

Example

@ Find the octal expansion of (11111010111100),.
Solution: To convert to octal, we group the digits into blocks
of three (011 111 010 111 100)5, adding initial Os as needed.
The blocks from left to right correspond to the digits 3,7,2,7,
and 4. Hence, the solution is (37274)s.



Conversion between the binary, octal, and hexadecimal
expansions

Example

® Find the octal expansion of (11111010111100)5.

Solution: To convert to octal, we group the digits into blocks
of three (011 111 010 111 100)5, adding initial Os as needed.
The blocks from left to right correspond to the digits 3,7,2,7,
and 4. Hence, the solution is (37274)s.

® Find the hexadecimal expansions of (11111010111100),.



Conversion between the binary, octal, and hexadecimal
expansions

Example

® Find the octal expansion of (11111010111100)5.
Solution: To convert to octal, we group the digits into blocks
of three (011 111 010 111 100)5, adding initial Os as needed.
The blocks from left to right correspond to the digits 3,7,2,7,
and 4. Hence, the solution is (37274)s.

® Find the hexadecimal expansions of (11111010111100),.
Solution: To convert to hexadecimal, we group the digits into
blocks of four (0011 1110 1011 1100),, adding initial Os as
needed. The blocks from left to right correspond to the digits
3,E,B, and C. Hence, the solution is (3EBC)16.
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2. Integer Representations and Algorithms

2.3 Binary Addition and Multiplication



Binary addition of integers

Algorithms for performing operations with integers using their
binary expansions are important as computer chips work with
binary numbers. Each digit is called a bit.



Binary addition of integers

Algorithms for performing operations with integers using their
binary expansions are important as computer chips work with
binary numbers. Each digit is called a bit.

Algorithm 2 add (a, b)

Require: a,b € Z*, {the binary expansions of a and b are (ap-1,an-2,...,30)2 and
(bn=1, bn-2, ..., bo)2, respectively}

Ensure: (sp,...,s1,5) , the addition of a and b. {the binary expansion of the sum is
(snasn—17~~'750)2 } . i .

1: Cprev < 0 > represents carry from the previous bit addition

2: for j«< 0,n—1do

) (aj+bj+cpe) . ..

3: ¢« |5 > quotient (carry for the next digit of the sum)

4: Sj < aj + bj + Cprev — 2C > remainder (j-th digit of the sum)

5: Cprev < C a+by=c-2+sy

6: end for ai+bi+c=c-2+s

7. sp<cC :

8: return (sp,...,s1,50) aj+bj+c_1=¢-2+s;




Binary addition of integers

Algorithms for performing operations with integers using their
binary expansions are important as computer chips work with
binary numbers. Each digit is called a bit.

Algorithm 2 add (a, b)

Require: a,b € Z*, {the binary expansions of a and b are (ap-1,an-2,...,30)2 and
(bn=1, bn-2, ..., bo)2, respectively}

Ensure: (sp,...,s1,5) , the addition of a and b. {the binary expansion of the sum is
(sna Sp—1,--+, 50)2 }

1: Cprev < 0 > represents carry from the previous bit addition

2: for j«< 0,n—1do

) (aj+bj+cpe) . ..

3: ¢« |5 > quotient (carry for the next digit of the sum)

4: Sj < aj + bj + Cprev — 2C > remainder (j-th digit of the sum)

5: Cprev < C a+by=c-2+sy

6: end for ai+bi+c=c-2+s

7. sp<cC :

8: return (sp,...,s1,50) aj+bj+c_1=¢-2+s;

The number of additions of bits used by the algorithm to add two n-bit integers is O ( n).



Binary multiplication of integers
Algorithm for computing the product of two n bit integers.
ab=a-( b2* Fho 2w b2

= abkzk + abk,12k’1 +... +ab2
shift by kK shift by k-1 shift by 1

+b0

+ ab[))
no shift



Binary multiplication of integers

Algorithm for computing the product of two n bit integers.

ab=a-( b2* Fho 2w b2 + by
= abk2k + abk,12k71 +... +ab2 + abg)
shift by kK shift by k-1 shift by 1 no shift

Algorithm 3 multiply (a, b)

Require: a,b ¢ Z%, {the binary expansions of a and b are (ap-1,ap—2,...,a)2 and
(bn-1, bp-2, ..., by)2, respectively}

Ensure: p, the value of ab.

1: for j < 0,n—1do

2:  if bj=1then

3: i« a > shifted j places
4. else

b: <0 > { c,c1,...,Cph1 are the partial products}
6: end if

7: end for 110 a
8: p<o0 x101 b
9: for j < 0,n—1do

10: p—p+g 110 aby
11: end for 000 ab;

12: return p {p is the value of ab} 110 ab,




Binary multiplication of integers

Algorithm for computing the product of two n bit integers.

ab=a-( b2* Fho 2w b2 + by
= abk2k + abk,12k71 +... +ab2 + abg)
shift by kK shift by k-1 shift by 1 no shift

Algorithm 3 multiply (a, b)

Require: a,b ¢ Z%, {the binary expansions of a and b are (ap-1,ap—2,...,a)2 and
(bn-1, bp-2, ..., by)2, respectively}

Ensure: p, the value of ab.

1: for j < 0,n—1do

2:  if bj=1then

3: i« a > shifted j places
4. else

b: <0 > { c,c1,...,Cph1 are the partial products}
6: end if

7: end for 110  a
8: p<o0 x101 b
9: for j < 0,n—1do

10: p—p+g 110 aby
11: end for 000 ab;
12: return p {p is the value of ab} 110 ab,

The number of additions of bits used by the algorithm to multiply two n-bit integers is (9 ( n2 )
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3. Prime Numbers
3.1 The Fundamental Theorem of Arithmetic



Primes

Definition

@ A positive integer p greater than 1 is said prime if the only
positive factors of p are 1 and p.



Primes

Definition
@ A positive integer p greater than 1 is said prime if the only
positive factors of p are 1 and p.

@ A positive integer that is greater than 1 and is not prime is
called composite .



Primes

Definition
@ A positive integer p greater than 1 is said prime if the only
positive factors of p are 1 and p.

@ A positive integer that is greater than 1 and is not prime is
called composite .

Example

The integer 7 is prime because its only positive factors are 1 and 7,
but 9 is composite because it is divisible by 3.



The fundamental theorem of arithmetic (prime
factorization )
Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.



The fundamental theorem of arithmetic (prime
factorization )

Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.

® More formally, for every positive integer a greater than 1,
there exists a positive integer n such that there exist prime
numbers p1,...,pn and positive integers a1, ..., a, such that:

a=pitpy’ppn and pr < pr << py.



The fundamental theorem of arithmetic (prime
factorization )

Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.

® More formally, for every positive integer a greater than 1,
there exists a positive integer n such that there exist prime
numbers p1,...,pn and positive integers a1, ..., a, such that:

a=pitpy’ppn and pr < pr << py.

Example

® 100=2-2.-5.5=22.52



The fundamental theorem of arithmetic (prime
factorization )

Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.

® More formally, for every positive integer a greater than 1,
there exists a positive integer n such that there exist prime

numbers p1,...,pn and positive integers a1, ..., a, such that:
a1 32,

a=piipy’py and pr < p2 << pp.

Example

® 100=2-2.-5.5=22.52
® 641 =641



The fundamental theorem of arithmetic (prime
factorization )

Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.

® More formally, for every positive integer a greater than 1,
there exists a positive integer n such that there exist prime
numbers p1,...,pn and positive integers a1, ..., a, such that:

a=pitpy’ppn and pr < pr << py.

Example
® 100=2-2.5.5=22.52
® 641 = 641
® 999=3-3.3.37=33.37



The fundamental theorem of arithmetic (prime
factorization )

Theorem

@ Every positive integer greater than 1 can be written uniquely
as a prime or as the product of two or more primes where the
prime factors are written in order of nondecreasing size.

® More formally, for every positive integer a greater than 1,
there exists a positive integer n such that there exist prime
numbers p1,...,pn and positive integers a1, ..., a, such that:

a=pitpy’ppn and pr < pr << py.

Example

® 100=2-2-5.5=22.52

@ 641 = 641

© 999=3-3-3-37=3%.37

O 1024=2.2.2.2.2.2.2.2.2.2=210
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3. Prime Numbers

3.2 The Sieve of Erastosthenes
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The sieve of Erastosthenes

194 B.C)

The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.
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The sieve of Erastosthenes

& 194 B.C)

The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:



Erastothenes (276-

The sieve of Erastosthenes

194 B.C)

The Sieve of Erastosthenes can be used to find all pri}nes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:
© Delete all the integers, other than 2, divisible by 2.



Erastothenes (276-

The sieve of Erastosthenes

194 B.C)
The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:

© Delete all the integers, other than 2, divisible by 2.
O Delete all the integers, other than 3, divisible by 3.



=

. Erastothenes (276-

The sieve of Erastosthenes

194 B.C)

The Sieve of Erastosthenes can be used to find all prri}nes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:
© Delete all the integers, other than 2, divisible by 2.
O Delete all the integers, other than 3, divisible by 3.
® Next, delete all the integers, other than 5, divisible by 5.



Erastothenes (276-

The sieve of Erastosthenes

194 B.C)

The Sieve of Erastosthenes can be used to find all prrirfnes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:
© Delete all the integers, other than 2, divisible by 2.
O Delete all the integers, other than 3, divisible by 3.
® Next, delete all the integers, other than 5, divisible by 5.
® Next, delete all the integers, other than 7, divisible by 7.



Erastothenes (276-

The sieve of Erastosthenes

194 B.C)

The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:
© Delete all the integers, other than 2, divisible by 2.
O Delete all the integers, other than 3, divisible by 3.
® Next, delete all the integers, other than 5, divisible by 5.
® Next, delete all the integers, other than 7, divisible by 7.

all remaining numbers between 1 and 100 are prime:
{2,3,7,11,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}



Erastothenes (276-

The sieve of Erastosthenes

194 B.C)
The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.

Example

@ Consider the list of integers between 1 and 100:

© Delete all the integers, other than 2, divisible by 2.
O Delete all the integers, other than 3, divisible by 3.
® Next, delete all the integers, other than 5, divisible by 5.
® Next, delete all the integers, other than 7, divisible by 7.

all remaining numbers between 1 and 100 are prime:
{2,3,7,11,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}
Why does this work?

continued —



The sieve of Erastosthenes

TABLE 1 The Sieve of Eratosthenes.
Integers divisible by 2 other than 2 Integers divisible by 3 other than 3

receive an underline. receive an underline.

12 3 4 5 6 7 8 9 10 56 7 8 9 10
112013 1415 16 17 18 19 20 15 16 17 18 19 20
20022 23 24 25 26 27 28 29 30 25 26 27 28 29 30
3032 3 M 3 38 39 40 35 37 38 39 40
FIRERPE P 48 49 50 a5 47 48 49 50
51052 53 54 s 58 59 60 55 56 57 58 59 60
61 62 63 64 65 68 6 10 65 66 67 68 69 10
71273 1475 78 79 80 75 076 77 18 79 80
81 82 83 84 85 88 89 90 85 86 87 88 89 90
91 92 93 94 95 98 99 100 95 96 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.

1 9 10 12 3 4 5 6 7 8 9 10
1" 19 20 1" 6 18 19 20
2 9 3 21 30
31 9 40 3l

4 49 50

Hi 59 60 st

61 © 10 61

7 79 80 7l

81 89 81

91 £ o1




The sieve of Erastosthenes

TABLE 1 The Sieve of Eratosthenes.

Integers divisible by 2 other than 2
receive an underline.

Integers divisible by 3 other than 3
receive an underline.

123 89 10 56 7 8 9 10
mooas 18 19 20 15 16 17 18 19 20
2 2 28 20 30 25 26 27 8 29 30
3R B 38 39 40 35 37 38 39 40
a4 @ e 48 49 50 a5 47 48 49 50
51052 53 58 59 60 55 ST 58 59 60
61 62 63 68 6 10 65 66 67 68 69 10
nn2n 8 79 80 75 076 77 18 79 80
81 82 83 88 89 9 85 86 87 88 89 90
91 92 93 98 99 100 95 96 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.

78 9 10 12 3 405 6 7 8 9 10

17 18 19 20 1 16 17 18 19 20

2728 29 30 26 30

37 38 9 4 36 20

47 48 49 50 50

57158 59 60 st 60

67 68 69 10 6

7B 7l

81 8 81

@ If an integer nis a
composite integer, then it
must have a prime divisor
less than or equal to \/n.



The sieve of Erastosthenes

TABLE 1 The Sieve of Eratosthenes.
Integers divisible by 2 other than 2 Integers divisible by 3 other than 3
receive an underline. receive an underline.
12 3 45 6 7 8 9 10 12 9 10
o2 13 14015 16 17 18 19 20 non 19 20
202023 2025 2w 7 W W KN 22 29 30
303 33 M 38 39 40 EIE) 3 4
FIRTE a8 49 50 41 9 50
51052 053 54 58 59 60 s 59 60
6l 62 63 64 68 6 10 61 6 10
N 879 80 7 80
81 83 84 88 89 90 81 8 %
91 92 93 94 95 96 97 98 99 100 91 9 100
Integers divisible by S other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.
4 708 9 1 34 7 9
14 17 18 19 1 13 14 17 19
2u 27 B 2 % u 2 v 30
34 37 38 39 3 B M 17038 3 40
44 47 48 90 50 4 TR 174 49 50
B 53 59 60 SR o5 om S8 59 80
64 67 68 69 10 6 6 64 67 68 69 10
7 7718 79 80 7 RER 7Y 79 8
84 87 88 8 % 81 82 83 84 8788 8 0
9 97 98 9 100 oL 92 93 94 97 98 9 100

@ If an integer nis a
composite integer, then it
must have a prime divisor
less than or equal to \/n.

@® To see this, note that if
n=ab, then a<.\/nor

b<+/n




The sieve of Erastosthenes

TABLE 1 The Sieve of Eratosthenes.
Integers divisible by 2 other than 2 Integers divisible by 3 other than 3
receive an underline. receive an underline.
123 405 78 9 10 78 9 10
no12o13 a4 s 17 18 19 20 17 18 19 20
2 2B U s 27 28 9 30 27 28 29 30
3032 0B M3 37 38 39 40 37 38 39 40
442 43 m 4 47 48 49 50 47 48 49 50
51052 53 5455 57 58 59 60 5T 58 59
61 62 63 64 65 67 68 6 10 67 68 60 10
72T s 718 79 80 7B’ 79 80
81 82 83 84 8 87 88 89 9% 87 88 89 90
91 92 93 94 95 97 98 99 100 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.
1203 405 6 7 8 1 10
o2 13 14 15 16 17 18 1 20
2002 23 4 25 %6 2 B 21 30
31032 33 34 35 36 37 38 3 20
4 46 47 a8 4 50
s6 51 58 1 50
66 67 68 6
6 7718 7
86 81 8 81
% 97 98 o1

@ If an integer nis a

composite integer, then it
must have a prime divisor
less than or equal to \/n.

To see this, note that if
n=ab, then a<+/nor
b<+/n
For n =100,+/n = 10,
thus any composite
integer < 100 must have
prime factors less than
10, that is 2,3,5,7. The
remaining integers < 100
are prime.




The sieve of Erastosthenes

@ If an integer nis a
composite integer, then it
must have a prime divisor
less than or equal to \/n.

TABLE 1 The Sieve of Eratosthenes.

lmegfersdivi(ih!z.hythzrrlmnz Inlep‘;ersdivisihle.lryimherﬂmn.? 9 TO see this, note th at If
receive an underline. receive an underline.
12 3 45 6 7 8 9 10 1 708 9 10 n:ab,then aS\/EOI’
1213 1405 16 17 18 19 20 1 1718 19 2
21022 23 24 25 26 27 28 29 30 21 27 28 29 30 bsﬁ
31032 33 34 35 36 37 38 39 40 31 37 38 39 40
41 42 43 44 45 46 47 48 49 50 41 47 48 49 50
51 52 53 54 55 56 57 S8 59 60 51 ST 58 59 60 9Fornz100,\/_:10,
61 62 63 64 65 66 67 68 69 70 61 66 67 68 69 70 .
MNRB M5 IET B n % 7 387 8 thus any composite
81 82 83 84 8 86 87 88 89 90 81 8 87 88 89 90 .
91 92 93 94 95 96 97 98 99 I 9l % 97 98 » 10 Integer < 100 must have
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive -
receve an andestne. s nderne e n solor ave g, prime factors less than
7 8 9 1 2 3 4 5 6 7 8 9 10 H
B - & awi » 10, that is 2,3,5,7. The
s 27 28 2 0 H H
77777 2 2 remaining integers < 100
37 38 39 40 4
47 48 49 50 50 1
= = = are prime.
5758 59 60 0 P
67 68 69 70 . . e .
7o @ Trial division, a
o % % 3 o5 very inefficient method of

determining if a number n
is prime, is to try every
integer i <+\/n and see if
n is divisible by i.
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3. Prime Numbers

3.3 Infinitude of Primes



Infinitude of primes

Theorem
There are infinitely many primes.

Euclid (325 -

265



Infinitude of primes

Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1, p2, ...

Euclid (325 -
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Infinitude of primes

Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1, p2, ...

@ letg=p1p2---pn+l

]
Euclid (325 -

265



\\ Euclid (325 - 265

Infinitude of primes

Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1,p2, ..., Pn-

@ letg=p1po---pn+l
© Either g is prime or by the fundamental theorem of arithmetic
it is a product of primes.



\ Euclid (325 - 265

Infinitude of primes

Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1,p2, ..., Pn-
@ letg=p1po---pn+l
© Either g is prime or by the fundamental theorem of arithmetic
it is a product of primes.
©® If a prime p; divides g, and since p; | p1p2 - - - pp holds as well,
then p; divides g — p1p>--p, = 1.



\ Euclid (325 - 265

Infinitude of primes

Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1,p2, ..., Pn-
@ letg=p1po---pn+l
© Either g is prime or by the fundamental theorem of arithmetic
it is a product of primes.
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Theorem
There are infinitely many primes.

PROOF.

@ Assume finitely many primes: p1,p2, ..., Pn-

@ Letg=p1p2---pptl
© Either g is prime or by the fundamental theorem of arithmetic
it is a product of primes.
©® If a prime p; divides g, and since p; | p1p2 - - - pp holds as well,
then p; divides g — p1p>--p, = 1.
O Thus, if a prime p; divides g, then p; = 1, which is a
contradiction with p; > 1.
O Hence, there is no prime on the list p1, po, ..., pn dividing g,
that is, g is a prime.
@ This contradicts the assumption that py, po,..., pn are all the
primes.
® Consequently, there are infinitely many primes.

This proof was given by Euclid in The Elements .
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Generating primes

@ The problem of generating large primes is of both theoretical
and practical interest.

® Finding large primes with hundreds of digits is important in
cryptography.

® So far, no useful closed formula that always produces primes
has been found. There is no simple function f(n) such that
f(n) is prime for all positive integers n.

© f(n)=n%—-n+41is prime for all integers 1,2, ... ,40.
Because of this, we might conjecture that f(n) is prime for all
positive integers n. But f(41) = 412 is not prime.

® More generally, there is no polynomial with integer coefficients
such that f(n) is prime for all positive integers n.

® Fortunately, we can generate large integers which are almost
certainly primes.
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(1588 - 1648)

Definition
Prime numbers of the form 2P — 1, where p is prime, are called
Mersenne primes.

®22-1=3,22-1=7,2°-1=37,and 2" -1=127 are
Mersenne primes.

@ 21 — 1 =2047 is not a Mersenne prime since 2047 = 23 - 89.

® There is an efficient test for determining if 2° — 1 is prime.

® The largest known prime numbers are Mersenne primes .

® On December 26 2017, the 50-th Mersenne primes was found,
it is 277232917 _ 1 "\which is the largest Marsenne prime
known. It has more than 23 million decimal digits.

® The Great Internet Mersenne Prime Search (GIMPS ) is a
distributed computing project to search for new Mersenne
Primes.

http://www.mersenne.org/
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Conjectures about primes

Even though primes have been studied extensively for
centuries, many conjectures about them are unresolved,
including:

® Goldbach’s conjecture : Every even integer n,n> 2, is the
sum of two primes. It has been verified by computer for all
positive even integers up to 1. 6-10® . The conjecture is
believed to be true by most mathematicians.

® Landau’s conjecture : There are infinitely many primes of
the form n? + 1, where n is a positive integer . But it has been
shown that there are infinitely many numbers of the form
n? + 1 which are the product of at most two primes.

©® The Twin Prime Conjecture: there are infinitely many pairs
of twin primes. Twin primes are pairs of primes that differ by
2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The
current world's record for twin primes (as of mid 2011)
consists of numbers 65,516,468, 355 - 2333333 1 1. which have
100,355 decimal digits.
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Greatest common divisor (GCD) From primes to relative primes

Definition
Let a and b be integers, not both zero.

@ The largest integer d such that d | a and also d | b is called
the greatest common divisor of a and b.

® The greatest common divisor (GCD) of a and b is denoted by
ged(a, b).
One can find GCDs of small numbers by inspection.

Example

@ What is the greatest common divisor of 24 and 367
Solution: gcd(24,26) =12

® What is the greatest common divisor of 17 and 227
Solution: gcd(17,22) =1
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Example
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Greatest common divisor (GCD) From primes to relative primes
Definition
The integers a and b are relatively prime if their greatest common
divisor is ged(a, b) = 1.

Example

17 and 22

Definition
The integers a1, as, ..., a, are pairwise relatively prime if
gcd(aj, aj) =1 whenever 1< j<j<n.

Example

@ Determine whether the integers 10, 17 and 21 are pairwise
relatively prime.
Solution: Because gcd(10,17) =1, ged(10,21) =1, and
ged(17,21) =1, 10, 17, and 21 are pairwise relatively prime.
® Determine whether the integers 10, 19, and 24 are pairwise
relatively prime.
Solution: No, since ged(10,24) = 2.
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Finding GCDs using prime factorizations

@ Suppose that the prime factorizations of a and b are:
n by b b
a=pr'pepys  b=prtpyep,
where each exponent is non-negative, and where all primes
occurring in either prime factorization are included in both.
® Then:

gcd(a, b) _ pfﬂin(a1,b1)p;nin(ag,bg)mpgqin(ambn)

® This formula is valid since
® the integer on the right-hand side divides both a and b,
® No larger integer can divide both a and b.

Example
Since 120 =23-3-5 and 500 = 22 -53, we have:

ng(120, 500) = pmin(3,2) | 3min(1,0) . 5min(1,3) =22.30.51 -9
Remark: finding the GCD of two positive integers using their prime

factorizations is not efficient because there is no efficient
algorithm for finding the prime factorization of a positive integer.
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Least common multiple (LCM)
Definition
@ The least common multiple (LCM) of the positive integers a
and b is the smallest positive integer that is divisible by both
a and b. It is denoted by lcm(a, b).
® The least common multiple can also be computed from the

pl illle actor izations.
max|(a ,b ma. az,bg ma. a,,,b,,
X( 1 l)p X( )pn X( )

lem(a, b) = p;
® This number is divided by both a and b and no smaller
number is divided by a and b.

Example
lcm(233572, 2433) _ 2max(3,4)3max(5,3)7max(2,0) _ 243572

Theorem
Let a and b be positive integers. Then, we have:

a-b=gcd(a,b)-lem(a,b)
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The Euclidean Algorithm

@ The Euclidean Algorithm is an efficient method for computing
the GCD of two integers.
® It is based on the idea that
ged(a, b) = ged(b, r)
when a > b and r is the remainder when a is divided by b.
® Indeed, since a=bqg+r, then r=a—-bq. Thus, if d | a and

d|bthend|r.
Example
© Find gcd(287,91):
® 287=91-3+14 — Divide 287 by 91
O®91=14-6+7 — Divide 91 by 14
®14=7-2+0 — Divide 14 by 7

Zero remainder is our stopping condition.

gcd(287,91) = ged(91,14) = ged(14,7) = ged(7,0) =7

continued —
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Algorithm 4 gcd(a, b)

Require: a,beZ", a>b
Ensure: x, the GCD of a and b.
1: X<« a
2.y« b
3: while y # 0 do
4 r<xmody
5: X<y
6 y<r
7: end while
8: return x




The Euclidean Algorithm

The Euclidean algorithm expressed in pseudo-code is:

Algorithm 4 gcd(a, b)

Require: a,beZ", a>b
Ensure: x, the GCD of a and b.
1: X<« a
2.y« b
3: while y # 0 do
4 r<xmody
5: X<y
6 y<r
7: end while
8: return x

Note: the time complexity of the algorithm is O(|Og23), where
a>b.
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ged(a, b) = ged(b, r).

Proof.
@ Any divisor of a and b must also be a divisor of b and r since
r=a-bq (with g =adivb.)
® Similarly, any divisor of b and r is also a divisor of a and b.

© Therefore, the set of common divisors of a and b is equal to
the set of common divisors of b and r.

@ Therefore, gcd(a, b) = ged(b, r).
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Correctness of the Euclidean Algorithm

@ Suppose that a and b are positive integers with a > b. Let rp = a
and r; = b. Successive applications of the division algorithm

yields:
o =qin+n 0<m<n<n
n = Qo+ 13 0<n<m
-2 =rn-1qn-1+In 0<r<r
rn-1 =rnqn (ng)

® Eventually, a remainder of zero occurs in the sequence of
terms: a=ryp>r >r>--->0. The sequence can not contain

more than (a+ 1) terms.
® Then, the Lemma implies:
ged(a, b) =ged(rg, 1) =+ =ged(rn_1,rn) = ged(rn,0) = rp.

O Hence the GCD is the last nonzero remainder in the sequence
of divisions . ]
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Etienne Bézout

GCD(s) as linear combinations

(1730 - 1783)

Theorem (Bézout’s Theorem)

If a and b are positive integers, then there exist integers s and t
such that

ged(a, b) = sa+ th.

Definition
@ If a and b are positive integers, then integers s and t such that
gcd(a, b) = sa+ tb are called Bézout coefficients of a and b.
® The equation gcd(a, b) = sa+ tb is called Bézout's identity.

© The expression sa+ tb is also called a linear combination of a
and b with coefficients of s and t.

Example
ged(6,14) = 2 = (~2)-6+1 -14



Finding GCD(s) as linear combinations
Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and

198.
Solution: First use the Euclidean algorithm to show

ged(252,198) = 18



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and

198.
Solution: First use the Euclidean algorithm to show

ged(252,198) = 18
® 252=1-198+54



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and

198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18

O 252=1-198+54

0O 198=3-54+36



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18

O 252=1-198+54

0O 198=3-54+36

®54=1-36+18



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18

O 252=1-198+54

O 198=3-54+36

®54=1-36+18

® 36=2-18



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
©® 252=1-198+54
® 198=3-54+36
®54=1-36+18
® 36=2-18
© Working backwards , from (¢ ) and (b ) above



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18

O 252=1-198+54

O 198=3-54+36

®54=1-36+18

® 36=2-18

@ Working backwards , from c and b above
18=54-1-36



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
O 252=1-198+54
O 198=3-54+36
®54=1-36+18
® 36=2-18
© Working backwards , from (¢ ) and (b ) above
18=54-1-36
36=198-3-54



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
O 252=1-198+54
O 198=3-54+36
®54=1-36+18
® 36=2-18
©® Working backwards , from (¢ ) and (b ) above
18=54-1-36 ’ ’
36=198-3-54
@ Substituting the 2" equation into the 1% yields:



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
O 252=1-198+54
0O 198=3-54+36
®54=1-36+18
® 36=2-18
©® Working backwards , from (¢ ) and (b ) above
18=54-1-36 ’ ’
36=198-3-54
@ Substituting the 2" equation into the 1% yields:
18=54-1-(198-3-54)=4-54-1-198



Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
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Finding GCD(s) as linear combinations

Example

Express gcd(252,198) = 18 as a linear combination of 252 and

198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
® 252=1-198+54
0O 198=3-54+36
®54=1-36+18
® 36=2-18
©® Working backwards , from (¢ ) and (b ) above
18=54-1-36 ’ ’
36=198-3-54
@ Substituting the 2" equation into the 1% yields:
18=54-1-(198-3-54)=4-54-1-198
© Substituting 54 = 252 - 1198 (from (a ) above) yields:
18=4-(252-1-198) - 1-198 =4-252-5-198



Finding GCD(s) as linear combinations
Example

Express gcd(252,198) = 18 as a linear combination of 252 and
198.
Solution: First use the Euclidean algorithm to show
ged(252,198) = 18
O 252=1-198+54
0O 198=3-54+36
®54=1-36+18
® 36=2-18
©® Working backwards , from (¢ ) and (b ) above
18=54-1-36 ’ ’
36=198-3-54
@ Substituting the 2" equation into the 1% yields:
18=54-1-(198-3-54)=4-54-1-198
© Substituting 54 = 252 — 1-198 (from (a ) above) yields:
18=4-(252-1-198) - 1-198 =4-252-5-198

This method illustrated above is a two pass method. It first uses the Euclidean
algorithm to find the GCD and then works backwards to express the GCD as a
linear combination of the original two integers. There is a one pass method,
called the extended Euclidean algorithm.
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Consequences of Bézout's Theorem

Lemma

If a, b, ¢ are positive integers such that a and b are relatively prime
(that is, gcd(a, b) = 1) and a| bc, then we have a | c.

PRrROOF:

® Assume gecd(a,b) =1 and a| bc both hold.

® Since ged(a, b) = 1, by Bézout's Theorem there are integers s
and t such that sa+ tb=1 holds.

©® Multiplying both sides of the equation by c, yields sac + tbc = c.

@ Since a| bc, we have a| tbc, that is, there exists g so that we

have tbc = qa.
® With sac + tbc = ¢, it follows that a(sc + q) = ¢, that is, a| ¢
holds.

A generalization of the above lemma is important in practice:

Lemma
If p is prime and p | a1a> ... a, where a; are integers then p | a; for
some i.
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Dividing congruences by an integer

@ Dividing both sides of a valid congruence by an integer does
not always produce a valid congruence, as illustrated earlier.

® But dividing by an integer relatively prime to the modulus
does produce a valid congruence.

Theorem

Let m be a positive integer and let a, b, and ¢ be integers. If
gcd(c,m) =1 and ac = bc mod m, then a= b mod m.

Proof.

@ Since ac = bc mod m holds, we have
m|ac-bc=c(a-b).

® With the previous lemma and since gcd(c, m) = 1 holds, it
follows that m|a—-b..

® Hence, a= b mod m.
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